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Abstract—If computational tractability were not an issue, multi-
object estimation should integrate all measurements from multi-
ple sensors across multiple scans. In this article, we propose an
efficient numerical solution to the multi-scan multi-sensor multi-
object estimation problem by computing the (labeled) multi-sensor
multi-object posterior density. Minimizing the L1-norm error
from the exact posterior density requires solving large-scale multi-
dimensional assignment problems that are NP-hard. An efficient
multi-dimensional assignment algorithm is developed based on
Gibbs sampling, together with convergence analysis. The resulting
multi-scan multi-sensor multi-object estimation algorithm can be
applied either offline in one batch or recursively. The efficacy of
the algorithm is demonstrated using numerical experiments with a
simulated dataset.

Index Terms—State estimation, Smoothing, Random finite sets,
Multi-sensor, Multi-dimensional assignment, Gibbs sampling.

I. INTRODUCTION

INSTEAD of the state or trajectory of a single object, multi-
object state estimation is concerned with the joint estima-

tion of the number of objects and their trajectories [1], [2],
[3]. This problem has a wide range of application areas from
aerospace [4], computer vision [5], [6], [7], to cell biology [8],
[9]. Multi-object state estimation is challenging because we have
to address the unknown and time-varying number of objects,
false negatives/positives, and data association uncertainty, which
altogether incur a combinatorial complexity. The three main
approaches to multi-object estimation in the literature are Mul-
tiple Hypothesis Tracking (MHT) [2], Joint Probabilistic Data
Association (JPDA) [10], and Random Finite Set (RFS) [1], [3].
Apart from the number of objects and their trajectories, the RFS
approach also provides statistical characterization of the entire
ensemble of objects [11].

In general, employing multiple sensors in state estimation
enhances detection capability and spatial coverage, reliability,
observability, and reduces uncertainty [12], [13]. There are
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many applications that fundamentally require multiple sensors
because a single sensor is simply not adequate, see e.g., [14],
[15]. Moreover, given the proliferation of inexpensive sensors,
effective multiple sensor solutions are imperative for exploiting
their intended capabilities. The benefits of multiple sensors are
even more significant in multi-object estimation, where there is
inherent additional uncertainty.

In multi-object estimation, the benefits of multiple sensors
come with additional challenges due to the NP-hard multi-
dimensional data association problem that arises from the match-
ing of objects to measurements across multiple sensors [3], [13],
[16], [17]. Several approximate multi-sensor multi-object es-
timation solutions have been developed. Centralized architec-
ture solutions include the multi-sensor Probability Hypothesis
Density (PHD) and Cardinalized PHD (CPHD) filters [3], [18]
multi-sensor JPDA filter [19], multi-Sensor multi-Bernoulli fil-
ter [20], and multi-sensor Generalized Labeled Multi-Bernoulli
(GLMB) filter [21]. The latter incurs a linear complexity in the
total number of measurements across the sensors, without signif-
icantly compromising optimality. Decentralized solutions have
also been developed for the PHD, CPHD filters [22], [23], [24]
multi-Bernoulli filter [25], [26], [27], LMB and marginalized
GLMB filters [28].

Whereas filtering only considers the current timestep, the
multi-scan approach considers the history of the multi-object
states over a time window, thereby allowing the correction
of previous errors [2], [29], [30]. MHT forms hypotheses by
associating measurements to tracks across a time window [31],
and delays making estimates until further information becomes
available. In [32], a fixed lag smoother was integrated to the
JPDA filter [10], where it was shown that a significant improve-
ment in tracking accuracy over filtering can be achieved with
small window of sizes two and three. The first RFS multi-scan
multi-object filter was developed in [30], where all statistical
information pertinent to the multi-object system over the time
window is encapsulated in the multi-object posterior, including
statistics on the ensemble of trajectories. Computing this poste-
rior, however, also requires solving NP-hard multi-dimensional
ranked assignment problems. Recently, an efficient numeri-
cal algorithm with polynomial complexity was developed for
propagating the so-called (multi-scan) GLMB posterior, where
multi-dimensional ranked assignment problems are solved using
Gibbs sampling [11].

Ideally, if computational tractability were not an issue, to
inherit all the benefits from both multi-sensor and multi-scan
solutions we should make use of measurements from all sensors
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across multiple scans. However, keeping in mind that the multi-
scan problem itself requires solving NP-hard multi-dimensional
ranked assignment problems, and ditto for the multi-sensor prob-
lem, the joint multi-scan multi-sensor problem is far more com-
putationally demanding. Consequently, research on multi-scan
multi-sensor multi-object estimation is very limited. To the best
of our knowledge, only a two-scan two-sensor demonstration
with four objects, using an Interacting Multiple Model (IMM)
JPDA filter, has been reported [33].

This article addresses multi-scan multi-sensor multi-object
estimation via the labeled RFS formulation, which translates
to computing a labeled multi-object posterior consisting of an
intractably large weighted sum of set functions. Approximating
this so-called GLMB posterior by retaining the highest weighted
terms minimizes the L1-norm approximation error [11], and
requires solving far more challenging multi-dimensional as-
signment problems than those for multi-scan (with single-
sensor) or multi-sensor (with single-scan). Indeed, the posterior
truncation problem for V sensors across K scans is a (KV)-
dimensional assignment problem, and existing techniques are
not adequate for K and V greater than two, even with only four
objects.

We propose an efficient multi-dimensional assignment so-
lution with polynomial complexity using Gibbs sampling, to-
gether with convergence analysis. This solution generalizes
those for multi-sensor (with single-scan) and multi-scan (with
single-sensor) in [11], [21]. The resultant multi-object estima-
tion algorithm can be used offline in one batch or recursively at
each measurement update, i.e., smoothing-while-filtering. The
efficacy and utility of the proposed solution are demonstrated
in numerical experiments. For the purposes of establishing the
theoretical foundation and scalability for the algorithm, we focus
on the (labeled) multi-object posterior, which involves a growing
window of scans. While such a growing window results in a
complexity per time step that grows with time, the algorithm
can be easily adapted to a fixed-length moving window, so that
the complexity per time step is fixed. Note that filtering is a
special case of the moving window approach with a window
length of one. A formulation that produces trajectories with
a fixed complexity per time step is only possible with labels,
see e.g., [34], [35] for further discussion. Without labels, the
only way to obtain trajectories is by using a growing window
which incur a complexity per time step that grows exponen-
tially with time. Such an approach is impractical even for the
simplest case of single object state estimation with a single
sensor [36].

The remainder of this article is organized as follows. Sec-
tion II summarizes relevant concepts in multi-object estima-
tion, and Section III presents the implementation details of the
multi-sensor GLMB posterior recursion. Section IV presents the
numerical studies, and Section V concludes the paper. Mathe-
matical proofs are given in the supplementary materials.

II. BACKGROUND

As per the convention in [11], the symbols and notations used
throughout the article are summarized in Table I.

TABLE I
NOTATIONS

Fig. 1. Labeled multi-object trajectory and history. The two objects born at
time 1 are given labels (1,1) and (1,2), colored red and white. The object born
at time 4 is given label (4,1), colored blue. The multi-object history X0:k (note
X0 = ∅) is represented by two equivalent groupings according to: (a) time
(vertical strips, i.e., multi-object states) or; (b) labels (strips containing states of
the same color, i.e., trajectories).

A. Multi-Object State and Multi-Object Trajectory

The labeled state of an object is represented by x = (x, �),
where the vector x ∈ X is its kinematic state, and � = (s, ι) is
its (unique) label with s representing the time of birth and ι is an
index to distinguish objects born at the same time [37]. Let Bs

denote the label space of objects born at time s, then the space
of all labels up to time k is the disjoint union Lk = �k

s=0Bs

(equivalently Lk = Lk−1 � Bk). A sequence of consecutive la-
beled states (say, from time s to t)

τ = [(xs, �), (xs+1, �), . . . , (xt, �)], (1)

with kinematic states xs, xs+1, . . ., xt ∈ X, and label � = (s, ι),
is called a trajectory. The labeled state of trajectory τ at time i
is denoted by τ (i).

At time i, a labeled multi-object state Xi is a finite subset
of X× Li with distinct labels. Let L denote the projection
defined by L((x, �)) = �, and L(Xi) denote the set of la-
bels of Xi. Since a valid labeled multi-object state Xi must
have distinct labels, we require the distinct label indicator
Δ(Xi) � δ|Xi|[|L(Xi)|] to be 1. Given a set S of trajectories
with distinct labels, the labeled multi-object state at time i is
Xi = {τ (i) : τ ∈ S}, see Fig. 1 for illustration.

Given a sequence Xj:k of labeled multi-object states (from a
set of labeled trajectories) over the interval {j : k}, the trajectory
of (the object with) label � ∈ ∪k

i=jL(Xi) is

x
(�)
s(�):t(�) � [(x

(�)
s(l), �), . . . , (x

(�)
t(l), �)], (2)
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where: s(�) and t(�) are, respectively, the earliest and latest times
on {j : k} such that the label � exists; and (x

(�)
i , �) denotes the

element of Xi with label � and unlabeled state x(�)i . Hence, the
sequence Xj:k can be equivalently represented by the trajecto-
ries of all labels in ∪k

i=jL(Xi), i.e.,

Xj:k ≡
{
x
(�)
s(�):t(�) : � ∈ ∪k

i=jL(Xi)
}
. (3)

This equivalence is illustrated in Fig. 1.
Analogous to a single-object system where the state

trajectory is represented by the state history x0:k, in a multi-
object system the multi-object trajectory is represented by the
labeled multi-object (state) history X0:k. Further, the equiva-
lence (3) enables the following extension of the multi-object
exponential to multiple scans. For any non-negative integer n
and i1 < i2 < . . . < in, let T{i1,i2,...,in} � (X× Li1)× . . ..×
(X× Lin), with T∅ = ∅. For any function h : �I⊆{j:k}TI →
[0,∞), the multi-scan exponential [11] is defined as

[h]Xj:k � [h]
{x(�)

s(�):t(�)
:�∈L(Xj:k)} =

∏
�∈L(Xj:k)

h
(
x
(�)
s(�):t(�)

)
.

Note that when j = k, this reduces to the single-scan multi-
object exponential hXj in Table 1.

Hereon, single object states are represented by lower case
letters (i.e., x and x), and multi-object states are represented by
upper case letters (i.e.,X andX), where the symbols for labeled
states and their distributions are bolded (i.e., x, X , π, etc.) to
distinguish them from unlabeled states.

In Bayesian estimation, the states and measurements are
modeled as random variables. Hence, in a multi-object system,
the multi-object state is modeled as an RFS, and the system
model is described by the multi-object state transition kernel
and measurement likelihood function, presented respectively in
Subsection II-B and II-C. The multi-object posterior recursion
is presented in Subsection II-D.

B. Multi-Object Dynamic Model

Given the multi-object state Xk−1 at time k − 1, each
xk−1 = (xk−1, �k−1) ∈ Xk−1 either survives with probability
PS,k−1(xk−1) and moves to a new statexk = (xk, �k)with tran-
sition density fS,k|k−1(xk|xk−1, �k)δ�k−1

[�k] at time k, or dies
with probabilityQS,k−1(xk−1) = 1− PS,k−1(xk−1). An object
(with label) �k ∈ Bk, is either born at time k with probability
PB,k(�k) and state xk with probability density fB,k(xk, �k),
or not born with probability QB,k(�k) = 1− PB,k(�k). The
multi-object stateXk at time k, is the superposition of surviving
and new birth states. In a standard multi-object dynamic model,
the birth and survival sets are independent of each other, and
each object moves and dies independently of each other. The
multi-object dynamic model is encapsulated in the multi-object
transition density fk|k−1(Xk|Xk−1), see [11], [37] for the
actual expressions.

C. Multi-Object Measurement Model

Consider the multi-object state Xk at time k, and V sensors,
each produces a set Z(v)

k of measurements, v ∈ {1 : V }. Each

x ∈ Xk is either detected by sensor v with probability P (v)
D,k(x)

and generates a detection z ∈ Z
(v)
k on the observation space

Z
(v), with likelihood g(v)k (z|x)or miss-detected with probability

Q
(v)
D,k(x) = 1− P

(v)
D,k(x). Sensor v also receives false alarms

(clutter), modeled by a Poisson RFS with intensity function κ(v)k

on Z
(v). The multi-object observation Z(v)

k is the superposition
of detections and false alarms, which are assumed independent,
conditional on Xk.

An association map γ(v)k : Lk → {−1 : |Z(v)
k |}, of sensor v,

is a positive 1-1 map (i.e., no two distinct labels are mapped to
the same positive value). Here γ(v)k (�) > 0 means � generates

the γ(v)k (�)-th measurement at sensor v, γ(v)k (�) = 0 means � is

misdetected by sensor v, and γ(v)k (�) = −1 means � does not

exist. Let L(γ(v)k ) � {� ∈ Lk : γ
(v)
k (�) ≥ 0} be the set of live

labels1 of γ(v)k , and Γ
(v)
k be the space of all association maps for

sensor v, then the multi-object likelihood is [21]

g
(v)
k

(
Z

(v)
k |Xk

)
∝

∑
γ
(v)
k ∈Γ(v)

k

δL
(
γ
(v)
k

)[L(Xk)]

[
ψ
(v,γ

(v)
k ◦L(·))

k,Z
(v)
k

(·)
]Xk

(4)

where γ(v)k ◦ L(·) = γ
(v)
k (L(·)), and

ψ
(v,i)
k,{z1:m}(x) =

⎧⎨
⎩

P
(v)
D,k(x)g

(v)
k (zi|x)

κ
(v)
k (zi)

i > 0

Q
(v)
D,k(x) i = 0

. (5)

The multi-sensor association map is defined from the single-
sensor association maps γ(v)k , v ∈ {1 : V } by

γk = (γ
(1)
k , . . . , γ

(V )
k ) : Lk → {−1V

} � Λ
(1:V )
k ,

where 1V is the V -tuple of ones, Λ(1:V )
k � Λ

(1)
k × · · · × Λ

(V )
k ,

and Λ
(v)
k � {0, . . . , |Z(v)

k |}. Note that each γ(v)k is required to
be positive 1-1, in which case γk is said to be positive 1-1. Here,
γk(�) = −1V means label � does not exist, whereas γk(�) ∈
Λ
(1:V )
k means label � exists, in which case it is misdetected by

sensor v if γ(v)k (�) = 0, or generates the γ(v)k (�)-th measurement

at sensor v if γ(v)k (�) > 0. Since the live label set L(γ(v)k ) can

be written as {� ∈ Lk : γk(�) ∈ Λ
(1:V )
k }, which is independent

of v, we write it as L(γk).
Assuming that the sensors are independent conditional on

Xk, the multi-sensor multi-object likelihood function is simply
the product of the likelihoods of individual sensors. Let Zk �
(Z

(1)
k , . . ., Z

(V )
k ) denote the multi-sensor observation, then the

multi-sensor multi-object likelihood function is

gk(Zk|Xk) ∝
∑

γk∈Γk

δL(γk)[L(Xk)]
[
ψ
(γk◦L(·))
k,Zk

(·)]Xk , (6)

1This notation is similar to L(X), the labels of a labeled set, nonetheless the
context is clear from the arguments.
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where Γk is the space of multi-sensor association maps, and

ψ

(
α(1:V )

)
k,Zk

(x) �
V∏

v=1

ψ

(
v,α(v)

)
k,Z

(v)
k

(x).

D. Multi-Object Bayes Recursion

All information about the set of objects in the surveillance
region for the interval {0 : k} is captured by the multi-object
posterior, which can be recursively propagated in time by,

π0:k(X0:k) ∝ gk(Zk|Xk)fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1).

Note that the posterior is conditioned on the measurement his-
tory Z1:k, but we have omitted it for brevity. The dimension-
ality of the posterior (hence complexity per timestep) grows
with time, and computing it at each timestep is impractical.
Nevertheless, the complexity per timestep can be capped by
smoothing over short windows and linking trajectory esti-
mates between windows via their labels. Multi-object filter-
ing can be regarded as a special case with a window length
of one.

For the single-sensor special case, Particle Markov Chain
Monte Carlo [38] has been applied to approximate the multi-
object posterior in [30]. Further, an analytic solution called
the (multi-scan) GLMB filter/smoother was developed in [11],
which conceptually extends to the multi-sensor case.

E. Multi-Sensor GLMB Posterior

Before delving into the multi-sensor GLMB posterior, it is
informative to consider the association weight and trajectory
posterior of a label �. Recall that s(�) and t(�) are, respectively,
the earliest and latest times on {0 : k} such that � exists. There
are four possible cases for its trajectory: (i) new born, s(�) = k;
(ii) surviving, t(�) = k > s(�); (iii) die at time k, t(�) = k − 1;
(iv) died before time k, t(�) < k − 1. Suppose that � generated
the sequence αs(�):k of multi-sensor measurement indices, then
its trajectory posterior at time k is

τ
(αs(�):k)

0:k (xs(�):t(�), �)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ
(αk)

B,k (xk,�)

Λ̄
(αk)

B,k (�)
, s(�) = k

Λ
(αk)

S,k|k−1
(xk |xk−1,�)τ

(αs(�):k−1)

0:k−1 (xs(�):k−1,�)

Λ̄
(αs(�):k)

S,k|k−1
(�)

, t(�) = k > s(�)

QS,k−1(xk−1,�)τ
(αs(�):k−1)

0:k−1 (xs(�):k−1,�)

Q̄
(αs(�):k−1)

S,k−1 (�)
, t(�) = k − 1

τ
(αs(�):t(�))

0:t(�) (xs(�):t(�), �), t(�) < k − 1

,

(7)

where τ
(αs(�):k−1)

0:k (xs(�):k−1, �) is the trajectory posterior at time
k − 1,

Λ
(αk)
B,k (x, �) = ψ

(αk)
k,Zk

(x, �)PB,k(�)fB,k(x, �), (8)

Λ̄
(αk)
B,k (�) =

∫
Λ
(αk)
B,k (x, �)dx, (9)

Λ
(αk)
S,k|k−1(xk|xk−1, �) = ψ

(αk)
k,Zk

(xk, �)PS,k−1(xk−1, �) (10)

× fS,k|k−1(xk|xk−1, �),

Λ̄
(αs(�):k)

S,k|k−1,k(�) =

∫
τ
(αs(�):k−1)

0:k−1 (xs(�):k−1, �) (11)

× Λ
(αk)
S,k|k−1(xk|xk−1, �)dxs(�):k,

Q̄
(αs(�):k−1)

S,k−1 (�) =

∫
τ
(αs(�):k−1)

0:k−1 (xs(�):k−1, �)

×QS,k−1(xk−1, �)dxs(�):k−1. (12)

In addition, the association weight for � ∈ Lk is defined as

η
(αs(�):k)

k|k−1 (�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Λ̄
(αk)
B,k (�), s(�) = k

Λ̄
(αs(�):k)

S,k|k−1 (�), t(�) = k > s(�)

Q̄
(αs(�):k−1)

S,k−1 (�), t(�) = k − 1

QB,k(�), � ∈ Bk, αk = −1V

. (13)

We now present the multi-object posterior as follows. Starting
with the initial prior π0(X0) = δ0[L(X0)] (i.e., there are no
live objects at the beginning) with weight w(γ0)

0 = 1, the multi-
sensor GLMB posterior at time k can be written as [11]

π0:k(X0:k) ∝
Δ(X0:k)

∑
γ0:k

w
(γ0:k)
0:k δL(γ0:k)[L(X0:k)]

[
τ
(γ0:k◦L(·))
0:k (·)]X0:k ,

(14)

where Δ(X0:k) �
∏k

i=0 Δ(Xi), and

w
(γ0:k)
0:k =

k∏
j=1

w
(γ0:j)
j , (15)

w
(γ0:j)
j = 1F(Bj�L(γj−1))(L(γj))

[
η
(γ0:j(·))
j|j−1 (·)]Bj�L(γj−1). (16)

Some of the relevant posterior statistics from the multi-scan
GLMB are [11]:
� The cardinality distribution, i.e., the distribution of the

number of trajectories is given by,

Pr(|L(X0:k)| = n) =
∑
γ0:k

w
(γ0:k)
0:k δn[|L(γ0:k)|]; (17)

� The cardinality distribution of births and deaths at time
u ∈ {0 : k} are given by,

Pr(n births at time u)

=
∑
γ0:k

w
(γ0:k)
0:k δn

[ ∑
�∈L(γ0:k)

δu[s(�)]

]
; (18)

Pr(n deaths at time u)

=
∑
γ0:k

w
(γ0:k)
0:k δn

[ ∑
�∈L(γ0:k)

δu[t(�)]

]
; (19)
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� The distribution of trajectory lengths is given by,

Pr(a trajectory has lengthm)

=
∑
γ0:k

w
(γ0:k)
0:k

|L(γ0:k)|
∑

�∈L(γ0:k)

δm[t(�)− s(�) + 1]. (20)

Several multi-object trajectory estimators [11] are applicable
to the GLMB posterior (14). This work uses the GLMB esti-
mator, which first determines the most probable cardinality n∗

by maximizing (17), and then the highest weighted component
(indexed by) γ∗0:k with cardinality n∗. The n∗ estimated trajecto-
ries can be taken as the mean or mode of the trajectory posterior

τ
(γ∗

0:k(�))

0:k (·, �) for each � ∈ L(γ∗0:k).
The GLMB posterior (14) is completely parameterized by the

set of components {(w(γ0:k)
0:k , τ

(γ0:k)
0:k )}, indexed by γ0:k, which

grow super-exponentially in number, and hence a tractable ap-
proximation is necessary. Truncation by retaining a prescribed
number of components with highest weights minimizes the
L1-norm approximation error [11].

III. MULTI-SENSOR GLMB POSTERIOR PROPAGATION

This section presents techniques to truncate the multi-sensor
GLMB posterior by extending the Gibbs samplers proposed
in [11]. Subsection III-A introduces the distributions from which
significant components of the GLMB posterior are drawn. Sub-
section III-B presents an efficient algorithm to generate valid
components that can be used to initialize the full Gibbs sampler
presented in Subsection III-C, which generates components
according to a desired distribution.

A. Sampling Distributions

We truncate the posterior GLMB by sampling its components
from some discrete distribution π such that those with higher
weights are more likely to be chosen. Without loss of generality,
we start with L(γ0) = ∅, and consider

π(γ0:k) =

k∏
j=1

π(j)(γj |γ0:j−1), (21)

where

π(j)(γj |γ0:j−1) ∝ 1Γj
(γj)1F(Bj�L(γj−1))(L(γj))

× [ϑ(γ0:j(·))
j (·)]Bj�L(γj−1), (22)

and ϑ(γ0:j(·))
j (·) is chosen to be approximately proportional to

η
(γ0:j(·))
j|j−1 (·) so that (21) is approximately proportional to w(γ0:k)

0:k

in (15). A function f is said to be approximately proportional
to g, i.e., f ∝∼ g, if f/〈f, 1〉 � g/〈g, 1〉.Note that, if ϑ(γ0:j(·))

j (·)
is equal to η(γ0:j(·))

j|j−1 (·), (22) is proportional to (16), and (21) is
proportional to (15).

The term 1F(Bj�L(γj−1))(L(γj)) in (22) means L(γj) ⊆ Bj �
L(γj−1), i.e., γj(�) = −1V for all � /∈ Bj � L(γj−1). Hence,
only the values of γj on Bj � L(γj−1) need to considered. In
addition, the following decomposition of 1Γi

(γi) is instrumental
for the proposed Gibbs samplers (the proof is given in Supple-
mentary Material, Subsection A).

Lemma 1: Let n̄ � {1 : |Lj |} − {n}, and Γj(n̄) be the
set of all γj(�n̄) � (γj(�1:n−1), γj(�n+1:|Lj |)) ∈ ({−1}V �
Λ
(1:V )
j )|Lj |−1 that are positive 1-1. Then,

1Γj
(γj) = 1Γj(n̄)(γj(�n̄))

V∏
v=1

β(j,v)
n

(
γ
(v)
j (�n)|γ(v)j (�n̄)

)
,

(23)

where

β(j,v)
n

(
γ
(v)
j (�n)|γ(v)j (�n̄)

)
=
[
1− 1{1:|Z(v)

j |}∩{γ(v)
j (�1:n−1),γ

(v)
j (�n+1:|Lj |)}

(γ
(v)
j (�n))

]
.

(24)

B. Sampling From the Factors

Sampling from (21) can be performed by iteratively sampling
from the factors (22), i.e., γj ∼ π(·|γ0:j−1), for time j = 1 : k

(note thatγj consists ofγj(�n), �n ∈ {�1:|Lj |} � Lj). We sample
from π(·|γ0:j−1) using a Gibbs sampler [40], which constructs
a sequence of iterates by generating the next iterate γ′j from γj
and the conditionals of π(·|γ0:j−1) as follows

γ′j(�1) ∼ π
(j)
1

(·|γ0:j−1, γj(�2:|Lj |)
)

...

γ′j(�n) ∼ π(j)
n

(·|γ0:j−1, γ
′
j(�1:n−1), γj(�n+1:|Lj |)

)
...

γ′j(�|Lj |) ∼ π
(j)
|Lj |
(·|γ0:j−1, γ

′
j(�1:|Lj |−1)

)
,

where for any α = α(1:V ) ∈ {−1}V � Λ
(1:V )
j

π(j)
n (α|γ′j(�1:n−1), γj(�n+1:|Lj |), γ0:j−1)

∝ π(j)(γ′j(�1:n−1), α, γj(�n+1:|Lj |)|γ0:j−1), (25)

The efficiency of Gibbs sampling hinges on the availability of
conditionals that are easy to sample from.

We adopt the multi-sensor Gibbs sampling technique devel-
oped in [21] to sample γ′j(�n) from the n-th conditional (25).
The basic steps in this technique are illustrated in Fig. 2, and
summarized as pseudocode in Algorithm 1. The pseudocode for
generatingR iterates of the factor Gibbs sampler is given in Al-
gorithm 2. Theoretical justifications and analyses of Algorithms
1 and 2 are given in the remainder of this subsection.

Consider first the n-th conditional distribution by substituting
(22) into the right hand side of (25), and noting that we are only
interested in the functional dependency on α,

π(j)
n (α|γj(�n̄), γ0:j−1)

∝ 1Γj
((γj(�1:n−1), α, γj(�n+1:|Lj |)))

× 1F(Bj�L(γj−1))(L((γj(�1:n−1), α, γj(�n+1:|Lj |))))

× ϑ
((γ0:j−1(�n),α))
j (�n), (26)
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Fig. 2. Generating γ′
j(�n) = (α(1), . . ., α(V )) from γj , �n ∈ Bj � L(γj−1). Two cases: (i) bottom branch, with probability P

(j)
n (Λ

(1:V )
j ), given in (33),

�n is either born (if �n ∈ Bj ) or surviving (if �n ∈ L(γj−1)). For each v ∈ {1 : V }, α(v) is sampled from the categorical distribution π
(j,v)
n (·) that depends

on the pre-computed ϑ̊
(j,v)
n (·). To ensure that γ′

j is positive 1-1, we use M
(j,v)
n (·) to mask out the positive measurement indices taken up by other labels (by

multiplying ϑ̊
(j,v)
n (·) with M

(j,v)
n (·)), which results in π

(j,v)
n (·); (ii) top branch, with probability Q

(j)
n (Λ

(1:V )
j ) = 1− P

(j)
n (Λ

(1:V )
j ), �n is non-existent and

the only allowable value for α(v) is −1 for all v ∈ {1 : V }.

where γj(�u:v) � [γj(�u), . . ., γj(�v)]. Note that, given a pos-
itive 1-1 multi-sensor association map, any association map
sampled from these conditionals is also positive 1-1.

In general, sampling α directly from (26) is both memory
and computationally expensive since ϑ((γ0:j−1(�n),α))

j (�n) needs

to be evaluated for each of the 1 +
∏V

v=1(1 + |Z(v)
j |) possible

values of α. Fortunately, the computational cost can be dras-
tically reduced by using the strategy in [21] via the so-called
minimally-Markovian conditional distributions.

Definition 2: The conditional (26) is said to be Markovian if

ϑ
((γ0:j−1(�),α))
j (�) =

V∏
v=2

ϑj,v(α
(v)|α(v−1), γ0:j−1(�), �)

× ϑj,1(α
(1)|γ0:j−1(�), �), (27)

and minimally-Markovian if ϑj,v can be written in the form

ϑj,v(α
(v)|α(v−1), γ0:j−1(�), �) =

ϑj,v

(
α(v)|γ0:j−1(�), �

)
1{−1}2�Λ(v−1:v)

j

(
α(v−1), α(v)

)
. (28)
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The Markov property allows us to sample α(1), . . . , α(V )

individually as shown in Fig. 2, thereby alleviating the
evaluations of ϑ

((γ0:j−1(�n),α))
j (�n) over all possible values

of α. Better still, a complexity of O(kV Ṁ), where Ṁ =

maxj∈1:kmaxv∈1:V {|Z(v)
j |}, can be achieved using minimally-

Markovian conditionals whose explicit forms are given in the
following Proposition (which follows from Corollary 4 of [21]).

Proposition 3: Let γj(�n̄) = (γj(�1:n−1), γj(�n+1:|Lj |))
be positive 1-1, and suppose that the conditional
π
(j)
n (·|γj(�n̄), γ0:j−1), given by (26) is minimally-Markovian.

Then, for �n ∈ Lj − (Bj � L(γj−1)),

π(j)
n (γj(�n)|γj(�n̄), γ0:j−1) = 1{−1}V (γj(�n)), (29)

and for �n ∈ Bj � L(γj−1),

π(j)
n (γj(�n)|γj(�n̄), γ0:j−1)

=

(
V∏

v=2

π(j,v)
n (γ

(v)
j (�n)|γ(v−1)

j (�n), γ
(v)
j (�n̄), γ0:j−1)

)

× π(j,1)
n (γ

(1)
j (�n)|γ(1)j (�n̄), γ0:j−1), (30)

where

π(j,1)
n (α(1)|γ(1)j (�n̄), γ0:j−1) (31)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1− P

(j)
n (Λ

(1:V )
j ), α(1) = −1

P
(j)
n (Λ

(1:V )
j )β

(j,1)
n (α(1)|γ(1)(�n̄))

×ϑj,1(α
(1)|γ0:j−1(�n),�n)

Υ
(j,1)
n

, α(1) > −1

π(j,v)
n (α(v)|α(v−1), γ

(v)
j (�n̄), γ0:j−1)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1, α(v−1), α(v) = −1

β
(j,v)
n (α(v)|γ(v)j (�n̄))

×ϑj,v(α
(v)|γ0:j−1(�n),�n)

Υ
(j,v)
n

, α(v−1), α(v) > −1

(32)

for v ∈ {2 : V }, and

P (j)
n (Λ

(1:V )
j ) �

V∏
v=1

Υ
(j,v)
n

V∏
v=1
ϑj,v(−1|γ0:j−1(�n), �n) +

V∏
v=1

Υ
(j,v)
n

,

Υ(j,v)
n �

M
(v)
j∑

i=0

β(j,v)
n (i|γ(v)j (�n̄))ϑj,v(i|γ0:j−1(�n), �n).

(33)

In addition to the minimally-Markovian property (for the
desired computational complexity), recall from (22) that

ϑ
(γ0:j−1(�),α)
j (�) ∝∼ η

(γ0:j−1(�),α)

j|j−1 (�), (34)

where η(γ0:j−1(�),α)

j|j−1 (�) is defined in (13), and can be interpreted
as the (unnormalized) probability that (conditioned on γ0:j−1(�)

andZ1:j) label �generates measurements z(1)
α(1) , . . ., z

(V )

α(V ) at time

j (with the understanding thatα(v) = 0 refers to a miss-detection
andα(v) = −1 refers to a non-existence), abbreviated as Prj(� ∼
z
(1)

α(1) , . . ., z
(V )

α(V )). This can be accomplished by choosing

ϑj,v(α
(v)|γ0:j−1(�), �) ∝ η

(γ0:j−1(�),(v;α
(v)))

j|j−1 (�), (35)

where

η
(αs(�):j−1,(v;α

(v)))

j|j−1 (�)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Λ̄
(v;α(v))
B,j (�), s(�) = j

Λ̄
(αs(�):j−1,(v;α

(v)))

S,j|j−1 (�), t(�) = j > s(�)

Q̄
(αs(�):j−1)

S,j−1 (�), t(�) = j − 1

QB,j(�), � ∈ Bj , α
(v) = −1

, (36)

Λ̄
(v;α(v))
B,j (�) =

∫
ψ
(v,α(v))

j,Z
(v)
j

(x, �)PB,j(�)fB,j(x, �)dx, (37)

Λ̄
(αs(�):j−1,(v;α

(v)))

S,j|j−1 (�) =

∫
τ
(αs(�):j−1)

0:j−1 (xs(�):j−1, �)

× PS,j−1(xj−1, �)fS,j|j−1(xj |xj−1, �)ψ
(v,α(v))

j,Z
(v)
j

(xj , �)dxs(�):j ,

(38)

s(�) and t(�) in (36) are, respectively, the earliest and latest

times on {0 : j} such that � exists, and τ
(αs(�):j−1)

0:j−1 (xs(�):j−1, �)
is the trajectory posterior of � at time j − 1. Eq. (36) can be
interpreted as the (unnormalized) probability that (conditioned
on γ0:j−1(�) and Z1:j) label � generates measurement z(v)

α(v) at

time j, abbreviated as Prj(� ∼ z
(v)

α(v)).
The rationale for choosing (35) can be seen by substituting

(35) into (28) and (27), which gives

ϑ
((γ0:j−1(�),α))
j (�) ∝

V∏
v=1

η
(γ0:j−1(�),(v;α

(v)))

j|j−1 (�), (39)

i.e., ϑ((γ0:j−1(�),α))
j (�) is the product of the probabilities Prj(� ∼

z
(v)

α(v)), v = 1 : V . Consequently, the approximation in (34) boils

down to approximating Prj(� ∼ z
(1)

α(1) , . . ., z
(V )

α(V )) by Prj(� ∼
z
(1)

α(1))× · · · × Prj(�n ∼ z
(V )

α(V )). This is reasonable, because the

event space is α ∈ {−1}V � Λ
(1:V )
j , and conditioned on Z1:j

and γ0:j−1, the probability that � generating a measurement from
one sensor is almost independent from generating a measure-
ment from another sensor. Furthermore, it follows from [21]
that, the support of (22) with the minimally-Markovian property
contains the support of (16). Algorithm 2 uses the minimally-
Markovian strategy above.

Note that although this approach produces valid multi-sensor
association history γ0:k, in order to produce samples distributed
according to (21), the Gibbs sampler for each factor π(j)

n needs
to be iterated for a sufficiently long time (i.e., executing Algo-
rithm 2 with a large R) before proceeding to the next timestep.
While this is not efficient, sampling from the factors can pro-
vide a cheap way to generate valid γ0:k to initialize the full
Gibbs sampler (for faster convergence) presented in the next
subsection.
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Fig. 3. Generating γ′
j(�n) = (α(1), . . ., α(V )) from γj , j ∈ {1 : k}, �n ∈ Bj � L(γj−1). Two cases: (i) bottom branch, with probability Pj,n(Λ

(1:V )
j ), given

in (49), �n is either born (if �n ∈ Bj ) or surviving (if �n ∈ L(γj−1)). For each v ∈ {1 : V }, α(v) is sampled from the categorical distribution π
(v)
j,n(·) that depends

on the pre-computed ϑ̊
(v)
j,n(·). To ensure that γ′

j is positive 1-1 (and γ′
0:k ∈ Γ0:k), we mask out the positive indices of sensor v that have already been allocated

to other labels (by multiplying ϑ̊
(v)
j,n(·) with the mask M

(v)
j,n (·)) to produce π

(v)
j,n(·); (ii) top branch, with probability Qj,n(Λ

(1:V )
j ) = 1− Pj,n(Λ

(1:V )
j ), �n

is non-existent, and the only allowable value for α(v) is −1 for all v ∈ {1 : V }. In addition, to ensure γ′
0:k ∈ Γ0:k , a non-existent �n at time j must remain

non-existent thereafter. Therefore, π(v)
j,n(·) must be 0 if γ(v)

j+1(�n) is non-negative. This is accomplished by multiplying δ−1[·] with the mask M̄
(v)
j,n (·).

For completeness, the pseudocode to generate a set of valid
γ0:k is given in Algorithm 3, where the factor sampler (Algo-
rithm 2) is used to sample γj for times j = 1 : k. Let Mj �
maxv∈{1:V }{|Z(v)

j |}, Pj � |Bj � L(γj−1)|, and R be the num-
ber of new samples generated at time j. Then, the complex-
ity of this algorithm is O(R

∑k
j=1 P

2
j VMj) (although it can

be implemented in O(R
∑k

j=1 Pj(Pj + VMj)) in practice by

pre-calculating β(k,v)
n values). Denoting P � maxj∈{1:k}{Pj},

and Ṁ � maxj∈{1:k}{Mj}, indicatively, the complexity of the
algorithm is O(kRP 2V Ṁ). The Gibbs sampler described in
Factor-Gibbs (pseudocode given in Algorithm 2) converges
to the stationary distribution (22) at an exponential rate [21,
Proposition 2].

C. The Full Gibbs Sampler

Instead of sampling from each factor, a full Gibbs sampler for
(21) constructs a sequence of iterates, where the next iterate γ′0:k

is generated from the current γ0:k by sampling γ′j(�n) from the
conditional

πj,n(α|
past︷ ︸︸ ︷

γ′0:j−1,

current (processed)︷ ︸︸ ︷
γ′j(�1:n−1) ,

current (unprocessed)︷ ︸︸ ︷
γj(�n+1:|Lj |) ,

future︷ ︸︸ ︷
γj+1:k)

∝ π(γ′0:j−1, γ
′
j(�1:n−1), α, γj(�n+1:|Lj |), γj+1:k). (40)
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for each j ∈ {1 : k}, �n ∈ {�1:|Lj |}.
The proposed algorithm for sampling γ′j(�n) from the condi-

tionalπj,n is illustrated in Fig. 3, and summarized as pseudocode
in Algorithm 4. The pseudocode for generating T iterates of
the full Gibbs sampler is given in Algorithm 5. Theoretical
justifications and analyses of Algorithm 4 and 5 are given in
the remainder of this subsection. Mathematical proofs are given
in the Supplementary Material.

Lemma 4: Let γj̄ � (γ0:j−1, γj+1:k), and a ∨ b denotes
min{a, b}. Then, the conditional (40) can be expressed as

πj,n(α|γj(�n̄), γj̄)
∝ 1Γj

((γj(�1:n−1), α, γj(�n+1:|Lj |)))

× 1F(Bj�L(γj−1))(L((γj(�1:n−1), α, γj(�n+1:|Lj |))))

× 1F(Bj+1�L((γj(�1:n−1),α,γj(�n+1:|Lj |))))
(L(γj+1))

× ϑj(α|γj̄(�n), �n). (41)

where

ϑj(α|γj̄(�n), �n) �
k∨(t(�n)+1)∏

i=j

ϑ
(γ0:j−1(�n),α,γj+1:i(�n))
i (�n).

(42)
Similar to sampling from the factors, in general, sampling α

from the conditional (41) is both memory and computationally
expensive since ϑj(α|γj̄(�n), �n) needs to be evaluated for each

of the 1 +
∏V

v=1(1 + |Z(v)
j |)) possible values of α. Further,

since each ϑj(α|γj̄(�n), �n) is a product of terms that need to be
evaluated for i = j : k ∨ (t(�n) + 1), it is more computationally
expensive than the factor sampler. Again, the computational
cost can be drastically reduced using minimally-Markovian
conditional distributions.

Definition 5: The conditional (41) is said to be Markovian if

ϑj(α|γj̄(�), �) =
V∏

v=2

ϑj,v(α
(v)|α(v−1), γj̄(�), �)

× ϑj,1(α
(1)|γj̄(�), �), (43)

and minimally-Markovian if ϑj,v can be written in the form

ϑj,v(α
(v)|α(v−1), γj̄(�), �) =

ϑj,v(α
(v)|γj̄(�), �)1{−1}2�Λ(v−1:v)

j
(α(v−1), α(v)). (44)

The Markovian conditional allows us to sample in-
dividual α(1), α(2), . . ., α(V ), alleviating the evaluation of
ϑj(α|γj̄(�n), �n) over all possible values of α, but still incurs
a total complexity of O(kV Ṁ2|t(�n)− s(�n)|) for comput-
ing normalization constants. Further, a linear complexity of
O(kV Ṁ |t(�n)− s(�n)|) can be achieved using the minimally-
Markovian conditional given in the following Proposition, which
extends Corollary 4 of [21] to multi-scan.

Proposition 6: Consider γj of a valid association history γ0:k,
j ∈ {1 : k}, and define

Mj(α;β) �

⎧⎨
⎩
δβ [α], α ∈ {−1}V

1, α ∈ Λ
(1:V )
j

.

Suppose that the conditional πj,n(α|γj(�n̄), γj̄) given by (41) is
minimally-Markovian. Then, for �n ∈ Lj − (Bj � L(γj−1)),

πj,n(γj(�n)|γj(�n̄), γj̄)
= 1{−1}V (γj(�n))δγmin{j+1,k}(�n)[γj(�n)], (45)

and for �n ∈ Bj � L(γj−1)

πj,n(γj(�n)|γj(�n̄), γj̄)

=

(
V∏

v=2

π
(v)
j,n(γ

(v)
j (�n)|γ(v−1)

j (�n), γj(�n̄), γj̄)

)

× π
(1)
j,n(γ

(1)
j (�n)|γj(�n̄), γj̄)

×Mj(γj(�n); γmin{k,j+1}(�n)), (46)

where

π
(1)
j,n(α

(1)|γj(�n̄), γj̄) (47)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1− Pj,n(Λ
(1:V )
j ), α(1) = −1

Pj,n(Λ
(1:V )
j )β

(j,1)
n (α(1)|γ(1)j (�n̄))

×ϑj,1(α
(1)|γj̄(�n),�n)

Υ
(1)
j,n

, α(1) > −1

π
(v)
j,n(α

(v)|α(v−1), γj(�n̄), γj̄)
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=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, α(v−1), α(v) = −1

β
(j,v)
n (α(v)|γ(v)j (�n̄))

×ϑj,v(α
(v)|γj̄(�n),�n)

Υ
(v)
j,n

, α(v−1), α(v) > −1

(48)

for v ∈ {2 : V }, and

Pj,n(Λ
(1:V )
j ) �

V∏
v=1

Υ
(v)
j,n

V∏
v=1

ϑj,v(−1|γj̄(�n), �n) +
V∏

v=1
Υ

(v)
j,n

,

Υ
(v)
j,n�

|Z(v)
j |∑

α(v)=0

β(j,v)
n (α(v)|γ(v)j (�n̄))ϑj,v(α

(v)|γj̄(�n), �n). (49)

In addition to the minimally-Markovian property, we require
ϑ
(γ0:j(�))
j (�) to be approximately proportional to η

(γ0:j(�))

j|j−1 (�)

(see (22)). Since ϑj(α|γj̄(�n), �) in (41) is a product of

ϑ
(γ0:j−1(�),α,γj+1:i(�))
i (�)’s, i = j : k ∨ (t(�) + 1), this translates

to

ϑ
(γ0:j−1(�),α,γj+1:i(�))
i (�) ∝∼ η

(γ0:j−1(�),α,γj+1:i(�))

i|i−1 (�) (50)

for each i, where η(γ0:j−1(�),α,γj+1:i(�))

i|i−1 (�) can be interpreted as
the (unnormalized) probability that (conditioned on γj̄(�) and

Z1:k) label � generates measurements z(1)
α(1) , . . ., z

(V )

α(V ) at time j,

abbreviated as Prj(�n ∼ z
(1)

α(1) , . . ., z
(V )

α(V )). To fulfill (50) and the
minimally-Markovian property, we choose

ϑj,v(α
(v)|γj̄(�), �) ∝

k∨(t(�)+1)∏
i=j

η
(γ0:j−1(�),(v;α

(v)),γj+1:i(�))

i|i−1 (�),

(51)
where

η
(α0:j−1,(v;α

(v)),αj+1:i)

i|i−1 (�)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Λ̄
((v;α(v)),αj+1:i)
B,i (�), s(�) = j

Λ̄
(αs(�):j−1,(v;α

(v)),αj+1:i)

S,i|i−1 (�), t(�) = j > s(�)

Q̄
(αs(�):j−1)

S,i−1 (�), t(�) = j − 1

QB,i(�), � ∈ Bj , α
(v) = −1

, (52)

Λ
(αj+1:i)
S,j+1:i (xj:i, �) =

i∏
q=j+1

Λ
(αq)

S,q|q−1(xq|xq−1, �),

Λ̄
((v;α(v)),αj+1:i)
B,i (�)

=

∫
τ
(αs(�):j−1)

0:j−1 (xs(�):j−1, �)PB,j(�)fB,j(xj , �)

× ψ
(v,α(v))

j,Z
(v)
j

(xj , �)Λ
(αj+1:i)
S,j+1:i (xj:i, �)dxs(�):i,

Λ̄
(αs(�):j−1,(v;α

(v)),αj+1:i)

S,i|i−1 (�)

=

∫
τ
(αs(�):j−1)

0:j−1 (xs(�):j−1, �)PS,j−1(xj−1, �)

× fS,j|j−1(xj |xj−1, �)ψ
(v,α(v))

j,Z
(v)
j

(xj , �)Λ
(αj+1:i)
S,j+1:i (xj:i, �)

× dxs(�):i,

s(�) and t(�) in (52) are, respectively, the earliest and latest
times on {j : i} such that � exists. The right hand side of Eq.
(51) can be interpreted as the (unnormalized) probability that
(conditioned on γj̄(�) and Z1:k) label � generates measurement

z
(v)

α(v) at time j, abbreviated as Prj(� ∼ z
(v)

α(v)).
The rationale for choosing (51) can be seen by substituting

(51) into (43) and (44), which gives

ϑj(α|γj̄(�), �) ∝
V∏

v=1

k∨(t(�)+1)∏
i=j

η
(γ0:j−1(�),(v;α

(v)),γj+1:i(�))

i|i−1 (�),

i.e., the product of probabilities Prj(�n ∼ z
(v)

α(v)), v = 1 : V .
Consequently, the approximation in (50) boils down to approx-
imating Prj(�n ∼ z

(1)

α(1) , . . . , z
(V )

α(V )) by Prj(�n ∼ z
(1)

α(1))× · · · ×
Prj(�n ∼ z

(V )

α(V )). This is reasonable, because the event space

is α ∈ {−1}V � Λ
(1:V )
j , and conditioned on Z1:k and γj̄ , the

probability that � generating a measurement from one sensor
is almost independent from generating a measurement from
another sensor. Furthermore, similar to [21], the support of (21)
with the minimally-Markovian property contains the support of
(15) as per Proposition 7.

Proposition 7: The support of (21) with minimally-
Markovian property contains the support of (15).

Our proposed full Gibbs sampler (Algorithm 5), uses the
minimally-Markovian strategy above. Note that, once each
γ′j(�n) is sampled, the corresponding trajectory posterior and the
association weight are updated using (7) and (13). The complex-
ity of this algorithm is O(TV

∑k
j=1 P

2
j Mj) (although it can be

implemented inO(T
∑k

j=1(P
2
j + PjVMj)) by pre-calculating

β
(k,v)
n values), where T denotes the number of generated new

samples, Mj � maxv∈{1:V }{|Z(v)
j |} and Pj � |Bj � L(γj−1)|.

Indicatively, this complexity is O(kTV P 2Ṁ), where Ṁ �
maxj∈{1:k}{Mj} and P � maxj∈{1:k}{Pj}.

Similar to the single-sensor case [11], the full Gibbs sampler
has an exponential convergence rate.

Proposition 8: Starting from any valid initial state γ1:k ∈
Γ1:k, the Gibbs sampler described by Algorithm 5 converges
to the stationary distribution (21) at an exponential rate. More
specifically, let πj denote the j-th power of the transition kernel.
Then,

max
γ1:k,γ̇1:k∈Γ1:k

(|πj(γ̇1:k|γ1:k)− π(γ̇1:k)|) ≤ (1− 2β)�
j
h �

where h = k + 1, β � min
γ1:k,γ̇1:k∈Γ1:k

πh(γ̇1:k|γ1:k) > 0 is the

least likely h-step transition probability.
Algorithm 6 provides the pseudocode for batch computation

of the multi-sensor GLMB posterior (14) using the full Gibbs
sampler (Algorithm 5). Note that the factor sampler is used
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to initialize the full Gibbs sampler with a set of Q0 valid
association histories, each of which is used to generate a set
of T samples distributed according to (21). Since Algorithm
6 can be executed in parallel for each q, indicatively its com-
plexity is also O(kTV P 2Ṁ). Alternatively, the posterior (14)
can be recursively propagated, i.e., smoothing-while-filtering,
as shown in Algorithm 7. Note that Algorithms 6 and 7 both
produce the same posterior with the same complexity. However,
the smoothing-while-filtering algorithm allows us to obtain an
estimate of the multi-object trajectory at each point in time, while
the batch algorithm is an offline method, where the multi-object
trajectory can only be estimated after all the observations have
been collected. For a fixed complexity per time step, a moving
window-based implementation can be adopted, which incurs an
O(LTV P 2Ṁ) complexity per time step, where L is the length
of the window.

IV. NUMERICAL EXPERIMENTS

This section evaluates the performance of the proposed
(multi-scan) multi-sensor GLMB smoother and benchmarks it
against the multi-sensor GLMB filter via simulations on single-
sensor, two-sensors and four-sensor scenarios.

Births, deaths and movements of an unknown and time-
varying number of objects are simulated in a 3D surveillance
region over k = 100 s. The objects’ 3D positions are measured
using multiple sensors with severely limited observability (de-
tection probability) and high measurement noise. There are 12
births at j = 1 s, 20 s, 40 s, 60 s and 80 s (respectively 3, 3,
2, 2, and 2 objects), and the probability of survival is set at
PS(x

(�i), �i) = 0.95. Two of the objects born at time j = 1 s
die at 70 s, and the peak number of 10 live objects occurs from
80 s onwards. The three objects born at j = 1 s cross paths at

[0,−400, 0]T at time 40 s, and two of the objects born at time
20 s cross paths at [300,−200, 200]T at time 59 s, constituting
a more challenging multi-object tracking scenario.

The kinematic state of an object is represented by a 6D state
vector, i.e., xk = [px,k, ṗx,k, py,k, ṗy,k, pz,k, ṗz,k]

T consisting
of 3D position and velocity, and follows a constant velocity mo-
tion model. The single object transition density is linear Gaus-
sian and given by fS,k|k−1(x

(�)
k+1|x(�)k ) = N (x

(�)
k+1;Fkx

(�)
k , Qk)

where

Fk = I3 ⊗
[
1 Δ
0 1

]
, Qk = σ2

aI3 ⊗
[
Δ4

4
Δ3

2
Δ3

2 Δ2

]
,

I3 is the 3× 3 identity matrix, Δ = 1 s is the sampling
time, σa = 5 m/s2, and ⊗ denotes the matrix outer prod-
uct. Births are modeled by a Labeled Multi-Bernoulli (LMB)
Process with (birth and spatial distribution) parameters
{rB,k(�i), p

(i)
B,k(�i)}4i=1, where �i = (k, i) ∈ Bk, rB,k(�i) =

0.03, p(i)B,k(x
(�i), �i) = N (x(�i);m

(i)
B,k, QB,k),

m
(1)
B,k = (0.1, 0, 0.1, 0, 0.1, 0)T ,

m
(2)
B,k = (400, 0,−600, 0, 200, 0)T ,

m
(3)
B,k = (−800, 0,−200, 0,−400, 0)T ,

m
(4)
B,k = (−200, 0, 800, 0, 600, 0)T ,

and QB,k = diag([10, 10, 10, 10, 10, 10]2).
The noisy 3D position of an object captured by sensor v

in the surveillance region [−1000, 1000]× [−1000, 1000]×
[−1000, 1000]m3, takes the form z

(v)
k = [z

(v)
x,k, z

(v)
y,k, z

(v)
z,k]

T ,
and modeled by the linear gaussian likelihood function
g
(v)
k (z

(v)
k |x(�)k ) = N (z

(v)
k ;H

(v)
k x

(�)
k , R

(v)
k ), whereH(v)

k = I3 ⊗
[1 0], and R(v)

k = diag([20, 20, 20]2). The probability of de-

tection of each sensor is P (v)
D (x(�i), �i) = 0.3, and clutter is

modeled as a Poisson RFS with intensity κ
(v)
k (z) = 3.75×

10−10m−3 over the surveillance region, i.e., a clutter rate of 3 per
scan. This scenario is more challenging than those in [11], [21]
due to far lower detection probability and higher measurement
noise in a cluttered 3D environment.

We plot single runs of the multi-sensor GLMB smoother and
filter for the same sets of measurements under the single-sensor,
two-sensor and four-sensor cases, and provide an analysis of the
results in the remainder of this section.

A. Filtering Vs. Smoothing

The multi-sensor GLMB smoother (Algorithm 6) is run with
100 scans, and 1000 valid initial samples generated via factor
sampling. Its performance is compared with the single-sensor
GLMB filter (Algorithm 2 of [41]), single-sensor multi-scan
GLMB smoother (Algorithm 3 of [11] with the same pa-
rameters as the proposed multi-sensor smoother), and multi-
sensor GLMB filter (Algorithm 3 of [21] using the minimally-
Markovian strategy with the same multi-sensor parameters). The
smoothing problem involves 400 dimensional rank assignment
problems with approximately 10 variables in each dimension.
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Fig. 4. Estimated trajectories (in colored dots) from GLMB filtering and GLMB smoothing superimposed on true trajectories (in black). Starting and stopping
positions of objects are shown with ◦ and � respectively.

Fig. 5. OSPA and OSPA(2) performance of GLMB filtering (in black) and GLMB smoothing (in red).
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Fig. 6. Posterior distributions of the number of trajectories, and posterior distributions of trajectory lengths.

Fig. 7. Posterior distributions of the births and deaths at each timestep.

State-of-the-art solvers with dedicated hardware cannot handle
problems with such large dimensions [17].

Fig. 4 shows the estimated trajectories from multi-sensor
GLMB filter and multi-sensor GLMB smoother (for single-
sensor, two-sensor and four-sensor scenarios) superimposed on
the true trajectories. Due to the challenging signal settings, the
single-sensor GLMB filter produces several fragmented tracks,
fails to estimate large portions of some tracks, and yields sig-
nificant errors. Increasing the number of sensors to two and
four results in fewer fragmented tracks, produce estimates for
almost all portions of truth tracks, and improves estimates.
However, it does not prevent track switchings (at [0,−400, 0]T

and [300,−200, 200]T , respectively, for the two-sensor and
four-sensor scenarios) from occurring at track crossings.

The multi-sensor GLMB smoother outperforms the filter on
each scenario. The single-sensor scenario shows worse perfor-
mance than the multiple sensor scenarios due to lower observ-
ability, resulting in fragmented tracks, undetected tracks and
significant errors in two tracks. In the two-sensor scenario,
except for the two track switchings at [0,−400, 0]T , all other
tracks promptly start and terminate, resulting in smooth trajec-
tory estimates with smaller errors. The four-sensor scenario pro-
duces superior results due to increased observability. It handles
the track crossings well, resulting in no track switchings, nor
fragmented tracks, and produces even smaller errors with each
pertinent track starting and terminating promptly.

Fig. 5 compares OSPA and OSPA(2) errors over time between
the multi-sensor GLMB smoother (final estimate) and multi-
sensor GLMB filter. The OSPA and OSPA(2) parameters are
c = 100m, p = 1, with a scan window size of 10 for OSPA(2).
It is clear that increasing the number of sensors improves the
performance of the multi-sensor GLMB filter. The smoother

produces significantly lower errors due to its ability correct
earlier errors in the multi-sensor assignments.

B. Posterior Statistics Computation

This section illustrates the proposed multi-object posterior
capability to provide useful statistical information [11] about the
ensemble of multi-object trajectories (mathematical expressions
are given in eqs. (17)–(20)). Fig. 6 shows the probability distri-
bution of the number of trajectories. As the number of sensors
increases, the mode of this distribution settles at 13, although
the actual number of trajectories is 12. This mismatch arises
from a short (3 s) false track appearing near the birth location
(−800,−200,−400)T due to a false measurement falling close
to it (recall that the detection probability of each sensor is 0.3).
From the distribution of the length of trajectories shown in
Fig. 6, it can be seen that except for the mode at time j = 3 s
(corresponding to the short false track), the posterior correctly
captures the modes at times 20 s, 40 s, 60 s, 80 s and 100 s in
the four-sensor scenario. Also, note that the uncertainty at time
80 s is higher in the two-sensor scenario than the four-sensor
scenario. Fig. 7 shows the birth and death cardinality distri-
butions against time. Except for the birth and death around
time 30 s (due to the short false track), the smoother correctly
identifies all instances of birth and deaths in the four-sensor
scenario.

V. CONCLUSION

In this paper, we developed an efficient numerical solution
to the multi-sensor multi-object smoothing problem via Gibbs
sampling, which unifies the implementation techniques for
multi-sensor GLMB filtering and multi-scan GLMB smoothing
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in [11], [21]. The proposed solution, which involves solving
large-scale NP-hard multi-dimensional assignment problems,
reduces to that of [11] when the number of sensors is one and
to that of [21] when the number of scans is one. Theoretical
justification and analysis of the proposed algorithms are also pre-
sented. Numerical studies, conducted for the first time with 100
scans and up to four sensors, show that excellent tracking perfor-
mance can be achieved despite having sensors with poor detec-
tion probabilities (as low as 0.3) by combining them over a longer
integration time. This also demonstrates the benefits of multi-
sensor fusion for low observability sensors, which is vital for
applications in harsh signal environments such as underwater.
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