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Abstract—This paper is devoted to the performance analysis of
the detectors proposed in the companion paper (Orlando et al.,
2022) where a comprehensive design framework is presented for the
adaptive detection of subspace signals. The framework addresses
four variations on subspace detection: the subspace may be known
or known only by its dimension; consecutive visits to the subspace
may be unconstrained or they may be constrained by a prior
probability distribution. In this paper, Monte Carlo simulations
are used to compare the detectors derived in (Orlando et al., 2022)
with estimate-and-plug (EP) approximations of the generalized
likelihood ratio (GLR) detectors. Remarkably, some of the EP
approximations appear here for the first time (at least to the best
of the authors’ knowledge). The numerical examples indicate that
GLR detectors are effective for the detection of partially-known
signals affected by inherent uncertainties due to the system or
the operating environment. In particular, if the signal subspace is
known, GLR detectors tend to ouperform EP detectors. If, instead,
the signal subspace is known only by its dimension, the performance
of GLR and EP detectors is very similar. Actually, there does not
exist a general rule for recommending the first-order approach with
respect to the second-order one and vice versa. Nevertheless, the
analysis contains a specific case where the second-order detectors
can outperform the first-order detectors.

Index Terms—Adaptive detection, alternating optimization,
generalized likelihood ratio test, subspace model.

I. INTRODUCTION AND PROBLEM FORMULATION

ADAPTIVE detection of targets modeled as belonging to
suitable subspaces has been widely investigated by the
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signal processing community with applications ranging from
radar and sonar to communications and hyperspectral imag-
ing [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. In the con-
text of radar signal processing, the general framework devised
in [12] for homogeneous environments where test and train-
ing samples share the same Gaussian distribution has been
extended over the years by including unknown scaling differ-
ences between test and training samples [13], structured in-
terference components as well as non-Gaussian disturbances
[14], [15].

As stated in the companion paper [1], most of these works deal
with deterministic targets embedded in random disturbance with
unknown covariance matrix. The term deterministic means that
target signatures do not obey any prior distribution and, hence,
target coordinates within the subspace are not random variables.
Generally speaking, this design assumption is referred to as a
first-order (signal) model. On the contrary in a second-order
(signal) model, the signal coordinates in the subspace are ran-
dom variables and parameters of the signal signature appear
in second-order statistics such as the covariance matrix. The
first application of the second-order model to target detection
in partially-homogeneous Gaussian environment can be found
in [16], where the estimate-and-plug (EP) approximation to
the generalized likelihood ratio test (GLRT) has been used,
as in [17]. This approach consists in computing the GLRT
assuming that a subset of parameters is known. Then, in order
to make the detector fully adaptive, the known parameters are
replaced with suitable estimates. The main advantage of the
estimate-and-plug approximation is that the resulting detectors
have lower computational complexity than their generalized
likelihood ratio (GLR) counterparts. But there is generally a loss
in performance, and it is this loss that we aim to quantify in this
paper.

The second-order model has been further investigated in
the companion paper [1], where a unified theoretical frame-
work for subspace adaptive detection (including the first-
order model) in Gaussian disturbance has been devised.
More importantly, the exact GLRT or suitable approxima-
tions of it have been therein derived for the first time (at
least to the best of authors’ knowledge). These approxima-
tions rely on cyclic estimation procedures [18] where, at
each step, closed-form updates of the parameter estimates are
computed.
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Following the conventions of [1],1 let us consider a detection
system that collects data from a primary and a secondary chan-
nel. Data under test are those from the primary channel and are
denoted by ZP = [z1 · · · zKP

] ∈ CN×KP , whereas data from
the secondary channel, used for the estimation of the disturbance
parameters, are indicated by ZS = [zKP+1 · · · zKP+KS

] ∈
CN×KS . In the case of first-order models, the detection problem
at hand can be formulated as [1]⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
H0 :

{
ZP ∼ CNNKP

(0N,KP
, IKP

⊗R)
ZS ∼ CNNKS

(0N,KS
, IKS

⊗ γR)

H1 :

{
ZP ∼ CNNKP

(HX, IKP
⊗R)

ZS ∼ CNNKS
(0N,KS

, IKS
⊗ γR)

(1)

where H ∈ CN×r is either a known matrix or an unknown
matrix with known rank r, r ≤ N ,X = [x1 · · ·xKP

] ∈ Cr×KP

is the matrix of the unknown signal coordinates, R ∈ CN×N is
an unknown positive definite covariance matrix, and γ > 0 is
either a known or an unknown parameter. In the following, we
suppose that KS ≥ N . Without loss of generality, we assume
that H is an arbitrary unitary basis for a subspace that is either
known or known only by its dimension.

The hypothesis test based upon the second-order model is
formulated as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
H0 :

{
ZP ∼ CNNKP

(0N,KP
, IKP

⊗R)
ZS ∼ CNNKS

(0N,KS
, IKS

⊗ γR)

H1 :

{
ZP ∼ CNNKP

(0N,KP
, IKP

⊗ (HRxxH
† +R))

ZS ∼ CNNKS
(0N,KS

, IKS
⊗ γR)

(2)
where Rxx ∈ Cr×r is an unknown positive semidefinite matrix
(in order to account for possible correlated sources [19, and
references therein]). It is important to observe that when the
scaling factor γ is known, both (1) and (2) account for a homo-
geneous environment where primary and secondary data share
the same statistical characterization of the disturbance. In fact,
secondary data can be equalized, so it is as if γ = 1. On the
other hand, when γ is unknown, the corresponding operating
scenario is referred to as partially-homogeneous [13]. The latter
model is an extension of the homogeneous environment and,
though preserving a relative mathematical tractability, it leads to
an increased robustness to inhomogeneities since the assumed

1Notation: in the sequel, vectors and matrices are denoted by boldface
lower-case and upper-case letters, respectively. Symbols det(·), Tr (·), (·)T ,
and (·)† denote the determinant, trace, transpose, and conjugate transpose,
respectively. As to numerical sets, C is the set of complex numbers, CN×M

is the Euclidean space of (N ×M)-dimensional complex matrices, and CN is
the Euclidean space of N -dimensional complex vectors. In and 0m,n stand for
the n× n identity matrix and the m× n null matrix. 〈H〉 denotes the space
spanned by the columns of the matrix H ∈ CN×M . Given a1, . . . , aN ∈ C,
diag (a1, . . . , aN ) ∈ CN×N indicates the diagonal matrix whose ith diagonal
element is ai. We writez ∼ CNN (x,Σ) to say that theN -dimensional random
vector z is a complex normal random vector with mean vector x and covariance
matrixΣ. Moreover,Z = [z1 · · ·zK ] ∼ CNNK(X, IK ⊗Σ), with⊗denot-
ing Kronecker product and X = [x1 · · ·xK ], means that zk ∼ CNN (xk,Σ)
and the columns of Z are statistically independent. The acronym PDF stands for
probability density function. R̂i and γ̂i will denote the (possibly approximated)
maximum likelihood (ML) estimates of R and γ, respectively, under the Hi

hypothesis, i = 0, 1.

difference in power level accounts for terrain type variations,
height profile, and shadowing which may appear in practice [20].

In this paper, we assess the performance of the GLR detectors
derived in the first part [1] by analyzing probability of detection
and false alarm rate. In addition, we compare these perfor-
mance metrics with those returned by the estimate-and-plug
approximations (that are derived in the next subsections). Even
though these competitors can be obtained by exploiting existing
derivations [2], [16], [21], some of them appear here for the first
time.

The remainder of this paper is organized as follows. In the next
section, the detection architectures derived in the first part [1]
are summarized and the expressions of the estimate-and-plug
competitors are given (their derivations can be found in the
attached supplemental material). In Section III, the performance
of the GLR and EP detectors are investigated and discussed
through numerical examples. Section IV contains concluding
remarks and future research tracks.

II. DETECTION ARCHITECTURES

The aim of this section is twofold. First, in order to make this
second part self-contained, we briefly summarize the decision
schemes developed in the companion paper. Second, we provide
the expressions of the competitors that are based upon the
estimate-and-plug paradigm [17], [22]. Recall that this approach
consists in computing the GLRT under the assumption that
some parameters are known and in replacing them with suitable
estimates. For the case at hand, the covariance matrix of the
disturbance is initially supposed known and in the final decision
statistic it is replaced by the sample covariance matrix (SCM)
computed from secondary data only.

A. GLRT-Based Detectors Summary

The detectors described in this subsection are those derived
in the first part of this work [1]. Throughout, the log-likelihood
function under Hi is denoted by Li(·), i = 0, 1.

1) First-Order Models: Consider problem (1). The related
four cases are listed below.2
� Known subspace 〈H〉, known γ: The GLRT for problem

(1) with γ = 1 is referred to as a first-order detector for a
signal in a known subspace in a homogeneous environment
(FO-KS-HE) and is given by

det
[
IKP

+Z†
PS

−1
S ZP

]
det

[
IKP

+
(
S

−1/2
S ZP

)†
P⊥

G

(
S

−1/2
S ZP

)] H1
>
<
H0

η

(3)
where SS = ZSZ

†
S and P⊥

G = IN − PG with PG =

G(G†G)−1G† and G = S
−1/2
S H .

� Known subspace 〈H〉, unknown γ: Under the assump-
tion r < N and min(KP , N − r) > NKP

K , the GLRT for
problem (1) with γ > 0 is referred to as a first-order

2As in the companion paper [1], the generic detection threshold will be
indicated by η.
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detector for a signal in a known subspace in a partially-
homogeneous environment (FO-KS-PHE), and is given by

γ̂
KP (K−N)

K
0 det

[
1
γ̂0
IKP

+M0

]
γ̂

KP (K−N)

K
1 det

[
1
γ̂1
IKP

+M1

] H1
>
<
H0

η (4)

where M0 = Z†
PS

−1
S ZP , M1 =

(S
−1/2
S ZP )

†P⊥
G(S

−1/2
S ZP ), and γ̂i, i = 0, 1, can be

computed using Theorem 1 of [1].
� Unknown subspace 〈H〉, known γ: In this case, if
min(N,KP ) ≥ r + 1, the GLRT for problem (1) with
γ = 1 is referred to as a first-order detector for a signal
in an unknown subspace in a homogeneous environment
(FO-US-HE), and is given by

N∏
i=N−r+1

(
1 + σ2

i

) H1
>
<
H0

η (5)

where σ2
1 ≤ . . . ≤ σ2

N are the eigenvalues of

S
−1/2
S ZPZ

†
PS

−1/2
S . When min(N,KP ) < r + 1, the

GLRT reduces to

det
(
IN + S

−1/2
S ZPZ

†
PS

−1/2
S

) H1
>
<
H0

η. (6)

� Unknown subspace 〈H〉, unknown γ: Under the
conditions min(N,KP ) ≥ r + 1 and min(N,KP ) >
NKP /K + r, the GLRT for problem (1) is referred to as a
first-order detector for a signal in an unknown subspace in
a partially-homogeneous environment (FO-US-PHE), and
is given by

γ̂
N

(
1−KP

K

)
0

∏N
i=1

(
1
γ̂0

+ σ2
i

)
γ̂
N

(
1−KP

K

)
−r

1

∏N−r
i=1

(
1
γ̂1

+ σ2
i

)
H1
>
<
H0

η (7)

where γ̂0 and γ̂1 are computed using Corollary 2 and 1
of [1], respectively.

2) Second-Order Models: For problem (2), the expressions
of the related decision rules are summarized below.
� Known subspace 〈H〉, known γ: The approximate GLRT

for problem (2) is referred to as a second-order detector for
a signal in a known subspace in a homogeneous environ-
ment (SO-KS-HE), and is given by

L1(R̂1, R̂xx,H , 1;Z)− L0(R̂0, 1;Z)
H1
>
<
H0

η (8)

where L0(R̂0, 1;Z) is the logarithm of (5) in [1]
with γ = 1, and L1(R̂1, R̂xx,H, 1;Z) is given by the
logarithm of (28) in [1], with R̂xx and R̂1 obtained by
iterating (31) and (32) of [1]; the number of iterations,
nmax, is computed according to the following conver-
gence criterion: ΔL1 = |L1(R

(n),R(n)
xx ,H, 1;Z)−

L1(R
(n−1),R(n−1)

xx ,H , 1;Z)|/|L1(R
(n−1),R(n−1)

xx ,H , 1;Z)|

≤ ε1 with ε1 > 0. This procedure is summarized in
Algorithm 1.

� Known subspace 〈H〉, unknown γ: In this case, an ap-
proximation of the GLRT for problem (2) is referred to as
a second-order detector for a signal in a known subspace in
a partially-homogeneous environment (SO-KS-PHE), and
is given by

L1(R̂1, R̂xx,H, γ̂1;Z)− L0(R̂0, γ̂0;Z)
H1
>
<
H0

η (9)

where L0(R̂0, γ̂0;Z) is the logarithm of the maximum
of (5) in [1] with respect to γ obtained by using
Theorem 1 of [1], while R̂1, R̂xx, and γ̂1 are
computed through the alternating estimation procedure
exploiting (32) and (31) of [1] in conjunction with
Theorem 5 of [1]. The procedure, summarized in
Algorithm 2, terminates when nmax iterations have been
performed; nmax is selected according to the following
condition: ΔL2 = |L1(R

(n),R(n)
xx ,H, γ(n);Z)−

L1(R
(n−1),R(n−1)

xx ,H , γ(n−1);Z)|/|L1(R
(n−1),R(n−1)

xx ,H,
γ(n−1);Z)| ≤ ε2 with ε2 > 0.

� Unknown subspace 〈H〉, known γ: Let R̃xx =
HRxxH

†, then, the GLRT for problem (2) is referred
to as a second-order detector for a signal in an unknown
subspace in a homogeneous environment (SO-US-HE),
and is given by

L1(R̂1,
̂̃Rxx, 1;Z)− L0(R̂0, 1;Z)

H1
>
<
H0

η (10)

where L0(R̂0, 1;Z) is given by the logarithm of (5) in [1]

and the expression of L1(R̂1,
̂̃Rxx, 1;Z) is found from

exploiting Theorem 3 of [1] with γ = 1.
� Unknown subspace 〈H〉, unknown γ: The GLRT for

problem (2) is referred to as a second-order detector for a
signal in an unknown subspace in a partially-homogeneous
environment (SO-US-PHE), and is given by

L1(R̂1,
̂̃Rxx, γ̂1;Z)− L0(R̂0, γ̂0;Z)

H1
>
<
H0

η (11)

where L0(R̂, γ̂0;Z) is the logarithm of the maximum of
(5) in [1] with respect to γ obtained by using Theorem

1 of [1] and L1(R̂1,
̂̃Rxx, γ̂1;Z) is computed by jointly

exploiting Theorems 3 and 4 of [1].
The steps required to compute the GLRs of all of these

detectors are summarized in Algorithms 3–10.

B. Estimate-and-Plug Approximations

Let us recall that the EP detectors presented in what follows
are obtained by applying the GLRT under the perfect knowledge
of the disturbance covariance matrix and replacing the latter in
the final decision statistic with the SCM of the secondary data
denoted by SKS

= (1/KS)ZSZ
†
S . Moreover, without loss of
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Algorithm 1: Alternating Procedure for SO-KS-HE.

Input: ε1, β(0)

Compute: R̂xx, R̂1

1: Set n = 0
2: Estimate R̃

(n+1)

1.2 and R(n+1)
xx , given β(n) using (31)

of [1]

3: Estimate β(n+1) given R̃
(n+1)

1.2 and R(n+1)
xx by (32)

of [1]
4: Set n = n+ 1
5: If n = nmax go to step 6 else go to step 2

6: Output: R̂xx, R̂1 computed using β(n), R̃
(n)

1.2 and
R(n)

xx

Algorithm 2: Alternating Procedure for SO-KS-PHE.

Input: ε2, β(0)

Compute: R̂xx, R̂1, γ̂1
1: Set n = 0
2: Estimate R̃

(n+1)

1.2 , R(n+1)
xx , and γ(n+1), given β(n)

using (31) and Theorem 5 of [1]

3: Estimate β(n+1) given R̃
(n+1)

1.2 , R(n+1)
xx , and γ(n+1)

by (32) of [1]
4: Set n = n+ 1
5: If n = nmax go to step 6 else go to step 2

6: Output: R̂xx, R̂1, and γ̂1 computed using β(n), R̃
(n)

1.2 ,
R(n)

xx , and γ(n)

Algorithm 3: FO-KS-HE.
Input: ZP ,ZS ,H
Compute: Decision statistic of FO-KS-HE
1: Compute S

−1/2
S = (ZSZ

†
S)

−1/2

2: Compute G = S
−1/2
S H

3: Compute P⊥
G = IN −G(G†G)−1G†

4: Output:
det[IKP

+Z†
PS−1

S ZP ]

det[IKP
+(S

−1/2
S ZP )†P ⊥

G(S
−1/2
S ZP )]

Algorithm 4: FO-KS-PHE.
Input: ZP ,ZS ,H
Compute: Decision statistic of FO-KS-PHE
1: If min(KP , N − r) > NKP

K go to step 2 else end

2: Compute S
−1/2
S = (ZSZ

†
S)

−1/2

3: Compute S
−1/2
S ZP

4: Compute M0 = Z†
PS

−1
S ZP

5: Compute γ̂0, using Theorem 1 of [1]
6: Compute G = S

−1/2
S H

7: Compute P⊥
G = IN −G(G†G)−1G†

8: Compute M1 = (S
−1/2
S ZP )

†P⊥
G(S

−1/2
S ZP )

9: Compute γ̂1, using Theorem 1 of [1]

10: Output:
γ̂

KP (K−N)

K
0 det

[
1

γ̂0
IKP

+M0

]

γ̂
KP (K−N)

K
1 det

[
1

γ̂1
IKP

+M1

]

Algorithm 5: FO-US-HE.
Input: ZP ,ZS , r
Compute: Decision statistic of FO-US-HE
1: Compute S

−1/2
S = (ZSZ

†
S)

−1/2

2: Compute T P = S
−1/2
S ZPZ

†
PS

−1/2
S

3: Compute the eigenvalues σ2
1 ≤ . . . ≤ σ2

N of T P

4: If min(N,KP ) > r + 1 go to step 5 else go to step 6
5: Output:

∏N
i=N−r+1(1 + σ2

i )

6: Output: det(IN + S
−1/2
S ZPZ

†
PS

−1/2
S )

Algorithm 6: FO-US-PHE.
Input: ZP ,ZS , r
Compute: Decision statistic of FO-US-PHE
1: If min(KP , N) ≥ r + 1 and

min(KP , N) > NKP

K + r go to step 2 else end

2: Compute S
−1/2
S = (ZSZ

†
S)

−1/2

3: Compute T P = S
−1/2
S ZPZ

†
PS

−1/2
S

4: Compute the eigenvalues σ2
1 ≤ . . . ≤ σ2

N of T P

5: Compute γ̂0 using Corollary 2 of [1]
6: Compute γ̂1 using Corollary 1 of [1]

7: Output:
γ̂
N

(
1−KP

K

)
0

∏N
i=1

(
1

γ̂0
+σ2

i

)

γ̂
N

(
1−KP

K

)
−r

1

∏N−r
i=1

(
1

γ̂1
+σ2

i

)

Algorithm 7: SO-KS-HE.
Input: ZP ,ZS ,H
Compute: Decision statistic of SO-KS-HE
1: Compute L0(R̂0, 1;Z) as the logarithm of (5), with

γ = 1, in [1]
2: Compute R̂xx and R̂1 using Algorithm 1
3: Compute L1(R̂1, R̂xx,H , 1;Z)

4: Output: L1(R̂1, R̂xx,H , 1;Z)− L0(R̂0, 1;Z)

Algorithm 8: SO-KS-PHE.
Input: ZP ,ZS ,H
Compute: Decision statistic of SO-KS-PHE
1: Compute SS = ZSZ

†
S

2: Compute M0 = Z†
PS

−1
S ZP

3: Compute γ̂0, using Theorem 1 of [1]
4: Compute L0(R̂0, γ̂0;Z) using the logarithm of (5)

in [1]
5: Compute γ̂1, R̂xx, and R̂1 by means of Algorithm 2
6: Compute L1(R̂1, R̂xx,H , γ̂1;Z)

7: Output: L1(R̂1, R̂xx,H , γ̂1;Z)− L0(R̂0, γ̂0;Z)

generality, we resort to a different formulation where the factor
γ scales the second-order characterization of the primary data.
Otherwise stated, the covariance matrix of primary data is γR
whereas that of secondary data is R. The reader is referred to
the supplemental material for the derivation of the EP detectors.



ADDABBO et al.: UNIFIED THEORY OF ADAPTIVE SUBSPACE DETECTION PART II: NUMERICAL EXAMPLES 4943

Algorithm 9: SO-US-HE.
Input: ZP ,ZS , r
Compute: Decision statistic of SO-US-HE
1: Compute L0(R̂0, 1;Z) given by the logarithm of (5)

in [1] with γ = 1

2: Compute L1(R̂1,
̂̃Rxx, 1;Z) exploiting Theorem 3

of [1] with γ = 1

3: Output: L1(R̂1,
̂̃Rxx, 1;Z)− L0(R̂0, 1;Z)

Algorithm 10: SO-US-PHE.
Input: ZP ,ZS , r
Compute: Decision statistic of SO-US-PHE
1: Compute γ̂0, using Theorem 1 of [1]
2: Compute L0(R̂0, γ̂0;Z) as the logarithm of (5) in [1]

3: Compute L1(R̂1,
̂̃Rxx, γ̂1;Z) by jointly exploiting

Theorems 3 and 4 of [1]

4: Output: L1(R̂1,
̂̃Rxx, γ̂1;Z)− L0(R̂0, γ̂0;Z)

1) First-Order Models: The hypothesis test to be solved in
this case is given by (1). Thus, exploiting the derivations in [2],
[3], [4], it is possible to prove the following results.
� Known subspace 〈H〉, known γ: Assuming γ = 1, the

EP approximation to the GLRT is

Tr [Z†
PS

−1/2
KS

PHS
S

−1/2
KS

ZP ]
H1
>
<
H0

η (12)

where PHS
= HS(H

†
SHS)

−1H†
S with HS =

S
−1/2
KS

H . This detector will be referred to as the EP
approximation to the first-order detector for a signal
in a known subspace in a homogeneous environment
(EP-FO-KS-HE).

� Known subspace 〈H〉, unknown γ: In this case, the EP
approximation to the GLRT is

Tr [Z†
PS

−1
KS

ZP ]

Tr [Z†
PS

−1/2
KS

P⊥
HS

S
−1/2
KS

ZP ]

H1
>
<
H0

η (13)

where P⊥
HS

= IN − PHS
. This detector will be referred

to as the EP approximation to the first-order detector for
a signal in a known subspace in a partially-homogeneous
environment (EP-FO-KS-PHE).

� Unknown subspace 〈H〉, known γ: In this case, the EP
approximation to the GLRT is

min{r,KP }∑
i=1

σ2
i

H1
>
<
H0

η (14)

where σ2
1 ≥ . . . ≥ σ2

N ≥ 0 are the eigenvalues of

S
−1/2
KS

ZPZ
†
PS

−1/2
KS

. This detector will be referred to as
the EP approximation to the first-order detector for a signal

in an unknown subspace in a homogeneous environment
(EP-FO-US-HE).

� Unknown subspace 〈H〉, unknown γ: In this case, the
EP approximation to the GLRT is∑min{r,KP }

i=1
σ2
i

Tr [Z†
PS

−1
KS

ZP ]

H1
>
<
H0

η. (15)

This detector will be referred to as the EP approximation
to the first-order detector for a signal in an unknown sub-
space in a partially-homogeneous environment (EP-FO-
US-PHE).

2) Second-Order Models: The hypothesis test under consid-
eration is now problem (2). As in the previous subsection, we
distinguish four cases.
� Known subspace 〈H〉, known γ: Without loss of gener-

ality γ = 1 and the EP approximation to the GLRT is [16],
[21]

Tr [B]−KP

rB∑
i=1

log(1 + λ̂i)−
rB∑
i=1

γi

1 + λ̂i

H1
>
<
H0

η (16)

where B = L−1G†S−1/2
KS

ZPZ
†
PS

−1/2
KS

GL−† ∈ Cr×r

with rank rB ≤ min{KP , r}, L ∈ Cr×r is such
that LL† = G†G, and λ̂i = max(γi/KP − 1, 0),
i = 1, . . . , rB , with γi, i = 1, . . . , rB , the eigenvalues
of B; Tr [B] = Tr [Z†

PS
−1/2
KS

PGS
−1/2
KS

ZP ] =

Tr [Z†
PS

−1/2
KS

PHS
S

−1/2
KS

ZP ]. This detector will be
referred to as the EP approximation to the second-order
detector for a signal in a known subspace in a homogeneous
environment (EP-SO-KS-HE).

� Known subspace 〈H〉, unknown γ: The EP approxima-
tion to the GLR is [16], [21]

KPN log Tr [Z†
PS

−1
KS

ZP ]−KPN log γ̂

− 1

γ̂
Tr

(
Z†

PS
−1/2
KS

P⊥
GS

−1/2
KS

ZP

)

−KP

rB∑
i=1

log(1 + δ̂i)−
rB∑
i=1

γi/γ̂

1 + δ̂i
(17)

where δ̂i = max(γi/(KP γ̂)− 1, 0), i = 1, . . . , rB , and γ̂
is the solution of

−KPN

γ
+

Tr
(
Z†

PS
−1/2
KS

P⊥
GS

−1/2
KS

ZP

)
γ2

+ h(γ) = 0

(18)
with

h(γ) =

⎧⎪⎪⎨
⎪⎪⎩

KP rB
γ , if γ <

γrB

KP

KP (i−1)
γ +

∑rB
j=i γj

γ2 , if
γi
KP

≤γ<
γi−1
KP

i=2,...,rB∑rB
i=1 γi

γ2 , if γ1

KP
≤ γ

. (19)

This detector will be referred to as the EP approximation
to the second-order detector for a signal in a known sub-
space in a partially-homogeneous environment (EP-SO-
KS-PHE).
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Fig. 1. EstimatedPfa versusσ2
c (a), γ (b), and ρc (c) forN = 16,KP = 16,

KS = 32, and r = 2. The number of iterations for the alternating procedure is
5. The nominal values of σ2

c , γ, ρc, and Pfa are 30 dB, 3 dB, 0.95, and 10−3,
respectively.

� Unknown subspace 〈H〉, known γ: SinceH is unknown,
then R̃xx = HRxxH

† is an unknown positive semidefi-
nite matrix with rank less than or equal to r. Thus, reasoning
in terms of R̃xx and following the lead of [23], [24], the
EP approximation to the GLRT is

Tr[Z†
PS

−1
KS

ZP ]−KP

r∑
i=1

log(1+q̂i)−
N∑
i=1

σ2
i

1 + q̂i

H1
>
<
H0

η

(20)
where q̂i = max(σ2

i /KP − 1, 0), i = 1, . . . , r, q̂i = 0,
i = r + 1, . . . , N , and σ2

i are sorted in descending order.
This detector will be referred to as the EP approximation
to the second-order detector for a signal in an unknown
subspace in a homogeneous environment (EP-SO-US-HE).

Fig. 2. First-order detectors for homogeneous environment: N = 16,KP =
16, r = 2, KS = 24, and Pfa = 10−3.

Fig. 3. First-order detectors for homogeneous environment: N = 16,KP =
16, r = 2, KS = 32, and Pfa = 10−3.

� Unknown subspace 〈H〉, unknown γ: Denote by r0 =

min{KP , N} the rank of S−1/2
KS

ZPZ
†
PS

−1/2
KS

and assume
that r0 > r; then, the EP approximation to the GLRT is

KPN log Tr [Z†
PS

−1
KS

ZP ]−KP

r∑
i=1

log(γ̂ + q̂i)

−KP

N∑
i=r+1

log γ̂ −
r∑

i=1

σ2
i

γ̂ + q̂i
−

r0∑
i=r+1

σ2
i

γ̂

H1
>
<
H0

η

(21)

where q̂i = max(σ2
i /KP − γ̂, 0), i = 1, . . . , r, and γ̂ is

the solution of the equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−KP (N−r)
γ +

∑r0
i=r+1 σ2

i

γ2 = 0, if σ2
r

KP
> γ

−KP (N−i+1)
γ +

∑r0
j=i σ

2
j

γ2 = 0, if
σ2
i

KP
≤γ<

σ2
i−1

KP
i=2,...,r

−KPN
γ +

∑r0
i=1 σ2

i

γ2 = 0, if σ2
1

KP
≤ γ

. (22)

The detector will be referred to as the EP approximation
to the second-order detector for a signal in an unknown
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Fig. 4. First-order detectors for homogeneous environment: N = 16,KP =
16, r = 2, KS = 64, and Pfa = 10−3.

Fig. 5. First-order detectors for partially-homogeneous environment: N =
16,KP = 16, r = 2, KS = 24, and Pfa = 10−3.

subspace in a partially-homogeneous environment (EP-
SO-US-PHE).

III. ILLUSTRATIVE EXAMPLES AND DISCUSSION

In this section, Monte Carlo (MC) counting techniques are
used to evaluate the performances of the GLR detectors derived
in [1], and these are compared to the performances of their EP
approximations.

The probability of detection (Pd) and the thresholds to guar-
antee a given probability of false alarm (Pfa) are estimated over
103 and 100/Pfa independent MC trials, respectively. In all
the illustrative examples we assume N = 16 and Pfa = 10−3;
values of r, KP , and KS vary. The covariance matrix, R, is
R = IN + σ2

cM c, with σ2
c accounting for a clutter-to-noise

ratio of 30 dB assuming unit noise power. The (i, j)th entry of
the clutter component M c is ρ|i−j|

c with ρc = 0.95. The value of
γ for the partially-homogeneous environment is set to 2 (3 dB).

In the simulated scenario the signal component in the ith
vector zi, i = 1, . . . ,KP , is given by αiv(φi), with v(φi) =
1√
N
[1 ejφi · · · ej(N−1)φi ]T ; the electrical angles φi are in-

dependent random variables uniformly distributed on Φ =

Fig. 6. First-order detectors for partially-homogeneous environment: N =
16,KP = 16, r = 2, KS = 32, and Pfa = 10−3.

[−πβ, πβ], where β = sin θ and θ equals (unless otherwise
stated) 2π(2/360) radians (corresponding to 2◦). The interval
Φ is discretized using a step of 0.02 radians. Accordingly, we
choose the signal subspace by computing the matrix Rβ ∈
CN×N , whose (m,n)th entry is given by [25]

Rβ(m,n) = β
sin((n−m)βπ)

(n−m)βπ
.

When the signal subspace is known it is chosen to be < U r >
where the matrixU r ∈ CN×r is composed of the first r columns
of U ∈ CN×N that in turn consists of the normalized eigenvec-
tors of Rβ corresponding to its most significant eigenvalues.

A. First-Order Detectors

In this case, we define V P = [v(φ1) · · ·v(φKP
)] and set

the magnitude of αi = |α|ejϕα,i according to the signal-to-
interference-plus-noise ratio (SINR) defined as

SINR = |α|2Tr (V †
PR

−1V P ). (23)

The phases ϕα,i are independent and uniformly distributed in
[0, 2π).

The analysis starts by assessing to what extent the detection
thresholds are sensitive to the variations of σ2

c , γ, and ρc. The
results are shown in Fig. 1, where we plot the estimatedPfa over
100/Pfa MC trials assuming a nominal value of 10−3. These
results indicate that Pfa for all the derived detectors is relatively
invariant to σ2

c , γ, and ρc, at least for the considered parameter
settings.

Figs. 2–7 are plots of Pd vs SINR for the first-order GLR
detectors and their EP approximations. Figs. 2, 3, and 4 assume
a homogeneous environment, whereas Figs. 5, 6, and 7 assume a
partially-homogeneous environment. The GLR detectors of [1]
are represented by solid lines and the EP approximations are
represented by dashed lines. Curves of detectors for a known
signal subspace are black and curves of detectors for an unknown
subspace are red. A zoom box on high values ofPd demonstrates
the gains/losses atPd = 0.9. Inspection of the figures shows that
detectors for a known signal subspace outperform detectors for
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Fig. 7. First-order detectors for partially-homogeneous environment: N =
16,KP = 16, r = 2, KS = 64, and Pfa = 10−3.

an unknown subspace, as could be expected. More importantly,
GLR detectors for a known signal subspace outperform their
EP approximations. The GLR and EP detectors are more or
less equivalent under the assumption that the signal subspace is
unknown.

To show the influence of KS on the detection performance,
it is possible to compare Figs. 2, 3, and 4 for the homogeneous
environment and, similarly, Figs. 5, 6, and 7 for the partially-
homogeneous environment. As expected, the better performance
obtained for the greater value of KS for all detectors, with the
EP detectors filling the performance gap at KS = 64 due to an
enhanced fidelity of the SCM estimate. Additional numerical
examples not reported here for brevity confirm this observed
behavior for r = 4.

B. Second-Order Detectors

Under the second-order model, α = [α1 · · ·αKP
]T is a com-

plex Gaussian vector with covariance matrix σ2
αIKP

, with
σ2
α > 0 varying according to the SINR defined in (23) with σ2

α

replacing |α|2. It is important to notice that such a model does
not perfectly match the design assumptions of the second-order
detectors.

As a preliminary step, we analyze the proposed alternating
procedures for iterations h, ranging from 2 to 20. To this end,
we plot the average values of ΔLi, i = 1, 2, over 100 MC trials
versus h, in Fig. 8(a)–(d), for both the homogeneous and the
partially-homogeneous environments and simulating the null
and the alternative hypotheses. All the parameter values used
for this analysis are shown in the figures; under H1 the SINR
value is set to 20 dB. It turns out that, for the considered param-
eters, 5 iterations are sufficient to achieve a relative variation
approximately lower than 10−5 and this value is also used in
what follows.

Figs. 9–14 are plots of Pd vs SINR for the second-order
GLR detectors and their EP approximations. Figs. 9, 10, and
11 assume a homogeneous environment while Figs. 12, 13,
and 14 assume a partially-homogeneous environment. The GLR

Fig. 8. Log-likelihood variation versus the iteration number of the alternating
procedures.
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Fig. 9. Second-order detectors for homogeneous environment: N =
16,KP = 16, r = 2, KS = 24, and Pfa = 10−3.

Fig. 10. Second-order detectors for homogeneous environment: N =
16,KP = 16, r = 2, KS = 32, and Pfa = 10−3.

detectors proposed in [1] are represented by solid lines and the
EP approximations are represented by dashed lines. Curves of
detectors for a known signal subspace are blue and curves of
detectors for an unknown subspace are green. Again a zoom box
on high values of Pd is reported. The second-order detectors for
a known signal subspace outperform detectors for an unknown
signal subspace and GLR detectors for a known signal subspace
are better than the corresponding EP detectors for bothKS = 24
and KS = 32. However, this time the gain of the GLR detector
over the corresponding EP detector is much more pronounced
in a partially-homogeneous environment and, in the case of
detectors for a known subspace, is still remarkable forKS = 64.

C. Comparison Between First- and Second-Order Detectors

In Figs. 15 and 16, the comparison is conducted by adopting
the same parameter values and signal angular sector as in the
previous subsections. Moreover, Fig. 15 assumes that the αks
are deterministic, whereas in Fig. 16 they are Gaussian random
variables. The figures highlight that first- and second-order GLR
detectors commonly share the same performance.

Fig. 11. Second-order detectors for homogeneous environment: N =
16,KP = 16, r = 2, KS = 64, and Pfa = 10−3.

Fig. 12. Second-order detectors for partially-homogeneous environment:
N = 16,KP = 16, r = 2, KS = 24, and Pfa = 10−3.

Nevertheless, the above behavior is no longer true for the
scenario associated with Figs. 17 and 18, where a wider angular
sector (i.e., θ equals 2π(20/360) radians leading to r = 10) is
considered assuming the homogeneous environment and that
target coordinates are Gaussian and constant over the range bins
of the primary channel. In this case, a gain of the second-order
detectors with respect to their first-order counterparts can be
observed and the magnitude of such a gain is always larger than
1 dB at least for the considered cases.

For the sake of completeness, we have also compared all
the considered detection architectures in terms of the computa-
tional time required to return their respective decision statistics.3

Table I shows the measured execution times for the proposed
GLR detectors in comparison with their EP counterparts. It is
important to underline that the reported times only refer to the

3Notice that we use this computational metric because the usual Landau
notation, in the limit of large samples, would lead to similar computational
requirements. In fact, all of the considered architectures require the computation
and inversion of the sample covariance matrix and it is well known that these
operations are O(KN2) (recall that we assume K > N ) and O(N3) [26],
respectively, representing the most significant terms. However, for finite sample
sizes, each algorithm exhibits its own execution time.
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Fig. 13. Second-order detectors for partially-homogeneous environment:
N = 16,KP = 16, r = 2, KS = 32, and Pfa = 10−3.

Fig. 14. Second-order detectors for partially-homogeneous environment:
N = 16,KP = 16, r = 2, KS = 64, and Pfa = 10−3.

TABLE I
COMPUTATION TIMES [SEC]

decision statistics’ evaluation excluding the operations required
to compute the common terms. The table highlights that the
first-order GLR detectors for known subspace detectors are less
time-demanding than the second-order counterparts; in the case
of unknown subspace, we observe an opposite trend, namely
the execution times of the second-order GLR detectors are lower
than those of the first-order detectors. Moreover, the EP detectors
generally require a lower number of operations than the GLR
competitors, except for the EP-SO-US-HE and EP-SO-US-PHE

Fig. 15. First-order and second-order detectors for homogeneous environment
and the deterministic model of Section III-A for the αks: N = 16,KP =
32, r = 2, KS = 24, and Pfa = 10−3.

Fig. 16. First-order and second-order detectors for homogeneous environment
and the random model of Section III-B for the αks: N = 16,KP = 32, r = 2,
KS = 24, and Pfa = 10−3.

Fig. 17. First-order and second-order detectors for homogeneous environ-
ment: N = 16,KP = 32, r = 10, KS = 24, and Pfa = 10−3.
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Fig. 18. First-order and second-order detectors for homogeneous environ-
ment: N = 16,KP = 32, r = 10, KS = 64, and Pfa = 10−3.

that are more time-demanding than their respective counter-
parts. Finally, notice that the GLR detectors for the partially-
homogeneous environment are more time consuming than those
for the homogeneous scenario and that the computation times
of the GLR detectors for known subspace are greater than those
for unknown subspace.

Summarizing, based on the numerical experiments, it appears
that the choice of the first-order model versus the second-order
model depends in a complicated way on parameter values. Actu-
ally, we know no general rule for deciding on one of the proposed
approaches. However, when the angular sector becomes wide
with a consequent increase of the signal subspace rank, the
second-order GLR detectors might be the recommended choice.

IV. CONCLUSION

In this paper, we have assessed the performance of the GLR
detectors derived in the companion paper [1] and compared the
performance of these detectors to the performance of EP approx-
imations. It is worth noticing that most of the EP approximations
have been derived here for the first time (at least to the best of
authors’ knowledge). As in [1], we have considered two op-
erating situations: a homogeneous environment where training
samples and testing samples share the same statistical char-
acterization of the interference, and a partially-homogeneous
environment where training and testing samples differ in scale.
The analysis starts by investigating to what extent the Pfa is
sensitive to variations of the clutter parameters showing that
all the GLR detectors maintain a rather constant false alarm
rate over the considered parameter ranges. When the signal
subspace is known, performance is better than when it is known
only by its dimension. The GLR detectors outperform their EP
approximants when the signal subspace is known and the number
of secondary data is not too large. Finally, the performance
of the detectors for an unknown signal subspace are close to
each other. Summarizing, the analysis has shown that the design
framework proposed in [1] leads to effective solutions for signals
with inherent uncertainty that, for a specific radar application,

can be related to the angles of arrival, Doppler frequency, and/or
phase/amplitude calibration errors.

Future research lines might focus on cases where interference
is present. In addition, the analysis on real data and under a
mismatch between the actual and the nominal signal subspace
represents another research track of interest.
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