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Abstract—This paper addresses the problem of detecting mul-
tidimensional subspace signals in noise of unknown covariance.
It is assumed that a primary channel of measurements, possibly
consisting of signal plus noise, is augmented with a secondary
channel of measurements containing only noise. The noises in these
two channels share a common covariance matrix, up to a scale,
which may be known or unknown. The signal model is a subspace
model with variations: the subspace may be known or known
only by its dimension; consecutive visits to the subspace may be
unconstrained or they may be constrained by a prior distribution.
The several original detectors derived in this paper, when organized
with previously published detectors, comprise a unified theory of
adaptive subspace detection from primary and secondary channels
of measurements.

Index Terms—Adaptive detection, subspace model, generalized
likelihood ratio test, alternating optimization.

I. INTRODUCTION

IN REAL radar systems equipped with an array of sensors,
the array mainbeam is steered by applying specific weights

to each tile. However, very often, due to hardware, implementa-
tion, and/or architecture issues, setting these weights becomes
a difficult task for the presence of unbalanced channels, mis-
calibration errors, mutual coupling, and so on [1], [2], [3], [4].
As a consequence, an intrinsic uncertainty related to the array
pointing direction might exist. The subspace paradigm arises
from the need to account for this uncertainty and to control
the detection performance degradation due to the presence of
mismatched signals [4]. The general problem of matched and
adaptive subspace detection of point-like targets in Gaussian and
non-Gaussian disturbance has been addressed by many authors,
beginning with the seminal work of Kelly and Forsythe [5], [6].
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The innovation of [5] was to introduce a homogeneous secondary
channel of signal-free measurements whose unknown covari-
ance matrix was equal to the unknown covariance matrix of
primary (or test) measurements. Likelihood theory was then used
to derive what is now called the Kelly detector. In [6], adaptive
subspace detection was formulated in terms of the so-called gen-
eralized multivariate analysis of variance for complex variables.
These papers were followed by the important adaptive detectors
of [7], [8]. Then, a scale-invariant adaptive subspace detector,
now commonly called ACE (adaptive coherence estimator), was
introduced. In [9] this detector was derived as an asymptotic
approximation to the generalized likelihood ratio (GLR) to de-
tect a coherent signal in compound-Gaussian noise with known
spectral properties, and in [10] it was derived as an estimate-
and-plug version of the scale-invariant matched subspace de-
tector [11], [12]. Interestingly, in [13] the authors showed that
ACE was a likelihood ratio detector for a non-homogeneous
secondary channel of measurements whose unknown covariance
matrix was a scaled version of the unknown covariance matrix
of the primary channel. The scale was unknown. Then, in [14]
it was shown that ACE is a uniformly most powerful invariant
(UMPI) detector. In subsequent years there has been a flood
of important papers. Among published references on adaptive
detection we cite here [15], [16], [17], [18], [19], [20], [21],
[22], [23], and references therein. All of this work is addressed
to adaptive detection in what might be called a first-order (signal)
model for measurements. That is, the measurements under test
may contain a signal in a known subspace embedded in Gaussian
noise of unknown covariance, but no prior distribution is as-
signed to the location of the signal in the subspace. In particular,
in [17], [19] the authors extend adaptive subspace detection
to range-spread targets deriving likelihood ratio detectors that
were then compared to estimate-and-plug adaptations. The first
attempt to replace this model by a second-order (signal) model
was made in [24], where the authors used a Gaussian model
for the signal. The covariance matrix for the signal was con-
strained by a known subspace model. The resulting second-order
matched subspace detector was derived [24], and an estimate-
and-plug adaptation from secondary measurements was
proposed.

The aim of the current paper is to extend the results of [17],
[19], [24], [25], [26] to include all variations on adaptive sub-
space detection in first- and second-order models for a subspace
signal to be detected. These models include signals that lie
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in a known subspace or in an unknown subspace of known
dimension. They will be clarified in due course.

Our results are motivated by the problem of detecting range-
spread targets from an active radar system. However, our
framework and corresponding results are actually much more
generally applicable, as they apply to sonar, communications,
hyperspectral imaging, radioastronomy, etc. In all of these
applications, measurements in a primary channel may con-
tain signal plus Gaussian noise. Measurements in a secondary
channel contain only noise. The noises in the two channels
are independent, but they share a common covariance matrix,
at least to within an unknown scale. The case of a common
covariance matrix in the two channels is typically referred to
as a case of homogeneous environment, while the more general
case of an unknown scale factor is commonly referred to as a
case of partially-homogeneous environment. As for the signal
components, they are determined by a visit to a subspace.
According to a first-order model for these visits, there is no
constraint on their location in the subspace; as a consequence
the subspace signal model modulates the mean of a multivariate
Gaussian distribution. According to a second-order model, the
location in the subspace is ruled by a prior distribution, which
is taken to be a Gaussian distribution; as a consequence the
subspace signal model modulates the covariance matrix of a
multivariate Gaussian distribution. For each of these variations
on the problem of adaptively detecting a subspace signal, we
derive a detector based upon the GLR, or generalized likelihood
ratio test (GLRT) (for the definition of GLRT see [27]). Recall
that the GLRT compares a GLR statistic to a threshold η, set
according to the desired probability of false alarm (Pfa), to
discriminate between the noise-only hypothesis (H0) and the
signal-plus-noise hypothesis (H1). Hereafter, η will denote any
modification of the original threshold. Taken together, our results
comprise a unified theory of adaptive subspace detection.

A. A Preview of the Paper

Before proceeding with the derivations, we summarize below
the different variations on a multidimensional subspace signal
model addressed in this paper:
� The signal visits a known subspace, unconstrained by a

prior distribution. We call this a first-order model, as the
signal appears as a low-rank component in the mean of a
multivariate Gaussian distribution for the measurements.
When there is only one measurement in the primary chan-
nel, then the GLRTs are those of [5], [9], [13]. For multiple
measurements these results are extended in [6], [17], [19].
The structured interference of [19] is not considered in
the present paper. These cases (developed in Section III-A
and III-B) are only reviewed, as they form the basis of our
extensions to other models.

� The signal visits an unknown subspace of known dimen-
sion, unconstrained by a prior distribution. Again we call
this a first-order model. The GLRTs are original to the best
of authors’ knowledge and are derived in Section III-C and
III-D.

� The signal visits a known subspace, constrained by a
Gaussian prior distribution. We call this a second-order

model, as the signal model appears as a constrained, low-
rank component in the covariance matrix of a multivari-
ate Gaussian distribution for the measurements. Adaptive
estimate-and-plug GLRTs for this case have been derived
in [24], [28]. The approximated GLRTs of the current paper
are original and generalize the GLRT designed to detect a
rank one signal in homogeneous environment [25].

� The signal visits an unknown subspace of known dimen-
sion, constrained by a Gaussian prior distribution; this is
a second-order model. The estimated low-rank covariance
matrix for the subspace signal may be called an adaptive
factor model. The resulting GLRTs are original and they
significantly extend the results of [26] for detecting a
dimension-one signal in a homogeneous environment.

B. Notation

In the sequel, vectors and matrices are denoted by bold-
face lower-case and upper-case letters, respectively. Symbols
det(·), Tr(·), etr{·}, rk{·}, (·)T , (·)∗, (·)†, (·)−1, and (·)−†

denote the determinant, trace, exponential of the trace, rank,
transpose, complex conjugate, conjugate transpose, inverse, and
conjugate transpose of the inverse, respectively. As to numer-
ical sets, C is the set of complex numbers, CN×M is the
Euclidean space of (N ×M)-dimensional complex matrices,
and CN is the Euclidean space of N -dimensional complex
vectors. In and 0m,n stand for the n× n identity matrix and
the m× n null matrix. 〈H〉 denotes the space spanned by
the columns of the matrix H ∈ CN×r. Given a1, . . . , aN ∈ C,
diag (a1, . . . , aN ) ∈ CN×N indicates the diagonal matrix whose
ith diagonal element is ai. We write z ∼ CNN (x,Σ) to say
that the N -dimensional random vector z is a complex nor-
mal random vector with mean vector x and covariance matrix
Σ. Moreover, Z = [z1 · · · zK ] ∼ CNNK(X, IK ⊗Σ), with
⊗ denoting Kronecker product and X = [x1 · · ·xK ], means
that zk ∼ CNN (xk,Σ) and the columns of Z are statistically
independent. The acronyms PDF and wp 1 stand for probability
density function and with probability 1, respectively. R̂i and γ̂i
will denote the (possibly approximated) maximum likelihood
(ML) estimates of R and γ, respectively, under the Hi hypoth-
esis, i = 0, 1 (symbols defined in Section II). Finally, vec(·) is
the column vectorizing operator.

II. FOUR PROBLEMS IN ADAPTIVE SUBSPACE DETECTION

For subsequent developments, let us denote by ZP =
[z1 · · · zKP

] ∈ CN×KP the matrix of measurements in the pri-
mary channel and by ZS = [zKP+1 · · · zKP+KS

] ∈ CN×KS

the matrix of measurements in the secondary channel. In a
radar problem the measurements are N -dimensional vectors of
space-time samples: the radar system transmits a burst of Np

radio frequency (RF) pulses and the baseband representations
of the RF signals collected at the Na antenna elements are
sampled to form range-gate samples for each pulse; it turns out
that N = NaNp. If the signal presence is sought in a subset of
KP range gates, the primary channel consists of NKP samples.
The samples corresponding to any range gate are arranged in
a column vector zk ∈ CN . The secondary channel consists of
the outputs of KS properly selected range gates [29]. Finally,
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let Z = [ZP ZS ] ∈ CN×K be the overall data matrix with
K = KP +KS .

A. First-Order Models

In a first-order model for measurements, the adaptive de-
tection problem may be formulated as the following test of
hypothesis H0 vs alternative H1:

H0 :

{
ZP ∼ CNNKP

(0N,KP
, IKP

⊗R)
ZS ∼ CNNKS

(0N,KS
, IKS

⊗ γR)

H1 :

{
ZP ∼ CNNKP

(HX, IKP
⊗R)

ZS ∼ CNNKS
(0N,KS

, IKS
⊗ γR)

(1)

where H ∈ CN×r is either a known matrix or an unknown
matrix with known rank r, r ≤ N ,X = [x1 · · ·xKP

] ∈ Cr×KP

is the matrix of the unknown signal coordinates, R ∈ CN×N is
an unknown positive definite covariance matrix, and γ > 0 is
either a known or an unknown parameter. In the following, we
suppose that KS ≥ N and, without loss of generality, that H is
a slice of a unitary matrix.

B. Second-Order Models

In a second-order model for measurements, the distribu-
tions above are treated as conditional distributions, and a
prior Gaussian distribution is assumed for the matrix X ,
namely, X ∼ CNrKP

(0r,KP
, IKP

⊗Rxx) with Rxx ∈ Cr×r

an unknown positive semidefinite covariance matrix that mod-
els sources that may be correlated. The joint distribution of
ZP and X is marginalized for ZP obtaining that ZP ∼
CNNKP

(0N,KP
, IKP

⊗ (HRxxH
† +R)).

The adaptive detection problem may be formulated as the
following test of hypothesis H0 vs alternative H1:

H0 :

{
ZP ∼ CNNKP

(0N,KP
, IKP

⊗R)
ZS ∼ CNNKS

(0N,KS
, IKS

⊗ γR)

H1 :

{
ZP ∼ CNNKP

(0N,KP
, IKP

⊗ (HRxxH
† +R))

ZS ∼ CNNKS
(0N,KS

, IKS
⊗ γR)

(2)
whereH ∈ CN×r is either an arbitrary unitary basis for a known
subspace 〈H〉 or an unknown unitary matrix with known rank
r, r ≤ N ; R ∈ CN×N is an unknown positive definite matrix,
and γ > 0 is either a known or an unknown parameter. Again,
we suppose that KS ≥ N .

C. Interpretations and Important Statistics

In the derivation of adaptive subspace detectors for first-order
models, several data matrices and derived statistics arise. They
are summarized and annotated here.
� SS = ZSZ

†
S ∈ CN×N : KS times the sample covariance

matrix for secondary channel; forKS ≥ N , the covariance
matrix SS is positive definite wp 1;

� SP = ZPZ
†
P ∈ CN×N : KP times the sample covariance

matrix for primary channel; SP is positive semidefinite
with rank min(KP , N) wp 1;

� T P = S
−1/2
S ZPZ

†
PS

−1/2
S ∈ CN×N : proportional to the

sample covariance matrix for measurements in the primary

channel that have been whitened by the square root of
the sample covariance matrix computed in the secondary
channel; T P is positive semidefinite of rank min(Kp, N);

� G = S
−1/2
S H ∈ CN×r: whitened subspace basis; H ∈

CN×r is a unitary basis for the r-dimensional subspace
〈H〉;

� P⊥
G = IN −G(G†G)−1G† ∈ CN×N : projection matrix

onto the orthogonal complement of the dimension-r sub-
space 〈G〉.

Importantly, the eigenvalues of the statistics T P and
P⊥

GT PP
⊥
G are two dramatic compressions of the primary and

secondary data that figure prominently in the first-order detectors
to be derived in this paper.

III. FIRST-ORDER DETECTORS: DERIVATIONS

The GLRTs for problem (1) can be obtained by exploiting
the results in [19]. Therein, both homogeneous and partially-
homogeneous environments are considered, and measurements
contain noise plus interference drawn from a subspace that is
either known or unknown up to its rank. As a matter of fact, the
derivation of the compressed likelihood under theH0 hypothesis
in [19] is the starting point for the derivation of the GLRTs for
problem (1).

The joint PDF of primary and secondary data is given by

f1(Z;R,X,H , γ) =
etr
{
− 1

γR
−1ZSZ

†
S

}
πNKγNKS detK(R)

× etr
{
−R−1 (ZP −HX) (ZP −HX)†

}
under H1 and under H0 by

f0(Z;R, γ) =
etr
{
−R−1ZPZ

†
P − 1

γR
−1ZSZ

†
S

}
πNKγNKS detK(R)

. (3)

A. Known Subspace 〈H〉, Known γ

Under H1, the likelihood is maximized through the ML
estimates of R and X to produce the partially-compressed
likelihood [19]

�1(R̂1, X̂,H , γ;Z)

=
(K/(eπ))NKγ−KP (K−N) det−K(SS)

detK
[
1
γ IKP

+
(
S

−1/2
S ZP

)†
P⊥

G

(
S

−1/2
S ZP

)]
=

(K/(eπ))NKγ−KSN det−K(SS)

detK
[
1
γ IN + P⊥

G

(
S

−1/2
S ZP

)(
S

−1/2
S ZP

)†
P⊥

G

] (4)

where we have used the identity det[ 1γ IM +AB] =

γN−Mdet[ 1γ IN +BA] with A ∈ CM×N and B ∈ CN×M . It
is also straightforward to show that compressed likelihood under
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H0 is

�0(R̂0, γ;Z) =

(
K

eπ

)NK
γ−KP (K−N) det−K(SS)

detK
[
1
γ IKP

+Z†
PS

−1
S ZP

]
=

(
K

eπ

)NK
γ−KSN det−K(SS)

detK
[
1
γ IN + S

−1/2
S ZPZ

†
PS

−1/2
S

] . (5)

It follows that the GLRT for homogeneous environment (i.e.,
γ = 1) and r < N , referred to in the following as first-order
known subspace in homogeneous environment (FO-KS-HE)
detector, is given by

det
[
IKP

+Z†
PS

−1
S ZP

]
det

[
IKP

+
(
S

−1/2
S ZP

)†
P⊥

G

(
S

−1/2
S ZP

)] H1
>
<
H0

η (6)

or, equivalently, as

det [IN + T P ]

det
[
IN + P⊥

GT PP
⊥
G

] H1
>
<
H0

η. (7)

The expression in (7) illuminates the role of the secondarily
whitened primary data S

−1/2
S ZP , its corresponding sample

covarianceT P , and the sample covariance of whitened measure-
ments after their projection onto the subspace P⊥

G. The GLRT
is a function only of the eigenvalues of T P and the eigenvalues
of P⊥

GT PP
⊥
G (thus implying a massive compression of mea-

surements in primary and secondary channels). For r = N and
γ = 1 the GLRT reduces to

det
[
IKP

+Z†
PS

−1
S ZP

]
= det [IN + T P ]

H1
>
<
H0

η. (8)

These GLRTs are derived for γ = 1, but generalization to any
known value of γ is obviously straightforward. In particular, if
γ is known we can normalize the secondary data by the square
root of γ, thus obtaining the homogeneous environment. For this
reason herafter we will focus on γ = 1 if γ is known.

B. Known Subspace 〈H〉, Unknown γ

Determining the GLRT for a partially-homogeneous environ-
ment requires one more maximization of the likelihoods with
respect to γ, namely the computation of

max
γ>0

�1(R̂1, X̂,H , γ;Z) and max
γ>0

�0(R̂0, γ;Z).

For r = N the likelihood underH1 is unbounded with respect
to γ > 0 and, hence, the GLRT does not exist. Therefore we
assume r < N . The following result derived in [17], [19] is
recalled here for the sake of completeness.

Theorem 1: Let M ∈ CKP×KP be a positive semidefinite
(Hermitian) matrix of rank t (1 ≤ t ≤ KP ). Then, the function

f(γ) = γ
KP (K−N)

K det

(
1

γ
IKP

+M

)
, γ > 0, (9)

attains its absolute minimum at the unique positive solution of

KP∑
k=KP−t+1

λkγ

λkγ + 1
=

NKP

K
(10)

where the λks are the eigenvalues of the matrix M arranged in
increasing order (λk = 0, k = 1, . . . ,KP − t) and provided that
t > NKP

K . If t = NKP

K , then f(γ) does not possess the absolute
minimum over (0,+∞), but its infimum is positive; finally, if
t < NKP

K , the infimum of f(γ) over (0,+∞) is zero.
Proof: See [17], [19]. �
To use this theorem, it is necessary to determine

the rank of the matrices M0 = Z†
PS

−1
S ZP and M1 =

(S
−1/2
S ZP )

†P⊥
G(S

−1/2
S ZP ) and whether or not the condition

on the rank is satisfied. Preliminarily, we give the following
lemma that can be easily proved following the lead of [30,
Theorem 3.1.4 pag. 82].

Lemma 1: Let z1, . . . ,zm be m independent and com-
plex normal Gaussian vectors with positive definite covari-
ance matrix, i.e., zk ∼ CNN (mk,Rk). The rank of the matrix
[z1 · · · zm] is equal to the minimum among m and N wp 1.

It is also easy to prove the following theorem concerning the
rank of the matrices M0 and M1.

Theorem 2: The rank of

M0 = Z†
PS

−1
S ZP (11)

ism1 = min(KP , N) andm1 > NKP

K sinceK > KP andK >
N . Similarly, the rank of

M1 =
(
S

−1/2
S ZP

)†
P⊥

G

(
S

−1/2
S ZP

)
(12)

ism2 = min(KP , N − r). It follows thatm2 > NKP /K when
KP ≤ N − r (since K > N ); for N − r < KP , the condition
is N − r > NKP /K, which requires r < N(1−KP /K).

It follows that, under the condition m2 > NKP

K , the GLRT
for partially-homogeneous environment, referred to in the fol-
lowing as first-order known subspace in partially-homogeneous
environment (FO-KS-PHE) detector, is given by

γ̂
KP (K−N)

K
0 det

[
1
γ̂0
IKP

+M0

]
γ̂

KP (K−N)

K
1 det

[
1
γ̂1
IKP

+M1

] H1
>
<
H0

η (13)

where γ̂i, i = 0, 1, can be computed using Theorem 1 and M0

and M1 are given by (11) and (12), respectively. The equivalent
form is more illuminating:

γ̂
N(1−KP /K)
0 det

[
1
γ̂0
IN + T P

]
γ̂
N(1−KP /K)
1 det

[
1
γ̂1
IN + P⊥

GT PP
⊥
G

] H1
>
<
H0

η.

Again, the GLRT is a function only of the eigenvalues ofT P and
P⊥

GT PP
⊥
G. In fact, M0 and T P share the nonzero eigenvalues.

Similarly for M1 and P⊥
GT PP

⊥
G.

C. Unknown Subspace 〈H〉 of Known Dimension, Known γ

The signal subspace 〈H〉 is unknown, but its rank r ≤ N
is known. To compute the compressed likelihood under H1,
the parameter H is replaced by its ML estimate in (4). The
maximization with respect to H can be conducted as shown
in [19]. The result is

�1(R̂1, X̂, Ĥ , γ;Z) =
[K/(eπ)]NK

γKP (K−N)

1

detK(SS)

1

gK1 (γ)
(14)
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where

g1(γ) =

⎧⎨⎩ γN−r−KP
∏N−r

i=1

(
1
γ + σ2

i

)
, m1 ≥ r + 1(

1
γ

)KP

, otherwise
.

Here m1 = min(N,KP ) is the rank of the matrix T P =

S
−1/2
S ZPZ

†
PS

−1/2
S and σ2

i , i = 1, . . . , N, are the eigenvalues
of T P arranged in increasing order. Moreover, the compressed
likelihood under H0 can be re-written as

�0(R̂0, γ;Z) =
[K/(eπ)]NK

γKP (K−N)

1

detK(SS)

1

gK0 (γ)
(15)

with g0(γ) = γN−KP
∏N

i=1(
1
γ + σ2

i ).
It follows that, if min(N,KP ) ≥ r + 1, the GLRT for homo-

geneous environment, referred to in the following as first-order
unknown subspace in homogeneous environment (FO-US-HE)
detector, is given by∏N

i=1

(
1 + σ2

i

)∏N−r
i=1 (1 + σ2

i )
=

N∏
i=N−r+1

(
1 + σ2

i

) H1
>
<
H0

η. (16)

For m1 < r + 1, the GLRT reduces to

N∏
i=1

(
1 + σ2

i

)
= det (IN + T P )

H1
>
<
H0

η. (17)

Notice also that condition m1 < r + 1 is equivalent to N = r if
N < KP (recall that N ≥ r) or to KP < r + 1 if KP ≤ N .

D. Unknown Subspace 〈H〉 of Known Dimension, Unknown γ

To obtain the GLRT for partially-homogeneous environment
we have to maximize the partially-compressed likelihoods over
γ. We focus on m1 ≥ r + 1; in fact, for m1 < r + 1 the likeli-
hood under H1 is unbounded with respect to γ and, hence, the
GLRT does not exist. Equivalently, we have to minimize with
respect to γ the following functions

f1(γ) = γ
−KP N

K

N−r∏
i=N−m1+1

(
1 + γσ2

i

)
and

f0(γ) = γ
−KP N

K

N∏
i=N−m1+1

(
1 + γσ2

i

)
.

Proceeding as in the proof of Theorem 1, we obtain the following
results.

Corollary 1: The function

f1(γ) = γ
−KP N

K

N−r∏
i=N−m1+1

(
1 + γσ2

i

)
attains its absolute minimum over (0,+∞) at the unique positive
solution of

N−r∑
i=N−m1+1

σ2
i γ

σ2
i γ + 1

=
NKP

K
, (18)

provided that m1 − r > NKP

K . If m1 − r = NKP

K , then f1(γ)
does not possess the absolute minimum over (0,+∞), but its
infimum is positive; finally, if m1 − r < NKP

K , the infimum of
f1(γ) over (0,+∞) is zero.

Corollary 2: The function

f0(γ) = γ
−KP N

K

N∏
i=N−m1+1

(
1 + γσ2

i

)
attains its absolute minimum over (0,+∞) at the unique positive
solution of

N∑
i=N−m1+1

σ2
i γ

σ2
i γ + 1

=
NKP

K
, (19)

provided that m1 > NKP

K . If m1 = NKP

K , then f0(γ) does not
possess the absolute minimum over (0,+∞), but its infimum
is positive; finally, if m1 < NKP

K , the infimum of f0(γ) over
(0,+∞) is zero.

It follows that, under the condition m1 > NKP

K + r, the
GLRT, referred to in the following as first-order unknown
subspace in partially-homogeneous environment (FO-US-PHE)
detector, can be written as

γ̂
N

(
1−KP

K

)
0

∏N
i=1

(
1
γ̂0

+ σ2
i

)
γ̂
N

(
1−KP

K

)
−r

1

∏N−r
i=1

(
1
γ̂1

+ σ2
i

) H1
>
<
H0

η (20)

where γ̂1 and γ̂0 can be computed using Corollary 1 and 2,
respectively. Notice that the detector is a function of the eigen-
values of the statistic T P only.

IV. SECOND-ORDER DETECTORS: DERIVATIONS

The joint PDF of primary and secondary data is given by

f1(Z;R,Rs,H , γ) =
etr
{
− 1

γR
−1ZSZ

†
S

}
πNKγNKS

×
etr
{
− (HRxxH

† +R
)−1

ZPZ
†
P

}
detKP (HRxxH

† +R) detKS (R)
(21)

under H1 and is expressed by (3) under H0. The compressed
likelihood under H0 has already been computed to implement
the GLRTs for first-order models. This result applies also in
second-order models.

In this section we reverse the order of derivations by first
deriving the GLRTs for an unknown subspace and then deriving
the detectors for a known subspace. The justification for this
reversal of course is that the optimization results obtained for an
unknown subspace of known dimension may then be used for a
known subspace.

A. Unknown Subspace 〈H〉 of Known Dimension, Known γ

In (21) the parameters H and Rxx are both unknown, so
HRxxH

† may be replaced by the unknown covariance matrix



4930 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

R̃xx. Thus, the log-likelihood under H1 can be written as

L1(R, R̃xx, γ;Z) = −NK log π −NKS log γ

−KP log det(R̃xx +R)− Tr

[(
R̃xx +R

)−1

SP

]
−KS log det(R)− Tr

[
1

γ
R−1SS

]
(22)

where we recall that SP = ZPZ
†
P and SS = ZSZ

†
S (and the

matrix SS is positive definite since KS ≥ N ). Notice also that
the rank of the matrix R̃xx is less than or equal to r (in fact,
the rank of HR1/2

xx is less than or equal to r). The compressed
likelihood necessary to obtain the GLRT is given by the follow-
ing theorem. The focus is on the case r ≤ KP ≤ N although
extension to KP < r is straightforward.

Theorem 3: Let r ≤ KP ≤ N . Denote by Γ =
diag (γ1, . . . , γN ) ∈ RN×N , γ1 ≥ . . . ≥ γN ≥ 0, the diagonal
matrix containing the eigenvalues of S

−1/2
S SPS

−1/2
S and

by V ∈ CN×N the unitary matrix of the corresponding
eigenvectors. Finally, letK = S

1/2
S V ∈ CN×N . The maximum

of the left-hand side of (22) can be rewritten as

L1(R̂1,
̂̃Rxx, γ;Z) = −NK log π −NKS log γ −NK

− 2K log | det(K)|+
r−1∑
i=1

K log
γK

γγi + λ̂i(γ)

+

r−1∑
i=1

KS log λ̂i(γ) +

N∑
i=r

K log
γK

γγi + 1
(23)

with λ̂i = max(KSγγi

KP
, 1), i = 1, . . . , r − 1, if γ < KP

KS

1
γr

, and
as

L1(R̂1,
̂̃Rxx, γ;Z) = −NK log π −NKS log γ −NK

− 2K log | det(K)|+
r∑

i=1

[
K log

KP

γi
+KS log

KSγγi
KP

]

+
N∑

i=r+1

K log
γK

γγi + 1
(24)

otherwise. More specifically, if r = 1 we have to remove the
second-to-last and the third-to-last summations from (23), that
we recall is valid ifγ < KP

KS

1
γ1

. If instead r = N , the compressed
likelihood under H1 is given by (23), for all γ values, after
removing the last term and varying the (summation) index i

from 1 to N (also in the expression of the λ̂i).
Proof: See Appendix A. �
Notice thatKP ≥ h is a “necessary condition” to estimate the

eigenvalues of a matrix R̃xx with rank h.
Finally, the GLRT for homogeneous environment and un-

known subspace 〈H〉, referred to in the following as second-
order unknown subspace in homogeneous environment (SO-US-
HE) detector, is

L1(R̂1,
̂̃Rxx, 1;Z)− L0(R̂0, 1;Z)

H1
>
<
H0

η (25)

with L0(R̂0, 1;Z) given by the logarithm of (5) (with γ = 1).

B. Unknown Subspace 〈H〉 of Known Dimension, Unknown γ

To derive the GLRT for partially-homogeneous environment,
we have to maximize the partially-compressed likelihood (under
H1), given by Theorem 3, also with respect to γ. This maximiza-
tion is summarized by the following theorem.

Theorem 4: Let r < KP ≤ N . The maximum with respect to
γ of the partially-compressed likelihood, given by Theorem 3,
is attained at the unique γ ≥ KP

KS

1
γr

, say γ̂, solving the equation

KP∑
i=r+1

K

γγi + 1
= (KP − r)KS − (N −KP )KP ,

provided that (KP − r)KS > (N −KP )KP . The compressed
likelihood is obtained by plugging γ̂ into (24).

Proof: See Appendix B. �
Finally, the GLRT, referred to in the following as second-order

unknown subspace in partially-homogeneous environment (SO-
US-PHE) detector, is given by

L1(R̂1,
̂̃Rxx, γ̂1;Z)− L0(R̂0, γ̂0;Z)

H1
>
<
H0

η (26)

with L0(R̂0, γ̂0;Z) given by the logarithm of the maximum of
(5) with respect to γ obtained by using Theorem 1.

C. Known Subspace 〈H〉, Known γ

As a first step towards the computation of the GLRT, we
extend [25] where the case H ∈ CN (rank-one signal) and
γ = 1 (homogeneous environment) is addressed. To this end, we
denote by H⊥ ∈ CN×(N−r) a slice of a unitary matrix spanning
the orthogonal complement of H ∈ CN×r. It follows that the
matrix V = [H H⊥] ∈ CN×N is unitary. Then, we rewrite the
likelihoods under H1 and H0 as

�1(R,Rxx,H , γ;Z) =

etr

{
−
(
R̃+ERxxE

†
)−1

Z̃P Z̃
†
P

}
πNKγNKS detKP (R̃+ERxxE

†)

×
etr
{
− 1

γ R̃
−1
Z̃SZ̃

†
S

}
detKS (R̃)

(27)

and

�0(R, γ;Z) =
etr
{
−
[
R̃

−1
Z̃P Z̃

†
P + 1

γ R̃
−1
Z̃SZ̃

†
S

]}
πNKγNKS detK(R̃)

,

respectively. Here Z̃P = V †ZP = [Z̃
T

P,1 Z̃
T

P,2]
T , with

Z̃P,1 ∈ Cr×KP and Z̃P,2 ∈ C(N−r)×KP , Z̃S = V †ZS =

[Z̃
T

S,1 Z̃
T

S,2]
T , with Z̃S,1 ∈ Cr×KS and Z̃S,2 ∈ C(N−r)×KS ,

R̃ = V †RV =

[
H†RH H†RH⊥
H†

⊥RH H†
⊥RH⊥

]
.

Also

V † (HRxxH
† +R

)
V =

[
Rxx +H†RH H†RH⊥

H†
⊥RH H†

⊥RH⊥

]
= R̃+ERxxE

†
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with E = [Ir 0r,N−r]
T . We now observe that [31], [32]

R̃
−1

=

[
R̃11 R̃12

R̃21 R̃22

]−1

=

[
R̃

−1

1.2 −R̃
−1

1.2β
†

−βR̃
−1

1.2 R̃
−1

22 + βR̃
−1

1.2β
†

]

= B†R̃
−1

1.2B +

[
0r,r 0r,N−r

0N−r,r R̃
−1

22

]

with B = [Ir − β†] ∈ Cr×N , R̃1.2 = R̃11 − R̃12R̃
−1

22 R̃21 ∈
Cr×r, and β = R̃

−1

22 R̃21 ∈ C(N−r)×r. Similarly,(
R̃+ERxxE

†
)−1

=

[
Rxx + R̃11 R̃12

R̃21 R̃22

]−1

=

⎡⎣ (
Rxx + R̃1.2

)−1

−
(
Rxx + R̃1.2

)−1

β†

−β
(
Rxx + R̃1.2

)−1

R̃
−1

22 + β
(
Rxx + R̃1.2

)−1

β†

⎤⎦
= B†

(
Rxx + R̃1.2

)−1

B +

[
0r,r 0r,N−r

0N−r,r R̃
−1

22

]
.

Moreover, we have that [31], [32] det R̃ = det R̃22 · det R̃1.2

and det(R̃+ERxxE
†) = det R̃22 · det(Rxx + R̃1.2). It fol-

lows that

�1(R,Rxx,H , γ;Z) =
1

πNK

1

γNKS

1

detK(R̃22)

×
etr
{
−
[
R̃

−1

22 Z̃P,2Z̃
†
P,2 +

1
γ R̃

−1

22 Z̃S,2Z̃
†
S,2

]}
detKP (Rxx + R̃1.2) det

KS (R̃1.2)

× etr

{
−
(
Rxx + R̃1.2

)−1

BZ̃P Z̃
†
PB

†
}

× etr

{
− 1

γ
R̃

−1

1.2BZ̃SZ̃
†
SB

†
}
.

Subsequent developments rely on the fact that we can estimate
the parameters R̃1.2, R̃22,β,Rxx in place of R,Rxx. To this
end, first observe that the ML estimate of R̃22, given γ, can be
expressed as

̂̃R22 =
1

K

(
Z̃P,2Z̃

†
P,2 +

1

γ
Z̃S,2Z̃

†
S,2

)
and the corresponding partially-compressed likelihood becomes

max
R̃22

�1(R,Rxx,H, γ;Z)

=
1

πNK

1

γNKS

(K/e)(N−r)K

detKP (Rxx + R̃1.2)

×
etr

{
−
(
Rxx + R̃1.2

)−1

BZ̃P Z̃
†
PB

†
}

detKS (R̃1.2) det
K
(
Z̃P,2Z̃

†
P,2 +

1
γ Z̃S,2Z̃

†
S,2

)
× etr

{
− 1

γ
R̃

−1

1.2BZ̃SZ̃
†
SB

†
}
. (28)

Estimation of the remaining parameters cannot be conducted
in closed form to the best of authors’ knowledge. For this reason

we implement an alternating maximization [33] which estimates
a subset of the unknown parameters assuming that the remaining
parameters are known and vice versa. In particular, we exploit
the following results.

1) Estimate of R̃1.2 and Rxx, Given β: We write the loga-
rithm of the partially-compressed likelihood (28) as follows

max
R̃22

L1(R,Rxx,H , γ;Z) = C −NKS log γ

−KP log det(Rxx + R̃1.2)−KS log det(R̃1.2)

−K log det

(
Z̃P,2Z̃

†
P,2 +

1

γ
Z̃S,2Z̃

†
S,2

)
− Tr

[(
Rxx + R̃1.2

)−1

S̃P

]
− 1

γ
Tr
[
R̃

−1

1.2S̃S

]
(29)

where S̃P = BZ̃P Z̃
†
PB

† and S̃S = BZ̃SZ̃
†
SB

†; C =
−NK log π + (N − r)K(logK − log e) gathers the terms that
are irrelevant to the maximization. It can be shown thatKS ≥ N
makes S̃S a non-singular matrix. Exploiting Theorem 6, with
Rxx and R̃1.2 in place of R̃xx and R, respectively, (notice also
that the matrices are r × r in place of N ×N ) we obtain that

max
R̃22,R̃1.2,Rxx

L1(R,Rxx,H , γ;Z) = C

−K log det

(
Z̃P,2Z̃

†
P,2 +

1

γ
Z̃S,2Z̃

†
S,2

)
−NKS log γ − 2K log | det(K)| − rK

+ K
r∑

i=1

log
γK

γγi + λ̂i(γ)
+KS

r∑
i=1

log λ̂i(γ) (30)

with γ1 ≥ . . . ≥ γr ≥ 0 the eigenvalues of S̃
−1/2

S S̃P S̃
−1/2

S ∈
Cr×r, V ∈ Cr×r the unitary matrix of the corresponding eigen-

vectors of S̃
−1/2

S S̃P S̃
−1/2

S , K = S̃
1/2

S V ∈ Cr×r, and

λ̂i(γ) = max

(
KS

KP
γγi, 1

)
, i = 1, . . . , r.

Notice that application of the theorem returns the following
estimates of R̃1.2 and Rxx̂̃R1.2 = M̂M̂

†
and R̂xx = M̂Λ̂M̂

† − ̂̃R1.2 (31)

where Λ̂ = diag (λ̂1, . . . , λ̂r) ∈ Rr×r; M̂ = KD̂
−1
Λ̂

−1/2

with D̂
2
= diag (d̂21, . . . , d̂

2
r) ∈ Rr×r, and

d̂2i (γ) =
γK

γγi + λ̂i(γ)
, i = 1, . . . , r.

2) Estimate of β Given R̃1.2 and Rxx: First we observe that

BÃB† = Ã11 − β†Ã21 − Ã12β + β†Ã22β

where

Ã = Z̃P Z̃
†
P =

[
Ã11 Ã12

Ã21 Ã22

]
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with Ã11 ∈ Cr×r, Ã12 ∈ Cr×(N−r), Ã22 ∈ C(N−r)×(N−r),
Ã21 ∈ C(N−r)×r, and

BB̃B† = B̃11 − β†B̃21 − B̃12β + β†B̃22β.

Here

B̃ = Z̃SZ̃
†
S =

[
B̃11 B̃12

B̃21 B̃22

]
with B̃11 ∈ Cr×r, B̃12 ∈ Cr×(N−r), B̃22 ∈ C(N−r)×(N−r),
B̃21 ∈ C(N−r)×r. Thus, maximization of the right-hand side of
(28) with respect toβ is tantamount to minimizing the following
function

g(β)=Tr

[(
Rxx+R̃1.2

)−1 (
−β†Ã21−Ã12β+β†Ã22β

)
+

1

γ
R̃

−1

1.2

(
−β†B̃21 − B̃12β + β†B̃22β

)]
.

Setting to zero the derivative of g with respect to β, we have that

∂

∂β
g(β) =

(
Ã

T

22β
∗ − Ã

T

12

)(
Rxx + R̃1.2

)−T

+
1

γ

(
B̃

T

22β
∗ − B̃

T

12

)
R̃

−T

1.2 = 0N−r,r.

The above equation can be rewritten as

Ã
T

22β
∗
(
R̃1.2 +Rxx

)−T

+
1

γ
B̃

T

22β
∗R̃

−T

1.2 = Ã
T

12

×
(
R̃1.2 +Rxx

)−T

+
1

γ
B̃

T

12R̃
−T

1.2 .

Exploiting the identity 7.2 (7) in [31],

vec (AXB) =
(
BT ⊗A

)
vecX,

this rewriting is[(
R̃1.2 +Rxx

)−1

⊗ Ã
T

22 +
1

γ
R̃

−1

1.2 ⊗ B̃
T

22

]
vecβ∗ = vecC

with C = Ã
T

12(R̃1.2 +Rxx)
−T + 1

γ B̃
T

12R̃
−T

1.2 . Thus, the solu-
tion is given by

vecβ∗ =
[(

R̃1.2 +Rxx

)−1

⊗ Ã
T

22 +
1

γ
R̃

−1

1.2 ⊗ B̃
T

22

]−1

× vecC. (32)

Now we observe that the matrix γR can be estimated as the
sample covariance matrix of the secondary data only and used

to construct an estimate of β = R̃
−1

22 R̃21; denoting by β̂
(0)

this
starting value we can exploit previous results to obtain after n

iterations of alternating mazimization ̂̃R(n)

1.2 , R̂
(n)

xx , and β̂
(n)

that

together with ̂̃R22 allow us to compute R̂xx and R̂1.
Finally, the approximated GLRT, referred to in the following

as second-order known subspace in homogeneous environment
(SO-KS-HE) detector, is given by

L1(R̂1, R̂xx,H , 1;Z)− L0(R̂0, 1;Z)
H1
>
<
H0

η (33)

with L0(R̂0, 1;Z) given by the logarithm of (5).

D. Known Subspace 〈H〉, Unknown γ

Derivation of the approximated GLRT for partially-
homogeneous environment is still based on alternating maxi-
mization; this time we estimate R̃1.2, Rxx, and γ, given β, and
again we estimate β, given R̃1.2, Rxx, and γ, using (32).

Estimating R̃1.2, Rxx, and γ, given β, requires max-
imizing (30) with respect to γ. To this end, we de-

fine S̃P,2 = Z̃P,2Z̃
†
P,2 ∈ C(N−r)×(N−r), S̃S,2 = Z̃S,2Z̃

†
S,2 ∈

C(N−r)×(N−r), and S̃
−1/2

S,2 S̃P,2S̃
−1/2

S,2 ∈ C(N−r)×(N−r). It fol-
lows that

max
R̃22,R̃1.2,Rxx

L1(R,Rxx,H , γ;Z) = C −K log det
(
S̃S,2

)
− 2K log | det(K)| − rK

−K log det

(
S̃

−1/2

S,2 S̃P,2S̃
−1/2

S,2 +
1

γ
IN−r

)
−NKS log γ

+ K

r∑
i=1

log
γK

γγi + λ̂i(γ)
+KS

r∑
i=1

log λ̂i(γ). (34)

Thus, denoting by δ1 ≥ . . . ≥ δN−r ≥ 0 the eigenvalues of

S̃
−1/2

S,2 S̃P,2S̃
−1/2

S,2 , we also have that

max
R̃22,R̃1.2,Rxx

L1(R,Rxx,H , γ;Z) = C −K log det
(
S̃S,2

)
− 2K log | det(K)| − rK

−K
N−r∑
i=1

log

(
1

γ
+ δi

)
−NKS log γ

+ K

r∑
i=1

log
γK

γγi + λ̂i(γ)
+KS

r∑
i=1

log λ̂i(γ). (35)

To maximize the partially-compressed likelihood of (35) with
respect to γ, we use the following theorem. For simplicity we
assume KP ≥ r.

Theorem 5: ForKP ≥ r, the global maximum of the function

f(γ) = −K

N−r∑
i=1

log

(
1

γ
+ δi

)
−NKS log γ

+K

r∑
i=1

log
γK

γγi + λ̂i(γ)
+KS

r∑
i=1

log λ̂i(γ),

K = KP +KS , is attained at the unique solution γ∗ ∈ (0,+∞)
of the equation

min(KP ,N−r)∑
i=1

1

1 + γδi
+ (N − r −min(KP , N − r))

− (N − r)KS

K
= 0,

if γ∗ ≥ KP

KS

1
γr

. Otherwise, the stationary points of f and, hence,

its global maximum belong to the interval (γ∗, KP

KS

1
γr
).

Proof: See Appendix C. �
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Once we have determined γ̂, we can compute the approxi-
mated GLRT, referred to in the following as second-order known
subspace in partially-homogeneous environment (SO-KS-PHE)
detector, written as

L1(R̂1, R̂xx,H, γ̂1;Z)− L0(R̂0, γ̂0;Z)
H1
>
<
H0

η (36)

with L0(R̂0, γ̂0;Z) given by the logarithm of the maximum of
(5) with respect to γ obtained by using Theorem 1.

V. CONCLUSION

The original adaptive detectors of [5], [9], [10], as refined
in [13], [14], [34] and extended in [17], [19], have been gener-
alized by considering three new subspace signal models. In the
first, the subspace visited by a sequence of symbol transmissions
or reflections is assumed to be known only by its dimension; in
the previous work of [17], [19] the subspace was known. In the
second extension, a known subspace is visited by a sequence
of symbol transmissions which are constrained by a Gaussian
prior distribution; the result is a second-order adaptive subspace
detector. In the third extension, the subspace is known only by
its dimension; this extension requires a two-channel extension
of standard factor analysis. These extensions, coupled with the
results of [17], [19], comprise a unified theory of adaptive
subspace detection.

In a companion paper, the performance of the detectors de-
rived in this paper are assessed and compared with ad hoc detec-
tors obtained by plugging the estimate of the noise covariance
based on secondary data into detectors derived assuming the
covariance matrix is known.

APPENDIX A
PROOF OF THEOREM 3

First, consider the eigendecomposition of R−1/2(R̃xx +
R)R−1/2 = UΛU †, where Λ = diag (λ1, . . . , λN ) ∈ RN×N ,
λ1 ≥ . . . ≥ λN ≥ 1, is a diagonal matrix containing the
eigenvalues1 ofR−1/2(R̃xx +R)R−1/2 and U ∈ CN×N is the
unitary matrix of the corresponding eigenvectors. Define M =
R1/2U ∈ CN×N . Notice that the matrix M can be any N ×N
non-singular matrix; in fact, from the eigendecomposition of
the non-singular matrix R1/2, namely R1/2 = W 1ΣW †

1, it
follows that M = W 1ΣW †

1U = W 1ΣW †
2. In addition, we

obtain that

R = MM † and R+ R̃xx = MΛM † (37)

and (22) can be recast as

L1(R, R̃xx, γ;Z) = −NK log π −NKS log γ

− 2KP log | detM | −KP log detΛ− 2KS log | detM |

− Tr
[
Λ−1M−1SPM

−†]− 1

γ
Tr
[
M−1SSM

−†] (38)

1The λis are greater than or equal to one since R−1/2(R̃xx +R)R−1/2 =

IN +R−1/2R̃xxR
−1/2.

where we have used the facts that detM † = (det(M))∗ and
Tr(AB) = Tr(BA), see for instance [32]. We recall that Γ =
diag (γ1, . . . , γN ) ∈ RN×N , γ1 ≥ . . . ≥ γN ≥ 0, is the diago-
nal matrix containing the eigenvalues of S

−1/2
S SPS

−1/2
S and

V ∈ CN×N is the unitary matrix of the corresponding eigen-
vectors; moreover, K = S

1/2
S V ∈ CN×N . It turns out that

SS = KK† and SP = KΓK†. Thus, we can rewrite (38) as

L1(R, R̃xx, γ;Z) = −NK log π −NKS log γ

− 2KP log | detM | −KP log detΛ− 2KS log | detM |

− Tr
[
Λ−1M−1KΓK†M−†]− 1

γ
Tr
[
M−1KK†M−†]

= −NK log π −NKS log γ − 2K log | detM |

−KP log detΛ− Tr
[
XΓX†]− 1

γ
Tr
[
Λ1/2XX†Λ1/2

]
(39)

where X = Λ−1/2M−1K ∈ CN×N and we recall that K and
Γ are known. Before going further, we also observe that we
can maximize over X for any given Λ since X , given Λ, is
completely specified by M . Let us proceed by replacing X
in (39) with its singular value decomposition given by X =
TDQ, where T ,Q ∈ CN×N are unitary matrices and2 D =
diag (d1, . . . , dN ) ∈ RN×N , 0 < d1 ≤ . . . ≤ dN . Since

log | det(M)|= log | det(K)|−log | det(X)|− 1

2
log det(Λ)

= log | det(K)| − log det(D)− 1

2
log det(Λ),

we obtain

L1(R, R̃xx, γ;Z) = −NK log π −NKS log γ

− 2K log | det(K)|+ 2K log det(D) +KS log det(Λ)

− Tr
[
ΓQ†D2Q

]− 1

γ
Tr
[
ΛTD2T †] . (40)

Maximization with respect to R and R̃xx is tantamount to
maximizing with respect to Λ,T ,D,Q. Therefore, we have
that

L1(R̂1,
̂̃Rxx, γ;Z) = −NK log π −NKS log γ

− 2K log | det(K)|+ max
Λ,T ,D,Q

{2K log det(D)

+KS log det(Λ)− Tr
[
ΓQ†D2Q

]− 1

γ
Tr
[
ΛTD2T †]} .

(41)

Exploiting Theorem 1 of [35], it follows that

min
Q

Tr
[
ΓQ†D2Q

]
+

1

γ
min
T

Tr
[
ΛTD2T †]

= Tr

[(
Γ+

1

γ
Λ

)
D2

]
2Notice that the singular values of X have been arranged in ascending order

and not, as customary, in descending order [32].
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where the maximizers are T̂ = diag (ejθ1T , . . . , ejθNT )

and Q̂ = diag (ejθ1Q , . . . , ejθNQ), ∀θiT , θiQ ∈ [0, 2π],
i = 1, . . . , N . Hence3

L1(R̂1,
̂̃Rxx, γ;Z) = −NK log π −NKS log γ

− 2K log | det(K)|+max
Λ,D

{
2K log det(D) +KS log det(Λ)

− Tr

[(
Γ+

1

γ
Λ

)
D2

]}
= −NK log π −NKS log γ

− 2K log | det(K)|+max
Λ,D

[
K

N∑
i=1

log d2i +KS

N∑
i=1

log Λi

−
N∑
i=1

d2i

(
γi +

1

γ
λi

)]
. (42)

Now we compute the maximum with respect to d2i , given λi, of
the function

gi(d
2
i ) = K log d2i +KS log λi − d2i

(
γi +

1

γ
λi

)
.

First notice that gi tends to −∞ as d2i tends to zero or to +∞;
moreover, its derivative with respect to d2i is positive iff

K

d2i
−
(
γi +

1

γ
λi

)
> 0,

implying that the maximizer (given λi) is d2i = γK
γγi+λi

. It fol-
lows that (42) yields

L1(R̂1,
̂̃Rxx, γ;Z) = −NK log π −NKS log γ −NK

− 2K log | det(K)|

+max
Λ

[
K

N∑
i=1

log
γK

γγi + λi
+KS

N∑
i=1

log λi

]
. (43)

Now observe that even though the rank of H is known (and
equal to r) that of R̃xx is unknown (less than or equal to r).
Thus, maximization overΛ of (43) is limited toN ×N diagonal
matrices with (at most) r eigenvalues greater than one and the
remaining equal to one.

In order to address the last maximization step we first observe
that the function

hi(λi) = K log
γK

γγi + λi
+KS log λi

tends to −∞ as λi tends to +∞; its derivative is positive iff

− K

γγi + λi
+

KS

λi
> 0

or equivalently iff KPλi < KSγγi. Thus, it follows that hi has
global maximum over [1,+∞) at

λ̃i = max

(
KSγγi
KP

, 1

)
.

3In the following without loss of generality we will assume that T̂ = IN and
Q̂ = IN .

In particular, γi = 0 implies λ̃i = 1. Then
� if γ < KP

KS

1
γ1

, all maximizers are equal to one and

max
λi

hi(λi) = K log
γK

γγi + 1
, i = 1, . . . , N.

Thus, the compressed likelihood under H1 becomes

L1(R̂1,
̂̃Rxx, γ;Z) = −NK log π −NKS log γ

− 2K log | det(K)|+K

N∑
i=1

log
γK

γγi + 1
−NK. (44)

� if KP

KS

1
γi−1

≤ γ < KP

KS

1
γi

, i = 2, . . . , r, the maximizers of
hj are (this case refers to r > 1)

λ̃j(γ) =
KSγγj
KP

> 1, j = 1, . . . , i− 1,

and the remaining maximizers are λ̃j(γ) = 1, j =
i, . . . , N . Thus, the compressed likelihood under H1 be-
comes

L1(R̂1,
̂̃Rxx, γ;Z) = −NK log π −NKS log γ

−2K log | det(K)|+
i−1∑
j=1

[
K log

KP

γj
+KS log

KSγγj
KP

]

+

N∑
j=i

K log
γK

γγj + 1
−NK. (45)

� if KP = r and γ ≥ KP

KS

1
γr

the maximizers of hi are

λ̃i(γ) =
KSγγi
KP

> 1, i = 1, . . . , r,

and the remaining maximizers are λ̃i(γ) = 1, i = r +
1, . . . , N (as a matter of fact, γKP+1 = · · · = γN = 0).
Thus, the compressed likelihood under H1 becomes

L1(R̂1,
̂̃Rxx, γ;Z) = −NK log π −NKS log γ

−2K log | det(K)|+
r∑

i=1

[
K log

KP

γi
+KS log

KSγγi
KP

]

+

N∑
i=r+1

K log
γK

γγi + 1
−NK. (46)

If instead KP = r +m, m ≥ 1, we have to distinguish the
following cases
– if KP

KS

1
γr

≤ γ < KP

KS

1
γr+1

the maximizers of hi are

λ̃i(γ) =
KSγγi
KP

> 1, i = 1, . . . , r,

and the remaining maximizers are λ̃i(γ) = 1, i = r +
1, . . . , N . The compressed likelihood under H1 is still
given by (46).



ORLANDO et al.: UNIFIED THEORY OF ADAPTIVE SUBSPACE DETECTION PART I: DETECTOR DESIGNS 4935

– if KP

KS

1
γr+h

≤ γ < KP

KS

1
γr+h+1

, h = 1, . . . ,m− 1, the
maximizers of hi are (this case refers to m > 1)

λ̃i(γ) =
KSγγi
KP

> 1, i = 1, . . . , r + h,

and the remaining maximizers are λ̃i(γ) = 1, i = r +
h+ 1, . . . , N . However, the fact that the maximum num-
ber of λi > 1 has to be r (at most) together with the
descending order of the λis implies that the compressed
likelihood under H1 is still given by (46).

– Finally, if γ ≥ KP

KS

1
γr+m

the maximizers of hi are

λ̃i(γ) =
KSγγi
KP

> 1, i = 1, . . . , r +m,

and the remaining maximizers (if any) are λ̃i(γ) = 1,
i = r +m+ 1, . . . , N (as a matter of fact, γKP+1 =
· · · = γN = 0). However, the compressed likelihood un-
der H1 is still given by (46).

The statement of Theorem 3 follows.
Following the lead of previous derivation, it is also straight-

forward to prove the following result where the rank of R̃xx

is assumed unknown (i.e., less than or equal to N ). It will be
exploited in the derivation of the second-order detectors for
known subspace.

Theorem 6: Let SP ∈ CN×N be a positive semidefinite
matrix and SS ∈ CN×N a positive definite matrix.
Define T P = S

−1/2
S SPS

−1/2 = V ΓV †,V †V = IN ,Γ =
diag [γ1, . . . , γN ], γ1 ≥ . . . ≥ γN . Then, the function

h(R, R̃xx, γ) = −NKS log γ −KP log det(R̃xx +R)

−KS log det(R)

− Tr

[(
R̃xx +R

)−1

SP

]
− 1

γ
Tr
[
R−1SS

]
for any γ > 0 is maximized over the set of positive definite
matrices R ∈ CN×N and positive semidefinite matrices R̃xx ∈
CN×N with unknown rank at

R̂ = M̂M̂
†

and ̂̃Rxx = M̂Λ̂M̂
† − R̂

where Λ̂ = diag (λ̂1, . . . , λ̂N ) ∈ RN×N , and

λ̂i(γ) = max

(
KS

KP
γγi, 1

)
, i = 1, . . . , N.

The matrix M̂ is

M̂ = KD̂
−1
Λ̂

−1/2

where K = S
1/2
S V ∈ CN×N and D̂

2
=diag(d̂21, . . . , d̂

2
N )

∈ RN×N ,

d̂2i (γ) =
γK

γγi + λ̂i(γ)
, i = 1, . . . , N.

The maximum of h is

h(R̂, ̂̃Rxx, γ) = −NKS log γ − 2K log | det(K)| −NK

+K

N∑
i=1

log
γK

γγi+λ̂i(γ)
+KS

N∑
i=1

log λ̂i(γ)

(47)

with K = KP +KS .

APPENDIX B
PROOF OF THEOREM 4

Define

g(γ) = −NKS log γ + g1(γ)

with

g1(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨⎪⎩
∑r−1

i=1 K log γK

γγi+λ̂i(γ)
+
∑r−1

i=1 KS log λ̂i(γ)

+
∑N

i=r K log γK
γγi+1 ,

γ < KP

KS

1
γr⎧⎪⎪⎨⎪⎪⎩

∑r
i=1

[
K log KP

γi
+KS log KSγγi

KP

]
+
∑N

i=r+1 K log γK
γγi+1 ,

γ ≥ KP

KS

1
γr

.

More specifically, we have that

g1(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
K
∑N

i=1 log
γK

γγi+1 ,

γ < KP

KS

1
γ1⎧⎪⎪⎨⎪⎪⎩

∑j−1
i=1

[
K log KP

γi
+KS log KSγγi

KP

]
+K

∑N
i=j log

γK
γγi+1 ,

KP

KS

1
γj−1

≤ γ < KP

KS

1
γj
, j = 2, . . . , r⎧⎪⎪⎨⎪⎪⎩

∑r
i=1

[
K log KP

γi
+KS log KSγγi

KP

]
+
∑N

i=r+1 K log γK
γγi+1 ,

γ ≥ KP

KS

1
γr

. (48)

Then, notice that

lim
γ→0

g(γ) = lim
γ→0

[
−NKS log γ +K

N∑
i=1

log
γK

γγi + 1

]
= −∞

and

lim
γ→+∞ g(γ) = lim

γ→+∞

[
−NKS log γ +

r∑
i=1

KS log
KSγγi
KP

+

N∑
i=r+1

K log
γK

γγi + 1

]
+

r∑
i=1

K log
KP

γi

= lim
γ→+∞ [(r −N)KS log γ + (N − r)K log γ

+

N∑
i=r+1

K log
K

γγi + 1

]
+

r∑
i=1

K log
KP

γi

+

r∑
i=1

KS log
KSγi
KP

= lim
γ→+∞

[
KP (N − r) log γ −K

KP∑
i=r+1

log (γγi + 1)

]
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+

r∑
i=1

K log
KP

γi
+

r∑
i=1

KS log
KSγi
KP

+

N∑
i=r+1

K logK = −∞

exploiting γi �= 0, i = r + 1, . . . ,KP , and provided that (KP −
r)K > (N − r)KP or, equivalently, (KP − r)KS > (N −
r)KP − (KP − r)KP = (N −KP )KP .

Thus, the maximum corresponds to a stationary point. To
compute the stationary points we observe that

dg1
dγ

(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{∑N
i=1

K
γ(γγi+1) ,

γ < KP

KS

1
γ1{∑j−1

i=1
KS

γ +
∑N

i=j
K

γ(γγi+1) ,
KP

KS

1
γj−1

≤ γ < KP

KS

1
γj
, j = 2, . . . , r{

rKS

γ +
∑N

i=r+1
K

γ(γγi+1) ,

γ ≥ KP

KS

1
γr

.

It is easy to check that

dg

dγ
(γ) = −NKS

γ
+

dg1
dγ

(γ) > 0, γ <
KP

KS

1

γ1
.

In fact, γγi <
KP

KS
implies

dg1
dγ

(γ) =

N∑
i=1

K

γ(γγi + 1)
>

1

γ

N∑
i=1

KS =
NKS

γ
.

Similarly, γγi <
KP

KS
, i = j, . . . , N, implies that

N∑
i=j

K

γ(γγi + 1)
>

1

γ

N∑
i=j

KS =
1

γ
KS(N − j + 1)

and eventually

dg

dγ
(γ) > 0,

KP

KS

1

γj−1
≤ γ <

KP

KS

1

γj
, j = 2, . . . , r.

Moreover, for γ ≥ KP

KS

1
γr

,

dg

dγ
(γ) = −NKS

γ
+

rKS

γ
+

N∑
i=r+1

K

γ(γγi + 1)

= − (N − r)KS

γ
+

KP∑
i=r+1

K

γ(γγi + 1)
+

(N −KP )K

γ

≥ − (N − r)KS

γ
+

K(KP − r)

γ(γγr + 1)
+

(N −KP )K

γ
.

In particular, dg
dγ (γ) is non-negative at γ = KP

KS

1
γr

. Thus, since

lim
γ→+∞ γ

dg

dγ
(γ) = −(N − r)KS + (N −KP )K

= − (N − r)KS + (N −KP )KS + (N −KP )KP

= KS(r −KP ) + (N −KP )KP < 0,

it follows that the maximum is attained at the unique solution of
the equation4

KP∑
i=r+1

K

(γγi + 1)
= −(N −KP )K + (N − r)KS

= (KP − r)KS − (N −KP )KP .

APPENDIX C
PROOF OF THEOREM 5

Observe that KP ≥ r implies that the rank of the matrix

S̃
−1/2

S S̃P S̃
−1/2

S ∈ Cr×r is r, and hence that γr �= 0 (wp 1).5

Define

f(γ) = −rKS log γ + f1(γ) + f2(γ)

where

f1(γ) = K
r∑

i=1

log
γK

γγi + λ̂i(γ)
+KS

r∑
i=1

log λ̂i(γ)

and

f2(γ) = −K

N−r∑
i=1

log

(
1

γ
+ δi

)
− (N − r)KS log γ.

Thus, supposing that KP ≥ r, we have that

f1(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
K
∑r

i=1 log
γK

γγi+1 ,

γ < KP

KS

1
γ1⎧⎪⎪⎨⎪⎪⎩

K
∑j

i=1 log
KP

γi
+K

∑r
i=j+1 log

γK
γγi+1

+KS

∑j
i=1 log

(
KS

KP
γγi

)
,

KP

KS

1
γj

≤ γ < KP

KS

1
γj+1

, 1 ≤ j ≤ r − 1{
K
∑r

i=1 log
KP

γi
+KS

∑r
i=1 log

(
KS

KP
γγi

)
,

γ ≥ KP

KS

1
γr

.

Write f2(γ) as

f2(γ) = −K

min(KP ,N−r)∑
i=1

log

(
1 + γδi

γ

)
+[K (N−r−min(KP , N−r))−(N − r)KS ] log γ.

Thus, it is easy to check that limγ→0 f(γ) = −∞ and
limγ→+∞ f(γ) = −∞. It follows that the global maximum is
achieved at a stationary point.

4The solution is apparently unique since the left-hand side of the equation is
a stricly decreasing function of γ > 0.

5First observe that S̃P = BZ̃P Z̃
†
PB† with Z̃P = [z̃1 · · · z̃KP

]. More-
over, z̃k ∼ CNN (0N,1,C) with C ∈ CN×N a positive definite matrix. It
follows Bz̃k ∼ CNr(0r,1,D) with D = BCB† ∈ Cr×r a positive definite
matrix (in fact, rk{B} = r and hence rk{BC1/2} = r, exploiting property
4.3.1 (8) in [31]). The result follows from the fact that the columns of Z̃P are
independent vectors.
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Moreover, the derivative of f ′
1(γ) = −rKS log γ + f1(γ)

with respect to γ is given by

df ′
1(γ)

dγ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
− rKS

γ + K
γ

∑r
i=1

1
γγi+1 ,

γ < KP

KS

1
γ1{

− (r−j)KS

γ + K
γ

∑r
i=j+1

1
γγi+1 ,

KP

KS

1
γj

≤ γ < KP

KS

1
γj+1

, 1 ≤ j ≤ r − 1{
0,

γ ≥ KP

KS

1
γr

while the derivative of f2(γ) can be written as

df2(γ)

dγ
=

1

γ

⎡⎣K min(KP ,N−r)∑
i=1

1

1 + γδi

+(K (N − r −min(KP , N − r))− (N − r)KS)

⎤⎦ .
Notice that df ′

1(γ)
dγ is positive if γ < KP

KS

1
γr

and is equal to

zero if γ ≥ KP

KS

1
γr

. It is apparent that the derivative of f2(γ) is
positive and strictly decreasing up to the unique value of γ, say
γ∗, that solves the equation

min(KP ,N−r)∑
i=1

1

1 + γδi
+ (N − r −min(KP , N − r))

− (N − r)KS

K
= 0,

while it is negative if γ > γ∗. In fact, the function∑min(KP ,N−r)
i=1

1
1+γδi

is positive and strictly decreasing. More-
over,

lim
γ→0

K

min(KP ,N−r)∑
i=1

1

1 + γδi
= Kmin(KP , N − r)

and

min(KP , N − r) +
(N − r)KP

K
−min(KP , N − r) > 0,

but

lim
γ→+∞K

min(KP ,N−r)∑
i=1

1

1 + γδi
= 0

and K(N − r −min(KP , N − r))− (N − r)KS < 0 (when
KP ≤ N − r recall that KS ≥ N ).

As a consequence we conclude that if γ∗ ≥ KP

KS

1
γr

the deriva-
tive of f(γ) has a unique zero at γ∗; otherwise, the stationary
points of f and hence its global maximum belong to the interval
(γ∗, KP

KS

1
γr
). In fact,

df

dγ
(γ∗) =

df ′
1

dγ
(γ∗) +

df2
dγ

(γ∗) > 0

and

df

dγ

(
KP

KS

1

γr

)
=

df ′
1

dγ

(
KP

KS

1

γr

)
+

df2
dγ

(
KP

KS

1

γr

)
< 0.
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