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A Kalman Filter Framework for Simultaneous LTI
Filtering and Total Variation Denoising

Arman Kheirati Roonizi and Ivan W. Selesnick , Fellow, IEEE

Abstract—This paper proposes a Kalman filter framework for
signal denoising that simultaneously utilizes conventional linear
time-invariant (LTI) filtering and total variation (TV) denoising.
In this approach, the desired signal is considered to be a mixture of
two distinct components: a band-limited (e.g., low-frequency com-
ponent, high-frequency component) signal and a sparse-derivative
signal. An iterative Kalman filter/smoother approach is formulated
where zero-phase LTI filtering is used to estimate the band-limited
signal and TV denoising is used to estimate the sparse-derivative
signal.

Index Terms—Sparse derivative signal, zero-phase filters, band-
limited signal, total variation, Kalman filter/smoother.

I. INTRODUCTION

THE success of linear time invariant (LTI) filtering and spar-
sity based denoising, i.e., total variation (TV) denoising, in

a wide range of applications in signal/image processing, includ-
ing signal restoration, denoising, deconvolution, compressed
sensing, etc. are now widely recognized [1], [2], [3], [4], [5], [6],
[7], [8], [9]. LTI filtering is particularly suited for signal filtering
when the signal of interest is restricted to a known frequency
band while the TV denoising is most suited for signals that are
sparse derivative or admitting a sparse derivative representation.
TV denoising as a regularization approach [10] forces the under-
lying signal to have a sparse derivative by enforcing the deriva-
tive to be small in the sense of �1-norm. This determines the
jumps while coarsening the smooth regions. This property makes
TV regularization suited for extraction of piecewise polynomial
components. In contrast to TV denoising, zero-phase IIR filters
(e.g., Butterworth, Chebyshev, etc) can be implemented using
either forward-backward filtering or least-squares optimization
approach [11]. For instance, a zero-phase Butterworth filter can
be implemented as regularization approaches where the deriva-
tive of the signal enters as constraint in the sense of �2-norm.
Therefore, the distinct difference between TV regularization and
conventional linear filtering (e.g., zero-phase Butterworth filter)
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is the way that they define the regularization term. TV regulariza-
tion is defined by a regularized optimization problem where the
�1-norm of the signal derivative is used in the regularization term
while in zero-phase Butterworth filtering, the �2-norm of the
signal derivative is used in the regularization term. The �1-norm
is non-differentiable while the �2-norm is differentiable. That
is why TV regularization results in nonlinear filtering while
zero-phase Butterworth filter does not. In summary, TV reg-
ularization is mainly used for signal filtering when the signal of
interest is sparse-derivative while zero-phase LTI filters mostly
used to extract a signal within a predetermined frequency band.
However, in some signal processing applications, the signals
are more complex. For instance, consider a situation in which a
discrete event phenomenon is observed in the presence of a band-
limited signal. In this case, the underlying signal can be modeled
as mixture of a sparse and a band-limited component. For
such signals, both approaches have some limitations that make
them inefficient to reconstruct the signal of interest. Therefore,
they must be combined to effectively reconstruct the desired
components signal. In recent years, various methods have been
developed for signal filtering/denoising which are based on the
combination of TV regularization and other methods such as
least-square polynomial signal smoothing, Tikhonov regular-
ization and low-pass filtering [12], [13], [14]. In the following,
we describe these methods, starting from TV regularization as
it is commonly shared in all those algorithms.

A. Total Variation

TV denoising is an unconstrained optimization approach to
estimate a signal x, having a (approximately) sparse deriva-
tive, from a noisy observation y(t), i.e., y(t) = x(t) + v(t),
t ∈ [a, b]1 and v(t) is a zero mean white Gaussian noise. It is
defined by the following optimization problems

argmin
x

1

2
‖y − x‖22 + λ

∥∥∥x(i)
∥∥∥
1
, (1a)

argmin
x(t)

1

2

∫ b

a

[y(τ)− x(τ)]2 dτ + λ

∫ b

a

|x(i)(τ)|dτ, (1b)

where x(i) is the i-th order derivative of x with respect to t and
λ is the regularization factor that controls the degree of sparsity
of the solution. The optimization problem (1) formulates the
sparsity based denoising as the problem of minimizing the �1
norm of the derivative of x subject to a data fidelity constraint.

1x is a continuous function whose domain contains the interval [a, b]
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The �1 norm is non-differentiable. Consequently, there is no
analytic solution for the optimization problems defined in (1).
A possible solution is to replace it with a sequence of simpler
ones. The procedure is known as majorization-minimization
(MM) method (also known as bound optimization or surrogate
optimization method) [15]. An overview of MM algorithms
in signal processing, machine learning and communications is
presented in [16]. As an application of MM approach, it can
be used to convert the optimization problem (1) to a simpler
one. To this purpose, the MM approach proposes the following
majorizer for the |x(t)| [16], Example 6]:

|x(t)| ≤ 1

2

(
x(t)

/√
|xk(t)|

)2

+
1

2
|xk(t)|.

With it, a majorizer of �1 norm is defined as

∥∥∥x(i)
∥∥∥
1
:=

∫ b

a

1

2

(
x(i)(τ)

/√
|x̂(i)

k (τ)|
)2

dτ + C, (2)

where x̂k(t) is the estimated signal after k iterations and

C =
1

2

∫ b

a

|x̂(i)
k (τ)|dτ.

Note that C does not depend on x. Therefore, in order to solve
(1), one can solve the following iterative optimization problem,
instead:

argmin
x(t)

1

2

∫ b

a

[y(τ)− x(τ)]2dτ+
λ

2

∫ b

a

⎛
⎝ x(i)(τ)√

|x̂(i)
k (τ)|

⎞
⎠

2

dτ+C

(3)
with an initialization [e.g., x̂0(t) = y(t)]. Note that the regu-
larization term is now differentiable and xk is considered as
a constant with respect to x. By setting the derivative of (3)
with respect to x(t) to zero, we obtain the following linear
time-variant (LTV) ordinary differential equation:

x(t) + λ(−1)i
x(2i)(t)

|x̂(i)
k (t)|

= y(t). (4)

Proof: Considering the fact that x(i)(t) can be expressed as
the convolution of ui(t) with the signal x(t), where ui(t) is the
i-th order derivative of the Dirac delta function, (3) is expressed
asa

argmin
x(t)

1

2

∫ b

a

[y(τ)− x(τ)]2dτ +
λ

2

∫ b

a

(ui ∗ x)2(τ)
|x̂(i)

k (τ)|
dτ + C

(5)
where ∗ denotes the convolution operator. It is also proved
in [11], see Lemma 2] that

∂

∂x
(ui ∗ x)2(t) = 2 (ur

i ∗ ui ∗ x) (t),

aNote that (ui ∗ x)(t) equals the i-th derivative of x, i.e., (ui ∗ x)(t) =
x(i)(t).

where ur
i (t) = ui(−t). Taking the derivative of (5) with respect

to x yields

x(t) + λ
(ur

i ∗ ui ∗ x) (t)
|x̂(i)

k (t)|
= y(t). (6)

Note that Dirac delta function is an even function, i.e., δ(−t) =
δ(t). Taking derivative of it, we find −δ′(−t) = δ′(t), i.e.,
u1(−t) = −u1(t). Taking the derivative again and again, we
find

ui(−t) = (−1)iui(t) (7)

Convolving both sides of (7) with ui(t) yields

ui(−t) ∗ ui(t) = (−1)iu2i(t) ⇔ ur
i (t) ∗ ui(t) = (−1)iu2i(t)

Substituting (ur
i ∗ ui)(t) with (−1)iu2i(t) and using the fact

that (ui ∗ x)(t) = x(i)(t), (6) can be simplified to

x(t) + λ(−1)i
x(2i)(t)

|x̂(i)
k (t)|

= y(t).
�

It means that the MM approach proposes an iterative dif-
ferential equation with order 2i to solve the TV regulariza-
tion. Similarly, in discrete time (DT) domain, the i-th order
TV regularization to estimate xn from its noisy measurements
yn = xn + vn, n = 1, . . . , L is defined as

argmin
xn

1

2

L∑
m=1

[ym − xm]2 +
λ

2

L∑
m=1

[ui,m ∗ xm]2

|ui,m ∗ x̂k,m| + C, (8)

where x̂k,m is the estimated signal after k iterations, ui,m =∑i
l=0(−1)l

(
i

l

)
δm−l and δm−l is a shifted version of Dirac delta

function. Setting the derivative of (8) with respect to xn to zero,
yields

xn + λ
ur
i,n ∗ ui,n ∗ xn

|ui,n ∗ x̂k,n| = yn, (9)

where ur
i,n = ui,−n. It can be written as the following difference

equation:

xn + λ

∑2i
l=0(−1)l

(
2i

l

)
xn−l∣∣∣∑i

l=0(−1)l
(
i

l

)
x̂k,n−l

∣∣∣ = yn. (10)

B. Total Variation and Polynomial Smoothing

The idea of combining the TV regularization and least-square
polynomial signal smoothing into a unified problem formulation
in order to reconstruct a local polynomial signal and a sparse
signal from noisy measurements was first proposed by Selesnick
et al. [12]. Assume that the measurement signal y(t) is a
noisy additive mixture of a low-order polynomial signal p(t),
a piecewise constant signal x(t) and the Gaussian noise v(t),
i.e., y(t) = p(t) + x(t) + v(t). Mathematically, p(t) is defined
as p(t) =

∑r
l=0 alt

l, where al is the polynomial coefficients and
r is the polynomial order. If the observation signal contains no
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sparse signal, the signal p(t) can be estimated by minimizing
the following cost function:

argmin
al

∥∥∥y − r∑
l=0

alt
l
∥∥∥2

2
. (11)

However, when a discrete event phenomenon is observed in the
presence of polynomial signal, it is preferred to combine (11)
and (1) resulting in the following optimization approach [12]:

argmin
al,x

1

2

∥∥∥y − r∑
l=0

alt
l − x

∥∥∥2

2
+ λ

∥∥∥x(i)
∥∥∥
1
. (12)

The polynomial coefficients, al, and the signal x are unknown.
They can be found by performing the minimization with respect
to al and x.

C. Total Variation and Tikonov Regularization

Let us consider the problem of extraction of a piecewise-
smooth signal form its noisy measurements using a combination
of Tikhonov and TV regularization. Specially, we assume that
the underlying signal comprises a piecewise constant compo-
nent, x(t), and a smooth component, f(t). A solution to is to
synthesize the total variation and Tikhonov regularization for
reconstructing the desired signal (total variation for the first
component and the �2 norm for the second component). The
following optimization approach can be used:

argmin
f,x

1

2

∥∥∥y − f − x
∥∥∥2

2
+

ζ

2

∥∥∥f (i)
∥∥∥2

2
+ λ

∥∥∥x(i)
∥∥∥
1
. (13)

The desired components are found by setting the gradient of (13)
with respect to f and x to zero. It results a system of non-linear
equations with two unknowns f and x. Note that in Tikhonov
and TV regularization, the regularization operator is typically an
approximate of the i-th order derivative operator. Gholami and
Hosseini suggested the following optimization approach [13]:

argmin
f,x

1

2
‖y − f − x‖22 +

ζ

2
‖f ′′‖22 + λ ‖x′‖1 . (14)

D. Total Variation and Low-Pass Filtering

The third approach proposed by Selesnick et al. is designed
for reconstruction of a mixture of a low-frequency signal and
a sparse or sparse-derivative signal from the noisy measure-
ments [14]. It combines LTI filtering and sparsity based denois-
ing in a principled way. The observed signal is considered as a
noisy additive mixture of a low-frequency signal flp(t) and a
sparse-derivative signal x(t), i.e., y(t) = flp(t) + x(t) + v(t).
Since flp is a low-frequency signal, it can be obtained by filtering
y − x̂ with a low-pass filter, where x̂ is an estimate of x. In other
words, by filtering y − x̂ with a high-pass filter, we can get a
white Gaussian process, v. Using it, Selesnick et al. proposed
the following optimization problem:

argmin
x

1

2
‖h ∗ (y − x)‖22 + λ

∥∥∥x′
∥∥∥
1
, (15)

where h(t) is the impulse response for a high-pass filter. An
estimate of x is obtained by taking the derivative of (15) with

respect to x, resulting in

(hr ∗ h ∗ x)(t)− λ
x′′

|x̂′
k|

= (hr ∗ h ∗ y)(t), (16)

where hr(t) = h(−t). Once an estimate of x is computed, the
low-frequency component flp is obtained by applying the low-
pass filter to y − x, i.e., f̂lp(t) = y(t)− x̂(t)− h(t) ∗ [y(t)−
x(t)]. Therefore, the components are estimated individually and
sequentially.

II. MOTIVATION

The above combination algorithms were proposed to recon-
struct a picewise-polynomial, a picewise-smooth or a picewise
low-frequency signal in white Gaussian noise. However, they
cannot be used for reconstructing signals that comprise the sum
of a band-limited component and a sparse derivative signal.
Band-limited signals can be categorized in three special classes
due to their common occurrence in applications: low-frequency
component signal, high-frequency component signal and pass-
band component signal. Therefore, there is a need for a new
combination algorithm that provides a generic solution to recon-
struct a piecewise band-limited signal. In this paper, we address a
more general signal reconstruction where the underlying signal
comprises a band-limited frequency component and a sparse-
derivative component. Specifically, we assume that the observed
signal y(t) can be well modelled as y(t) = f(t) + x(t) + v(t),
where f(t) is a band-limited signal, x(t) is a sparse-derivative
signal, and v(t) is a white Gaussian noise. We seek to estimate
the unknown signal components, f and x, from observation y
and filter out the observation noise component, v. If the desired
signal contains no sparse-derivative signal component (i.e., in
the absence of the sparse-derivative signal, x) then the signal
f̂ can be estimated using conventional zero-phase filters (e.g.,
zero-phase low-pass, band-pass or high-pass filters). Depending
on the predefined frequency band of the desired signal, a specific
filter can be employed. If there is no band-limited signal in the
desired system, and the signal is sparse-derivative (i.e., in the
absence of the band-limited signal, f ) then the signal x̂ can be
estimated using TV regularization. However, in the presence of
both components, the former case reconstructs the band-limited
signal well but fails to reconstruct the sparse-derivative signal,
and it is the other way around for the latter case. Therefore,
for such cases, neither conventional zero-phase filtering nor TV
denoising is suitable. To overcome this problem, we develop
a Bayesian filtering framework that combines zero-phase LTI
filtering and TV denoising. The problem considered here is more
general than those of [12], [13], [14] and our proposed approach
has several advantages over the methods described there:
� The signal f considered in [13] is a smooth signal that

requires only a few Fourier coefficients to represent; it is
a low-frequency component signal in [14]. However, in
this paper, we consider that f can be any class of band-
limited signals such as low-frequency component signal,
high-frequency component signal and so on.

� For the algorithms proposed in [12], [14], [17], there is
a need for change of variable of the sparse-derivative
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signal, x, and the change of variables is important, because
otherwise the MM approach leads to a dense system of
equations. This change of variables is no longer necessary
with the approach proposed in this paper.

� Against the existing approaches, the proposed approach
estimates the signal components simultaneously.

� One of the major advantages of the proposed method is
that it treats continuous-time (CT) and discrete-time (DT)
systems in parallel and brings CT and DT systems together
in a unified way.

� The existing approaches [12], [13], [14], [17] are imple-
mented non-causally and not suited for real-time applica-
tions. In the proposed approach, the Kalman smoother is
suited for offline applications, while the Kalman filter can
be used for online or real-time applications.

III. PROBLEM FORMULATION

Let us consider the problem of observing a noisy additive
mixture of a band-limited signal f(t) and a sparse-derivative
signal x(t) in the model

y(t) = f(t) + x(t) + v(t), (17)

where v(t) is a white Gaussian noise which is assumed to be
uncorrelated with other two signals, i.e., f(t) and x(t). Further,
we assume that f is a band-limited signal whose Fourier spectra
confined to a finite number of finite intervals (bands) along the
real frequency axis. For instance, for a low-frequency signal,
there exists a cutoff frequency ωc such that for |ω| ≥ ωc, its
Fourier transform vanishes, i.e.,

∃ ωc s.t. ∀ |ω| ≥ ωc, F (jω) =

∫ ∞

−∞
f(t)e−jωtdt = 0,

where j =
√−1. For a pass-band signal, there exist two cutoff

frequencies ω1 and ω2 such that for |ω| /∈ [ω1, ω2], F (jω) = 0.
If for |ω| ∈ [ω1, ω2], we haveF (jω) = 0, then the signal is stop-
band. We seek a tracking algorithm that enables the estimation
of f and x simultaneously.

IV. SOLUTION

In [11], [18], we showed that forward-backward filtering
(zero-phase IIR filters) can be presented as instances of penalized
least-squares optimization (PLSO). Consider a zero-phase filter
defined by the following Laplace transform

|H(s)|2 =
1

1 + Θ(s)Θ∗(−s)
, (18)

where ∗ denotes the conjugate operator and Θ(s) is a rational
function in s with numerators αl and denominators βl:

Θ(s) =

∑p
l=0 αls

l∑q
l=0 βlsl

, p > q. (19)

The output of the above zero-phase filter, |H(s)|2 to the input
y(t) can be computed through the convolution of the impulse
response with the input signal: f(t) = (hr ∗ h ∗ y)(t), where
(hr ∗ h)(t) is the impulse response of the zero-phase filter. While

the procedure is usually designed using forward-backward fil-
tering, we showed in [11] that the output signal can be obtained
using the following PLSO problem:

argmin
f

‖y − f‖22 + ‖θ ∗ f‖22, (20)

where θ(t) is the inverse Fourier transform of (19):

q∑
l=0

βls
lΘ(s) =

p∑
l=0

αls
l ⇔

q∑
l=0

βlθ
(l)(t) =

p∑
l=0

αlul(t),

where ul(t) is the l-th derivative of δ(t). In this paper, we seek
to simultaneously estimate the signal f and x from the noisy
measurements y in the model (17). To that end, we combine the
ideas of zero-phase filtering based PLSO and TV regularization
in a different way. A general Kalman filter and Kalman smoother
approach to reconstruct the sparse derivative band-limited signal
from its noisy measurements is presented. In the following, we
derive the solution in continuous time (CT) domain, and also
show the same path toward deriving the solution for its discrete
time (DT) domain.

A. Continuous Time

Combining (1) and (20), the following least-squares optimiza-
tion problem is proposed to estimate the desired components in
(17):

argmin
f,x

1

2
‖y − f − x‖22 +

1

2
‖θ ∗ f‖22 + λ‖x(i)‖1. (21)

The first and second penalty terms control the frequency band
of f and the sparsity of x, respectively. The cost function (21)
is convex but difficult to minimize due to the last term as it
is non-differentiable. In order to make it simpler, we employ
the MM optimization procedure for the ‖x(i)‖1. Using (2), a
majorizer of (21) is given by

argmin
f,x

1

2
‖y − f − x‖22 +

1

2
‖θ ∗ f‖22

+
λ

2

∫ b

a

(
x(i)

/√
|x̂(i)

k |
)2

dτ +
λ

2

∫ b

a

|x̂(i)
k (τ)|dτ.

(22)
Using the following change of variables

f(t) =

q∑
l=0

βlφ
(l)(t), (23)

(22) can be expressed as

argmin
φ,x

1

2

∥∥∥y − q∑
l=0

βlφ
(l) − x

∥∥∥2

2

+
1

2

∥∥∥ p∑
l=0

αlφ
(l)

∥∥∥2

2
+

λ

2

∥∥∥x(i)
∥∥∥2

2∥∥∥x̂(i)
k

∥∥∥
1

+
λ

2

∥∥∥x̂(i)
k

∥∥∥
1

(24)

The solution to a filtering problem with the linear system (25)
is equivalent/similar to the solution of the optimization problem
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in (24) [19].⎧⎪⎪⎨
⎪⎪⎩
∑p

l=0 αlφ
(l) = w1(t)

x(i) = gk(t)w2(t)

y(t) =
∑q

l=0 βlφ
(l)(t) + x(t) + v(t)

, (25)

where gk(t) =
√
|x̂(i)

k |, v(t) is the observation noise, w1(t) and
w2(t) are the additive zero-mean random terms and known as
the process (model) noise. It is more convenient to express (25)
as ⎧⎪⎨

⎪⎩
φ(p) =

∑p−1
l=0 ζlφ

(l) + 1
αp

w1(t)

x(i) = gk(t)w2(t)

yk =
∑q

j=0 βlφ
(l)(t) + x(t) + v(t)

, (26)

where ζl = −αl/αp. In order to construct a Kalman filter for
estimating φ and the sparse signal x, the dynamic equation in
(26) needs to be converted to a state-space form. One of the
possible state space models that is suitable for using in the
Kalman filtering framework is as follows:{

x′(t) = Ax(t) + bw(t)

y(t) = cx(t) + v(t)
, (27)

where w = [w1, w2]
T ,

A =

[
Υp×p 0p×i

0i×p Γi×i

]
,Υ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ζp−1 ζp−2 . . . ζ1 ζ0

1 0 0 . . . 0

0
. . .

. . .
. . .

...
...

. . . 1 0 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0

1 0 0 . . . 0

0
. . .

. . .
. . .

...
...

. . . 1 0 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

x=
(
φ(p−1) φ(p−2) · · · φ x(i−1) x(i−2) · · · x

)T

,

b =

(
1
αp

0 · · · 0 0 0 · · · 0

0 0 · · · 0 gk(t) 0 · · · 0

)T

,

c =
(
0 · · · 0 βq · · · β0 0 · · · 0 1

)
,

and 0 is a null matrix. The CT Kalman filter equations for (27)
is given as follows [20], [21]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(0) = E{x(0)}
P (0) = E{[x(0)− x̂(0)][x(0)− x̂(0)]T }
K = PcT

r

x̂′ = Ax̂+K(y − cx̂)

P ′ = −PcT cPT

r +AP + PAT + bTQb

. (28)

where r and Q are the covariance of the measurement noise and
the covariance of the process noise, respectively and assumed
to be known. Note that the Kalman filter estimates all the
variable states [φ(p−1), . . . , φ, x(i−1), · · · , x]. However, we
are interested in f and x. Once an estimate of [φ(q), . . . , φ′, φ] is
computed, an estimate of f is obtained by (23). In the following,
we tackle the same problem for DT systems by following the
approach parallel to that used in the CT case.

B. Discrete Time Domain

In the previous section a continuous formulation was proposed
for simultaneous zero-phase filtering and sparse derivative de-
noising. In practical applications a discretized version is needed
for digitally processing the signal. In this section, we derive a
discrete formulation for simultaneous sparse derivative denois-
ing and zero-phase filtering. To this purpose, we assume that
(29) is obtained by sampling (17), i.e.,

yn = fn + xn + vn, n = 1, 2, . . . , L, (29)

where yn = y[nTs] is the discrete-time samples of y(t), L is the
number of samples, Ts is the sampling period, fn, xn and vn
are respectively the sampled desired band-limited signal, sparse
derivative signal and observation noise. Furthermore, we assume
that the discrete time counterpart of (18) is

|H(z)|2 =
1

1 + Θ(z)Θ( 1z )
, (30)

where Θ(z) is a polynomial function in z:

Θ(z) =

∑p
l=0 α̂lz

l∑q
l=0 β̂lzl

. (31)

Consequently, in DT, (21), is expressed as

argmin
fn,xn

1

2

L∑
n=1

(yn − fn − xn)
2

+
1

2

L∑
n=1

(θn ∗ fn)2 + λ

L∑
n=1

∣∣∇ixn

∣∣ , (32)

where ∇ixn is the i-th order difference which is precisely
defined by

∇ixn =

i∑
l=0

(−1)l
(
i

l

)
xn−i+l

and
q∑

l=0

β̂lθn+l =

p∑
l=0

α̂lδn+l.

A majorizer of (32) is given by

argmin
f,x

1

2

L∑
n=1

(yn − fn − xn)
2 +

1

2

L∑
n=1

(θn ∗ fn)2

+
λ

2

L∑
n=1

(
∇ixn√|∇ix̂k,n|

)2

+
λ

2

L∑
n=1

|∇ix̂k,n| (33)
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Using the following change of variables

fn =

q∑
l=0

β̂lφn+l, (34)

(33) can be expressed as

1

2

L∑
n=1

⎛
⎝yn −

q∑
j=0

β̂jφn+j − xn

⎞
⎠

2

+
1

2

L∑
n=1

⎛
⎝ p∑

j=0

α̂jφn+j

⎞
⎠

2

+
λ

2

L∑
n=1

(
∇ixn√|∇ix̂k,n|

)2

+
λ

2

L∑
n=1

∣∣∣√|∇ix̂k,n|
∣∣∣

(35)
The linear state-space model corresponding to it can be repre-
sented as ⎧⎪⎪⎨

⎪⎪⎩
∑p

l=0 α̂lφn+l = w1,n

∇ixn = gk,nw2,n

yn =
∑q

l=0 β̂lφn+l + xn + vn

, (36)

where gk,n =
√|∇ix̂k,n|, vn is the observation noise, w1,n and

w2,n are the process (model) noises. It is straightforward to show
that (33) is a special case of Wiener smoothing filter (see [19]
for more details). Note that for stationary processes, a stable
Kalman filter/smoother converges to the smoothing Wiener filter
in steady state. The convergence time depends on the covariances
of the process and measurement noises or merely to their ratio,
λ = |ui,n ∗ x̂k,n|σ2

v/σ
2
w2

[19]. It is more convenient to express
(36) as

⎧⎪⎪⎨
⎪⎪⎩
φn+p =

∑p−1
l=0 ζ̂lφn+l +

1
α̂p

w1,n

xn =
∑i−1

l=0 γlxn−i+l + gk,nw2,n

yn =
∑q

l=0 β̂lφn+l + xn + vn

, (37)

where γl = (−1)l+1

(
i

l

)
and ζ̂l = −α̂l/α̂p. In order to con-

struct a Kalman filter for estimating φn and the sparse signal
xn, the dynamic equation in (37) needs to be converted to a
state-space form. One of the possible state space models is as
follows: {

xn = Axn−1 + bwn

yn = cxn + vn
, (38)

where wn = [w1,n, w2,n],

A =

[
Υ 0
0 Γ

]
,Υ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ζ̂p−1 ζ̂p−2 . . . ζ̂1 ζ̂0

1 0 0 . . . 0

0
. . .

. . .
. . .

...
...

. . . 1 0 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ0 γ1 . . . γi−2 γi−1

1 0 0 . . . 0

0
. . .

. . .
. . .

...
...

. . . 1 0 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

xn =(φn+p φn+p−1 · · · φn xn xn−1 · · · xn−i+1)
T ,

b =

(
1
α̂p

0 · · · 0 0 0 · · · 0

0 0 · · · 0 gk,n 0 · · · 0

)T

,

c =
(
0 · · · 0 β̂q · · · β̂0 gk,n 0 · · · 0

)
Note that b is a function of n. The Kalman filter for (38) is given
as follows:

Time Update:{
x̂−
n+1 = Ax+

n

P−
n+1 = AP+

nA
T + bTQb

(39)

Measurement update:⎧⎪⎨
⎪⎩
x̂+
n = x̂−

n +Kn

[
yn − cx̂−

n

]
Kn = P−

nc
T
(
cP nc

T + rn
)−1

P+
n = P−

n −KncP
−
n

, (40)

whereQn � E{w2
n}, rn � E{v2n}, x̂−

n � E{xn|yn−1, . . . , y1}
is the a priori estimate of the state vector xn in the n-th stage us-
ing the observation y1 to yn−1, and x̂+

n � E{xn|yn, . . . , y1} is
the a posteriori estimate of the state vector after using then-th ob-
servation yn. The matrices P−

n � E{(xn − x̂−
n)(xn − x̂−

n)
T }

and P+
n � E{(xn − x̂+

n )(xn − x̂+
n )

T } are also defined as the
prior and posterior state covariance matrices, while Kn is
the Kalman gain. For smoother results, a Kalman smoother is
usually employed after Kalman filter. It consists of a forward
Kalman filter stage followed by a backward recursive smoothing
stage. Since Kalman smoother uses information brought by
“future” observations, it always outperforms the Kalman filter
(with the exception of the estimate at the terminal time which
is equivalent in the filtering and smoothing posteriors). Once an
estimate of [φn, · · · , φn+q] is computed, an estimate of fn is
obtained by (34).

V. EXAMPLES

In this section, we present two examples to illustrate the
application of the proposed framework for 1) simultaneous
zero-phase low-pass filtering and TV denoising 2) simultaneous
band-pass filtering and TV denoising.

A. Simultaneous Low-Pass Filtering and TV Denoising

Recall that a zero-phase low-pass Butterworth filter of order
p is defined by [1]:

|Hlf (s)|2 =
1

1 + ( s
jωc

)2p
=

1

1 + ( s
ωc
)p(−s

ωc
)
p , (41)
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where, the subscript lf indicates the low-pass filter and ωc is the
cut-off frequency. (41) can be expressed as

|Hlf (s)|2 =
1

1 + Θlf (s)Θlf (−s)
, (42)

where Θlf (s) = (s/ωc)
p. Assume that the low-frequency com-

ponent signal f(t) can be estimated using (41). It can be obtained
using the following optimization problem [11]

argmin
f

‖y − f‖22 +
∥∥∥f (p)

/
ωp
c

∥∥∥2

2
. (43)

According to the proposed framework, the following optimiza-
tion problem is defined for simultaneous p-th order zero-phase
low-pass Butterworth filtering and q-th order TV denoising:

argmin
f,x

‖y − f − x‖22 +
∥∥∥f (p)

/
ωp
c

∥∥∥2

2
+ λ

∥∥∥∥x(i)
/√

|x̂(i)
k |

∥∥∥∥
2

.

We consider the following linear state space model:⎧⎪⎪⎨
⎪⎪⎩
f (p) = ωp

cw1(t)

x(i) = gk(t)w2(t), gk(t) =

√
|x̂(i)

k |
y(t) = f(t) + x(t) + v(t)

In the framework of Kalman filter, it is represented as{
x′(t) = bw(t)

y(t) = cx(t) + v(t)

where w = [w1, w2], c = [0, · · · , 0, 1, 0, · · · , 0, 1],

x=
(
f (p−1) f (p−2) · · · f x(i−1) x(i−2) · · · x

)T

,

b =

(
ωp
c 0 · · · 0

gk(t) 0 · · · 0

)T

In discrete time, the p-th order zero-phase Butterworth filter is
defined by [11]

|Hlf (z)|2 =
1

1 + (1−z−1)p(1−z)p

(2 sin ωc
2 )2p

. (44)

Similarly, the following optimization problem is defined for
simultaneously zero-phase low-pass Butterworth filtering and
TV denoising in DT domain:

argmin
f,x

∑
n

(yn − fn − xn)
2 +

∑
n

(
(1− z−1)pfn
(2 sin ωc

2 )p

)2

+ λ
∑
n

(
(1− z−1)ixn√|(1− z−1)ix̂k,n|

)2

.

We consider the following linear state space model:⎧⎪⎨
⎪⎩
(1− z−1)pfn = (2 sin ωc

2 )pw1,n

(1− z−1)ixn = gk,nw2,n, gk,n =
√|(1− z−1)ix̂k,n|

yn = fn + xn + vn

,

which can be represented in the following standard form:{
xn = Axn−1 + bwn

yn = cxn + vn
(45)

where c = [1, 0, · · · , 0, 1, 0, · · · , 0],

xn =
(
fn fn−1 · · · fn−p xn xn−1 · · · xn−i

)T

,

A =

[
Υ 0p×i

0i×p Γ

]
,Υ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ζp−1 ζp−2 . . . ζ1 ζ0

1 0 0 . . . 0

0
. . .

. . .
. . .

...
...

. . . 1 0 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξi−1 ξi−2 . . . ξ1 ξ0

1 0 0 . . . 0

0
. . .

. . .
. . .

...
...

. . . 1 0 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ζj = (−1)j
(
p

j

)
,

ξj = (−1)j
(
i

j

)
, b =

(
(2 sin ωc

2 )p 0 · · · 0 0

0 0 · · · 0 gk,n

)T

B. Simultaneous Band-Pass Filtering and TV Denoising

Lets us consider the first order band-pass filter with frequency
response defined by

Hbf (s) =
1

1 + αs+ β/s
, (46)

where subscript bf stands for band-pass filter. The parameters
α and β are related to the filter’s cutoff frequencies as α =
1/(ω2 − ω1), β = ω1ω2/(ω2 − ω1), where ω1 and ω2 are the
cutoff frequencies [22]. Without loss of generality, we assume
ω1 < ω2. It is interesting to note that a low-pass filter with cutoff
frequency ω2 can be obtained by setting ω1 to zero. In this case,
we have β = 0 and α = 1/ω2. As a result, (46) becomes

Hlf (s) =
1

1 + s/ω2
, (47)

where the subscript lf stands for low-pass filter. A zero-phase
band-pass filter (or band-pass smoothing filter) can be obtained
by multiplying Hbf (s) with its conjugate, Hbf (−s), resulting
in:

Hbsf (s) =
1

1− (αs+ β/s)2
, (48)

where subscript bsf denotes the band-pass smoothing filter. (48)
can be expressed as

Hbsf (s) =
1

1 + Θbsf (s)Θbsf (−s)
, (49)

where Θbsf (s) =
αs2+β

s . Let f(t) be the output of (48) to the
input signal, y(t). Using the change of variables f = φ′, the
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optimal estimate of φ(t) can be obtained using the following
PLSO problem [11]:

argmin
φ

1

2
‖y − φ′‖22 +

1

2
‖αφ′′ + βφ‖22 . (50)

Note that by setting β to zero, the optimization problem (50) can
be used for designing a low-pass smoothing filter. According to
the proposed framework, the following optimization problem is
defined for picewise zero-phase band-pass filtering:

argmin
φ,x

1

2
‖y−φ′−x‖22+

1

2
‖αφ′′+βφ‖22+λ

(
x′
/√

|x̂′
k|
)2

The following linear state space model is considered:⎧⎪⎨
⎪⎩
αφ′′ + βφ = w1(t)

x′ = gk(t)w2(t)

y(t) = φ′ + x(t) + v(t)

,

where gk(t) = |x′
k(t)|. We use the following state space model

in the framework of Kalman filter{
x′ = Ax+ bw(t)

y(t) = cx(t) + v(t)

where x = [φ′, φ, x]T , c = [1, 0, 1]T ,

A =

⎛
⎜⎝0 − β

α 0

1 0 0

0 0 0

⎞
⎟⎠ , b =

(
1
α 0 0

0 0 gk(t)

)T

In discrete time, the zero-phase band-pass filter using bilinear
transform is defined by [22]

|Hbsf (z)|2 =
1

1 + Θbsf (z)Θbsf (
1
z )

, (51)

where Θbsf (z) = α 1−z−1

1+z−1 + β 1+z−1

1−z−1 and the parameters are
α = 1/| tan ω1

2 − tan ω2

2 | and β = tan ω1

2 tan ω2

2 /| tan ω1

2 −
tan ω2

2 | [22]. According to the proposed framework, using the
change of variable fn = φn − φn−2, the following optimization
problem is defined for the first order picewise zero-phase band-
pass filtering:

argmin
φ,x

∑
k

(yn − φn + φn−2 − xn)
2 +

∑
k

([α+ β]φn

−2[α− β]φn−1 + [α+ β]φn−2)
2

+ λ
∑
k

(
xn − xn−1√|x̂k,n − x̂k,n−1|

)2

(52)

The linear state space model for (52) is⎧⎪⎨
⎪⎩
φn = 2α−β

α+βφn−1 − φn−2 +
1

α+βw1,n

xn = xn−1 + gk,nw2,n, gk,n =
√|x̂k,n − x̂k,n−1|

yn = φn − φn−2 + xn + vn

,

which can be represented in the following standard form:{
xn = Axn−1 + bwn

yn = cxn + vn

where xn = [φn, φn−1, φn−2, xn]
T , c = [1, 0, −1, 1]T ,

A =

⎛
⎜⎜⎜⎝
2α−β
α+β −1 0 0

1 0 0 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ , b =

(
1

α+β 0 0 0

0 0 0 gk,n

)T

,

Finally, after estimating [φn, φn−1, φn−2, xn], fn is computed
using fn = φn − φn−2.

VI. SIMULATION EXAMPLES

Two examples are given in this section. As a preliminary
remark, we mention that the value of λ is related to the ratio
of observation and process noise covariances. Therefore, one
can estimate the variance of the observation noise, σ2

v , and
compute the variance of process noise based on the arbitrary
value of λ. There are also several ways to estimate σ2

v . One can
estimate the noise power from the deviations of the portions of
the signal. Another approach is to use the online approaches
suggested in [23]. Nevertheless, σ2

v represents the degree of
reliability of the observation. In other words, when a rather
precise measurement of the states of a system is valid rn is
small, and the Kalman filter gain is adapted so as to rely on the
measurement. While for the epochs where the measurements
are too noisy, rn is large and the Kalman filter ends to follow its
internal dynamics rather than tracking the observations.

A. Example 1

In the first example, we employ the Kalman filter/smoother
proposed in Section V-A to simultaneously estimate a piecewise
and a low-pass signal in white Gaussian noise. See Fig. 1, for
an example, where Fig. 1(a)–(c) show a piecewise, a low-pass
signal and the sum of those signals contaminated with white
Gaussian noise. Fig. 1(d)–(f) show the result of simultaneous
first order low-pass filtering and first order TV denoising using
the proposed framework. In order to improve the low-frequency
signal estimate, the order of low-pass filtering can be increased.
Fig. 2 shows the results of simultaneous second order low-pass
filtering and first order TV denoising. We see that the estimated
low-frequency component using higher order is closer to the
original signal. It is mentionable that the system (45) is not
observable. Note that the objective of TV denoising is to es-
timate a piecewise polynomial signal in white Gaussian noise.
A piecewise polynomial signal may contain a low frequency
component with sharp edges. Consequently, when TV denoising
and low-pass filtering are simultaneously used to estimate a
piecewise polynomial and a low frequency component, the low
frequency component is tracked by both TV denoising and
low-pass filtering. In other words, the sparse state (xn) and the
low-pass state (fn) in (45) are not distinguishable by only the
measurement yn. The result of this paper confirms this problem.
Specially, the state-space model (45) is not observable.
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Fig. 1. Piece-wise low-pass signal smoothing using a combination of first order low-pass filtering and first order TV denoising (a) Original piece-wise signal.
(b) Original low-pass signal. (c) Original piece-wise low-pass signal and its noisy signal (SNR = 15) (d) Estimated piece-wise signal. (e) Estimated low-pass
signal. (f) Sum of the estimated piece-wise and low-pass signals.

Fig. 2. Piece-wise low-pass signal smoothing using a combination of first order low-pass filtering and second order TV denoising (a) Estimated piece-wise signal.
(b) Estimated low-pass signal. (c) Sum of the estimated piece-wise and low-pass signals.

B. Example 2: ECG Analysis

As a real application, the proposed framework is used to
design a simultaneous band-pass smoothing and TV denoising
to filter the real electrocardiogram (ECG) signal. The designed
sparse band-pass smoothing filter is employed to reduce the
influence of two noises in the ECG namely power-line inter-
ference (PLI) and high-frequency random noise. There are a
lot of methods in the literature that can be used for canceling
the PLI and removing the random noise in ECG signals [24],
[25]. However, the PLI and random noise removal are obtained
individually in most of the existing technologies. In this section,
we design a sparse ban-pass smoothing filter that is a com-
bination of a band-pass smoothing filter and a sparsity based
denoising algorithm. In this method, the ECG signal is modelled
as a sparse order-3 derivative (i.e., approximately piecewise
polynomial with polynomial segments of order 2) [17], [26]
and the PLI signal is modelled as a single tone with frequency
of 50 or 60 Hz. Let us consider a continuous-time PLI signal

which may be considered as a single sinusoid with an arbitrary
amplitude, ρ, and phase, θ:

f(t) = ρ cos(ω0t+ θ), (53)

where ω0 is the PLI frequency.
Taking twice derivative of (53), we find

f ′′ = −ω2
0f. (54)

Combining the model of PLI and the model of the ECG, the
following dynamical model is suggested for simultaneous band-
pass smoothing filter and sparse denoising:

⎧⎪⎪⎨
⎪⎪⎩
f ′′ = −ω2

0f + w1(t)

x
′′′
=

√
|x′′′

k(t)|w2(t)

y(t) = f(t) + x(t) + v(t)

(55)
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Fig. 3. Denoised ECG signal using the Kalman smoother (a) Original ECG signal. (b) Noisy ECG signal (ECG + PLI + Noise) (c) Estimated ECG signal.
(d) Estimated PLI.

Fig. 4. Real-time ECG denoising using Kalman filter (a) Estimated ECG signal. (e) Estimated PLI.

where f(t) is the PLI signal and x(t) is the ECG signal. While
(55) is continuous, we need a discrete-time model. A discrete-
time PLI signal can be represented as

fn = ρ cos(Ω0n+ θ). (56)

Using trigonometric manipulation, (56) can be represented as

fn = 2 cos(Ω0)fn−1 − fn−2. (57)

Putting (57) together with the TV denoising sate-space model,
we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
fn = 2 cos(Ω0)fn−1 − fn−2 + w1,n

xn = 3xn−1 − 3xn−2 + xn−3+√|x̂k,n − 3x̂k,n−1 + 3x̂k,n−2 − x̂k,n−3|w2,n

yn = fn + xn + vn

(58)

The hidden states of (58) is then estimated using Kalman fil-
ter/smoother approach. As an example, in Fig. 3, the proposed
Kalman smoother is used to filter the PLI and high frequency
noise from ECG, where the original signal is plotted in Fig. 3(a),
the ECG diluted by PLI and high frequency noise is plotted
in Fig. 3(b). The estimate ECG and PLI using the proposed
Kalman smoother are respectively shown in Fig. 3(c) and (d). We
mention again that the way TV denoising is usually implemented
in the literature is in terms of the whole data, not as a causal
system/algorithm which is needed for real-time applications.
That is why the proposed approaches in [12], [13], [14] are
implemented non-causally. In contrast to the above approaches,
the proposed Kalman filter estimates the current states using a
recursive estimator. In the recursive estimator, only the estimated
state from the previous time step and the current measurement

Fig. 5. Mean values of NSR for signal reconstruction by Kalman filter and
Kalman smoother as a function of SNR.

are needed to compute the estimate for the current state [see (39)
and (40)]. Therefore, one of the main advantages of the proposed
framework is that the Kalman filter can be used for the particular
implementation of the proposed approaches to be real-time. As
an illustration, the estimated ECG and PLI provided by Kalman
filter for the previous example, is plotted in Fig. 4. From a prac-
tical point of view, Kalman smoother provides better estimate
than Kalman filter. It is because the Kalman smoother uses all
the measurements (past, current and future samples) while the
Kalman filter only uses the past and current measurements to
estimate the signal of interest. We tested the approach over the
PhysioNet PTB Diagnostic ECG Database [27] which contains
549 records from 290 subjects. Each record consists of twelve
conventional ECG leads plus the three Frank’s ones, sampled
at 1 kHz with 16-bit resolution. Synthetic PLI was generated
and added to each ECG record. To represent the respiratory
coupled changes in the PLI amplitude, we modulated the PLI
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Fig. 6. Simultaneous piecewise constant and sinusoidal signal tracking (a) Piecewise constant signal (b) Sinusoidal signal (c) Noisy signal: piecewise constant
plus sinusoidal signal plus white Gaussian noise (d) Piecewise constant signal tracking (e) Sinusoidal tracking.

amplitude with a 0.2 Hz sinusoid. Finally, the Gaussian noise
was added with varying SNR (from 0 to 50 dB). The ECG and
PLI were estimated from the noisy ECGs using the proposed ap-
proaches. We compared the proposed Kalman filter and Kalman
smoother on this problem. To quantify the performance of the
two methods, we employed NSR =

√∑
n(xn − x̂n)2/

∑
k x

2
n

which is the ratio between the power of the reconstruction error
and the power of the desired signal [28], [29]. The results
of the ECG reconstruction procedures using this metric are
reported in Fig. 5. As expected the proposed Kalman smoother
outperformed Kalman filter. Finally, we mention that compared
to the referenced ones [12], [13], [14], this paper proposes a
more general framework. For instance, consider the problem
of estimating a signal comprises of a piecewise constant and
a sinusoid in white Gaussian noise. Fig. 6(a)–(c), respectively
shows a piecewise constant, a low-frequency sinusoidal signal
and sum of those signals contaminated with white Gaussian
noise. Therefore, a combination of a low-pass filter and TV
denoising (the referenced method in [14]) can be employed to es-
timate both signal components. However, the main problem with
the method [14] is that the piecewise constant signal contains
a low-frequency component (the DC component) with edges.
Therefore, the DC component will be tracked with both TV
and lowpass filtering. As a result, employing a combination of a
lowpass filter and TV denoising is not the best solution. The best
solution is to use a combination of a TV denoising and a bandpass
filter as proposed in Section V-B. We used our method and the
referenced method in [14] to estimate the piecewise constant
and the sinusoidal signal. The results are shown in Fig. 6(d)–(e).
The superiority of the proposed method is evident.

VII. CONCLUSION

This paper proposed a framework for the combination of
zero-phase IIR filtering and total variation denoising. In the
framework, while the desired signal is considered to be a mixture
a band-limited component and a sparse-derivative component,
its components are estimated using an iterative Kalman filter
or Kalman smoother approach. The application of the proposed
framework to design of sparse derivative low-pass, band-pass
and band-stop smoothing filter was discussed in this paper.
Although the techniques proposed in this paper focused on the
combination of zero-phase filtering and TV denoising, their
principles are easy to extend to the combination of autoregressive
moving average (ARMA) signal smoothing filters [29] and TV
denoising.
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