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Abstract—Compressed spectrum sensing naturally pursues the
use of fewer sampling resources to achieve spectrum support recon-
struction and signal recovery. The theoretical lower boundary of
averaging sampling rate to recover the multiband signal has been
proved to be twice the Landau rate. However, it is still unreach-
able in practice. Based on the multicoset sampling architecture,
this paper analyzes the influencing factors on perfect spectrum
reconstruction from three aspects: data model, sampling pattern
and greedy reconstruction algorithms, for which practical and
feasible optimization schemes are proposed. To reduce redundant
reconstruction for the multiple measurement vectors (MMV) signal
model, a block MMV model is proposed to improve the accuracy
in the spectrum support set reconstruction process. A sampling
pattern selection algorithm is proposed to ensure a higher success
rate of the spectrum support reconstruction to optimize the sensing
matrix. We also deduced the representation of the signal and
noise energy in the reconstructed spectrum based on the mathe-
matical model of compressed sensing. We thus proposed a non-
orthogonal double-threshold matching pursuit algorithm to avoid
a high false-alarm rate due to the manually set converging con-
ditions for matching pursuit algorithms. Numerical experiments
on real-world wideband signals are carried out to demonstrate
the feasibility and advantages of the proposed approaches. With
integrated optimization, the required sampling density to ensure
perfect reconstruction is approaching the sub-Nyquist sampling
boundary.

Index Terms—Compressed spectrum sensing, multiple
measurement vectors, matching pursuit algorithms, multicoset
sampling.

I. INTRODUCTION

W ITH the accelerated arrival of the Internet of Every-
thing, the conflict between spectrum supply and de-

mand continues to intensify. The high-density, high-intensity,

Manuscript received 27 October 2021; revised 25 April 2022 and 10 July
2022; accepted 1 August 2022. Date of publication 11 August 2022; date of
current version 2 September 2022. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Chiara Ravazzi. This
work was supported by the Engineering and Physical Sciences Research Council
of United Kingdom under the Grant EP/R00711X/2. (Corresponding author:
Yue Gao.)

Zihang Song, Han Zhang, and Yue Gao are with the Institute for Commu-
nication Systems, University of Surrey, GU2 7XH Guildford, U.K. (e-mail:
zihang.song@surrey.ac.uk; han.zhang@surrey.ac.uk; yue.gao@ieee.org).

Jian Yang is with the School of Electronics and Information Engi-
neering, Harbin Institute of Technology, Harbin 150001, China (e-mail:
hityangjian@stu.hit.edu.cn).

Digital Object Identifier 10.1109/TSP.2022.3198186

and multi-frequency electromagnetic waves released by various
communication systems make the electromagnetic environment
around us increasingly complex. Currently, the low-frequency
spectrum below 6 GHz and the millimeter-wave frequency band
above 6 GHz has also been allocated for 2 G∼5 G use. The
increase in communication demand has increased the shortage
of spectrum resources, and 6 G will require more spectrum
resources [1].

However, while spectrum resources are scarce, there is also
a low utilization rate of spectrum in time and space [2].
The Dynamic Spectrum Access (DSA) technology allows
Cognitive Radio (CR) devices to opportunistically select idle
frequency bands unoccupied by the licensed Primary User
(PU) for communication, thereby greatly improving spectrum
utilization [3], [4].

DSA inherently requires CR devices to have the ability to
passively sense a fairly wide range of the spectrum, so as to
select an idle channel. However, the traditional wideband sam-
pling method requires a high-rate Analog-to-Digital Converter
(ADC), which is expensive and has high energy consumption.
Therefore, this solution is not suitable for general CR equipment.
Taking advantage of the sparsity feature of the spectrum, the
Compressed Sensing (CS) theory is introduced into the field of
spectrum sensing [5]. According to the CS theory, when certain
sampling conditions are satisfied, sparse signals can be recon-
structed with high probability from the compressed sampling
points. This means that only sampling at a sub-Nyquist rate
and the corresponding reconstruction algorithm are sufficient to
complete the sensing of occupied channels in a wide spectrum
range. This solution has lower power consumption and cost and
is more suitable for general CR equipment [6].

As a famous sub-Nyquist sampling architecture, the mul-
ticoset sampler has been extensively studied for its feasible
and comprehensible implementation [7], [8], [9], [10]. The
multicoset sampler achieves periodical nonuniform sampling
by multiple low-rate sampling cosets with random delays. At
the theoretical level, the research on the minimum sampling
rate required for the perfect reconstruction of sparse signals
have been very mature [11], [12]. While, at the application
level, the average sampling rate required by the existing com-
pressed spectrum sensing scheme to reconstruct the signal still
cannot reach the theoretical lower bound [13], [14], [15], [16].
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This theory-to-practice gap mainly comes from three aspects:
the limitations of the compressed sampling architecture, the
mismatch of the signal model, and the ability of the reconstruc-
tion algorithm, detailed as follows:

Signal model mismatch: The signal model is complementary
and interrelated with the compressed sampling architecture.
A theoretical Infinite Measurement Vectors (IMV) model is
commonly deduced from the multicoset structure and is proved
to be equivalent to a finite-dimension Multiple Measurement
Vectors (MMV) model via the continuous to finite (CTF) blocks
proposed in [12]. Compared with the Single Measurement Vec-
tor (SMV) model, the MMV model is more efficient and robust
to noise, so it has been extensively studied [17], [18], [19], [20],
[21]. In MMV model it is usually assumed that all the columns of
the solution matrix are joint sparse, while this assumption can be
inaccurate, especially in the blind case when the real spectrum
support is unknown. The fact that the actual signal support
and the MMV row division may not completely match leads
to extra sampling resources to recover redundant unoccupied
bands around the real support in the MMV model, which is a
significant factor that results in a necessary sampling rate higher
than the theoretical value. To our knowledge, there has been no
relative research on the model mismatch problem.

Compressed sampling architecture: In the premise of the
signal sparsity, a measurement matrix that strictly follows Null-
Space Property (NSP), Spark constraints, and Restricted Isom-
etry Property (RIP) guarantees successful signal reconstruction,
while those properties are unnecessary and require high compu-
tational complexity to validate [22], [23], [24]. For the multicoset
sampler, the measurement matrix is formally-restricted and its
property largely depends on the delay pattern of analog delays
imposed on different sampling cosets. The delay pattern selec-
tion is stated as a combinatorial problem in [12] but the authors
did not provide a method or criterion for the pattern design.
In [25] an arithmetic progression form of the pattern design
method is proposed for a full spark sensing matrix but lacks
a rigorous argument. An obvious counterexample is that any
all-odd or all-even pattern will naturally have its Kruskal rank
as 1. Another research [26] analyzes the relationship between
the condition number of the selected columns of the sensing
matrix and the reconstruction error, and provides several search-
ing strategies for multicoset patterns. However, this approach
only considers the equation-solving stage with known spectrum
support but does not mention the way to get the correct support
in a blind case. [27] use an exhausted searching strategy but the
computational cost tends to increase explosively as the channel
number increases.

Reconstruction algorithm: Reconstructing signals from com-
pressed sampling points is a key part of compressed spectrum
sensing. The performance of the reconstruction algorithm di-
rectly affects the quality of the reconstruction result [23], [28],
[29]. In consideration of computational efficiency, greedy algo-
rithms, represented by the matching pursuit type of algorithms,
are often employed in the reconstruction stage. Matching pursuit
type of algorithms usually reconstructs the signal support set
to determine the frequency band occupied by the PU’s signal,

then apply the least-squares (LS) method to acquire the optimal
estimation of the signal. Therefore, the most important factor to
evaluate the algorithm is how accurate the original signal support
set can be retrieved. Among the widely-used greedy algorithms
Matching Pursuit (MP) and Simultaneous Orthogonal Matching
Pursuit (SOMP) are most commonly referred to as the represen-
tative of non-orthogonal and orthogonal algorithms [30], [31],
[32], [33], [34], [35]. The condition of convergence for those
algorithms is usually chosen from three scheduled boundaries:
a fixed iteration number, a given lower bound of the residual
energy, or a given threshold of the channel power in the recon-
structed signal [36]. The reconstructed support is sensitive to the
manually-set conditions which can hardly be precisely predicted
in the blind case. Ulteriorly, the LS result will be apart from the
ground truth with inaccurate support as input.

A. Main Contributions

Without increasing hardware complexity and average sam-
pling rate, this paper aims to fully explore the information
contained in the sampling points, improve the performance
of support set detection and signal reconstruction, and narrow
the gap between the actual compressed sampling rate and the
theoretical boundary. The major contributions of the paper are
summarized as follows:
� We analyze the potential mismatch between the traditional

MMV signal model for joint-block sparse signals and the
real spectrum support and deduce the maximum sampling
rate under the mismatch, and propose a block MMV model
to reduce redundant reconstruction in the spectrum support
set.

� We provide a general criterion to evaluate the property
of the multicoset sampling pattern based on the column
correlation of the sensing matrix, and hereby propose an
optimization algorithm for delay pattern selection. Com-
pared with the randomly selected pattern, the sampling
pattern optimized by the proposed algorithm ensures a
higher success rate of the spectrum support reconstruction.

� We also deduce a theoretical representation of the noise
energy in the reconstructed signal in different channels
based on the mathematical model of compressed sensing
and propose a double-threshold matching pursuit algorithm
to avoid high false-alarm rate as a result of manually-set
converging conditions.

B. Outline

The rest of this paper is organized as follows. The math-
ematical model of multiband signal, the formulation of the
problem, and a brief overview of the multicoset sampling scheme
and the reconstruction algorithm are given in Section II. The
proposed block recovery method and pattern selection algorithm
is given in Section III and Section IV. We also developed
a double-threshold matching pursuit algorithm, which is de-
tailed in Section V. Numerical experiments are described in
Section VI. Common notation, as summarized in Table I, is used
throughout the paper.
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TABLE I
NOTATION

II. MATHEMATICAL MODEL

A. Signal Model

The multiband signal model is often referred to as a funda-
mental mathematical approach to the actual signal received by a
wideband receiver [12]. In this paper, all the discussions is under
a complex multiband signal model. The continuous signal at the
receiver baseband can be expressed in time domain as

x(t ) = s(t )+ n(t ) (1)

where s(t ) is the signal component and n(t ) is Gaussian noise.
In frequency domain, the received signal is

X ( f ) = S( f )+ N ( f ), (2)

where S( f ) and N ( f ) denote the signal components and the noise
components, respectively. X ( f ) is band-limited to a frequency
range F = [− fNyq/2, fNyq/2]. In this range, Nsig disjoint inter-
vals are occupied by S( f ) with support setT = {Ti|1 ≤ i ≤ Nsig}
(T ⊆ F), and the maximum bandwidth occupied by single
transmission support Ti does not exceed B. Additive noise N ( f )
spreads through F .

B. Blind Compressed Spectrum Sensing and Minimum
Average Sampling Rate

Without any prior knowledge of the band locations of T
(hereafter referred to as the “blind” case), the task of compressed
spectrum sensing can be concluded as recovering the frequency
support T and reconstructing S( f ) from the discrete sampling
points of x(t ) with average sampling rate under fNyq.

In consideration of the hardware, it is always a practical
demand to achieve perfect reconstruction in a certain F with
an average sampling rate as low as possible. For years, there has
been enormous research on the theoretical minimal sampling
rate, among which two boundaries are notable:

1) In the non-blind case (known T ), Landau first proved that
for known spectrum support T ⊆ F , the lower bound of
the necessary sampling rate for exact signal recovery is
λ(T ) (the Lebesgue measurement of T ) [11];

2) In the blind case, the lower bound of the average sampling
rate is proved to be [12]

min
{
2λ(T ), fNyq

}
, (3)

that is, by defining the spectrum occupation rate � =
λ(T )/ fNyq, the minimum average sampling rate is twice
the Landau rate for � ≤ 0.5 or Nyquist rate for � > 0.5.

For the multiband signal model in the blind case and � ≤ 0.5,
the sampling rate should not be lower than 2NsigB to ensure
perfect reconstruction according to (3). However, the existing
sampling schemes still require a rate much higher than 2NsigB to
achieve stable signal reconstruction [12]. Based on multicoset
sampling architecture, this theory-practice gap is discussed.

C. Multicoset Sampling

By defining the Nyquist frequency as fNyq = 1/T , where T is
the Nyquist sampling period, the structure of multicoset sampler
can be described as p uniform sampling cosets at a sub-Nyquist
rate fs = 1/(LT ) with a unique time delay indicated by C =
{ci}pi=1. With common settings p < L and ci ∈ Z satisfying

0 ≤ c1 < c2 < · · · < ci < · · · < cp ≤ L − 1. (4)

The Nyquist samples are divided into blocks of length L. In each
block, only p (p < L) samples indexed by pattern C are actually
sampled by the multicoset sampler. The sampled data in channel
i can be expressed as

xci
[n] = x ((nL + ci )T ) , n = 0, 1, 2, · · · (5)

It is worth noting that no upsampling [12] is carried out on
the subsamples as commonly done in this scheme. Thus, the
influence of the sampling pattern, namely C, is not reflected in
the sampled data. As compensation, a digital filter is applied in
the digital domain on each coset of the signal, then the filtered
frequency-domain signal in coset i is proved to be the linear
combination of L samples from the original signal’s Nyquist
spectrum

Gci
( f )Xci

(
e j2π f LT

)
= 1

LT

+� L
2 �−1∑

n=−� L
2 �

X

(
f − n

LT

)
exp

(
− j2π

nci

L

)
,

i ∈ {1, 2, . . . , p}, f ∈ [0, fs) , (6)

where the filter Gci
( f ) applies phase delays on the signal based

on ci

Gci
( f ) =

{
e− j2πciT f , f ∈ [0, fs)
0, otherwise

(7)
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Fig. 1. Basic structure of multicoset sampler.

and

Xci

(
e j2π f LT

) = ∞∑
n=−∞

xci
[n]e− j2π f LT n (8)

is the discrete-time Fourier transform (DTFT) of the digitized
signal in channel i. By denoting the frequency-domain com-
pressed measurement Yci

( f ) as

Yci
( f ) = LT Gci

( f )Xci
(e j2π f LT ), (9)

the relationship between the original spectrum X ( f ) and Yci
( f )

is clearly described by

Yci
( f ) =

+� L
2 �−1∑

l=−� L
2 �

X

(
f + l

LT

)
exp

(
j2π

lci

L

)
, (10)

indicating that the ith-coset measurement Yci
( f ) can be repre-

sented by a linear combination of L different segments of the
signal’s original spectrum X ( f ).

Stacking all the p cosets together bring the IMV form of (10)

y( f ) = Ax( f ), f ∈
[

0,
1

LT

)
, (11)

where

y( f ) = [Yc1 ( f ) Yc2 ( f ) · · · Ycp
( f )]T, (12)

and

x( f ) =

⎛
⎜⎜⎜⎝

X ( f + −L/2
LT )

X ( f + −L/2+1
LT )

...
X ( f + L/2−1

LT )

⎞
⎟⎟⎟⎠ (13)

has L rows, corresponding to the L equal segments of the original
spectrum X ( f ) within F . The coefficient matrix A is a p× L
matrix whose (i, l )th element is given by

Ai,l = e
j2π

ci

L
(−2/L+l−1)

. (14)

Model (11) is a linear projection process from L dimension
to p dimension. This projection can also be regarded as aliasing
the L Sections with p groups of coefficients specified by the p
rows in A, as illustrated in Fig. 2.

The IMV model (11) is set up on the basis of infinite mea-
surements. In practice, only a limited number of samples can
be acquired in one frame of the observing window. Thus, the
signal spectrum reconstructed by the above-mentioned method

Fig. 2. The diagram illustrates the relationship between the compressed mea-
surement Yci

(f ) and the original spectrum X(f ), where the green rectangular,
the blue triangle, and the red arch represent the PU’s transmissions, and the
yellow stripes represent out-of-band noise. For multicoset sampling, the height
changes of the transmissions depicted in this figure represent phase delays
instead of amplitude gains.

is actually discrete. Denote the window length to be N sequential
sampling points per coset, a practical multicoset sampler usually
generates an MMV model

Y = AX, (15)

where Y is a p× N measurement matrix whose (i, n)th element
is

Yi,n = Yci

(
n− 1

NLT

)
(16)

and X is a L × N matrix whose (l, n)th element is

Xl,n = X

(
− L/2+ l − 1+ (n− 1)/N

LT

)
. (17)

D. Blind Spectrum Reconstruction

In the case p < L, model (15) is a set of underdetermined
equations and has an infinite number of solutions. The low uti-
lization rate of the spectrum leads to an underlying assumption
that X ( f ) is sparse. Thus, the compressed sensing theory can be
applied to transfer (11) to a l0-norm minimization problem

min
�̂∈CL×N

‖�̂‖0 s.t. ‖Y− A�̂‖2 < ε, (18)

where �̂ is considered as the optimal estimation of X.
Problem (18) is an NP-hard problem. A mathematical approx-

imation is to transform it into a group l1-norm minimization
problem by convex relaxation and then reconstruct the signal
using convex optimization strategies, such as basis pursuit (BP).
The l1-norm approach can guarantee the sparse exact solution of
(18) under certain RIP requirement on the sensing matrix [28].
However, in the multicoset scenario, no known RIP guaran-
tee is given for the deterministic construction of the sensing
matrix A, specifically, a partial inverse Fourier matrix by row
selection [36]. Moreover, this kind of approach is character-
ized by high computational complexity thus is unsuitable for
applications that requires real-time performance [37]. Another
more efficient and widely-studied kind of approach is greedy
algorithms, including MP, SOMP, etc [31], [32], [33], [34].
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Greedy algorithms try to find a locally optimal solution to the
l0-norm minimization problem by seeking the signal support set
represented by the channel indexes, namely

S =
{
Si ∈ Z

∣∣1 ≤ Si ≤ L,

− fNyq

2
+ Si − 1

LT
+ f ∈ T , ∃ f ∈

[
0,

1

LT

)}
. (19)

Both MP and SOMP algorithms seek to find the channel with
the next strongest signal components in each iteration cycle.
The only difference is that MP deducts only one maximum
component from the residual but SOMP deducts all the selected
components from the original measurement in one iteration
cycle. Usually, there are two options for the cut-off conditions
for MP and SOMP. One is setting the maximum number of
iteration cycles to K , i.e. the number of channels that contain
signal components. However, for the blind case, the transmis-
sions number and their locations are unknown in advance. An
irrational estimation of K may lead to incomplete or excessive re-
construction. Thus, an alternative cut-off condition εR is applied
to judge whether all the signal components have been deducted
from the residual. A better estimation of εR requires certain prior
knowledge of the noise environment, which will be detailed in
Section V.

The output of both algorithms is set as the reconstructed
support Ŝ as the optimal estimation of S , as well as the LS
signal reconstruction.

III. PROPOSED BLOCK MMV MODEL FOR ACCURATE

SUPPORT RECONSTRUCTION

By taking advantage of the clustered distribution feature of
the actual radio spectrum, the columns of X are often considered
as sharing the same sparse structure and can be simultaneously
processed. The size requirement for Y to perfectly reconstruct
X is deduced in Proposition 1.

Proposition 1: For the MMV problem (15), let X be a row-
sparse matrix with K non-zero rows, the multicoset sampler
should satisfy

p ≥ min{2K, L} (20)

for getting a unique solution of X.
The proof of Proposition 1 is given in Appendix A.
The MMV model treats each column of X as a vector with

the same sparse structure based on the joint sparse character
of x( f ), which means that the elements in the same row of X
are simultaneously treated as zero or non-zero. However, the
real band division is hardly like the same way as L equal-length
intervals.

From CR’s point of view, if both the occupied and the un-
occupied frequency points are contained in a certain row of X,
then that row should be picked out to the recovered support and
all the elements in that row are reconstructed in the recovery
algorithm.

Based on the multiband model and L ≤ 1/(BT ), there exists
two possible cases of the relationship between real transmission
support Ti and the rows in X

1) the corresponding frequency points in Ti are completely
located in a certain row of X;

2) the corresponding frequency points in Ti is distributed in
two adjacent rows of X.

In an MMV problem, the row sparsity K is defined as the total
number of rows that contains corresponding frequency points
in the transmission support T . Consider the worst case where
all Ti in T belong to case 2) and the indexes of the selected
rows all differ from each other, K takes the maximum value
2Nsig. According to proposition 1, to ensure a unique K-sparse
solution, the average sampling rate in the MMV problem should
be no less than 4Nsig/(LT ), which is no lower than twice the
theoretical lower bound.

The reason for this gap is that the joint-sparse assumption
in the MMV model causes “useless” frequency points that
originally belongs to the noise band to have to be picked out as
“signal” because they are model-compliantly distributed to the
same channel with the frequency points that belongs to the real
transmissions. For example, according to the band division in
Fig. 2, a totally of 5 in L channels are occupied, which means 10
cosets are needed to ensure all the transmissions are perfectly
detected and reconstructed, while the theoretical lower bound
indicates a rate 3B that no more than 3 cosets can provide.

As we have noticed that such a sampling rate gap does not
exist in the SMV model because in SMV the elements treated
as non-zero in the sparse vector are truly occupied, while in
MMV the row-sparse hypothesis enlarges the support set un-
necessarily. In the multicoset sampling scheme, we can increase
L to divide the whole spectrum into denser blocks, but setting
L � 1/(BT ) is inefficient because the joint-sparse nature of the
spectrum is not utilized. On the other hand, aimlessly increasing
L will simultaneously require a larger coset number p to guar-
antee the necessary sampling rate, causing more complicated
implementation.

We hereby propose a block MMV model to strive for a lower
unnecessary sampling rate without performance reduction based
on the existing L ≤ 1/(BT ) multicoset scheme, in other words,
to improve detection and reconstruction performance without
increasing the average sampling rate. This approach decompose
(15) into d independent MMV problems:

Yd
i = AXd

i , i = 1, 2, . . . , d. (21)

where Yd
i is the ith block acquired by evenly dividing Y colum-

nwisely into d individual p× N/d submatrixes, namely

Yd
i =

⎛
⎜⎜⎜⎝

Yc1 [id − d] Yc1 [id − (d − 1)] · · · Yc1 [id − 1]
Yc2 [id − d] Yc2 [id − (d − 1)] · · · Yc2 [id − 1]

...
...

. . .
...

Ycp
[id − d] Ycp

[id − (d − 1)] · · · Ycp
[id − 1]

⎞
⎟⎟⎟⎠ ,

i = 1, 2, · · · d. (22)

From (15) it is easy to derive that Xd
i is the corresponding

submatrix of X composed of its ((i − 1)d + 1)th to the (i, d )th

column. Parameter d is called the block coefficient.
The proposed approach is illustrated in Fig. 3. The signal

number Nsig = 3 but they are divided into 5 different channels.
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Fig. 3. A conceptual illustration of the spectrum recovery based on block
MMV model with d = 2.

Therefore, each Yci
( f ) is an aliased spectrum of 5 non-zero

signal components. If we directly reconstruct x( f ) then the row
sparsity K = 5, which means p ≥ 10 is required for perfect
reconstruction. In the case of constant L, we manually divide
each row of y( f ) evenly into 2 blocks. We can find that all
the 1st blocks are aliased by 4 signal components and all the
2nd blocks are aliased by 3 components. Therefore p ≤ 8 is
enough to individually reconstruct from the 1st blocks and the
2nd blocks.

Proposition 2: Let x(t ) be a multiband signal. For the blind
case, if L ≤ 1

BT , then when d →∞, the row sparsity of Xd
i does

not exceed Nsig

The proof of Proposition 2 is given in Appendix B.
Noted that the case d = 1 correspond to the original MMV

model. Proposition 2 indicates that the row sparsity of individual
matrix Xd

i can be reduced as d increases. Based on Proposition
1 and 2, as the partition coefficient d →∞, the minimum sam-
pling rate for perfect reconstruction approaches the theoretical
lower bound 2Nsig/(LT ) by solving each of the d matrixes Xd

i
independently.

In order to reduce the number of calls of the matching pursuit
algorithm. We can regroup all the d models in a block MMV
model

Y = AX , (23)

where the new measurement matrix Y of size d p× N/d is
composed by recombining Yd

i in rows, namely,

Y =
[
Yd

1
T

Yd
2

T · · · Yd
d

T
]T

. (24)

The new sensing matrix A is of size d p× dL composed by d
matrix A on the diagonal.

A = diag(A, A, . . . , A︸ ︷︷ ︸
d

) (25)

And the structure of X can be easily derived as

X =
[
Xd

1
T

Xd
2

T · · · Xd
d

T
]T

. (26)

Because the spanning spaces of all the d blocks in A are
orthogonal, it can be easily proved that spark(A) = spark(A)1

and μ(A) = μ(A) (the definition of μ(·) will be given in (28) in-
dicating the column correlation of the matrix). Thus, with model
(23), the uniqueness of solution (in noise-free case) and the
reconstruction performance (in noise case) can be guaranteed,
as can be done with model (15).

The reconstruction algorithms mentioned in Section II-D can
be directly applied on problem (23), then the original solution
can be acquired by recompose X as X.

With model (23), the improvement of Fig. 3 can be under-
stand from the spectrum occupation perspective. When d = 1,
X is identical to X, which has L rows and 5 of them are
non-identically zero. The estimated occupation rate (if correctly
estimated) is �̂ = 5/L. When d = 2, X has totally 2L rows, in
which 7 rows are non-identically zero. The estimated occupation
rate is �̂ = 7/(2L) < 5/L. As d increasing, �̂ will converge on
the real occupation rate �. Thus, according to Proposition 1,
the necessary sampling rate tend to converge on the theoretical
lower bound (3). In other words, with the same sampling rate,
the detection and reconstruction performance will be improved
as d increasing.

When N is a finite number, d can be chosen as an integer
divisor of N . The selection of d needs to be considered to seek a
balance between detection and reconstruction performance and
computing efficiency as will be detailed in Section VI. Generally,
given a premise that L ≤ 1/(BT ), a small value of d like 2 or
4 can bring obvious performance improvement compared with
d = 1, while a larger value of d may improve the detection
performance and reconstruction accuracy to some extent, but
the computational burden can be unworthy.

As is concerned, the computational burden for using the
block MMV model is analyzed. The time complexity of the
SOMP and MP algorithms for the traditional MMV model are
both O(pLN ) [31]. By replace model (15) with model (23),
the parameters of the problem scale are changed as p ∼ d p,
L ∼ dL and N ∼ N/d . Thus the time complexity for SOMP and
MP algorithms for block MMV model is O(d pLN ), which is
only linearly increased compared to the traditional MMV model
with any d > 1. By limiting d in a reasonable range (p ≤ 10 for
instance), the computation time for the greedy algorithms can
be controlled within the same order.

The proposed block MMV model alleviates the waste of
resources caused by the traditional MMV model when deal-
ing with multiband signals in blind cases. Specifically, for the

1The spark of a matrix is the smallest number of columns that are linearly
dependent.
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traditional MMV model, Nsig transmissions with bandwidth B
have to be reconstructed under an average sampling rate no less
than 4NsigB (four times the Landau Rate). For the block MMV
model, the requirement on sampling rate converges to 2NsigB
(twice the Landau Rate, i.e. the theoretical lower bound) with
block coefficient d increasing. Note that an ideal condition,
where there is no restriction on computational cost, and the
actual sampling rate fs of a single coset is arbitrarily valued,
is given as a premise here for the convergence.

IV. DELAY PATTERN SELECTION FOR SENSING MATRIX

OPTIMIZATION

Proposition 1 is only a necessary condition but not a sufficient
one for perfectly reconstructing X. The property of the sensing
matrix A can have significant effect the performance of recon-
struction. For a multicoset sampler with fixed parameter L and
p, A is determined by the delay pattern C. In [12], a “universal”
pattern refers to a patternC that yields a full-spark sensing matrix
A, namely

spark(A) = p+ 1. (27)

A universal pattern can guarantee the existence of a unique
K-row-sparse solution of (15) for 2K ≤ p in noise-free cases,
and most patterns used in the multicoset sampling scheme can
meet this constraint except for a few exemptions. Furthermore, a
stronger requirement on the regularity of A is always desired for
the approximation approaches to problem (18), especially for the
myopic greedy matching pursuit algorithms. A sensing matrix
A with atoms of stronger orthogonality can help the matching
pursuit algorithms converge faster to the correct support and
improve performance in noised cases [38].

One well-known property to depict the similarity between A
and a standard independent bases is RIP, but it is hard to calcu-
late. Research [39] proved that examining the column correlation
coefficient is a feasible criterion for the reconstruction condition.
When the columns of A meet certain uncorrelation conditions,
the RIP property can be satisfied with high probability. The
column correlation coefficient μ(A) of the sensing matrix A
is defined as

μ(A) = max
1≤i< j≤L

∣∣〈A:,i, A:, j
〉∣∣∥∥A:,i

∥∥
2

∥∥A:, j

∥∥
2

. (28)

The smaller μ(A) is, the more likely A is to meet the RIP
property, then the requirement to signal sparsity is less strict,
heralding a more robust CS system. In the compressed sensing
case, p < L is a fundamental assumption to ensure signal com-
pression. In the case of constant L, the expectation of μ(A) by
randomly selecting a pattern increases as p being reduced [40].
However, considering the hardware complexity, it is impractical
to implement a multicoset sampler with a large coset number.
Thus, it is quite important to preliminary screen the pattern C to
avoid a bad pattern with high μ(A).

An intuitive idea is to go through every possible pattern among
the Cp

L combinations to get a pattern that makes μ(A) minimum,
but this may not be an efficient method. Although a pattern
with the minimum μ(A) is always desired for reconstruction,

Fig. 4. The histogram of the distribution μ(A) corresponding to all the patterns
given L = 30 and p = 8, sorted in descending order.

Algorithm 1: Pattern Selection Algorithm.
Input: L; p
Output: C

1: t ← 1, μ0 ← 1, C0 ← ∅

2: while t ≤ τ do
3: randomly choose a pattern Ct �= Ct−1 from all the Cp

L
possible patterns

4: calculate A
5: G← abs{AHA}
6: μt ← min2≤i≤L ‖G1,i‖
7: if μt < μt−1 then
8: C← Ct

9: end if
10: end while

we show that a relatively small value of μ(A) can serve as a
good approximation to significantly improve the reconstruction
performance.

Fig. 4 shows the distribution of μ(A) of all the possible
patterns given L = 30 and p = 8. About 2.15% percent of the
values are distributed in the range [0.35,0.45), and about 0.13%
percent of the values are distributed in the range [0.35,0.4).
By 100 times of random selection we have 88.6% chance to
get a pattern yielding μ(A) < 0.45; by 1000 times of random
selection we have 99.99999996% chance to get μ(A) < 0.45
and 72.77% chance to get μ(A) < 0.4. Those probabilities
indicate that a pattern with a approximately minimum μ(A)
can be acquired within rather few times of random selections
compared to C8

30 = 5852925 (exhaustive search). Similar results
goes for other combinations of L and p since their μ(A) shares
the similar distribution. We hereby propose a pattern selection
algorithm for the multicoset sampler, as shown in Algorithm 1.

For the multicoset sampler, the module of the inner product
of any two columns of A is

| 〈A:,i, A:, j
〉 | =

∣∣∣∣∣
p∑

m=1

e j2πcm(i− j)/L

∣∣∣∣∣ , (29)
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Fig. 5. The mathematical expectation of minimum μ(A) by randomly select-
ing a pattern from all the possible combinations for τ times for different coset
number p from 5 to 20 (L = 30).

which is only related to the difference |i − j|. Note that
|∑p

m=1 e j2πcm(i− j)/L| = |∑p
m=1 e j2πcm(i− j+L)/L|. Thus,

G = abs{AHA} (30)

is a circulant matrix, where abs{·} denotes modulus operation to
each element in the matrix. For any column in A, we can always
find another column so that their correlation coefficient equals
μ(A). Because ‖A:,i‖2 = √p is constant for all 1 ≤ i ≤ p, we
only need to examine the first row of G to determine μ(A) of
the corresponding pattern.

In Algorithm 1 the number of iterations τ ≤ Cp
L can be

manually set for a balance between computing efficiency and
reconstruction accuracy for general signal. Usually a relatively
small τ can bring significant reduction on μ(A), while the gain
on reduction on μ(A) decreases as τ increasing (an example
is shown in Fig. 5). With τ → Cp

L , E[μ(A)] converges to the
minimum value.

V. PROPOSED DOUBLE-THRESHOLD MATCHING PURSUIT

ALGORITHM

A. Accumulative Error in SOMP Algorithm

The flow of MP and SOMP algorithms are detailed together in
Algorithm 2 for convenience of discussion. The main difference
between MP and SOMP is the choice of atoms (i.e. the columns
of A) for the update of residuals, shown in step 5 and step 6. For
MP, only one atom is selected to be subtracted from the residual
in each iteration, while SOMP updates the residual using all the
selected atoms in each iteration.

Assume that both algorithms are applied to a same dataset.
During the first iteration, a same atom indicated by α̂1 should
be selected by both algorithms so that the residual R1 should be
identical. For the second iteration, we can get α̂(MP)

2 = α̂
(SOMP)
2 =

α̂2 from R(MP)
1 = R(SOMP)

1 = R1. The second residuals are cal-
culated as

R(MP)
2 = R1 − A:,α̂2 (AH

:,α̂2
A:,α̂2 )−1AH

:,α̂2
R1 (31)

and

R(SOMP)
2 = R0 − AŜ2

(AH
Ŝ2

AŜ2
)−1AH

Ŝ2
R0

= R1 − AŜ2
(AH

Ŝ2
AŜ2

)−1AH
Ŝ2

R1, (32)

Algorithm 2: MP/SOMP Algorithm.
Input: Y; A (of size p× L); εR

Output: Ŝ , �̂

1: t ← 1; R0 ← Y; Ŝ0 ← ∅;A0 ← ∅; ER ←∞;
�̂← 0

2: while t ≤ p∨ ER > εR do
3: α̂t ← arg maxi ‖AH

:,iRt−1‖2, i = 0, 1, . . . , L − 1
4: Ŝt ← Ŝt−1 ∪ α̂t

5: At ← A:α̂t
(MP) or At ← AŜt

(SOMP)
6: �̂t ← arg min� ‖Y− At�‖2

7: Rt ← Rt−1 − At�̂t (MP) or Rt ← Y− At�̂t

(SOMP)
8: ER ← ‖Rt‖2

F
9: t ← t + 1

10: end while
11: Ŝ ← Ŝt

12: fill the rows of �̂ indexed by Ŝ with �̂t

where Ŝ2 = {α̂1, α̂2}. Then we apply Schimidt orthogonalization
to AŜ2

:

bα̂1 = A:,α̂1 − A:,α̂2 (AH
:,α̂2

A:,α̂2 )−1AH
:,α̂2

A:,α̂1 , (33)

where bα̂1 is an vector orthogonal to A:,α̂2 in the column space
of AŜ2

, then R(SOMP)
2 can be rewritten as

R(SOMP)
2

= R1 − A:,α̂2 (AH
:,α̂2

A:,α̂2 )−1AH
:,α̂2

R1

− bα̂1 (bH
α̂1

bα̂1 )−1bH
α̂1

R1. (34)

Compared to the residual (31) of MP algorithm, a term
bα̂1 (bH

α̂1
bα̂1 )−1bH

α̂1
R1 is subtracted in the residual of SOMP in

the second iteration. The term indicates the projection of R1

on bα̂1 direction. Because A is an over-complete dictionary in
which most atoms are not orthogonal to each other, the atoms in
A are not likely to be orthogonal to bα̂1 , which lead to excessive
subtraction of the components of other signals on bα̂1 direction.
Some undetected signals may be weakened by the excessive
subtraction in the residual and become hard to be found in
the subsequent iterations. This phenomenon tends to deteriorate
along with iterations.

For MP, the excessive subtraction problem does not exist.
Thus, MP usually achieves a higher detection probability than
SOMP under the same iteration conditions. However, the non-
orthogonal character slows up the convergence of MP, causing
an increased number of iterations and thereby higher false-alarm
probability.

B. Reconstruction Noise Analysis and DTMP Algorithm

To achieve both high detection probability and low false-alarm
probability in the estimated support set, we propose an energy-
based approach to distinguish real transmission support from the
reconstructed signal, detailed as follows.

Recall the signal representation (2) which divide the
frequency-domain received signal X ( f ) into signal component
S( f ) and noise component N ( f ). We write in the similar way
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the discrete matrix form of (2) as

X = S+ N, (35)

where S and N are matriculated PUs’ noise-free transmissions
and noise, respectively. Both S and N are of size L × N en-
tried like (17). S has only K non-zero rows corresponding to
the channel occupation, and N is considered white here with
Gaussian-distributed elements.

Similarly, the reconstructed signal �̂ (defined in (18)) can be
divided as

�̂ = Ŝ+ N̂. (36)

�̂ is the L × N CS estimation of X and only contains card(Ŝ )
non-zero rows. Thus, Ŝ and N̂ are also card(Ŝ )-sparse. Note that
excluding the rows indexed by Ŝ , all the other rows of �̂ will
be set as zero by the CS reconstruction algorithms. Thus, its
noise component N̂ in the reconstructed signal �̂ is not white
on all the L channels anymore. For convenience, we can remove
all the zero rows in (36) and only discuss upon the submatrices
�̂Ŝ , ŜŜ and N̂Ŝ corresponding to the non-zero rows in �̂, Ŝ and
N̂. Similarly we have

�̂Ŝ = ŜŜ + N̂Ŝ . (37)

In (37), �̂Ŝ is the submatrix composed of the non-zero rows
of �, namely

�̂Ŝ = (AH
ŜAŜ )−1AH

ŜAX. (38)

By plugging (35) and (37) in (38), the reconstructed signal �̂Ŝ is
considered in portions of ŜŜ and N̂Ŝ . For the signal component,
we have

ŜŜ = (AH
ŜAŜ )−1AH

ŜAS. (39)

Because the non-zero elements in S only exists in the channels
occupied by the PUs, (39) can be further deduced as

ŜŜ = (AH
ŜAŜ )−1AH

ŜASISS, (40)

where IS is an index matrix of size K × L that picks out the
non-zero rows in S.

When the MP algorithm iteration stops, if Ŝ = S , the recon-
structed signal

ŜŜ = (AH
ŜAŜ )−1AH

ŜAŜISS = ISS (41)

is the correct estimation of PUs’ signal; if S ⊂ Ŝ , namely, the
true support is completely included in the estimation by MP, the
reconstructed signal can be deduced as

ŜŜ = (AH
ŜAŜ )−1AH

ŜAŜIŜS = IŜS. (42)

In this case, ŜŜ is still the correct estimation of S because the
signal components are zero for the unoccupied channels.

Now we move on to the reconstructed noise components N̂Ŝ .
According to the the previous analysis, Ŝ is the correct estimation
of S as long as S ⊆ Ŝ . In this case, the noise component in the
reconstructed signal can be calculated as

N̂Ŝ = (AH
ŜAŜ )−1AH

ŜAN. (43)

Algorithm 3: DTMP Algorithm.

Input: Y; A (of size p× L); εR; σ 2

Output: Ŝ , �̂

1: t ← 1; R0 ← Y; Ŝ0 ← ∅;A0 ← ∅; ER ←∞,
�̂← 0

2: while t ≤ p∨ ER > εR do
3: α̂t ← arg maxi ‖AH

:,iRt−1‖, i = 0, 1, . . . , L − 1
4: Ŝt ← Ŝt−1 ∪ α̂t

5: At ← A:,α̂t

6: �̂t ← arg min� ‖Y− At�‖
7: Rt ← Rt−1 − At�̂t

8: ER ← ‖Rt‖2
F

9: t ← t + 1
10: end while
11: �← σ 2L(AH

St
ASt

)−1

12: Ŝ ← {Ŝi ∈ Ŝt |�̂Ŝi
�̂

H
Ŝi

> C�ii}
13: fill the rows of �̂ indexed by Ŝ with �̂t

The covariance matrix of N̂Ŝ is calculated as

� = E[N̂ŜN̂H
Ŝ ]

= E[(AH
ŜAŜ )−1AH

ŜANNHAHAŜ (AH
ŜAŜ )−1]. (44)

The original noise N follows Gaussian distribution as the previ-
ous assumption. Thus, we have

E[NNH] = σ 2I, (45)

where σ denotes the standard deviation of the noise, then (44)
can be further simplified as

� = σ 2(AH
ŜAŜ )−1AH

ŜAAHAŜ (AH
ŜAŜ )−1

= σ 2L(AH
ŜAŜ )−1AH

ŜAŜ (AH
ŜAŜ )−1

= σ 2L(AH
ŜAŜ )−1. (46)

According to (46), the power of the reconstructed noise is still
constant in each channel indicated by Ŝ . The power of N̂Ŝ in a
certain channel is indicated by the value on the corresponding
position of the diagonal of �.

Denoting the power matrix of the reconstructed signal �̂Ŝ as

� = �̂Ŝ�̂
H
Ŝ . (47)

Based on (47), we apply a secondary filter to the non-
orthogonally reconstructed support Ŝ in Algorithm 2 by com-
paring �ii, the power of the reconstructed signal in the channel
indicated by the ith element of the support, with its corresponding
noise power �ii. When �ii ≤ C�ii (C is a constant hyper-
parameter), channel Ŝi is considered to contain only noise and
should be removed from the final decision. When �ii > C�ii,
channel Ŝi is considered as containing PU’s signal and should
be kept. We hereby propose a double-threshold matching pursuit
(DTMP) algorithm, detailed as Algorithm 3.



4234 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Fig. 6. An example baseband signal spectrum received by the MTS re-
ceiver. The whole sensing range is [−1.536, 1.536]GHz, among which
[−850,−750]MHz and [0,100]MHz are occupied. The multicoset sampler
evenly divides the spectrum into 30 channels with bandwidth of 102.4 MHz,
shown as the grids.

Fig. 7. The reconstruction result of the spectrum in Fig. 6 by SOMP algorithm
for different block coefficients d.

VI. NUMERICAL EXPERIMENTS

A. Signal Generation and Sampling Parameters

The signal used for simulation is generated by the National
Instruments millimeter wave (mmWave) transceiver system
(MTS) [41]. The transmitter can generate up to 8 signals of
100 MHz bandwidth among the [−1, 1]GHz baseband, and
transmit on the 28.5 GHz mmWave band. The receiver receives
the signal by a mmWave antenna and down-converts the signal to
the baseband, then a 3.072GSps Nyquist ADC is used to sample
the in-phase and quadrature components. By discarding a certain
part of the Nyquist samples, a simulated multicoset sampler is
implemented in software.

An example Nyquist spectrum of the received signal in base-
band is shown in Fig. 6, of which the number of transmissions
Nsig = 2 with 100 MHz bandwidth. The whole sensing band,
from the blind CR receiver aspect, is [−1.536, 1.536]GHz.
The frame length of the sampling window is set as 30000
Nyquist samples. The whole spectrum is divided into L = 30
channels, namely, the bandwidth for a single multicoset channel
is 102.4 MHz, which satisfies the condition L ≤ 1/(BT ).

The Nyquist samples are first down-sampled by the software
multicoset sampler, of which the coset number p is set among
5 ∼ 12 and the sampling pattern C is generated in random. The
compressed measurement and sensing matrix is processed by the
block method with the block coefficient d = 1 (classic) d = 2
and d = 4, respectively, and the signal is reconstructed by MP
and SOMP algorithms.

By comparing the reconstructed signal support Ŝ with the
ground truth S , the detection probability Pd and false-alarm
probability Pf are defined as

Pd = E

[∣∣S ∩ Ŝ∣∣
|S|

]
, (48)

and

Pf = E

[ ∣∣Ŝ\S∣∣
L − |S|

]
. (49)

where \ denotes the set difference operation.

B. Performance Gain Delivered by Block MMV Model

MP and SOMP algorithms with d = 1, d = 2 and d = 4
are used for the support recovery in the simulation. The re-
lationship between Pd , Pf and the coset number p are tested
with channel number L = 30, as shown in Fig. 8(a) and (b),
respectively. From the result, when p > 8, both cases (d = 1
and d = 2) can guarantee nearly 100% Pd and Pf under 1%.
When p ≤ 8, the case d = 2 brings improvement on Pd and
reduction on Pf for both MP and SOMP algorithms. From d = 2
to d = 4, the recovered support is further narrowed to exclude
more redundant frequency points that only includes noise. The
signal reconstruction is thereby more precise. An example of
the recovered spectrum with different d is given in Fig. 7. When
d = 1, two consecutive 102.4 MHz channels are reconstructed
as occupied by the 1st transmission located astride the channel
border of 100 MHz bandwidth, causing redundant reconstruc-
tion of 104.8 MHz spectrum which only contains noise. With
d = 2, three sub-channels of width 51.2 MHz are reconstructed
and the redundant reconstruction are reduced to 53.6 MHz.
With d = 4, the 1st transmission band almost fully located in
4 consecutive sub-channels with 25.6 MHz bandwidth and only
2.4 MHz redundant spectrum is reconstructed. Restricted by the
finite sampling points in an observing window, d cannot be set
too large in our experiment.

By properly increasing d the detection and recovery perfor-
mance can be improved to a certain extent. Fig. 9(a) and (b)
shows the trends of Pd and Pf against d . The performance tends
to grow more slowly as d increases from 1 to 6. One of the
reasons is that the �̂ is converging on �. On the other hand,
because the number of samples is inversely proportional to d ,
the reduction of columns in model (23) will weaken the noise
resistance during the support recovery process. Thus, choosing
an appropriate d before the reconstruction to balance the de-
tection performance improvement and computing efficiency is
significant.

From Fig. 6, the signal support T = {T1, T2} is distributed
in 3 channels, where T1 is divided to channel 7 and 8, and
T2 is all contained in channel 16. Thus, when we set d = 1,
the row sparsity of X is K = 3, and the subsequent algorithm
output proves that as well. According to proposition 1, the signal
should be perfectly reconstructed with p ≥ 6. However, from
Fig. 8(a) and (b) we can tell that the Pd does not approaches
100% until p > 8. The reason for the gap is that p = 6 is too
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Fig. 8. Pd (a) and Pf (b) of MP and SOMP against d from 1 to 6 with p = 6, p = 8 and p = 10 (L = 30).

Fig. 9. Pd (a) and Pf (b) of MP and SOMP against coset number p from 5 to 14 with d = 1, d = 2 and d = 4 (L = 30).

Fig. 10. Pd (a) and Pf (b) of MP and SOMP against coset number p from 5 to 14 with pattern selection iteration number τ = 1, τ = 10 and τ = 100 (L = 30,
d = 2).

small to ensure a relatively low column correlation of matrix A.
By applying pattern selection before multicoset sampling, μ(A)
can be effectively reduced, then Pd can be improved.

C. Performance Gain Delivered by Pattern Selection
Algorithm

Fig. 10 shows the detection performance and false-alarm
probability using MP and SOMP algorithms with random pat-
terns (τ = 1) and optimized patterns selected by Algorithm 1
with τ = 10 and τ = 100. The average detection probability
of both algorithms shows an evident increase and the average
false-alarm drops with the increase of τ . That is because the

optimized pattern generates a sensing matrix A with smaller
maximum column correlation coefficient μ(A). The reconstruc-
tion performance can be further improved by continuously in-
creasing τ , but the gain on performance converges to a certain
level according to Section IV. The trade-off between recovery
accuracy and computational efficiency should be considered
before the application stage.

D. Performance Gain Delivered by DTMP Algorithm

The proposed DTMP algorithm is also tested with the MTS
data, and the result is compared with those by MP and SOMP,
shown in Fig. 11. In the recovery process, both the block
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Fig. 11. Pd (a) and Pf (b) of MP, SOMP and proposed DTMP against coset number p from 5 to 16 with same εR = 0.02 (L = 30), for DTMP σ 2 = 16.8.

Fig. 12. Pd (a) and Pf (b) of DTMP with and pattern selection on block MMV model compared with those by MP and SOMP without pattern selection on
traditional MMV model against coset number p from 3 to 12. (L = 30).

coefficient b and the pattern iteration number τ are set as 1
for all three algorithms. The stop condition of the iteration for
both Algorithms 2 and 3 are set as a small value εR = 0.02 to
ensure that S ⊂ St after all iterations. That is to say that the
MP and the DTMP will stop their iteration with the same St but
DTMP will apply a secondary screening to obtain the final Ŝ .
The second threshold of DTMP is set as σ 2 = 16.8 according
to the noise estimation of the radio environment (σ 2 = 16.8
can be approached by detecting a certain band that is known
as idle). From Fig. 11 we can tell that the Pd of DTMP is as
high as that of MP, while the Pf shows evident decrease after
the secondary screening. Given a small εR and an appropriate
σ 2 = 16.8, MP and DTMP share identical Pd higher than that
by SOMP. This is because non-orthogonal algorithms can better
distinguish two occupied channels corresponding to the two
columns in A with relatively high correlation. The Pf of DTMP
is a little higher than that of SOMP and lower than that of MP,
which indicates the redundant noise components selected by
mistake in the preliminary result St have been largely filtered
out during the secondary screening in DTMP. Using the filtered
support for spectrum reconstruction will bring a more accurate
signal estimation.

E. Integrated Optimization Based on the Proposed Scheme

The above-mentioned three aspects of optimization, namely
the block MMV model, pattern selection algorithm and DTMP
algorithm can be used both individually and integrally because
each of them acts on a different step of compressed spectrum

sensing. By integrating the three optimization methods together,
the recovery performance is tested with a practical and reason-
able range of parameters (namely d ≤ 4 and τ ≤ 1000). The
result of Pd and Pf are shown in Fig. 12. Compared with the
result produced by SOMP and MP without pattern selection on
the traditional MMV model, the DTMP algorithm with pattern
selection on the block MMV model shows a great improvement
in reconstruction performance. For ease of view, the range of
coset number p is set as 3∼12 to include the theoretical lower
bound p = 4 for the test data. The SOMP and MP algorithms
with traditional setting d = 1 and τ = 1 achieve perfect support
reconstruction (the detection probability using DTMP reaches
nearly 100% and the false-alarm reaches nearly 0%) at p ≥ 10
and p ≥ 12, respectively, which are higher than 200% of the
theoretical boundary. The DTMP algorithm, together with block
MMV model d = 2 and pattern selection τ = 10, achieves
perfect support reconstruction at p = 7 (160% sampling density
of the theoretical boundary). With d = 4 and τ = 100, which
only lightly increase the computation resources, DTMP achieves
perfect support reconstruction at only p = 5 (120% sampling
density of the theoretical boundary). It is certain that the the-
oretical boundary can be further approached by continuously
increasing d and τ , by taking the above-mentioned accuracy-
efficiency trade-off into consideration.

VII. CONCLUSION

This paper has proposed an optimization framework for
achieving perfect blind multiband signal reconstruction based on
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the multicoset sampling architecture with an average sampling
rate closer to the theoretical boundary. In this framework, three
factors that affect the performance of spectrum reconstruction
have been analyzed and optimized, e.g., the MMV model for
joint sparse data, the selection of sampling delay pattern, and
the accuracy of the reconstruction algorithm.

A block MMV data model is proposed for the first time.
In this model, an original multicoset channel is divided into
multiple narrower blocks. The support set of the spectrum can
be reconstructed more accurately. We proved that the block
MMV model can reduce the minimum sampling rate required
for a multicoset sampler. Through numerical experiments, we
have verified that block MMV can achieve better reconstruction
performance compared with the traditional MMV model with
the same sampling rate. The block coefficient can be adjusted
according to the actual situation to seek a balance between
improving reconstruction performance and computational cost.

The delay pattern of the multicoset sampler can affect the
performance of the sensing matrix. We have proposed a delay
pattern selection algorithm to reduce the column correlation of
the sensing matrix. Compared with a randomly selected pattern,
the pattern selected by the proposed algorithm yields a better
sensing matrix with great probability, thereby improving the
spectrum reconstruction performance.

This paper has also derived the representation method of the
signal and Gaussian noise in the reconstructed signal based
on the compressed sensing theory and thus has established a
double-threshold matching pursuit algorithm that can perform
secondary screening on the reconstructed support set to elim-
inate noise components. Numerical experiments have proven
that this algorithm can achieve a lower false alarm rate than a
non-orthogonal algorithm.

The three optimization methods can be applied integrally.
With integrated optimization, the sampling resources required
for perfect reconstruction have been proved to be reduced from
above 200% to 120% or less with computational-friendly opti-
mization parameters.

APPENDIX A
PROOF OF PROPOSITION 1

We first consider problem (15) as N individual SMV prob-
lems, stated as

Y:,n = AX:,n, 1 ≤ n ≤ N. (50)

Assuming a full row-rank A, for K ≥ L/2, p ≥ L measurements
can guarantee the unique solution of X:,n, regardless of its
sparsity.

For K < L/2, X:,n is K-sparse at the most since X has totally
K non-zero rows. According to the well-known theorem in CS
theory [42], the number of measurements to reconstruct X:,n

satisfies

p ≥ 2K. (51)

QED.

APPENDIX B
PROOF OF PROPOSITION 2

We first deduce the IMV form (11) of model (21) as

yd
i ( f ) = Axd

i ( f ), f ∈
[

i − 1

dLT
,

i

dLT

)
, i ∈ {1, 2, · · · d},

(52)
where yd

i ( f ) and xd
i ( f ) are defined in the same way as y( f ) and

x( f ) in (12) and (13) except for the boundary of f . Specifically,
we emphasize

xd
i ( f ) =

⎛
⎜⎜⎜⎜⎝

X ( f + −L/2
LT )

X ( f + −L/2+1
LT )

...
X ( f + L/2−1

LT )

⎞
⎟⎟⎟⎟⎠ . (53)

When d →∞, we have

fi � lim
d→∞

i − 1

dLT
= lim

d→∞
i

dLT
.

Model (52) becomes a SMV model where

x∞i =

⎛
⎜⎜⎜⎜⎝

X ( fi + −L/2
LT )

X ( fi + −L/2+1
LT )

...
X ( fi + L/2−1

LT )

⎞
⎟⎟⎟⎟⎠ . (54)

In other word, when d →∞ we got x∞i as a set of discrete
samples on the original spectrum X ( f ), where the sampling
interval is 1/(LT ). Since L ≤ 1/(BT ), the interval 1/(LT ) ≥ B.
Thus, at most Nsig elements in x∞i occupied by singles. QED.
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