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The Mirror Transform
Fabrizio Guerrini , Alessandro Gnutti , Associate Member, IEEE, and Riccardo Leonardi , Fellow, IEEE

Abstract—This paper explains how to describe any finite-energy
signal through a unique representation consisting of an ordered
set of positions and a sparse set of signals. This is obtained by
designing an iterative decomposition through a series of mirror
operations around those positions. The purpose is to find at any step
of the decomposition the location that provides for the maximum
decoupling between the even and odd components of the signal
with respect to it. By limiting such even and odd components on
three separate information bearing support, the algorithm can be
iterated at infinity determining a sequence of positions. The per
location information determines the optimal energy decoupling
strategy at each stage providing remarkable sparsity in the repre-
sentation. The resulting transformation leads to a 1-to-1 mapping.
The approach is easily extended to finite-energy sequences, and in
particular for sequences of finite length N , at most N iterations
of the decomposition are required. Thanks to the sparsity of the
resulting representation, experimental simulations demonstrate
superior approximation capabilities of this proposed non-linear
Mirror Transform with potential application in many domains such
as approximation and coding. Its implementation has been made
publicly available.

Index Terms—Transforms, non-linear approximation, signal
decomposition, sparsity.

I. INTRODUCTION

FOR analysis or communication tasks such as classifica-
tion, machine learning, detection, estimation, and coding,

signal decomposition is fundamental for the representation of
information [1]–[3]. In 1822, Joseph Fourier first established
that a periodic wave can be represented as a linear combination
of harmonic components of its fundamental frequency [4]. In
addition, the representation completeness converges at infinity,
in the mean square error sense, to the representation of discon-
tinuous waveforms. About a hundred years later in 1909, Alfred
Haar showed the converse result that a continuous waveform
in L2(R) can be represented as an infinite series of discon-
tinuous functions [5]. More generally, any separable Hilbert
space of infinite dimensionality H can be represented using
some infinite set of functions forming one of its bases. With the
concept of frames, the decomposition may be overcomplete and
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the representation becomes non-unique. Consequently, Fourier
decomposition and/or multiresolution representations [6] are at
the foundation of waveform description and enable new forms
of signal classification, data recovery, denoising, etc.

Lately, more emphasis has been devoted to the study of
alternative linear expansions for representing any vector x∈H:

x =
∑
i∈I

αiϕi
, ∀x ∈ H, (1)

learning different dictionaries that would generate sparse repre-
sentations while considering the typical statistical distributions
of real phenomena leading to particular classes of signals (such
as natural images, individual ratings, population health, etc.).
This has given us the possibility to construct effective alternative
sparse expansions of waveforms [6], [7], with further advance-
ments for compressive sensing, denoising, super-resolution, data
recovery, and many more applications.

When the size of such dictionaries is larger than the signal
dimensionality, there is an infinite number of solutions to de-
compose x. The problem to find the sparsest solution to (1), that
is the solution with the fewest number of atoms ϕ

i
, is generally

non convex and NP-hard. Thus, only approximate solutions can
be found for the general case. Among these, greedy algorithms
and relaxing the non convex sparsity cost by its tight convex
surrogate have been proposed (see, e.g., the recently proposed
atomic norm minimization [8]).

In a broader perspective, there have been attempts to model
signal families as lying on manifolds. These approaches try to
follow signal geometrical features [9]. This can be framed in
the general context of dimensionality reduction, where signals
laying in high dimensional spaces are approximated as a set
of lower dimensional subspaces. Instead of a representation
through a series of projections on a (possibly overcomplete)
set or through a sparse expansion on an accurately designed
dictionary, dimensionality reduction does not usually achieve
completeness, since the signal can only be approximated with no
guarantee on the representation error convergence. In addition,
there is no general solution to the inverse problem of generating
a signal given a manifold, so such problems usually need a
regularization approach (see, e.g., [10]).

Another attempt of sharing an approximate signal representa-
tion paradigm is based on the use of contractive transformations.
Iterative Function Systems (IFS) try to describe a signal through
a set of base signals and a pool of contractive transformations,
so that their iteration converges to an approximate fixed point.
Where IFS are quite attractive from a signal generation per-
spective, when the set of transformations is estimated for signal
analysis purposes, the solution to the inverse problem is difficult,
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and there exist only bounds on the approximation error to the
original signal [11].

Another approach worth mentioning in the family of data-
adaptive iterative methods is the Empirical Mode Decomposi-
tion (EMD) [12], which is a multi-resolution technique which
decomposes a signal into physically meaningful components,
known as Intrinsic Mode Functions (IMFs), which are signals at
the same time scale as the original signal. While this peculiarity
makes such components easier to analyze from an empirical
perspective, such decomposition lacks sparsity properties, since
the representation is given by a certain number of signals with
the same size of the original one, thus leading to an increase of
the overall temporal information bearing support. Furthermore,
the IMFs do not form an orthogonal set, thus there is no simple
way to assess the introduced distortion when considering only a
subset of the IMFs for reconstruction.

In this paper, we want to preserve the idea of a converging
representation where any signal x may be exactly recovered.
Differently with respect to most traditional approaches, this
representation will not come from a projection on the space
(or subspaces) spanned by predefined set(s) of vectors. Instead,
each signal is described through an iterative decomposition into
a possibly infinite and unique set of orthogonal components,
that can be recombined through a chain of summations and
mirroring operations. In contrast with IFS or dimensionality
reduction methods, the proposed approach is generative, which
means that the signal is exactly represented, and an iterative
transformation applied at each step is not found by solving an
inverse problem, but rather it is constructively generated from
intrinsic characteristics of the considered signal.

To achieve energy compaction a mirroring location is selected
at each stage of the proposed iterative transform so as to provide
maximal energy concentration into one of two components of
an additive decomposition. By iterating the decomposition, an
excellent approximation of the original signal can be extracted
by using just a few components, thus becoming intrinsically
sparse. By truncating the decomposition at some level, or by
recombining only the constituent components with the highest
energy, the reconstructed signal will be very close to the original
one. In this paper, it is shown that a much more sparse repre-
sentation can be generated if compared to any linear expansion,
thus leading to a better approximation (in the L2 sense) of the
original waveform.

The peculiar nature of the proposed transform also allows
the display of a number of useful and distinctive properties
besides sparsity, which could turn out beneficial to address many
signal processing problems. For example, since the iterative
decomposition process at the core of the transform is signal
dependent, the transform structure itself represents an alternative
representation that is tied to the generating signal through a
one-way function.

The rest of the paper is organized as follows. Section II reviews
some background while the basic even-odd decomposition is
generalized. Then, the Mirror Transform (MT) is formally intro-
duced in Section III, as the even-odd decomposition is optimized
to achieve maximum energy decoupling and the process is
iterated to form a decomposition tree. A few transform properties

that can be derived from this novel representation paradigm are
given in Section IV. The extension of the MT to the discrete-time
domain is discussed in Section V. Then, Section VI provides
more insights on the peculiar characteristics of the MT through
a series of experiments, mainly allowing to verify its sparsity and
one-wayness properties in the case of discrete-time sequences.
Conclusions are finally drawn in Section VII. In addition, an
implementation of the proposed transform and the relevant code
to run experiments are publicly available [13].

II. BACKGROUND

The objective of this section is to provide some background
on the processing steps that are used throughout the rest of the
paper. We start by briefly recalling the well-known even-odd
decomposition for continuous-time signals (Section II-A). It
is widely recognised that a signal exhibiting either an odd
or even symmetry around its origin optimally decouples the
energy between the two components. In order to exploit this
property more generally, the decomposition process is redefined
in Section II-B, so as to identify an arbitrary mirroring position.

A. Even-Odd Decomposition

The even-odd (or parity) decomposition of a finite-energy
signal, denoted asx(t)∈L2(R), states thatx(t) can be expressed
as the sum of its even and odd parts, respectivelyxe(t) andxo(t),
given by:

xe(t) =
x(t) + x(−t)

2
; xo(t) =

x(t)− x(−t)

2
, (2)

and x(t) = xe(t) + xo(t). For the even signal xe(t) = xe(−t);
for the odd signal xo(t) = −xo(−t). Since L2(R) is a Hilbert
space, with inner product< x(t), y(t) >=

∫
R x(t)y∗(t)dt, such

decomposition is possible ∀x(t). Therefore, since the inner
product < xe(t), xo(t) > is 0, x(t) can be expressed as the sum
of two orthogonal vectors. Defining the energy E as the squared
Euclidean norm of the signal x(t), and since xe(t) ⊥xo(t)with
respective energy Ee and Eo, it is easy to verify that:

E =

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|xe(t) + xo(t)|2dt

=

∫ ∞

−∞
|xe(t)|2dt+

∫ ∞

−∞
|xo(t)|2dt = Ee + Eo. (3)

Let us assume without loss of generality that the original
signal has finite temporal support, say [−T, T ] (which falls under
the general formulation if one admits to zero-pad the signal).
An example of an even-odd decomposition of a real signal is
shown in Fig. 1 for T = 1. The pair of signals xe(t) and xo(t)
obtained through the above decomposition step constitutes an
alternative representation of x(t), since the decomposition is
unique and both signals are needed to reconstruct x(t). The
intuitive importance of such representation stems from the fact
that whenever x(t) has an approximate even/odd character (even
when it is not perfectly symmetric), most of its energy will
be carried by one of the constituent components. As such, the
even-odd decomposition carries the possible symmetric nature
of x(t) around t = 0. As a matter of fact, when performed
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Fig. 1. The original signal x(t) (black) is decomposed into xe(t) (blue) and
xo(t) (red), according to (2).

on a limited support, it can be used to track local reflective
symmetries, as shown in [14].

Following (2), both signals xe(t) and xo(t) have the same
support [−T, T ] of the original signal. However, even if two
signals are needed to represent x(t), the new representation
does not double the information necessary to reconstruct the
original signal. In fact, the parity property of the even and
odd parts implies that only either their causal part (respectively
x
(c)
e (t) = xe(t) · 1(t ≥ 0) and x

(c)
o (t) = xo(t) · 1(t ≥ 0), both

with support [0, T ]) or anticausal part (respectively x
(ac)
e (t) =

xe(t)− x
(c)
e (t) and x

(ac)
o (t) = xo(t)− x

(c)
o (t), both with sup-

port [−T, 0]) is informative and thus sufficient to describe the
entire signal. In other words, given only, e.g., the causal part
of both signals, the anticausal part can be readily obtained by
mirroring the causal one:

xe(t) = x(c)
e (t) + x(c)

e (−t); xo(t) = x(c)
o (t)− x(c)

o (−t).
(4)

Note that, to keep (4) simple, we ignore the fact that the isolated
value in t = 0 needs to be handled separately, which is not an
actual concern for well-behaved signals.

The original signal x(t) is then reconstructed summing xe(t)
and xo(t) as in (2). By retaining just the causal part of the even
and odd parts, their energy is halved, respectively Ee/2 and
Eo/2, and their sum gives E/2.

B. Generalized Even-Odd Decomposition

It can be noted that there are some cases where the parity
decomposition as defined in (2) has not the intended effect of
separating the underlying symmetric signal, even if the orig-
inal signal has simple parity characteristics, only because its
center of symmetry is not in the time origin. Consider for
example a rectangular impulse x(t) = 1(4 < t < 5). Though
the indicator function 1(·) applied on an interval, like the given
x(t), is a perfectly even signal with respect to its midpoint, if
x(t) is decomposed along the lines of (2), its support would
be [−5, 5], and therefore the decomposition would lead to
the signals xe(t) = (1(4 < t < 5) + 1(−5 < t < −4))/2 and
xo(t) = (1(4 < t < 5)− 1(−5 < t < −4))/2. Sincexe(t) and
xo(t) have the same energy, there is no indication of parity by
inspecting their energies.

The reason for this result is that the even-odd decomposition
only considers the parity with respect to the decomposition

Fig. 2. Ternary even-odd decomposition process of a signal.

support midpoint (namely, the time origin for centered supports).
The even-odd decomposition with respect to an arbitrary flipping
point t = tf can be chosen instead, provided that we slightly
extend (2), which becomes:

xe(t; tf )=
x(t) + x(2tf − t)

2
; xo(t; tf )=

x(t)− x(2tf − t)

2
,

(5)

with x(t) = xe(t; tf ) + xo(t; tf ). (5) turns into (2) when tf =
0. In general, tf is not the signal support midpoint.

Let us consider again that the original signal x(t) has finite
support [−T, T ]. After the even-odd decomposition with respect
to tf with |tf |<T , the support of both xe(t; tf ) and xo(t; tf )
is extended to 2T + 2|tf |. This evidence is shown in Fig. 2(a),
with T =1. In the figure, we have fixed an arbitrarily chosen
tf = 0.3. If tf sits to the right of the signal support (i.e.,
tf >0), when the signal x(t) is mirrored around it, obtaining
x(2tf − t), it can be observed that the latter signal now has
support [−T + 2tf , T + 2tf ] (in the figure [−0.4, 1.6]). Thus,
when x(2tf − t) is added or subtracted to x(t) as in (5) the
resulting signals have support which is (at most) the union of
[−T + 2tf , T + 2tf ] and [−T, T ]. If the symmetry point is to
the right of the support center as in this example, the resulting
support is [−T, T + 2tf ], whereas it would be [−T + 2tf , T ] if
tf < 0. Its extent is therefore 2T + 2|tf |.

Nevertheless, the information-bearing support remains 2T
since the added support on one side simply mirrors the other end
of the signal confined in such informative support. In particular,
in both the even and odd parts, the 2|tf | long tails correspond
to the last or first part of the original signal, where one of them
has the sign reversed for the odd part, depending respectively
on whether tf < 0 or tf > 0. Looking again at Fig. 2(a), the
leftmost parts of xe(t; tf ) and xo(t; tf ), i.e., in the interval
[−T,−T + 2tf ], solely correspond to x(t)/2, while for the
rightmost part, i.e., in the interval [T, T + 2tf ], the even signal
is a mirrored copy of the former (which corresponds also to
x(2tf − t)/2), while the odd signal is its sign-reversed mirrored
copy. Clearly, just one of these is actually enough to reconstruct
x(t). Moreover, each signal in the intervals [−T + 2tf , tf ] and
[tf , T ] enjoys the usual mirror symmetry, ensuring that only one
of the supports is informative.



GUERRINI et al.: MIRROR TRANSFORM 2761

In conclusion, the representation still uses the same support
2T as the original signal, when only the informative parts
are kept. Therefore, when the decomposition is implemented
by (5), and the informative supports are separated during the
decomposition along the lines discussed above, three signals
can be considered. First, removing the tail from the even and
odd signals xe(t) and xo(t) output of (5) (henceforth dropping
the tf parameter for convenience) produces a truncated even
signal xe(t) (the overline here indicates truncation by removing
the tail), the (truncated) odd signal xo(t) and what is referred
to as the tail part, xt(t). The tail part, which is chosen as the
even signal in the [−T,−T + 2tf ] and [T, T + 2tf ] intervals
in Fig. 2(a), is just a double copy of that 2|tf | long part of the
original signal which is not involved in the decomposition, that
is the rightmost one if tf < 0 or the leftmost if tf > 0, and thus
leads to a cumulative support extent of 4|tf |. For convenience we
chose the causal part to retain the even signals and the anticausal
part for the odd ones, to ensure that the informative even signal
x
(c)
e (t) and informative odd signal x(ac)

o (t) each have support
T − |tf |. Thus, the informative (causal) support for the even part
is the [tf , T + 2tf ] interval for tf < 0 or the [tf , T ] interval for

tf > 0, and the converse is true for the odd part. The tailx(c)
t (t) is

x(t)/2 in the [T + 2tf , T ] interval if tf < 0 or it is x(2tf − t)/2
in the [T, T + 2tf ] interval if tf > 0, i.e., a 2|tf | support. The
informative signals total support is thus 2T . Fig. 2(b) depicts the
result of such a ternary decomposition.

For the computation of the energy distribution (3) still applies.
In particular, for the signal in Fig. 2(a), it becomes:

E =

∫ ∞

−∞
|x(t)|2dt =

∫ T+2tf

−T

|xe(t) + xo(t)|2dt

=

∫ T

−T+2tf

|xe(t) + xo(t)|2dt+ 2

∫ −T+2tf

−T

|xt(t)|2dt

=

∫ T

−T+2tf

|xe(t)|2dt+
∫ T

−T+2tf

|xo(t)|2dt+ . . .

= Ee + Eo = Ee + Eo + Et, (6)

since xe(t) and xo(t) are still orthogonal, and xt(t) is on a
distinct support. From the definition we have given above, it is
clear that (the same) part of the energy of the even/odd signals
moves from all truncated signal energies to the tail signal energy.
This means that Et ≤ min{Ee, Eo} ≤ E/2. In addition, Et <
max{Ee, Eo}, implying that most of the energy is carried by
one of the truncated signals.

III. THE MIRROR TRANSFORM (MT)

To optimize the parity decomposition just discussed on the
informative part of the produced signals, it is advisable to
suitably choose tf to allow for the best tracking of symmetries
that might be present in the original signal: this is discussed
in Section III-A. When iterated, a tree may be constructed by
repeating the even-odd decomposition process for every compo-
nent. The tree thus becomes ternary, since three signals remain
as presented in Section II-A, that is, the decomposition must
be repeated for each even, odd, and tail component. This tree

represents what we refer to as the Mirror Transform (MT) of the
signal, that we formally define in Section III-B.

A. Finding the Optimal Symmetry Point

In Section II-B we have shown how to perform the even-odd
decomposition around an arbitrary mirroring point tf which
is not the support midpoint, and divide the resulting signals
according to their informative support. Our objective is now to
determine whether an optimal symmetry point t0 can be identi-
fied. If a signal is symmetric (or antisymmetric) with respect to
a certain point t0, performing the even-odd decomposition using
tf = t0 as mirroring point would output the even and odd signals,
xe(t) and xo(t), whose energies are in great disproportion.
Therefore, it is natural to search for all tf for which there is
a maximum decoupling of the energies Ee and Eo associated
to the even and odd parts, as expressed from (6) when tf varies
(see also [15]).

Since the energies Ee and Eo depend on tf , to sum up to E
both possess the same extreme points. The optimal symmetry
point t0 corresponds to the maximum of either Eo or Ee (i.e.,
respectively the minimum of Ee or Eo). The search for t0 is
meaningless when applied to zero-energy signals.

To find t0, let us therefore concentrate on the extrema of the
energy of the even part. For a complex x(t), we have:

Ee(tf )=

∫ +∞

−∞
|xe(t; tf )|2dt=

∫ +∞

−∞

∣∣∣∣x(t)+x(2tf−t)

2

∣∣∣∣
2

dt

=
1

4

∫ +∞

−∞

[
|x(t)|2+|x(2tf−t)|2+2Re {x(t)x∗(2tf−t)}

]
dt,

(7)

where we can safely extend the integral on the whole real axis
without affecting the result for finite-support signals. The first
two terms in the last integral give E as a result, since reversing
the time axis and shifting the origin do not influence the energy
value, thus they are both independent from tf . Hence:

Ee(tf ) =
1

2
E +

1

2

∫ +∞

−∞
Re {x(t)x∗(2tf − t)} dt. (8)

For energy signals, the linear convolution being defined as:

(x ∗ y)(t) =
∫ +∞

−∞
x(τ)y(t− τ)dτ, (9)

we can simply write:

Ee(tf )=
1

2
E +

1

2
Re{(x ∗ x∗)}(2tf ). (10)

The energy of the even part is a function of tf dictated by the
convolution of the original signal with its complex conjugate – a
“conjugate self-convolution” (which is equivalent to the cross-
correlation between the signal and its mirrored version).
Ee admits at least one maximum, since a maximum exists for

the convolution. This can be readily seen since it must be limited
for finite energy signals, as implied by the Cauchy-Schwarz
inequality, and on the other hand that the energy of the even part
cannot be greater than that of the original signal. Furthermore,
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Fig. 3. Revisited previous example using a variable mirroring point, showing
how the energies of the even and odd parts vary as the point moves. The optimal
decomposition point t0 leads to a maximal energy of its associated odd part,
which in this example is larger than the maximal energy with respect to any
other decomposition location for the even part.

since the auto-convolution is an integral function it must be
continuous, so Ee admits at least one extreme point.

Thus, the derivative of Ee(tf ) with respect to tf exists and it
can be studied to find the position of its extreme points:

dEe

dtf
=

d

dtf

1

2
Re{(x ∗ x∗)}(2tf )

=
d

dtf
Re

{∫ +∞

−∞
x(t)x∗(2tf − t)dt

}
. (11)

Under mild assumptions on the continuity of the signal x(t)
and its derivative, we can exchange the order of derivation and
integration, and therefore we obtain:

dEe

dtf
= Re{x ∗ (dx∗/dt)}(2tf ) = −dEo

dtf
. (12)

So, for continuous-time signals, candidate extreme points of
the auto-convolution can be determined by convolving the sig-
nal with the derivative of its complex conjugate, finding its
zero-crossing points, and dividing by 2 the found locations. A
local minimum for Ee corresponds to a complementary local
maximum for Eo and vice-versa. To find the global minimum
between Ee and Eo we must consider both the global maximum
for Ee as well as its global minimum (i.e., associated to the
global maximum of Eo). t0 then corresponds to the location that
leads to the largest value between them.

Fig. 3 shows the evolution of Ee(tf ) and Eo(tf ) (normalized
by E) for the (real) signal shown in Fig. 1. In this case, t0≈
−0.13 yields the maximum value for Eo, which is larger than
the maximum value of Ee. Accordingly this one is selected as
the optimal symmetry point t0. The prevalent odd nature of x(t),
even around t=0, is somewhat evident, but the optimization of
tf proves how considering a negative offset for the mirroring
point guarantees further energy decoupling: in fact,Eo increases
from around 85% of E for tf =0 to more than 95% for tf = t0.
Observe also how the two local maxima ofEe are able to capture
the two milder even symmetries.

For arbitrary signals with no analytical expression there is no
closed-form formula to identify the optimal locations. We need
to resort to numerical computation. For each local maximum,

we need to find which one leads to the absolute maximum
of the auto-convolution (recall that the optimal symmetry lo-
cation is found by dividing by 2 the location of the auto-
convolution). Note that the maximum may not be unique. For a
simple example, consider x(t) = 1(−1 < t < 1) + 1(9 < t <
10)− 1(10 < t < 11) whose auto-convolution (x ∗ x)(t′) has
two maxima in t′ = 0 and t′ = 9 and two minima in t′ = 11
and t′ = 20 with the same absolute value. Of course, the two
(respectively even and odd) symmetries ofx(t) centered at t = 0
and t = 10 are equivalent energy-wise. If such ties occur (rarely
enough for real-world signals), we define by convention the
optimal location: for example, we could arbitrarily choose the
leftmost maximum, or the one nearest to the center of the signal
support (in this toy example the latter solution would lead either
to t′ = 9 or t′ = 11 whereas the former one would select t′ = 0,
but either strategy leads to the same optimal energy decoupling).

B. The Mirror Transform: Optimal Ternary Decomposition
Tree

In order to construct a full energy-compacting decomposition
of the original signal, we are going to iterate the optimal energy
decoupling process on the relevant information bearing even
and odd components, obtained through the previously described
optimal decoupling step. The objective is thus to build a de-
composition tree by iterating the optimal decomposition, so that
an increasing portion of the signal energy is carried by an ever
smaller temporal support at each step.

First, let us assume as usual that the original signal x(t) has
a [−T, T ] finite support. To recap what happens during a single
decomposition step, the process previously explained allows us
to find t0 ∈ [−T, T ] that optimally decouples the energy of the
even and odd part, which have total support 2T + 2|t0|. Once the
optimal symmetry point t0 has been found according to the pro-
cedure detailed in Section III-A, three total information bearing
signals which all together cover the same original support may
be defined. The causal part of the even signal is composed by a
T − |t0| interval extent which is the result of the actual “even”
computation (half the sum of the original signal and the mirrored
version with respect to t0) followed by a 2|t0| interval extent
signal which is simply the tail of the original signal divided
by 2. This also applies to the anticausal part of the odd signal
(except that in this case the tail precedes it), thus the tail can
be considered once. Therefore, a single energy decoupling stage
leads to a ternary decomposition, if the tail part is treated as
a separate signal. The rationale behind this consists in the fact
that the tail part has undergone no modifications and thus can
be meaningfully handled separately. In addition, it has at most
half the energy of the least significant part of the decomposition
whether it is the even or the odd part. The total informative
support remains of 2T extent, the same of the original signal,
divided into three intervals of extents T − |t0| for the generated
even and odd components, and 2|t0| for the tail signal (see
Fig. 2(b)).

This process defines the first level of the transform: the root of
the tree x(t) is decomposed into three first-level children nodes,
determined by the even causal part x(c)

e (t), the odd anticausal
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part x(ac)
o (t), and the tail part xt(t). The first-level nodes can

then be further decomposed into their even, odd, and tail parts.
Thus, iterating the decomposition, keeping the causal part for
even components, the anticausal part for odd components, and
the tail, nine new children nodes are obtained in this second
level. In principle, the decomposition can go on ad infinitum. The
number of nodes on a given level l increases exponentially with
the level number, and the support of the single nodes also tends
to shrink accordingly. The new representation in each level l of
the tree, formed by 3l components, as explained earlier, does not
increase the support, therefore the total support extent remains
2T .

We will now introduce the notation which will be considered
throughout the rest of the paper. At the root of the tree, x(t) is
decomposed into x

(c)
e (t), x(ac)

o (t) and xt(t). We refer to these
latter signals as x(1)

{E}(t), x
(1)
{O}(t) and x

(1)
{T }(t), respectively. They

constitute the first-level nodes of the ternary decomposition tree.
In general, the signal component found at a node in the l level of
the decomposition tree can be identified as x(l)

{S1,...,Sl}(t), where
each Si represents a label taking either the value O, E , or T
to relate to an odd, even, or tail portion of the decomposition.
By convention, when a node identifies the even component its
causal part is preserved, whereas the anticausal part is retained
for odd components. The sequence {S1, . . . ,Sl} uniquely iden-
tifies the position of the node in the ternary tree. We keep the
redundant (l) apex to immediately determine the tree depth
for that node and avoid counting the number of {Si} labels.
Since the symbols {Si} are written in increasing level-order,
when expressing in natural language what a particular node
corresponds to, these symbols should be read in reverse order.
So for example x(3)

{O,O,E}(t) is the signal found at the third-level
node corresponding to the even part of the odd part of the odd
part of the original signal, with respect to each preceding level
optimal symmetry location.

As we did with the tree nodes, we introduce a suitable notation
for the optimal symmetry points for each node. Let t

(0)
0 be

the optimal symmetry point of the root signal x(t). For each
successive level l, we define t

(l)
0 {S1, . . . ,Sl} as the optimal

symmetry point of the corresponding decomposition tree node,
adopting the same convention as the one used to identify the
node signals. As such, t

(2)
0 {E , T } is the optimal symmetry

point of the second-level node associated with the tail signal
of the causal even component of the original signal. To compute
it, after a first decomposition step with t

(0)
0 , the causal even

node x
(1)
{E}(t) is extracted. The next optimal symmetry point

t
(1)
0 {E} is computed on it and the decomposition is performed

again. Finally, t(2)0 {E , T } corresponds to the optimal symmetry

location of the tail signal, x(2)
{E,T }(t). Fig. 4 provides an example

of a 2-level optimal decomposition for a sample signal (level 1
and level 2), defining nine signal components, three associated
to each of the three level-1 decomposition components.

It must be noted that the decomposition tree is actually only
approximately ternary. It is indeed possible that one or two
children nodes are zero-energy signals. This can happen when:

Fig. 4. First-level ternary decomposition of a sample signal x(t). Temporal
extents Ti are reported without further explanation of their inter-relationships

for simplicity. The even node x
(1)

{E}(t) of Fig. 4(b) is the causal part of the blue

signal of Fig. 4(a) in the [t
(0)
0 , T + 2t

(0)
0 ] interval; the odd node x

(1)

{O}(t) of

Fig. 4(c) is the anticausal part of the red signal of Fig. 4(a) in the [− T, t
(0)
0 ]

interval; the tail node x
(1)

{T }(t) of Fig. 4(d) is the magenta signal of Fig. 4(a) in

the [T + 2t
(0)
0 , T ] interval.

a) the tail may not be present, in the case that t0 for the parent
node falls exactly at the middle of its support, or b) the parent
node is perfectly symmetric or antisymmetric (leading to a null
odd or null even child node). When this occurs, there is no need
to extend the decomposition. In this particular context, for tree
coding purposes, an ad hoc symbol may be used instead of t0 to
indicate that the decomposition is terminated for that node. This
fact has no implication at this stage, but it will be reconsidered
later on in Section VI.

To stop the decomposition process different criteria may
be adopted. For example, the decomposition tree could be
interrupted at a certain level S. In this case, the Mirror
Transform contains at most 3S components (since it may con-
tain zero-energy nodes), namely x

(S)
{S1,...,SS}(t), for all labels

Si, i = 1, . . . , S combinations.
An alternative criterion to stop the decomposition of a

given node if its energy falls below a certain fraction of
the original signal energy. Another alternative is disregarding
nodes corresponding to low enough energy components hav-
ing too limited temporal support. Generally speaking when
the decomposition process is stopped, the associated node



2764 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

TABLE I
MT PROPERTIES

always determines a leaf node. The Mirror Transform is rep-
resented by the concatenation of the signals at the leaves,
at their designated level, scanned depth-first according to a
predefined label order, for example, even, odd, and tail. The
overall leaf signal concatenation, which exhibits the same to-
tal support as x(t), is referred to as F . For example, stop-
ping the decomposition tree at the second level yields F =

{x(2)
{E,E}(t), x

(2)
{E,O}(t), x

(2)
{E,T }(t), x

(2)
{O,E}(t), x

(2)
{O,O}(t), x

(2)
{O,T }

(t), x
(2)
{T ,E}(t), x

(2)
{T ,O}(t), x

(2)
{T ,T }(t)}.

The signals in F are not enough to represent x(t) because the
mirroring points are also needed to invert the transformation.
In fact, given the leaf signals in F , the reconstruction process
iterates the inversion of a single decomposition step. In detail,
the reconstruction of a parent node at a given level consists in first
mirroring their even and odd (causal/anticausal) components
around their t0 (retaining and changing the sign respectively),
summing them up, and then concatenating the result to the tail
component. Depending on the value of t0, the tail signal should
be appended before or after, but this is just an implementation
detail. As an example, a level 3 decomposition would reconstruct
the level 2 signal x(2)

{O,E}(t) from x
(3)
{O,E,E}(t), x

(3)
{O,E,O}(t), and

x
(3)
{O,E,T }(t). Once all level 2 parent nodes are reconstructed, the

process is repeated until the root is reached. If t
(l)
0 represent

the optimal temporal locations extracted during the maximal
energy decoupling process, we call them the tree information
G. In the previous example of Fig. 4, for a tree stopped at level
2, G = {t(0)0 , t

(1)
0 {E}, t(1)0 {O}, t(1)0 {T }}. Thus, the MT of x(t)

is fully described by the {F ,G} pair.

IV. MIRROR TRANSFORM PROPERTIES

Here we further expound the significance of the Mirror Trans-
form by enumerating some of its properties. They are recapped
in Table I. Two additional empirical properties, sparsity and
one-wayness, are presented later in Section VI.

A. Basic Signal Transformations

First, we analyze what happens to the MT when some basic
signal manipulations are applied to the root signal x(t).

Since the optimal even/odd decomposition that is at the core of
the transform tracks the mirroring point where the even and odd
component energies are maximally decoupled, it clearly derives
that the MT of the shifted signal x(t− t1), ∀t1, is essentially
the same: F is unchanged, and the shifting term t1 is applied to
each mirroring instant of G, obtaining Gt1 .

Next, multiplying x(t) with a real constant K has no effect
on G, since the energy distribution of Kx(t) among its even
and odd parts remains unchanged. Of course, the total energy is
now K2E, so the same scaling factor K affects each node of the
decomposition tree, so the leaves in F become KF .

Finally, the effect of time-scaling is still quite simple. The
signalx(at), ∀a �=0, represents a time axis expansion or contrac-
tion, plus time-reversal if a < 0, of x(t). The shape of the signal,
however, still has the same parity properties, and therefore the
auto-convolution only experiences the same time-scaling by a.
Thus, the optimal mirroring point at the root of the tree is t(0)0 /a.
Then, this fact cascades along the decomposition tree, obtaining
G/a: in essence, the distance between the mirroring point of
the children with respect to that of the parent is scaled by a
compared to the original tree. For example, if for a given x(t)

we have t
(0)
0 = 1 and t

(1)
0 {E} = 2, for x(2t) we would have

t
(0)
0 = 1/2 and t

(1)
0 {E} = 1. The leaves of F are time-scaled by

a, say Fa. Of course, the energy is also scaled by a, as reflected
by the shrinking support.

B. Nodes Orthogonality and Energy Preservation

In Section II-B, we cited the fact that the generalized even-odd
decomposition produces the even and odd signals xe(t) and
xo(t), that are orthogonal when using the scalar product defined
in L2(R). By multiplying the two signals by the indicator
function to only take the causal and anticausal part, even with-
out detaching the tail signal, orthogonal components are still
obtained, because they have disjoint supports. In the end, this
decomposition step determines an orthogonal projection on a
subspace of the original signal. In such a subspace, the even
and odd parts are orthogonal to each other, and they can be
considered as new, “independent” signals. The evenness and
oddness nature of the considered signals enable at reconstruction
to revert the projection from their halved causal or anticausal
parts.

Moving on to the Mirror Transform of Section III-B, the
proposed framework also constructs a third signal, the tail signal
xt(t). Considering its disjoint support with respect to both the
truncated components of xe(t) and xo(t), it turns out that it
is orthogonal to both of them. Therefore, our globally optimal
decomposition separates the parent node into three children
nodes that are orthogonal to each other. In Fig. 5, there is
an approximate depiction of the effects of the decomposition
process adopting a vector space representation (the approximate
nature of the representation comes from the inherent limitation
conveyed by the used 3D plot). In the end, the decomposition
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Fig. 5. Even-odd ternary iterative decomposition presented on a 3D plot. The
original signal x(t) (black) is decomposed into three orthogonal vectors, the
truncated even signal xe(t) (blue), the truncated odd signal xo(t) (red), and the
tail signal xt(t) (gray). We have decided to align the x-axis and the z-axis along
the direction of xe(t) and xo(t), respectively. They are in turn split into their
causal and anticausal parts (we omitted this operation for the tail signal), which
are again orthogonal to each other. They represent the first-level nodes of the

decomposition tree, respectively x
(1)

{E}(t), x
(1)

{O}(t), and x
(1)

{T }(t). In the ovals,
we only sketched the next iteration of the decomposition applied to the children
nodes, without tail separation. Recall that for each decomposition a vector is
split by selecting the optimal t0 into the 2 orthogonal components that have the
associated maximal and minimal norms.

constructs three already orthogonal vectors, and it is important
to highlight that the resulting children nodes x

(1)
{E}(t), x

(1)
{O}(t),

andx(1)
{T }(t) remain orthogonal, after taking the causal/anticausal

parts through the application of the indicator function, and
separating the tail.

Given the orthogonality property of the even/odd signals, their
energies can be summed as in (6). However, as a consequence
of keeping just the causal and anticausal parts to form x

(1)
{E}(t)

and x
(1)
{O}(t), the sum of the energy of the first-level children

nodes is not E. To preserve the energy of the original signal
into its resulting children nodes, it is sufficient to introduce a
scale factor

√
2, to compensate for the discarded mirrored parts

of the even and odd children. Of course, this can be done for
any tree level, which leads to having the same energy E when
summing the energy of all nodes in each tree level. It should
be observed that this expedient does not alter in any way the
tree information G, since as we stated the tree information is
invariant to amplitude scaling. However, this caveat is important
for the sparsity experimental evaluation which will be reported
later on in Section VI.

C. Infinitely Precise Reconstruction of Any L2(R) Function
From Its Coded MT-Decomposition

An interesting consequence of the preservation of the L2-
norm in the construction of a fully invertible representation is
the ability of the MT to approximate any finite-energy signal
x(t) using a peculiar algorithm. Let us suppose we know its
partial MT decomposition (i.e., not computed ad infinitum), so

Fig. 6. Exemplification of the single branch tree property. Just the first 4 levels
are shown. Each level is represented by concatenating the node signals at that
level. The fourth level in Fig. 6(b) converges to p(t) in Fig. 6(a) except for a
constant. (a) Constant decomposition. (b) Decomposition of 24 periods of p(t).
Level 4 converges to 4p(t).

{F ,G} defines the optimal decomposition tree up to a certain
precision level. Consider an arbitrary truncation of such a tree
(e.g., by keeping only nodes with energy larger than a threshold),
and the nodes associated with the truncated tree. We may keep
the tree deep enough, to prevent introducing errors by removing
too many low energy nodes from the start.

We may now replace the node waveforms by approximating
pairs of even or odd functions (as a simple example, a rectangular
impulse and the difference between 2 rectangular impulses,
respectively), so as to be able to regenerate an approximation of
x(t), which crucially lies at a known distance from it. This algo-
rithm can be optimally driven by incrementally adding nodes in
a ranked fashion so that the rounded node waveforms introduce
the least approximation error with respect to their individual
representation. The distance at which the reconstructed signal
lies simply corresponds to the sum of the energy loss of the
errors introduced in the approximation of the nodes.1

Overall, since the MT leads to a very compact representation,
a simple generative algorithm is constructed, obtained by the
inverse MT reconstruction of a limited set of approximated
nodes of F and the tree information G.

D. Single Branch Trees

When a node is a perfectly even(/odd) signal, the optimal
symmetry point is the midpoint, so there is no tail child node
and the odd(/even) child node is just a zero-energy signal. Thus,
the subtree associated to the latter stops, and so there is a single
child spawning from the symmetric parent node. The resulting
child may or, more likely, may not be symmetric: in the latter
case, it spawns a standard ternary subtree.

Consider now the decomposition of the constant signal
1(0, T ), which is illustrated in Fig. 6(a) until the fourth level.
Since it is an even signal, the first level of the decomposition

1Alternative strategies may be considered so as to limit the size of the tree
decomposition, for example, at any step, decomposing the node that introduces
the largest approximation error in its waveform with respect to all other nodes.



2766 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

consists in the single even node, which of course is again a
constant, with half the support of the original signal. In Fig. 6(a),
each level is represented by concatenating the node signals at
that level, indeed the first level is formed by the constant (even
node) and the zero signal (odd node). This decomposition goes
on ad infinitum, forming a single branch tree with each level
having a single node with a constant signal and support shrunk
by half.

Employing the energy normalization discussed in Section IV-
B, to keep the energy contained in each level equal to that of the
root node (in this case T ), the magnitude of the constant signal
in the l-th level node is 2

l
2 . Note that the support of the node as

the decomposition level goes to infinity tends to 0, but the limit
signal is in fact not a Dirac delta (that would have occurred if
we imposed constant area instead of constant energy going from
one level to the next).

This example can be generalized as follows. Divide the initial
support into 2k intervals of equal length, say Ij , j = 1, . . . , 2k.
Then build the signal x(t) =

∑
j Hij(2

k) · 1(Ij), where H(2k)

is the Hadamard matrix and Hi(2
k) is its i-th row. In essence,

instead of just taking the constant signal (the first row of the
matrix), the signal x(t) is an alternating square wave of either
even or odd symmetry, such that bisecting it (up to k times)
the resulting signal is still either even or odd. In this case the
resulting decomposition tree is still a single branch tree, but
instead of the even node always surviving, a combination of
even and odd nodes do for the first k levels, depending on the
selected row of the Hadamard matrix. Then, the surviving node
becomes an even constant signal and the previous case applies
(see an example in Fig. 6(b), where the last row of the Hadamard
matrix is considered).

There are other instances where single branch subtrees
emerge. Take a signal p(t) with support [0, T ], which is ei-
ther perfectly even or odd (t0 = T/2). Now consider x(t) =∑2N−1

n=0 p(t− nT ), that is, 2N repetitions of p(t), with support
[0, 2NT ]. This is of course a perfectly even signal with midpoint
in t0 = 2N−1T , so an even single child is built, consisting in
2N−1 repetitions of p(t), which is again even and is decomposed
into a single even child with 2N−2 repetitions of p(t). Such
single branch tree goes on for the first log2(N) levels of the
decomposition tree. In l = log2(N), the even child is in fact
p(t), and from this point on the decomposition follows that of
p(t): a last single branch decomposition, usually followed by
a ternary subtree. Therefore, by repeating p(t) 2N times, we
have added a single branch tree log2(N) levels deep on top of
the original MT of p(t) (see again Fig. 6(b)). Note that single
branches do not occur when an odd number of repetitions of p(t)
is instead considered, unless p(t) is already symmetric.

E. Uniqueness

A signalx(t) is uniquely represented by the Mirror Transform
{F ,G}, the leaves and the tree information, assuming that the
decomposition has stopped according to some criterion. The
transform {F ,G} is generated by x(t) through a deterministic
process, and vice-versa, x(t) is uniquely reconstructed starting
from the leaves and the tree information. We ascertain in what

follows if any of the two components is enough to infer x(t).
The answer is no.

First, the leaves F alone are not sufficient to represent x(t):
an immediate proof is the decomposition tree nodes which do
not change when the root is shifted, as stated in Section IV-A.

Instead, it is more subtle that the tree G does not uniquely
identify x(t). Let us consider a node signal anywhere in the tree,
say, z(t), with energy EZ , and its associated optimal mirroring
point t0, found as usual by applying the procedure described in
Section III-B. The decomposition produces two children nodes
ze(t) and zo(t), with respective energy EE and EO, satisfying
EZ = EE + EO: we do not bother with separating the tail
because we want t0 to remain fixed, therefore the tail plays
no part in this discussion. It can be assumed without loss of
generality that t0 corresponds to the maximum of the even part
energy. Recall that t0 is found by computing Ee(t0), the even
part energy varying the mirroring point, and then taking the
maximum, so the maximum of Ee(tf ) is EE at the t0 time
instant. If ze(t) is multiplied by a factor K > 1, the position of
the maximum ofEe(tf ) is not changed, since the entire function
is simply multiplied by K2, and EE is scaled by the same factor.
It is easy to show that, to keep the energy of the parent z(t)
equal to EZ , the odd part zo(t) must be multiplied by C with
C2EO = EZ −K2EE . As C < 1, the maximum of Eo(tf ) is
still smaller than the maximum ofEe(tf ), which is still located at
t0. Therefore, the signal reconstructed byKze(t) andCzo(t) has
the same energy as z(t) and admits the same optimal mirroring
point t0. Furthermore, the entire successions of the optimal
mirroring points, generated starting from the nodes Kze(t) and
Czo(t), are not altered with respect to the ones associated with
ze(t) and zo(t), as remarked in Section IV-A. This shows that, by
applying this procedure to any node, it is possible to construct
infinite signals that all have the same tree G information. Of
course, the leaves are different because they have been scaled
in the process, so F is needed to uniquely reconstruct the root
signal.

V. THE DISCRETE MIRROR TRANSFORM

The Mirror Transform can be cast in the discrete domain as
well. The formal definition of what we refer to as the Discrete
Mirror Transform (DMT) is given in Section V-A. Furthermore,
the Mirror Transform, both for continuous- and discrete-time
signals, can be easily extended in multidimensional spaces. For
the sake of brevity, only the case for 2D finite energy sequences
is discussed in Section V-B, as it leads well to the possibility to
perform experimental evaluation on real data.

A. DMT Definition in 1D Domain

Let us consider a discrete-time, finite-energy sequence x[n] ∈
�2(Z). Assuming that the support of x[n] is 1, . . . , L with L
finite, (5) becomes:

xe[n;nf ] =
x[n] + x[2nf − n]

2
; xo[n;nf ]

xo[n;nf ] =
x(n)− x[2nf − n]

2
, (13)
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where x[n] = xe[n;nf ] + xo[n;nf ]. Searching for the optimal
symmetry point nf =n0 still consists in choosing the one that
lets either Ee or Eo be the global maximum. As a note, always
choosing nf as the sequence midpoint (namely, applying the
standard even/odd decomposition) in place of the optimal sym-
metry point provides approximately balanced decomposition
trees strictly related to the Walsh-Hadamard Transform (WHT)
of the sequence [16], the only difference being the order with
which the transformed coefficients may be output by the standard
WHT (see [17] for more details).

In the discrete case, it is better to directly evaluate the energy
of the even sequence rather than its derivative, since the discrete
domain is not suited for differential operands. Then:

Ee(nf )=
+∞∑

n=−∞
|xe[n;nf ]|2=

+∞∑
n=−∞

∣∣∣∣x[n] + x[2nf − n]

2

∣∣∣∣
2

=
1

4

+∞∑
n=−∞

|x[n]|2 + |x[2nf − n]|2 + 2Re{x[n]x∗[2nf − n]}

=
1

2
E +

1

2

L∑
n=1

Re{x[n]x∗[2nf − n]}. (14)

Using the linear convolution for energy sequences yields:

Ee(nf ) =
1

2
E +Re{(x ∗ x∗)}[2nf ], (15)

so in the end:

2n0 = arg max
m

|Re{(x ∗ x∗)}[m]|. (16)

The optimal symmetry point n0, found through (16), cannot
be arbitrary, but it must either be an integer or a half-integer posi-
tion. Forx[n], n=1, . . . , L,n0 can then take values in the 2L−1
cardinality set {1, 3

2 , 2, . . . , L−1, L− 1
2 , L}. In the integer case,

by definitionxe[n0;n0] = x[n0]whereasxo[n0;n0] = 0, which
is non informative.

Note that again the decomposition does not increase the
support needed for the original signal reconstruction, as it was
for the continuous-time case. In addition, (3) still holds, provided
the integration operator is substituted by the summation one:

E =
L∑

n=−1

|x[n]|2 =
∑
n

|xe[n] + xo[n]|2

=
∑
n

|xe[n]|2 +
∑
n

|xo[n]|2 = Ee + Eo, (17)

where the summation limits for the even and odd sequences may
extend beyond [1, L], depending on n0. Again, we retain the
causal part of the even subsequence x

(c)
e [n], and the anticausal

part of the odd subsequence x
(ac)
o [n], whose support is one

sample shorter with respect to x
(c)
e [n] for an integer valued

n0. These two subsequences define non-redundant informative
parts. The tail subsequencext[n] can then be separated as before,
and it corresponds to the part of x[n] not involved in any compu-
tation. Additional details on this single step of the decomposition
process in the discrete case, complete with graphical depictions,

can be found in the accompanying documentation of the publicly
available code [13].

The decomposition process then repeats the single decom-
position step in an iterative fashion. Given the discrete, finite
support nature of the signal domain, the iteration is bound to
stop when single-sample sequences are encountered, which are
thus necessarily decomposition tree leaves as they cannot be
further decomposed: a situation not found for continuous-time
signals. Therefore, decomposition trees for discrete-time, finite
support sequences are always finite. Of course, zero-energy
sequences in any node can still occur as it was for continuous-
time signals, so the corresponding subtree could also be
trimmed.

The notation introduced in Section III-B for continuous-time
decomposition trees can be used for discrete-time sequences,
allowing all the nodes to be specified by x

(l)
{S1,...,Sl}[n], as l

varies, with all the symbols sharing the meaning as for the
continuous-time case, in particular Si which is still either E ,
O, or T . Likewise, the optimal symmetry point of a given node
can be defined by n

(l)
0 {S1, . . . ,Sl}, as l varies. In the end, the

Discrete Mirror Transform (DMT) of x[n] is fully described by
the {F ,G} pair, where F identifies the set of the tree leaves and
G the set of optimal symmetry locations.

Algorithm: The complete algorithm expressed as pseudo-
code is given in Algorithm 1. Therein, the single step decompo-
sition that we have just described is referred to as “Single step”.
This operation outputs the three even, odd, and tail children
nodes (or sometimes only two of them, see footnotes a and b).

After finding the n0 for the input sequence (line 1), encoding
it in G (line 2), and completing the first decomposition step
(line 3), the decomposition process continues in ever deeper
levels until all the nodes in a given level are leaves (nodes with
length 1) which no longer require to be decomposed (line 20).
In fact, when the node is a leaf it is encoded in F and no further
decomposition takes place (lines 16–17). In a given level l, not
every combination {S1, . . . ,Sl} corresponds to a tree node,
since the tree could have stopped at a previous level because
a leaf was obtained (or a pruning condition applied, see footnote
c). For example, in Fig. 7, for l = 3 only 4 label combinations
are non-empty nodes (and in this case, all of them correspond
to leaves, so the decomposition does not proceed to l = 4).

A non-leaf node, instead, undergoes the single step decompo-
sition process as before (lines 11–13), building children nodes in
the next level. As mentioned, when tree pruning is employed (see
Section VI-A), prior to the decomposition process each non-leaf
node is considered for pruning (line 9). If the pruning condition
is met (i.e., zero or negligible energy node), the appropriate
symbol 0 is encoded in the tree information G (line 10) and the
decomposition for this node stops.

Remarks: Using the ternary decomposition process on dis-
crete sequences may lead to the construction of a very unbal-
anced tree. In fact, the decomposition generates three sequences:
the even and odd sequences support does not differ by more than
one sample, but the tail signal may be much longer or much
shorter. The total support remains that of the parent node. Thus,
when considering the complete decomposition of a length L
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Algorithm 1: 1D DMT algorithm.

Require: Original sequence x[n], n = 1, . . . , L
Ensure: {F ,G}
1: Level l = 0, find n

(0)
0 ⇐ (16)

2: Encode n
(0)
0 in G

3: Build children nodes:⎧⎪⎪⎨
⎪⎪⎩

x
(1)
{E}[n]

x
(1)
{O}[n]

a ⇐ Single step

x
(1)
{T }[n]

b

4: repeat
5: l = l + 1
6: for non-empty nodes at level l, x(l)

{S1,...,Sl}[n] do

7: L ⇐ length (x(l)
{S1,...,Sl}[n])

8: if L > 1 then
9: if Pruning condition c then

10: Encode symbol 0 in G
11: continue
12: end if
13: Find n

(l)
0 {S1, . . . ,Sl} ⇐ (16)

14: Encode n
(l)
0 {S1, . . . ,Sl} in G

15: Build children nodes:⎧⎪⎪⎨
⎪⎪⎩

x
(l+1)
{S1,...,Sl,E}[n]

x
(l+1)
{S1,...,Sl,O}[n]

a ⇐ Single step

x
(l+1)
{S1,...,Sl,T }[n]

b

16: else if L = 1 (this node is a leaf) then
17: Encode single-valued x

(l)
{S1,...,Sl}[n] in F

18: end if
19: end for
20: until there are no nodes at level l with L > 1

a The odd child node may not exist if n0 is integer and
L = 2. In that case, only the even and tail leaves are
created.
b The tail child node may not exist if n0 is the midpoint.
c This condition applies if tree pruning is employed. See
Section VI-A and Fig. 7(c). Zero-energy nodes are always
pruned.

sequence, its L single-valued leaves may be all over the tree
levels, depending on the particularn0 associated with each node.

The number of decomposition levels is minimized when-
ever symmetry points are found near the midpoints since the
maximum length of the children even/odd sequences is limited
by approximately half the one of the parent sequence and the
tail node in such case remains very short. On the other hand,
whenever symmetry points occur near the end points of the
original sequence, this generates very short even/odd sequences
and a very long tail, almost as long as the parent sequence. If
this latter case happens frequently in the decomposition process,
the number of decomposition levels is bound to increase. In the
extreme cases, if the global symmetry is always found in the

Fig. 7. An example of ternary tree for a sample length-11 sequence x[n]. In
(a), the decomposition tree of an example length 11 sequence is depicted. In
(b), the optimal decomposition points of G inside the black rectangles allow
to infer the children node lengths generated from a parent node, and thus the
transform coefficient positions (red circles). In (c), the same ternary tree pruned

after zeroing the coefficients derived from the node representing x
(1)

{T }[n]. The
entire subtree originated from that node can be removed (dashed lines), and the
associated n(1){O} is replaced with the symbol 0. The cardinality of G is thus
reduced by the resulting pruning.

midpoint of any given node the number of decomposition levels
is �log2 L�, while if it is always put on the first or last sample
the number of levels tends to L.

Nevertheless, there are always at most L− 1 values in G.
In fact, a length 2 sequence has a single n0 that generates two
leaves, stopping the decomposition. A length 3 sequence can
be decomposed either into three leaves or a leaf and a length 2
sequence, thus it needs at most two n0. The preceding statement
can thus be inferred by induction.

The computational complexity of the decomposition process,
as expected, depends on the shape of the original sequence.
Assuming a real-valued input sequence of length N power
of 2, and assuming to employ radix-2 algorithms to compute
the convolution, a single step of the decomposition involves
N/4 · log2(N) complex multiplications. Following the just ex-
pounded considerations on the number of levels, in the best case
scenario, where the optimal symmetry point is always in the
midpoint, the overall complexity is O(N · (log2 N)2), whereas
in the worst case scenario, where the optimal symmetry point is
always on the edge, the overall complexity is O(N2 · log2 N).
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Furthermore, the decomposition of a length N sequence
requires 2N additions and a flipping operation. Therefore,
O(N · log2 N) additions, for the best case scenario, or O(N2)
additions, for the worst case scenario, are also needed. The
flipping operations are at most N − 1, depending on the tree
shape.

A further observation concerns the synthesis, or reconstruc-
tion, process of the DMT. We want to highlight that the knowl-
edge of the {F ,G} pair is sufficient to reconstruct the original
signal. This may not appear clear at first glance, since the posi-
tion of the leaves, which is a necessary information to reconstruct
the original signal, is not directly present in G. However, note
that the position of the leaves can be extracted from G by reading
the optimal positions n0 in increasing level order as these values
allow to determine the sequence length of the children nodes.
The tree leaf values, i.e., the transform coefficients in F , that
are located all over the tree in different levels, can be identified
by those nodes with length 1, ordered in the same fashion. The
example that follows in the next paragraph helps to clarify this
point.

As a last remark on the reconstruction process, we note that it
has a computational complexity much lower than the decompo-
sition stage. To reconstruct a length N node, at most 2 mirroring
operations (that is, creating a copy of the even and odd children
to build back the even and odd sequences) andN additions, with
no multiplications besides some sign reversing, are needed. To
reconstruct the perfectly balanced tree, the number of required
additions is N · log2 N , whereas for the perfectly unbalanced
tree O(N2) additions are needed.

Example: As an instructive example, consider Fig. 7. A
length-11 sequence x[n], with support n=1, 2, . . . , 11 is de-
composed in Fig. 7(a). The optimal symmetry point of x[n] is
n
(0)
0 =3.5. Therefore, in the first level, the even childx(1)

{E}[n] (left

branch) is 1/2 · {42+34, 16+24, 0+4}, the odd child x
(1)
{O}[n]

(center branch) is 1/2 · {4−0, 24−16, 34−42} (recall the we
retain the anti-causal part of the odd sequence), and the tail
child x

(1)
{T }[n] is 1/2 · {4, 4, 3, 3,−2}.

Regarding the second level, for x(1)
{E}[n], which is a length 3

sequence, n(1)
0 {E}=1.5, so it is decomposed into three leaves:

x
(2)
{E,E}[n] is 1/2 · {20+38}, x(2)

{E,O}[n] is 1/2 · {38−20}, and

x
(2)
{E,T }[n] is 1/2 · {2}. For x

(1)
{O}[n], which is also a length 3

sequence,n(1)
0 {O}=2.5, so it is decomposed into three leaves as

well: x(2)
{O,E}[n] is 1/2 · {−4+4}, x(2)

{O,O}[n] is 1/2 · {4−(−4)},

and x
(2)
{O,T }[n] is 1/2 · {2}. Then, n(1)

0 {T }=2.5 for the length

5 x
(1)
{T }[n] generates the length 2 even child x

(2)
{T ,E}[n]=1/2 ·

{1.5+2, 1.5+2}, the length 2 odd child x
(2)
{T ,O}[n]=1/2 · {2−

1.5, 2−1.5}, and the tail leaf x(2)
{T ,T }[n]=1/2 · {−1}.

Finally, in the third level, only 4 leaves are present:
x
(3)
{T ,E,E}[n], x

(3)
{T ,E,O}[n], x

(3)
{T ,O,E}[n], and x

(3)
{T ,O,O}[n], result-

ing from the decomposition of x
(2)
{T ,E}[n] and x

(2)
{T ,O}[n], with

n
(2)
0 {T , E} and n

(2)
0 {T ,O} both equal to 1.5 (so the leaves are

the semi-sum and semi-difference of the parent node values).

In the end, the DMT of x[n] is given by the {F ,G} pair,
where F is the set of 11 leaves. Their positions in the tree
are not explicitly specified in F , but are encoded through
G = {3.5, 1.5, 2.5, 2.5, 1.5, 1.5}, which is the succession of n0

obtained above.
Therefore, there is indeed no need to include the length of

the nodes in the tree information, as shown in Fig. 7(b). Since
the first value of G is n

(0)
0 =3.5, as a consequence of how the

decomposition works and knowing L, the lengths of x
(1)
{E}[n],

x
(1)
{O}[n], and x

(1)
{T }[n] are deduced as 3, 3, and 5, respectively.

The next values in G are associated with the second level, thus
n
(1)
0 {E}=1.5, n(1)

0 {O}=2.5, and n
(1)
0 {T }=2.5. All the chil-

dren nodes descending from the even and odd nodes are length-1
nodes, as well as the tail of the tail node: these correspond to
the first seven transform coefficients in F . Instead, x(2)

{T ,E}[n]

and x
(2)
{T ,O}[n] are length-2 nodes, which generate the final four

leaves in the third and last level. The complete tree structure,
including the leaf positions, is thus obtained, and the original
sequence can then be reconstructed starting from {F ,G}.

B. Extension to 2D Domain

Consider a 2D sequence x[m,n], in this case real-valued
for simplicity, and having finite support D with M rows and
N columns. Then, a generic point reflection even/odd decom-
position may be defined around an arbitrary point [mf , nf ].
Formally, we can write:

xe[m,n;mf , nf ]=
x[m,n] + x[2mf −m, 2nf − n]

2
;

xo[m,n;mf , nf ]=
x[m,n]− x[2mf −m, 2nf − n]

2
.(18)

In order to find the optimal symmetry point [m0, n0], the main
steps in Section V-A for the 1D domain can be properly adjusted
to the 2D domain. In the end, the energy of the even part, as the
point [mf , nf ] varies, can be written as:

Ee(mf , nf )=
1

2
E +

1

2

∑
(m,n)∈D

x[m,n]·x[2mf−m, 2nf−n]

︸ ︷︷ ︸
(:=x∗∗x)[2mf ,2nf ]

,

(19)
where the last term is the 2D discrete linear convolution, using
the symbol ∗∗. Then, the optimal [m0, n0] point that maximally
splits the energy of xe and xo is computed as:

[2m0, 2n0] = arg max
(h,k)

|(x ∗ ∗x)[h, k]| . (20)

In the 2D domain we can also examine symmetries with
respect to an arbitrarily oriented line, instead of a generic point.
For example, by considering n=nf as the vertical reflection
line, the even/odd components of x[m,n] with respect to it are
expressed as:

xe[m,n;nf ] =
x[m,n] + x[m, 2nf − n]

2
;

xo[m,n;nf ] =
x[m,n]− x[m, 2nf − n]

2
. (21)
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In this case, searching for the optimal n0 still uses the 1D
convolution instead:

Ee(nf ) =
1

2
E +

1

2

∑
(m,n)∈D

x[m,n] · x[m, 2nf − n]

︸ ︷︷ ︸
(x∗x)[2nf ]

;

2n0 = arg max
h

|(x ∗ x)[h]| . (22)

Of course, when considering the reflection with respect to
m=mf , that is using a horizontal reflection line, the same result
is obtained by just applying the mirroring in the orthogonal
direction.

All considerations made previously for the DMT can also
be extended to 2D sequences, regardless of the considered
reflection. It must be highlighted that by iterating the optimal
even/odd decomposition with respect to a horizontal or vertical
line, it will converge to a number of 1D sequences. For example,
for the decomposition using the vertical reflection plane the
support (namely, the number of columns) of the node sequences
decreases with the tree depth. In the end the original 2D sequence
x[m,n] is decomposed intoN sequences of lengthM . For those
sequences, the 1D DMT can be employed in turn to lead to a
full 2D transformed representation.

Variations to this process may be considered [18], e.g., by al-
ternating horizontal and vertical mirroring decomposition steps,
or by changing arbitrarily the direction of mirroring from one
step to the next. With no regard to the adopted scheme and with
the right attention, the concepts can be easily extended from the
1D case, so as to preserve the constant nature of the informative
support from one decomposition stage to following one. We refer
the interested reader to the publicly available code for further
details on the 2D implementation of the DMT.

VI. EXPERIMENTAL USE OF THE DMT - PRELIMINARY

RESULTS

In this section, more specific peculiarities of the Mirror Trans-
form are examined. In contrast with the properties previously
described in Section IV, they are not a direct consequence of the
transform definition. As a matter of fact, they are shown to be
valid through a series of experimental tests. They could also hint
at potential application for signal processing tasks, though at this
stage they should be considered strictly as proof-of-concept tri-
als. The associated code and the examined datasets are publicly
available at [13].

We ran two sets of experiments. In the first, discussed in
Section VI-A, we delve into the sparsity properties of the MT, by
studying its ability to concentrate the signal energy in a small set
of transform coefficients. Then, in Section VI-B we inspect what
we call the one-wayness property, namely, the one-way relation
between the original signal and its associated decomposition tree
structure.

Of course, the scope of the tests is limited for practical reasons
to finite-support signals in the discrete domain. In those cases,
we recall that the decomposition tree has a finite number of levels
and, for a L samples original signal, if the process is carried on
until all the single-valued leaves are reached, there are up to L

coefficients stored in F . They are distributed all over the tree,
depending on the optimal symmetry points in G found in the
decomposition process.

A. Sparsity

Through a single step of the optimal ternary decomposition, a
relevant part of the signal energy is bound to move into a support
smaller than the starting one, and consequently this intrinsically
leads to a new, sparser representation of the signal.

We prove this statement through a series of experimental
tests. In particular, we investigated the ability of the DMT to
concentrate more signal energy into a small transform coefficient
set when opposed to the ability of other transforms, which are
known to be efficient to approximate several classes of signals.

The comparison has been performed on various test se-
quences, by studying the energy preservation associated with a
variable number of the transform coefficients sorted from largest
to smallest value (in modulus). Specifically, for the DMT the
whole decomposition tree is first generated, then the energy of
the representation is computed using a certain number of the
most significant coefficients in terms of energy. The same pro-
cess is performed for the competing transforms, by retaining the
most significant coefficients in the transform domain, according
to their magnitude.

First, Fig. 8 illustrates the performance comparison between
the proposed transform and two classical transforms, namely,
the Discrete Cosine Transform (DCT) and the Discrete Wavelet
Transform (DWT) implemented using the ‘db4’ wavelet with
the maximum decomposition level, for some test sequences.
In the first rows, three 1D sequences are examined, namely, a
Gaussian impulse, a sinc impulse, and one instance of a Gaussian
random noise sequence. The fourth row addresses the popular
Baboon image, and the 2D DMT described in Section V-B has
been applied. In this case, the decomposition is first performed
using the vertical reflection plane, namely, along the image
columns, and then the 1D DMT is performed on the resulting
sequences. The energy curves show that the DCT and DWT
performance is consistently worse than the one given by the
DMT for all test sequences. We recall that the DMT significantly
goes beyond the concept of representing a vector through a
linear expansion. Instead, it provides a non-linear representation,
which can describe the nature of the signal more effectively.

The superior sparsity properties of the DMT with respect to
DCT and DWT can be explained in terms of coefficients energy
decay rate. For the DCT, it is known to be polynomial, while
for DWT is exponential only in the case of piece-wise linear
functions. The DMT, instead, always enjoys exponential energy
decay rate, provided that at each step of the decomposition most
the energy is concentrated in at most half of the previous support.
This occurrence is highly likely, namely, it is verified if the
energy decoupling between the even and odd parts is effective.
Since the decomposition is pursued exactly to maximize the
energy concentration in just one of the parts, the considered
decomposition is optimal in this respect.

To reinforce the reliability of the results, we have expanded
our experiments to more datasets, composed by:
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Fig. 8. A sample of the investigated test sequences. The first two columns
display the signal with its associated DMT. The third column reports the DMT,
DCT and DWT energy curves.

� Short audio sequences, extracted from mixed music genre
songs and vocal sound effects [13] (Fig. 9(a));

� Seismic waves, part of the IRIS database [19] (Fig. 9(b));
� Electrocardiogram (ECG) sequences, taken from the Phy-

sioNet database [20] (Fig. 9(c));
� Different types of images, from natural to textures, with

various resolutions [13] (Fig. 9(d)).
Furthermore, to evidence more effectively the sparsity property
of the DMT, we have included two data-driven transforms in
the comparison: the Karhunen-Loève Transform (KLT) and the
Sparse Orthonormal Transform (SOT).

We recall that the KLT is the matrix of orthonormal eigenvec-
tors of the covariance matrix of a stochastic process. Assuming
that the columns of the KLT are ordered so that the associated
eigenvalues are in decreasing order, then it is well-known that
the KLT optimizes n-term linear approximation performance,
where the optimality is expressed as the expected mean square
error when a signal is projected on the first n vectors. However,
the sparsity property of a transform is examined by applying
n-term non-linear approximation, where the expected mean
square error is computed by projecting a signal on the n vectors
associated to the most representative transform coefficients, i.e.,
the ones corresponding to the highest energy. For this reason, we
have also considered the SOT in our experimental comparison,

Fig. 9. Performance comparison between the competing transforms when
applied to the considered datasets, given in terms of average performance.

since it is a data-driven orthonormal transform designed to
achieve the minimum distortion possible when keeping the least
number of non-zero transform coefficients. More details on the
SOT derivation can be found in [21].

To compute the KLT and SOT bases for each class of signals,
each dataset has been first randomly split in a training and in a test
set. Then, each data of the training set has been divided in sub-
sequences, which have been finally used to construct the KLT
and the SOT matrices. Specifically, 512-length sub-sequences
have been considered for the audio dataset, while the seismic
and ECG data have been both separated into 400-length sub-
sequences; finally, the images have been partitioned into 8× 8
blocks.

Fig. 9 reports the average performance in terms of MSE and
PSNR for each test set. It confirms the superior sparsity ability of
the DMT with respect to all the competing transforms for all the
considered datasets. As expected, the SOT outperforms the KLT,
since a non-linear approximation of the signals is considered.
However, the DMT performs consistently better than the SOT,
proving that the iteration of the optimal symmetry decomposi-
tion is able to efficiently describe a signal, independently of its
different nature.

In particular, the comparison results with DCT and DWT
are quite remarkable, since these transforms are key elements
in practical coding standards, given their ability to efficiently
represent various signal classes. However, it is also important to
state that the sparsity properties of a transform are not generally
sufficient to ensure that it would perform well in a coding
algorithm. Indeed, in addition to the non-zero coefficient values,
their positions must be specified too in order to reconstruct
the original image. Encoding the positions of the non-zero
coefficients usually requires a thorough investigation, which is
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specific for each given transform and application context, e.g.,
for image compression, zig-zag scanning for the DCT in JPEG
and H.26x, or the EZ of wavelet transforms in JPEG2000.

Thus, in a coding framework, in order to take advantage of
the previously shown sparsity properties of the coefficients in
F , an efficient representation of the tree information is needed.
While proposing the MT for coding applications is beyond the
scope of this paper, we include here some observations hinting
at how an application like this could be designed.

As we previously mentioned, after zeroing some of the leaves
in a controlled way, for example, following a quantization of
the coefficient values, as it happens for traditional image/video
compression standards, more tree information compaction can
be achieved. In fact, if the leaves associated to a same subtree
have all been zeroed, that subtree can be entirely removed
without losing any information, which would allow for the
pruning of a potentially large number of nodes, thus reducing
the size of G. A possible way to exploit this fact is to signal that
the decomposition process must stop for that zeroed subtree. In
other words, an ad-hoc symbol, for example 0, can be included
in G to indicate a node that would not generate any non-zero
coefficients. In Fig. 7(c) an example of pruning the tree in Fig. 7
is shown. In this example, 5 coefficients have been zeroed, all of
them deriving from thex(1)

{T } node. Then, the entire subtree which
originated from that node can be removed, and the associated
n
(1)
{T } is replaced with 0. This process leads to a more compact

representation of the tree G.
In the next section, the compact description G of pruned

trees is exploited in a different direction, by showing another
distinctive experimental property of the Mirror Transform.

B. One-Wayness

The one-wayness property is akin to what typically charac-
terizes hash functions. It is stated here for the Discrete Mirror
Transform of finite support sequences, but it is also easy to show
its validity for the standard Mirror Transform.

Assuming that a given sequence x[n] is decomposed through
(13) into xe[n;n0] and xo[n;n0] around the optimal symmetry
point n0, with respective energy Ee and Eo, it is of course pos-
sible to define another sequence ye[n;n0], with energy still Ee,
and then obtain the reconstructed sequence y[n] = ye[n;n0] +
xo[n;n0]. As shown in Section IV-E, it is still possible for the
alternative parent node to have the same optimal mirroring point
(in that case, both the new children nodes are changed and are
strictly scaled versions of the original ones). In general, however,
the optimal symmetry point for y[n] is not the same as for x[n].

This means that, given the tree G, it is not possible to assign
arbitrary sequences to the nodes (even with the correct support,
as inferred by the tree information). In fact, if the root is first
reconstructed from these arbitrary nodes and then decomposed
again, the decomposition tree is likely going to be different (a
possible exception being the new nodes which are all scaled
versions of the previous ones, as stated earlier). Therefore, while
it is always possible, with a given G, to reconstruct a root
sequence using an arbitrary F , such decomposition is almost

Fig. 10. Experiments on one-wayness property.

certainly incorrect, that is to say the decomposition steps are not
optimal in each and every node.

In this sense, the root sequence x[n] and the tree G enjoy a
one-way relation, which means that G can be easily obtained
from x[n], but the opposite is very difficult, and it becomes
increasingly harder the longer the length of the root sequence.
This also holds for the continuous-time MT with a sufficient
number of levels. In other words, given just the complete tree
information G, it is difficult to guess the right values to be
assigned to the leaves in F to keep the decomposition of the
reconstructed sequence which is still consistent with the given
G. Using a term typical of hashing applications, such a very rare
occurrence constitutes a collision. Thus, the tree information can
be thought of as a hash of the root signal.

However, the complete tree information of even moderately
short sequences can be very cumbersome. Of course, zeroing or
quantizing the coefficients in F , as we suggested in Section VI-
A, compacts the tree by pruning zeroed subtrees, making it more
manageable. Since we expect the collision probability to be very
low, we have run some experiments using this last configuration,
as the collision probability is bound to increase if more root
sequences correspond to the same pruned tree associated with
the considered one.

Fig. 10 shows the experiments performed to highlight the one-
wayness property. The results are averaged over 5 000, length 64
sequences (quite short for practical purposes, but able to show
noticeable collisions), obtained at random: in particular, they
are a combination of pixel values taken from rows and columns
of the images of the aforementioned datasets, supplemented by
white Gaussian noise sequences.
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In Fig. 10(a), the collision probability across different input
sequences is estimated. The sequences are first decomposed, and
then only the number shown on the x-axis of the most significant
coefficients are kept, exactly in the same way as for the previous
sparsity experiments. Each tree is then pruned and compared
to every other one. A collision is declared if any two pruned
trees are identical, namely, two root sequences decompose into
the same G. The collision probability drops under 1% already at
1/8 rate (keeping 8 coefficients out of 64). For longer sequences,
the same collision probability is expected to be met with even
lower rates. Keeping 12 coefficients, the collision probability
becomes negligible.

Differently from hash functions, it can be expected that the
tree information is invariant to slight modifications of the root
sequence, which is a very unique property for a one-way func-
tion. In fact, if the original sequence values are just barely
modified, besides the already mentioned nodes scaling, the
optimal decomposition points may be unchanged all the way
to the leaves. Of course, the introduced modifications are still
reflected by the nodes (and final leaves) values. The low collision
probability that we have just shown implies that the introduced
non-scaling modification, i.e., the added noise power, must be
very slight. The tolerance of the tree to noise addition is amplified
by coefficient quantization followed by zeroed subtree pruning,
because fewer decomposition operations influence the definition
of the final tree structure.

To show this interesting facet of the one-wayness, we have run
two different experiments. First, we have reported in Fig. 10(b)
the effect of modifying the most significant coefficient after
the decomposition is performed, while keeping the whole tree
(without pruning). The modification is computed as the SNR on
the single affected leaf. In more than 50% of the cases, a 10%
change on the most significant leaf value is sufficient to generate
the tree structure of the (modified) reconstructed sequence that is
different to the original tree. Therefore, the complete tree is quite
fragile to changes in coefficient values, as expected, although
slight, individual changes are sometimes tolerated.

In the next experiment, depicted in Fig. 10(c), white Gaussian
noise is added to the input sequences for various SNR. The
decomposition tree is computed and successively pruned in the
usual way, keeping the most significant coefficients. The number
of unchanged trees, i.e., that are not modified by the noise
addition, are then counted. The fewer coefficients are kept, the
more the trees are pruned. Thus, in this case the tree of the noisy
sequence may be the same as the one of the original sequence.
As expected, even moderate noise modifies a large percentage
of the tree structures, unless very few coefficients are kept.

In conclusion, the decomposition tree can be used as a
particular kind of hashing function of the original sequence.
Given G alone, without knowing the original sequence, it is
difficult to guess the nodes that would imply the same tree
structure. However, it is possible to slightly modify the original
sequence and still preserve the decomposition tree, either in a
deterministic way by nodes scaling or through random noise
addition (however, no methods exist to find a colliding sequence
with a predetermined shape). Therefore, the decomposition pro-
cess is one-way, but it does not strictly possess weak collision
resistance.

VII. CONCLUSION

In this paper, we presented the Mirror Transform (MT), which
is a new signal transform based on the iterative application of
the even/odd decomposition around optimal (in a decoupling
energy sense) mirroring points, valid for both continuous and
discrete time domains. In the former case, in principle the ternary
decomposition tree constituting the transform is infinitely deep,
even for finite support signals, while a finite number of levels is
ensured for finite-length sequences.

We listed several properties of the proposed transform, includ-
ing the fact that each decomposition level preserves the energy
of the original signal by distributing it across a set of orthogonal
tree nodes. This allows the reconstruction of finite energy signals
through a constructive algorithm by approximating leaf nodes
while introducing controllable distortion.

We employed the MT in several experiments. The first set
aimed at analyzing its sparsity properties, limiting our scope to
finite trees obtained from 1D and 2D signals of various origin.
Of course, the compactness of the alternative representation is
affected by the amount of information concerning the symmetry
point employed in each decomposition step. Nevertheless, it is
possible to prune the decomposition tree after a given subtree is
zeroed through coefficients quantization.

Further experiments investigated the one-way relation be-
tween a signal and its associated tree information. Akin to
hashing, we have shown that it is indeed very rare to incur into
a collision. An interesting feature is that mild modifications to
the original signal, when combined with coefficient quantization
and tree pruning, is likely to produce the same hash, which is a
very peculiar property for a hashing algorithm.

The nature of this work remains very foundational. Through
its experimentation, it is hoped that many signal processing
applications may benefit from its use, in particular domains.
It emphasizes how intrinsic characteristics in the data can
be captured to cope with desirable features or robustness to
noise.
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