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Region-Restricted Sensor Placement Based on
Gaussian Process for Sound Field Estimation
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Abstract—Sensor placement methods for field estimation based
on Gaussian processes are proposed. Generally, sensor placement
methods determine the appropriate placement positions by select-
ing them from predefined candidate positions. Many criteria for
the selection have been proposed, with which the quality of the
placements is evaluated with regard to the field at the candidate
positions. This means that these sensor placement methods seek
to find the positions that can estimate the field at the candidate
positions accurately. In practical situations, however, the candidate
sensor placement region can be different from the target region for
field estimation. In this paper, to make sensor placement meth-
ods applicable to this situation, we propose two sensor placement
methods based on the mean squared error and on conditional
entropy that can be applied to cases in which the sensor place-
ment region is arbitrarily restricted. After formulating the sensor
placement problems, two approximate algorithms are derived: the
greedy algorithm and the convex-relaxation-based algorithm. The
application of the proposed methods to sound field estimation is
also illustrated, and their effectiveness was confirmed through
numerical experiments.

Index Terms—Sensor placement, sound field estimation,
Gaussian process, greedy algorithms, convex optimization.

I. INTRODUCTION

E STIMATING or interpolating physical fields, such as tem-
perature [1], [2], acoustic field [3]–[5], and pollution [6],

from values measured by sensors is an important problem with
many applications. For example, sound field estimation is a
problem used in many situations, such as reproducing the sound
field using loudspeakers or headphones, visualization, and active
noise control. To estimate the field, multiple sensors are dis-
tributed among the target region, and the entire field is estimated
from their measurements.

The number of sensors that can be placed is often restricted
owing to physical or economical restraints. In this case, the loca-
tions of the sensors greatly affect the estimation accuracy. Thus,
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Fig. 1. Example of the sensor placement problem where the candidate place-
ment region is separated from the estimation region.

one major problem in field estimation is how to determine the
placement of the distributed sensors. To deal with this problem,
extensive research studies on sensor placement methods have
been conducted. In the context of acoustic problems, for exam-
ple, sensor placement methods have been applied to problems
such as sound field estimation [7], microphone array design [8],
and sound field control [9], [10]. In most methods, the region
of interest is first discretized and then the appropriate sensor
locations up to a limited number are determined from these dis-
cretized locations. Many criteria for the choice of the locations
have been proposed in the literature, which are based on obser-
vation models, such as Gaussian processes (GPs) [11]–[13] and
finite-dimensional linear inverse problems [14]–[16]. Although
there are various criteria, most of them evaluate the field at the
discretized locations that are also used as the candidate sensor
locations.

When estimating fields in practical situations, however, the
region for sensor placement, (i.e., the candidate region), might
also be restricted and can be different from the target region
for field estimation, (i.e., the estimation region). For exam-
ple, when estimating sound fields in a room, there can be a
situation in which the sensors (microphones) could be placed
only around the wall, while the field interior of the room is
to be estimated (Fig. 1). Since in previous methods the same
discretized locations are used for candidate positions of sensor
placement and evaluation positions for field estimation, they
cannot be used for such situations. We will discuss this in detail
in the next section.

A. Prior Work

Sensor placement methods can be classified by the model they
assume for physical fields. In methods based on GPs [17], which

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7941-9984
https://orcid.org/0000-0002-5906-563X
https://orcid.org/0000-0003-2283-0884
https://orcid.org/0000-0003-0876-5617
mailto:nisshee1996@gmail.com
mailto:koyama.shoichi@ieee.org
mailto:hiroshi_saruwatari@ipc.i.u-tokyo.ac.jp
mailto:natsuki.ueno@penalty -@M ieee.org
mailto:natsuki.ueno@penalty -@M ieee.org


NISHIDA et al.: REGION-RESTRICTED SENSOR PLACEMENT BASED ON GAUSSIAN PROCESS FOR SOUND FIELD ESTIMATION 1719

we mainly focus on, it is assumed that all finite dimensional
vectors extracted from any finite set of positions in the domain
follow a Gaussian distribution. Using this model, Shewry and
Wynn [12] proposed a method based on maximizing the entropy
of the selected placement positions, which seeks to choose the
most uncertain positions. In [11], the mutual information be-
tween the selected and unselected positions is to be maximized,
which is equal to choosing the positions most informative about
the field at unselected positions. In [13], the mean squared error
of the estimation at the candidate locations was evaluated. By
appropriately modeling the GP for sound fields with the kernel
functions used for the interpolation method in [18], Ariga et
al. [7] proposed an application of the mutual-information-based
method to the sound field estimation problem. All these methods
aim to estimate the field at the candidate placement positions;
thus, the case where the candidate region and the estimation
region are not identical is not considered.

Another major model describes the estimation problem as a
finite linear inverse problem. The inverse problem is described
as

y = Hθ + v, (1)

where y is the observation, θ is the parameter to be estimated,
H is the measurement matrix, and v is the observation noise.
Here, each element of y corresponds to each observation of
candidate sensors. The parameter θ can be the discretized field
itself or any low-dimensional representation of the field. There
are cases where a prior distribution for θ is either assumed or
not. By selecting the sensors, one can observe a subset of y and
the parameter vector θ is estimated from those observations.
In the sensor selection problem for this model, the covariance
matrix of the estimation error of θ is evaluated and the cost
functions are formulated as a scalarization of that error co-
variance matrix, many of which are derived from experimental
design [14], [15]. For example, the trace that represents the
mean squared error [19], the log determinant that represents the
volume of the confidence region ellipsoid [16], [20], [21], and
the maximum eigen value that represents the worst case variance
of the estimation error [22] are the typical cost functions. Note
that the applications of sensor selection methods based on linear
inverse problems are not limited to field estimation; the methods
are also applied in various contexts, including robotics [23] and
target tracking [24]. When the field is modeled as a Gaussian
process, the linear model in (1) can only be used by setting θ
as the field at candidate positions and H as an identity matrix.
In this case, since estimating θ can only obtain the field at the
candidate positions, the field at the reconstruction domain can-
not be estimated. Thus, the model cannot be straightforwardly
used for cases where the candidate and estimation regions are
independently and separately defined. There are also cases using
nonlinear models, such as those in [25].

Aside from cost functions or the models used in field esti-
mation, sensor placement methods can be distinguished by the
algorithms used to approximately solve the problem, which is
formulated as a combinatorial problem. There are mainly three
strategies to obtain a solution to the combinatorial problem:
greedy selection, convex relaxation, and heuristic approaches.

In greedy methods, the sensors are selected one by one, each
time selecting the one that provides the best improvement in
the cost function. For submodular cost functions, such as the
entropy, mutual information [11], or the log determinant of
the error covariance matrix [20], [21], the greedy algorithm
is guaranteed to obtain a near-optimal solution with a fixed
approximation factor [26]. Even when the cost function is not
submodular nor supermodular, a degraded approximation factor
for the greedy algorithm can be obtained [27]–[29] by measuring
how far the cost function is from being submodular (or super-
modular). The submodularity ratio and weak supermodularity
have been introduced in [27] and [28], [29], respectively, and the
approximation factors for subset selection for linear regression
problems and sampling in graph signal reconstruction have been
evaluated. We also note that there are extended algorithms such
as the group greedy method [30].

Convex relaxation methods relax the combinatorial problem
to a convex continuous optimization problem [16], [19], [24],
[31], [32]. After solving the relaxed problem, the solution is
rounded to a solution of the combinatorial problem. Although no
performance guarantee for the solution can be given beforehand,
the lower bound of the cost function can be obtained after
conducting the method using the optimal value of the relaxed
problem [16]. In some cases, the relaxed problem is reformulated
to semidefinite programming (SDP) [19], [31], [33]. Both the
relaxed problem itself and problems formulated as SDPs are
typically solved using algorithms based on Newton’s method,
which is a second-order method [16], [19], [31], [33]. Although
second-order methods converge to the optimal solution with a
relatively small number of iterations, they require a high spatial
complexity and are thus not applicable to large-scale problems.

The last strategy is to use heuristics [34]–[38]. Although
methods using heuristics might produce good solutions, no
guarantees or bounds for the solution can be obtained.

B. Our Contributions

We propose sensor placement methods for field estimation
based on GPs, where the candidate and estimation regions can be
independently set. In addition to providing methods to solve this
as yet unsolved problem, our contributions can be summarized
as follows.
� In the greedy algorithm, by using the notion of weak

supermodularity, we provide near-optimal guarantees for
the solution. The conditions under which the guarantees
become tight are also discussed.

� In the convex-relaxation-based algorithm, by introducing
the mirror descent algorithm, which is a first-order method,
to solve the relaxed problem, we reduce the spatial com-
plexity of the method and thus make it more applicable to
large-scale problems than before.

� We apply the methods to the sound field estimation problem
and show their applicability.

Preliminary results are given in [39], but a new cost func-
tion based on conditional entropy, the derivation of the weak
supermodularity of the cost functions, the derivation of a new
optimization algorithm for the convex relaxation method, and
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the application to sound fields were added to this study. This
paper is organized as follows. The problem of field estimation,
using an independently defined candidate region and estimation
region is introduced in Section II. Subsequently, two cost func-
tions for sensor placement are proposed in Section III, and two
approximate algorithms to obtain a solution to those problems
are introduced in Section IV. The special case of sensor place-
ment for sound field estimation is described in Section V, and
numerical experiments for this case are described in Section VI.

C. Notations

In this paper, we use the following notations. Italic letters
denote scalars, lower-case boldface letters denote vectors, and
upper-case boldface letters denote matrices. Calligraphic letters
denote sets. Subscripts of scalars, vectors, and matrices stand for
their indexes or sets of indexes. For example, xi is the ith entry
of vectorx, andXA,B is the submatrix ofX formed by rows and
columns corresponding to A and B, respectively. We also use
[X]i,j to denote the (i, j)th element of the matrix X . The no-
tations X � 0 and X � Y for matrices X and Y respectively
indicate that X and X − Y are positive semidefinite.

II. PROBLEM STATEMENT

A. Field Estimation and Estimation Error

To describe the probabilistic field, we use complex GPs, which
can be seen as a generalization of Gaussian distributions of finite-
dimensional variables to functions. Let uA be a vector of the
physical quantities of the field at any finite set of locationsA =
{r1, r2, . . . , rJ} ⊂ D, where D is the domain of a physical
field, which is typically R2 or R3. Then, GP assumes that uA
follows the complex Gaussian distribution

uA ∼ NC (ūA,KA,A) , (2)

where the mean vector ūA is described as ūA =
[fu(r1), . . . , fu(rJ)]

T ∈ C
J with the mean function fu(·),

and the covariance matrix KA,A ∈ C
J×J is the Gram matrix

whose (i, j)th element is represented as [KA,A]i,j = κ(ri, rj)
with the positive definite kernel function κ(·, ·). The kernel
function can be learned from the observed data [40] [41] or
be designed using a priori information on the field [18]. A
frequently used kernel function is the Gaussian kernel [17].

We consider estimating the field inside a predefined esti-
mation region with sensors placed within a candidate region,
where these two regions can be set independently and arbitrarily.
To formulate the sensor placement problem, both regions are
independently discretized, as illustrated in Fig. 2. We define the
estimation locations as E = {p1, . . . ,pM} ⊂ D and the candi-
date locations as C = {q1, . . . , qN} ⊂ D. Note that these sets
can share the same locations when the candidate and estimation
regions have a common area. The locations of the selected
sensors S would be a subset of C. Thus, S can be described
as S = {qj1 , . . . , qjK} when |S| = K. The observations at S ,
denoted as yS , can be expressed as

yS = uS + vS , (3)

Fig. 2. Definitions of estimation and candidate locations.

where vS is the Gaussian noise of mean 0 and covariance λI ,
i.e., vS ∼ NC(0, λI).

We consider the problem of estimating the true field at E
using the observations yS , which is sampled from C. From the
GP model, the joint probability distribution of uE and yS is
described by the Gaussian distribution[

uE
yS

]
∼ NC

([
ūE
ūS

]
,

[
KE,E KE,S
KS,E KS,S + λI

])
, (4)

where KE,S ∈ C
M×K is composed of the elements defined

as [KE,S ]i,k = κ(pi, qjk) and KS,E ∈ C
K×M is also defined

similarly. Thus, the posterior distribution of the true field given
the observations also follows a Gaussian distribution given by

p (uE |yS) = NC (ûE ,ΣE(S)) , (5)

ûE = ūE +KE,S (KS,S + λI)−1 (yS − ūS) , (6)

ΣE(S) = KE,E −KE,S (KS,S + λI)−1 KS,E . (7)

Here, ûE is the maximum a posteriori (MAP) estimate of the field
at E , and the covariance matrix ΣE(S) can also be interpreted
as the covariance matrix of the estimation error nE = ûE − uE .
Note that ΣE(S) is determined only by the sensor selection S ,
and not by the observations. In the following Sects. III and IV,
optimization problems for sensor placement and approximation
algorithms are formulated using this estimation error covariance
matrix, which is a similar strategy to existing sensor placement
methods.

III. COST FUNCTIONS FOR SENSOR PLACEMENT

In this section, we propose two cost functions for optimizing
the sensor placement: the mean-squared-error-based cost func-
tion and the conditional-entropy-based cost function, which are
commonly used criteria in the literature.

A. Sensor Placement Based on Mean Squared Error

We propose the sensor placement problem as an optimization
problem formulated as

minimize
S⊂C

tr (ΣE(S)) s.t. |S| = K. (8)

Since tr(ΣE(S)) = tr(E[nEnH
E ]) = E[nH

EnE ], this optimiza-
tion problem requires the minimization of the (expected) mean
squared error at the estimation positions. In order to make
approximation algorithms easily applicable, we reformulate this
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sensor placement problem using a binary-valued vector w ∈
{0, 1}N that represents the selected positions, where wj = 1 if
qj ∈ S . Let ΦS ∈ {0, 1}N×K be a binary-valued matrix that
extracts the rows of the sensor indexes of S by multiplication
from the left. The covariance matrix ΣE(S) in (7) can be
rewritten as

ΣE(S) = KE,E −KE,CΦS
(
ΦT
SKC,CΦS + λI

)−1
ΦT
SKC,E .

(9)

Then, by using the matrix inversion lemma and ΦSΦT
S =

diag (w), where diag (w) is a diagonal matrix with the diagonal
components w, we obtain

ΦS
(
ΦT
SKC,CΦS + λI

)−1
ΦT
S

= ΦS
(
λ−1I

−λ−1ΦT
SKC,C

(
I + λ−1ΦSΦT

SKC,C
)−1

ΦSλ−1
)
ΦT
S

= λ−1ΦSΦT
S

·
(
I −KC,C

(
I + λ−1ΦSΦT

SKC,C
)−1

λ−1ΦSΦT
S

)

= λ−1ΦSΦT
S
(
I + λ−1KC,CΦSΦT

S
)−1

= diag (w) (λI +KC,C diag (w))−1 . (10)

Using this formula, we reformulate the error covariance matrix
using w as

ΣE(S)
= KE,E −KE,C diag (w) (λI +KC,C diag (w))−1 KC,E .

(11)

We also note that a similar formulation can be derived when
the noise is correlated, i.e., vS ∼ NC(0,R), where R � 0, as
in [39].

Using tr(AB) = tr(BA), we can formulate the sensor
placement problem on the basis of the mean squared error as

minimize
w∈{0,1}N

JMSE(w) s.t. 1Tw = K, (P1)

where the cost function is defined as

JMSE(w) = tr (ΣE(S)) . (12)

Since there is a one-to-one correspondence betweenw andS , we
can also describe the cost function asJMSE(S). We will use either
of the notions in later sections, depending on its convenience.

We note that when the candidate and estimation positions are
identical, i.e., C = E , the proposed problem corresponds to that
in [13]. Thus, the proposed problem can be seen as a natural
extension of that in [13]. Also, compared with mean-squared-
error-based sensor selection problems for finite-dimensional
linear inverse problems [19], the proposed method for C = E
corresponds to that for the case where the measurement matrix
is an identity matrix.

B. Sensor Placement Based on Entropy

Many sensor placement methods using cost functions related
to entropy, such as informational gain and mutual information,
have been proposed in the literature [11], [42]. This is natural
considering the fact that we want to select the most “informative”
locations. In this section, we propose a cost function based on
entropy in the case where C and E are independently defined.
Since we want to estimate uE using the observed data yS , the
problem will be

minimize
S⊂C

H(uE | yS) s.t. |S| = K. (13)

H(uE | yS) is the conditional entropy of uE given yS . By
evaluating the entropy of a Gaussian random variable, we can
reformulate this optimization problem as

minimize
S⊂C

JENT(S) s.t. |S| = K, (P2)

where the cost function is defined as

JENT(S) = log det (ΣE(S)) . (14)

Using the notion of the covariance matrix in (11), we can also
describe the cost function as JENT(w), which we will also use
in later sections. Note that in the context of experimental design
for finite-dimensional inverse problems, minimizing the log
determinant of the covariance matrix is namedD-optimal design
and is equivalent to minimizing the volume of the confidence
region ellipsoid [16].

To confirm that the cost function we proposed is appropriate
for our issue of interest, we discuss other possible cost functions
related to entropy by applying existing criteria to the C �= E case.

First, using directly the entropy criteria can be considered,
where the entropy at the selected locations H(uS) or H(yS) is
to be maximized. Since this criteria can be described as

H(uS) = H(uC)−H(uC\S | uS), (15)

it is equivalent to minimizing H(uC\S | uS) and thus can only
consider C, not E .

Next, we consider modifying the criteria such as the condi-
tional entropy and mutual information in a formal manner by
simply replacing the candidate positions C with the estimation
positions E . Then, the cost functions can be expressed as

H(uE\S | uS) = H(uE∪S)−H(uS), (16)

I(uE\S ;uS) = H(uE\S)−H(uE\S | uS), (17)

where I(uE\S ;uS) denotes the mutual information between
uE\S and uS . Although these cost functions might also seem
appropriate for our problem, the dimension ofuE\S varies among
the same number of selected locations |S|, since |E ∩ S| does
not always take the same number. Thus, these cost functions
become meaningless. Note that this issue did not occur in the
C = E case, since S ⊂ E = C and the dimension of uE\S is
always |E\S| = M −K. Considering these facts, compared
with these cost functions, the proposed cost function can be
seen as appropriate.
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Algorithm 1: Greedy Algorithm.

Require:S(0) = ∅ and M−1
w = KC,C

for k = 1, . . . ,K − 1 do
Find q ∈ C\S that maximizes
J(S(k))− J(S(k) ∪ {q}) using (19) or (20), and
denote it as qj(k+1)

.

Update sensor selection S(k+1) = S(k) ∪ {qj(k+1)
}.

Update required inverse matrices using (24) or (25).
end for

IV. ALGORITHMS

In this section, we propose two algorithms to obtain an ap-
proximate solution to (P1) and (P2): the greedy method and the
convex-relaxation-based method.

A. Greedy Method

The greedy algorithm selects the sensor location that mini-
mizes the cost function one by one to obtain an approximate
solution with a low cost. In this section, we first describe the
greedy algorithm and its efficient computation. Then, we provide
the performance guarantees of the algorithm using the concept
of supermodularity ratio.

Let the set of selected sensor locations at the kth step of the
method be S(k). As mentioned above, at the k + 1th step of the
greedy algorithm, the sensor placement that minimizes the cost
function J(S(k)), i.e.,

qj(k+1)
= arg max

q∈C\S
J(S(k))− J(S(k) ∪ {q}), (18)

is selected and added to the selected set S(k). Here, J(S)
denotes either JMSE(S) or JENT(S). Because of its simplicity,
the greedy algorithm has been applied to many sensor placement
problems [11], [20], [43]. Although the cost function J(S)
requires the calculation of an inverse matrix, which seems to
increase the computational complexity at first glance, this can
be avoided using the rank-1 update of an inverse matrix.

The resulting decrease in the cost functions can be calculated
as

JMSE(S)− JMSE(S ∪ {qj}) = bj
[
PwKC,EKE,CP H

w

]
j,j

,

(19)

JENT (S)− JENT
(S ∪ {qj}

)
= − log

(
1− bja

H
j ΣE(S)−1aj

)
, (20)

where Pw, aj , and bj are respectively defined as

Pw = (λI +KC,C diag (w))−1 , (21)

aj = KE,CP H
wej , (22)

bj =
λ

1 + [PwKC,C ]j,j
. (23)

Here, ej denotes the unit vector with the jth element being equal
to 1. See Appendix A for the derivation of (19) to (23). Note that
both cost functions decrease monotonically, which means that

Fig. 3. Estimation positions and candidate sensor positions for numerical
experiments. The blue and black dots represent C and E , respectively.

they always decrease with an addition of a sensor. This is because
PwKC,C is semidefinite (see Appendix B). The inverse matrices
in (20) and (21) can also be calculated efficiently by using the
following rank-1 updates:

Pw+ej
= Pw −

PwKC,CejeT
jPw

1 + [PwKC,C ]j,j
, (24)

ΣE(S ∪ {qj})−1

= ΣE(S)−1

+
bj

1− bjaH
j ΣE(S)−1aj

·ΣE(S)−1aja
H
j ΣE(S)−1.

(25)

The algorithm is summarized in Algorithm 1.
Owing to the efficient calculation, the computational com-

plexities for both cost functions are O(N2) for each q ∈ C\S ,
whereas calculating the cost functions directly will cost O(N3).
We also note that the complexity is the same as that in the C = E
case, and no increase in the complexity occurs when C and E are
independently defined.

Now, we give the performance guarantee for the greedy al-
gorithm. Recently, a way to derive bounds for the suboptimality
of the greedy algorithm for non-submodular (supermodular)
functions using the notion of approximate submodularity (su-
permodularity) was proposed [27], [29]. By using the definition
of supermodularity ratio held in [29], we will establish approxi-
mation bounds for the greedy algorithm used for (P1) and (P2).

A set function J : 2C → R is α-supermodular if

J(A ∪ {q})− J(A) ≤ α (J(B ∪ {q})− J(B))
∀A ⊆ B ⊆ C, ∀q /∈ B, (26)

for α ≥ 0. This concept can be seen as an extension of super-
modularity, since if α ≥ 1, J is supermodular. α represents how
much the function degrades from being supermodular. When
J monotonically decreases, our interest is in the largest α that
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Fig. 4. Values of cost functions with respect to number of sensors for greedy algorithms. The case for 600 Hz. (a) MSE cost; (b) Entropy cost.

Fig. 5. SDR for greedy algorithms. The case for 24 sensors.

satisfies (26), i.e.,

α = min

{
J(A ∪ {q})− J(A)
J(B ∪ {q})− J(B) |A ⊆ B ⊆ C, q /∈ B

}
.

(27)

Using this parameter α, the suboptimality of the greedy
algorithm is established in the following theorem.

Theorem 1: [29] Let J(S) be a monotonically decreasing
and α-supermodular function, and J∗ be the optimal solution of
the problem

minimize
S⊂C,|S|≤K

J(S). (28)

Then, the solution of the greedy algorithm S(k) (|S| = k) sat-
isfies

J(S(k))− J∗

J(∅)− J∗
≤ e−αk/K . (29)

Proof: See [29]. �

Here, we show thatJMSE(S) andJENT(S) areα-supermodular
functions in the following theorems.

Theorem 2: Suppose that KC,C is positive definite. JMSE is
α-supermodular with

α ≥ λmin(K̄)

λmax(K̄)
· λmin(KC,C)
λmax(KC,C)

· 1

1 + λ−1λmin(KC,C)
, (30)

where λmin(X) and λmax(X) denote the minimum and
maximum eigen values of X , respectively, and K̄ =
K−1
C,CKC,EKE,CK−1

C,C .
Proof: See Appendix C. �
Theorem 3: Suppose that KC,C and KE,E is positive definite.

JENT is α-supermodular with

α ≥ λmin (KE,E)
λmax (ΣE(C)) ·

λmin

(
K̄
)

λmax

(
K̄
) λmin(KC,C)
λmax(KC,C)

· 1

1 + λ−1λmin(KC,C)
· 1

1 + λ−1 maxj [KC,C ]j,j
. (31)

Proof: See Appendix D. �
Thus, using these bounds on α and Theorem 1, we can obtain

the performance guarantee for the greedy algorithms. We also
describe the situations in which the guarantees would be good.
Since the bound includes the inverse of the condition number
of K̄ and KC,C , when these condition numbers are smaller, the
guarantees would be better. In particular, when C = E , the con-
dition number of K̄ = I would be 1, and thus the performance
guarantee would be better than the C �= E case. On the other
hand, when the number of candidate positions is larger than
the number of evaluation positions, i.e., |C| > |E|, the number
of rows of KC,E would be larger than that of columns and K̄
becomes singular. In this case, only a trivial bound α ≥ 0 can be
obtained where there is no information about the performance
guarantee. Also, whenKC,C gets close to singular, i.e.,λmin gets
close to 0, the bound will get close to the trivial bound α ≥ 0.
As λ gets smaller, i.e., as the noise decreases, the bounds get
worse.
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Fig. 6. Reconstructed pressure distributions at 600 Hz with 24 sensors chosen by the greedy algorithm for the narrowband case. (a) MSE C �= E ; (b) MSE C = E ;
(c) Entropy C �= E ; (d) Entropy C = E .

Fig. 7. Normalized error distributions at 600 Hz with 24 sensors chosen by the greedy algorithm for the narrowband case. (a) MSE C �= E ; (b) MSE C = E ;
(c) Entropy C �= E ; (d) Entropy C = E . The SDRs were (a) 23.6, (b) 20.5, (c) 23.4, and (d) 21.5 dB.

Fig. 8. Cost function values of MSE C �= E for each algorithm for 24 sensors.
Lower bound stands for the lower bound of the cost function obtained from the
convex relaxation algorithm.

B. Convex Relaxation Method

The convex relaxation method relaxes combinatorial opti-
mization problems to continuous convex optimization problems,
which can be globally solved. By using this globally optimal
solution, we can obtain an approximate solution to the original
problem. For the proposed problems, we relax the boolean con-
straint w ∈ {0, 1}N in (P1) and (P2) to w ∈ [0, 1]N to obtain a
continuous optimization problem. Then, both problems become
convex optimization problems. By assuming that the optimal

Algorithm 2: Mirror Descent Algorithm for Solving (P3).

Require: Initial variable w(0) ∈ [0, 1]N , step sizes
{α(l)}∞l=1, and l = 0.
while Stopping condition is not satisfied do
l← l + 1.
y
(l+1)
j = w

(l)
j exp (−α(l)g

(l)
j ) (j = 1, . . . , N).

w̄
(l+1)
j = K

‖y(l+1)‖1 y
(l+1)
j (j = 1, . . . , N).

while w̄(l+1) /∈ [0, 1]N do
Set L = |{w̄(l+1)

j | w̄(l+1)
j ≥ 1, j = 1, . . . , N}|.

Compute

w̄
(l+1)
j ←

{
1, (w̄

(l+1)
j ≥ 1)

K
K−L w̄

(l+1)
j , (otherwise),

(32)

for j = 1, . . . , N .
end while
Set w(l+1) = w̄(l+1).

end while

solution of the original problem lies near the optimal solution of
the relaxed one, we apply some sort of rounding algorithm, such
as those in [16], [25] and [19], after solving the relaxed problem
to obtain a near optimal solution. The advantage of this method
is that we can always obtain the global optimal solution to the
relaxed problem, which can be used as a lower bound of the
cost function in the original problem. By comparing this lower
bound with the cost function value of the rounded solution, we
can evaluate the optimality of the solution we have obtained.
This procedure was thoroughly investigated in [16].
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By relaxing the restriction on w from w ∈ {0, 1}N to w ∈
[0, 1]N , we formulate the continuous optimization problem

minimize
w

J(w) s.t. 0 ≤ w ≤ 1, 1Tw = K, (P3)

where 0 ≤ w ≤ 1 denotes that all the elements of w satisfy 0 ≤
wj ≤ 1 for j = 1, . . . , N . Here, J(w) denotes either JMSE(w)
or JENT(w). Under the constraints in (P3), these cost functions
can be proven to be convex (see Appendix C). Thus, the optimal
solution can be obtained using convex optimization algorithms.

As mentioned in Section I, conventional convex relaxation
methods were mainly based on second-order optimization al-
gorithms, such as Newton’s method. However, second-order
methods typically become impractical when dealing with large-
scale problems. Moreover, when the relaxed problem is reformu-
lated to SDP, extra optimization variables are introduced, which
makes the spatial complexity larger than necessary. To make con-
vex relaxation methods applicable to large-scale problems, we
here propose a first-order algorithm based on the mirror descent
algorithm (MDA) [44]. One can also use zeroth-order algorithms
such as in [45] to avoid the calculation of the gradients. We
also note that other first-order optimization algorithms, such as
the primal-dual splitting algorithm [46], can also be applied to
the relaxed problem. In this paper, we use MDA because of its
convenience in two ways: 1) the constraints of (P3) are exactly
satisfied at each iteration, whereas the primal-dual algorithm
only converges to a solution that satisfies the constraints, and 2)
MDA has fewer parameters to be optimized.

MDA solves the convex optimization problem

minimize
w∈C

J(w). (33)

MDA assumes a functionh(w) that is differentiable and strongly
convex over some norm, and derives the Bregman divergence
from h as

Dh(w,w′) = h(w)− (h(w′) +∇h(w′)T (w′ −w)
)
. (34)

Then, the algorithm is described as

y(l+1) = arg min
y∈RN

{
J(w(l)) + g(l)T

(
y −w(l)

)

+
1

α(l)
Dh(y,w

(l))

}
, (35)

w(l+1) = Ph
C(y

(l+1)), (36)

where α(l) > 0, g(l) is the subgradient of J(w(l)), and Ph
C(y)

is the Bregman projection defined by

Ph
C(y) = arg min

x∈C
Dh(x,y). (37)

The problem of interest in (P3) is the case where

C = {w ∈ RN | 0 ≤ w ≤ 1, 1Tw = K}. (38)

To calculate (35) and (36), we define the function h(w) and
obtain the Bregman divergence Dh as

h(w) =

N∑
j=1

wj logwj , (39)

Dh(w,y) =

N∑
j=1

wj log
wj

yj
− (wj − yj), (40)

respectively. These are the same functions proposed in [44] for
the optimization over the unit simplex

C =
{
w ∈ R | wj ≥ 0, 1Tw = 1

}
. (41)

However, this constraint is slightly different from (P3) in that
the sum of the elements is 1, not K ∈ N. Thus, the algorithm
will be modified from the one proposed in [44].

First, solving (35) yields

y
(l+1)
j = w

(l)
j exp (−α(l)g

(l)
j ) (j = 1, . . . , N). (42)

Here, the computation of g, which is the subgradient of JMSE or
JENT, is straightforward, since both cost functions have gradients
calculated as

∇JMSE(w) = −λ diag (PwKC,EKE,CP H
w

)
, (43)

∇JENT(w) = −λ diag (PwKC,EΣ−1E KE,CP H
w

)
. (44)

Next, to find the Bregman projection in (36), we first adjust the
elements by multiplying a constant factor to them, so that the
sum would be equal to K, which is denoted as

w̄
(l+1)
j =

K

‖y(l+1)‖1 y
(l+1)
j (j = 1, . . . , N). (45)

After this procedure, we will round the elements larger than
1 to 1, and adjust the rest by multiplying a constant factor to
make the sum of the elements equal to K. By repeating this
procedure until every element belongs to [0,1], we obtain the
Bregman projection. We note that the obtained solution can
be confirmed to be the Bregman projection by writing down
the Karush-Kuhn-Tucker conditions of (36). The projection can
be completed with the complexity of O(N2). The algorithm is
summarized in Algorithm 2.

We discuss the difference between the proposed algorithm
and the conventional convex relaxation methods based on SDP,
as shown in [39]. Since SDP is formulated by introducing
additional variables and is typically solved using second-order
optimization algorithms in solvers [47], the spatial complexity
is O(M4). In contrast, the spatial complexity for the proposed
algorithm is O(M2 +N2). When the sizes of N and M are
approximately the same, the proposed algorithm requires much
smaller memories. The difference becomes even larger when
considering a broadband sound field estimation, as discussed in
Section V.

After obtaining the solution of (P3), defined as ŵ, an approx-
imate solution for (P1) or (P2) is obtained by either selecting the
K largest entries of ŵ or by conducting a randomized rounding
algorithm [19]. A simple randomized rounding algorithm is
summarized in Algorithm 3.

V. APPLICATION TO SOUND FIELD ESTIMATION

A. Gaussian Process for Sound Field Estimation

The choice of the kernel function is essential for the sensor
placement problem. Here, we provide a way of formulating
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Algorithm 3: Randomized Rounding Algorithm.

Require: Solution ŵ of (P3)
for l = 1, . . . , L do

Generate a random vector η(l) ∼ N (0, diag (ŵ)).
Select the K largest entries (in absolute terms) of
η(l) and define the set of those indices as
L(l) = {j1, . . . , jK}.
Generate w(l) ∈ {0, 1}N , defined as{

w
(l)
j = 1, j ∈ L(l)

w
(l)
j = 0, otherwise.

(46)

end for
Choose the vector in {w(l)}Il=1 that yields the smallest
objective value of (P1) or (P2).

appropriate kernel functions, which was also considered in [7],
and show some examples.

The sound field u satisfies the Helmholtz equation

(Δ + k̄2)u = 0, (47)

where k̄ denotes the wave number and Δ denotes the Laplacian.
Thus, when modeling a sound field as a GP, the kernel function
should be chosen so that the estimated field, i.e., the MAP esti-
mate, always satisfies the above equation. This can be achieved
when the kernel function with one of the inputs fixed satisfies
the Helmholtz equation, since the MAP estimate is given as a
weighted sum of kernel functions. For example, the two positive
definite kernel functions proposed in [48] defined as

κ(r, r′) =

{
J0(k̄‖r − r′‖)
j0(k̄‖r − r′‖) (48)

for the two-dimensional and three-dimensional cases, respec-
tively, can be used. Here,J0 is the zeroth-order Bessel function of
the first kind and j0 is the zeroth-order spherical Bessel function
of the first kind.

The GP using these kernel functions can be interpreted as
a diffused field with amplitude 1 [48], where plane waves
arrive from all directions with independent complex Gaussian
amplitudes. For example, the two-dimensional case of (48) can
be written as

J0(k̄‖r − r′‖) = 1

2π

∫
S

e−jk̄ξ
Tr
(
e−jk̄ξ

Tr′
)∗

dξ, (49)

where j denotes the imaginary unit, (·)∗ denotes the complex
conjugate, e−jk̄ξ

Tr is the plane wave function with the arrival
direction being ξ, and S is the unit circle. The integrand of (49)
is the covariance between r and r′ of a plane wave arriving
from the direction ξ with the variance of the amplitude 1. By
integrating this over S, the covariance of plane waves arriving
from all directions is calculated.

In the same way, by constructing a kernel function that takes
some prior knowledge of the sound field into consideration,
such as the direction of the sound source, we can model the
GP incorporating that prior knowledge. For example, in [49],
the kernel function is constructed with a directional weighting

function incorporated into (49). Using this kernel function, we
can obtain a GP model in which the sound source is expected to
be in a specific direction.

B. Broadband Case

The kernel function for expressing sound fields depends on the
frequency, as in (48). However, the frequency range of interest
in sound field estimation is often broadband, and the proposed
algorithms cannot be directly applied in these cases. In this
subsection, we consider applying the proposed methods to the
broadband case.

We first discretize the frequency range of interest and obtain
a set of frequency bins F = {f1, . . . , fF } (|F| = F ). Now,
the problem we consider is to estimate uE,F =

[
uT
E,f1 , . . . ,u

T
E,fF

]T
,

where uE,f ∈ C
M is defined as the sound field at estimation

locations E of frequency f ∈ F . Since the priority of estimating
the sound field might differ among frequencies, we define the
cost functions as a weighted sum of those for the single frequency
case, i.e.,

JMSE,F (S) =
∑
f∈F

afJMSE,f (S), (50)

JENT,F (S) =
∑
f∈F

afJENT,f (S), (51)

where JMSE,f and JENT,f stand for the cost functions in (P1) and
(P2) using the kernel function corresponding to the frequency f
and af > 0 denotes the weight for each frequency bin f ∈ F .
Here,JMSE,F (S) can be seen as the weighted mean squared error
of estimating uE,F with the weights being af for sound fields
of frequency f ∈ F . Also, by assuming that the sound fields of
different frequencies are statistically independent and by using
the additivity of entropy, JENT,F (S) can be similarly interpreted
as the weighted conditional entropy.

Both the greedy and convex relaxation algorithms proposed in
this paper can be applied to optimize these cost functions, since
any calculation related to the cost functions can be replaced with
the weighted sum of those in (P1) and (P2).

C. Computational Complexity of Broadband Case

The algorithms proposed in Section IV for approximately
optimizing (50) or (51) involvesF times as many calculations as
the single frequency case. Thus, the computational complexity
for the greedy algorithm becomes O(FN2), and the spatial
complexity for MDA becomes O(F (N2 +M2)). Note that
the spatial complexity for solving the SDP problem becomes
O(F 2 M4). Since the complexity with respect to F of SDP
is also larger than that of the MDA, the SDP-based method be-
comes even more infeasible than in the single frequency case. For
example, consider the situation in the numerical experiments.
In the broadband case, 7.49× 105 variables are required to be
stored for the calculation of the gradient, whereas 5.22× 1010

variables are required for the Hessian in SDP.
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Fig. 9. Distributions of the cost function value of MSE C �= E for randomized methods with 24 sensors.

Fig. 10. SDR with respect to frequency for broadband case for 24 sensors.
The red rectangle illustrates the frequency of interest for sensor placement.

VI. NUMERICAL EXPERIMENTS

We evaluated the proposed algorithms by numerical exper-
iments. We especially focus on sensor placement for two-
dimensional sound field estimation. The candidate and estima-
tion regions are defined as in Fig. 3. Here, C and E were defined
by discretizing each area at intervals of 0.05 m. The cardinalities
of each set were |C| = 138 and |E| = 169. The Bessel function
kernel in (48) was used for the GP model. The variance of the
observation noise was λ = 10−2. The sound speed was set to
340.0 m/s.

We evaluated the methods in two ways. One is a theoreti-
cal evaluation where we compared the achieved cost function
values. The other is a more practical evaluation where we
compared the reconstruction accuracy of plane wave fields. For
the latter evaluation, the reconstruction accuracy with respect
to the frequency is measured using the signal-to-distortion ratio
(SDR) defined as

SDR(f) = 10 log10

∫
Ω |utrue(r, k̄f )|2dr∫

Ω |utrue(r, k̄f )− û(r, k̄f )|2dr , (52)

where utrue and û are the true and estimated sound fields, respec-
tively, k̄f is the wave number of the frequency f , and Ω denotes
the estimation region. The integral was done by discretizingΩ at
an interval of 0.01 m. The true sound field to be estimated was a
sinusoidal plane wave field with an amplitude of 1 arriving from
angles of 0◦ to 359◦ every 1◦.

The narrowband case is considered in Sects. VI-A and VI-
B. In Section VI-A, the two proposed optimization problems
approximately solved by the greedy method are compared. To
investigate the effects of independently setting the estimation
and candidate positions, we also compare them with the opti-
mization problems where C and E are fixed to the same positions.
In Section VI-B, the two proposed approximation methods are
compared. Also, we evaluate the optimality of the solutions by
using the lower bound of the optimization problem obtained
from the convex-relaxation-based method. Finally, the broad-
band case is investigated in Section VI-C.

A. Comparison of Greedy Algorithms in Narrowband Case

We evaluate the proposed methods in the narrowband case,
where sensor positions are determined at each frequency. To in-
vestigate the effects of independently setting the estimation and
candidate positions, the proposed mean-squared-error-based
problem (MSE) and entropy-based problem (Entropy) were both
used along with the problems where the estimation positions are
fixed to the candidate positions. The proposed problems and
the problems for comparison are denoted as C �= E and C = E ,
respectively. Note that in the C = E case, both the candidate
and estimation positions were fixed to the candidate positions
of the proposed methods. Thus, for example, for MSE C = E ,
the MSE in C is calculated for the cost function (the sensor
positions are also selected from C). This is different from the
proposed MSE C �= E , where the MSE in E is calculated for
the cost function. In particular, the C = E case of Entropy is
equivalent to the optimization problem that maximizes H(yS).
For the implementation of the greedy algorithm for Entropy
C �= E , a small diagonal matrix 10−7 × I was added to KE,E
when calculatingΣE(∅)−1 = K−1

E,E to stabilize the computation.
Fig. 4(a) and (b) illustrate the cost function values forJMSE and

JENT described in (12) and (14), respectively, with respect to the
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Fig. 11. Reconstructed pressure distributions at 600 Hz with 24 sensors chosen by the greedy algorithm for the broadband case. (a) MSE C �= E ; (b) MSE C = E ;
(c) Entropy C �= E ; (d) Entropy C = E .

Fig. 12. Normalized error distributions at 600 Hz with 24 sensors chosen by the greedy algorithm for the broadband case. (a) MSE C �= E ; (b) MSE C = E ;
(c) Entropy C �= E ; (d) Entropy C = E . The SDRs were (a) 24.7, (b) 18.5, (c) 20.1, and (d) 16.7 dB.

number of sensors. MSEC �= E obtained its own objective values
lower than Entropy C �= E , and vice versa. In Fig. 4(a), MSE
C �= E obtained a lower MSE cost value than MSE C = E , which
implies the usefulness of the proposed method. In contrast,
Fig. 4(b) shows that Entropy C �= E and Entropy C = E had
little difference in JENT. This can be explained by the fact that
the cost function of Entropy C �= E can be written as

H(uE | yS) = H(uE ,yS)−H(yS), (53)

where the second term is the cost function of Entropy C = E . It
is likely that the second term of (53) is much larger than the first
term, and thus Entropy C �= E and Entropy C = E almost take
the same values.

In Fig. 5, the SDRs for 24 sensors are plotted against fre-
quency. SDRs of all methods decrease as the frequency gets
higher, which means that estimating sound fields gets harder as
the frequency increases. The figure shows that C �= E achieves
a higher SDR than C = E in most cases, both for MSE and
Entropy. MSE C �= E obtained a higher SDR than Entropy
C �= E . This can be explained by comparing JMSE with the
definition of SDR in (52). The denominator inside the integral
of (52) denotes the mean squared error at the estimation region,
which is approximated by JMSE. Thus, when JMSE is efficiently
reduced, a high SDR can be expected.

Figs. 6 and 7 illustrate the estimated sound field and the
estimation error along with the sensor placement, respectively.
MSE C �= E mostly selected positions close to the estimation
area. As a result, the lowest estimation error was achieved. En-
tropy C �= E also tended to select positions inside the estimation
area, but it also selected many positions near the corner of the
candidate area. This is because the second term in (53) requires

the placement of sensors to be away as possible from each other,
where this property is also described in [11].

B. Comparison of Greedy Method and Convex
Relaxation Method

We compare the different algorithms proposed for the sensor
placement problems and also evaluate the optimality of the
solutions. We only provide the results of the narrowband case for
MSE owing to lack of space, although MDA can also be applied
to Entropy or the broadband case. For the convex relaxation
method, two rounding algorithms were conducted: a simple
algorithm that chooses the largest K entries (Convex max-K)
and a randomized rounding algorithm described in Algorithm 3
(Convex rand). We also investigated random sensor placement
where the placements of K sensors were selected uniformly
randomly from C (Rand). By comparing this with Convex rand,
we evaluate the effect of using the solution of convex relaxed
problems for random rounding. The random procedures for
Convex rand and Rand were conducted for I = 5000 times and
the solution that obtained the lowest cost function value were
selected.

Fig. 8 illustrates the cost function value for each algorithm.
Greedy and Convex rand achieved the lowest values among
them, whereas Convex max-K obtained a higher value than
the others when the number of sensors was small. Since the
values of Greedy and Convex rand were close to the lower bound
of the optimal solution (Lower bound), which was obtained
by the convex-relaxation-based method, we can confirm the
near-optimality of the two algorithms.
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Fig. 9 shows the boxplot of the obtained cost function values
for the two randomized methods. Mostly, Convex rand achieved
lower values than Rand, which shows the effectiveness of solving
the relaxed convex problem and using the solution for the
randomized rounding algorithm compared with choosing the
sensor placements uniformly randomly.

Overall, Greedy and Convex rand were the two best algo-
rithms for solving (P1). Although Greedy is much faster than
Convex rand, Convex rand is still useful, since we can know the
lower bound of the optimal value and can evaluate the optimality
of the approximate solution using that lower bound.

C. Comparison of Optimization Problems in Broadband Case

We evaluate the proposed methods in the broadband case,
where the solutions were obtained by the greedy algorithm. The
frequency of interest is set from 400 to 800 Hz at intervals of
50 Hz. The weights in (50) and (51) are equally set to af = 1
for f ∈ F . Fig. 10 illustrates the SDR with respect to frequency.
Here, the placements of 24 sensors were determined and were
used for estimating sound fields of frequencies from 50 to
800 Hz. For both MSE and Entropy, C �= E obtained higher
SDRs than C = E at most frequencies of interest, although the
difference was small for Entropy. The highest SDR was achieved
by MSE C �= E , as in the narrowband case. Figs. 11 and 12
illustrate the sensor placement with an example of the estimated
sound field and the estimation error. The tendencies of the sensor
placements were the same as those in the narrowband case.

VII. CONCLUSION

We studied the sensor placement problem for field estimation
where the field follows GPs. Whereas many sensor placement
methods for GPs have been proposed, to the best of our knowl-
edge, the case where the candidate and estimation regions are
not identical was not considered. In this paper, we proposed
two sensor placement methods based on mean squared error
and conditional entropy that can set the candidate locations
and the estimation locations independently. Subsequently, we
derived two algorithms to obtain an approximate solution to the
problems: the greedy method and the convex relaxation method.
In addition, we derived a bound for the suboptimality of the
greedy method, and in the convex relaxation method, the relaxed
problem was solved by a first-order algorithm, which enables
this method to be applied to large-scale problems compared with
the second-order-algorithm-based methods. By using the pro-
posed methods, we can determine sensor placements in broader
situations. Experimental results for sound field estimation where
the candidate placement region differs from the estimation re-
gion showed that the proposed methods were more suitable for
this situation than current methods. We also confirmed the near
optimality of the methods by using the bound obtained by the
convex relaxation method.

APPENDIX A
DERIVATION OF UPDATE RULES FOR GREEDY ALGORITHMS

First, we define Aw = diag (w)Pw. The update of Aw by
adding a new index j can be calculated as

Aw+ej

=
(
diag (w)+eje

T
j

) (
λI+KC,C diag (w)+KC,CejeT

j

)−1
=
(
diag (w) + eje

T
j

)(
Pw −

PwKC,CejeT
jPw

1 + eT
jPwKC,Cej

)
. (54)

Using this, the update rule of Aw can be written as

Aw+ej
−Aw

= eje
T
jPw −

(
diag (w) + eje

T
j

)
PwKC,CejeT

jPw

1 + eT
jPwKC,Cej

. (55)

Here, the first term of (55) can be modified as

eje
T
jPw =

(
1 + eT

jPwKC,Cej
)
eje

T
jPw

1 + eT
jPwKC,Cej

=

(
I + eje

T
jPwKC,C

)
eje

T
jPw

1 + eT
jPwKC,Cej

. (56)

By substituting (56) to (55), the update rule of Aw can be
rewritten as

Aw+ej
−Aw =

(I − diag (w)PwKC,C) ejeT
jPw

1 + eT
jPwKC,Cej

= bjP
H
weje

T
jPw. (57)

Here, the last equality can be confirmed by applying the matrix
inversion lemma to P H

w as

P H
w = (λI + diag (w)KC,C)

−1

= λ−1 (I − diag (w)PwKC,C) . (58)

Using (57), the update of the posterior covariance matrix by
adding a new sensor qj can be written as

ΣE(S)−ΣE(S ∪ {qj}) = bjKE,CP H
weje

T
jPwKC,E . (59)

Thus, the decrease in the cost functions can be derived as

JMSE(S)− JMSE(S ∪ {qj})
= tr

(
bjKE,CP H

weje
T
jPwKC,E

)
= bje

T
jPwKC,EKE,CP H

wej ,

JENT(S)− JENT(S ∪ {qj})
= log det (ΣE(S))− log det

(
ΣE(S)− bjaja

H
j

)
= − log

(
1− bja

H
j Σ
−1
E (S)aj

)
. (60)

Here, since PwKC,C is semidefinite (see Appendix B), bj ≥ 0.
From this, we can confirm that both cost functions decrease by
adding a new sensor, as

JMSE(S)− JMSE(S ∪ {qj})
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= bj‖KE,CP H
wej‖2 ≥ 0, (61)

JENT(S)− JENT(S ∪ {qj})
≥ − log(1) = 0. (62)

APPENDIX B
PROOF OF SEMIDEFINITENESS OF PwKC,C

By using the matrix inversion lemma,PwKC,C can be rewrit-
ten as

PwKC,C = (λI +KC,C diag (w) diag (w))−1 KC,C

= λ−1 (KC,C −KC,C diag (w)

· (λI + diag (w)KC,C diag (w))−1

· diag (w)KC,C) . (63)

Here, let X be

X =

[
KC,C KC,C diag (w)
diag (w)KC,C λI + diag (w)KC,C diag (w)

]

=

[√
KC,C

diag (w)
√

KC,C

] [√
KC,C

√
KC,C diag (w)

]

+

[
0 0

0 λI

]

� 0. (64)

Since (63) is the schur complement of λ−1X � 0, PwKC,C is
positive semidefinite.

APPENDIX C
PROOF OF THEOREM 2

Since KC,C is invertible, Pw can be reformulated as

Pw =
(
λK−1

C,C + diag (w)
)−1

K−1
C,C . (65)

Using the above equation and (19), we can describe the super-
modularity ratio as

α = min
A⊆B⊂C,
qj∈C\B

λ+ eT
jM

−1
B ej

λ+ eT
jM

−1
A ej

· e
T
jM

−1
A K̄M−1

A ej

eT
jM

−1
B K̄M−1

B ej
, (66)

where Mw = K−1
C,C + λ−1 diag (w) and K̄ =

K−1
C,CKC,EKE,CK−1

C,C . By considering the fact that

eT
jM

−1
S K̄M−1

S ej = tr
(
K̄M−1

S eje
T
jM

−1
S
)

(67)

and that K̄ and M−1
S eje

T
jM

−1
S are positive semidefinite, we

can apply the theorem in [50], i.e.,

λmin(A)tr(B) ≤ tr(AB) ≤ λmax(A)tr(B). (68)

Then, we obtain

λmin(K̄)λmin(M
−1
S )eT

jM
−1
S ej

≤ λmin(K̄)tr
(
M−1
S eje

T
jM

−1
S
)

≤ eT
jM

−1
S K̄M−1

S ej

≤ λmax(K̄)eT
jM

−2
S ej

≤ λmax(K̄)λmax(M
−1
S )eT

jM
−1
S ej . (69)

Using this inequality and on the basis of the fact that(
K−1
C,C + λ−1I

)−1
�M−1

B �M−1
A �KC,C , (70)

we can bound (66) as

λ+ eT
jMBej

λ+ eT
jMAej

· λmin(K̄)λmin(M
−1
A )eT

jM
−1
A ej

λmax(K̄)λmax(M
−1
B )eT

jM
−1
B ej

≥ λ/[M−1
B ]j,j + 1

λ/[M−1
A ]j,j + 1

· λmin(K̄)λmin(M
−1
A )

λmin(K̄)λmin(M
−1
B )

≥ λmin(K̄)λmin(M
−1
A )

λmax(K̄)λmax(M
−1
B )

≥
λmin(K̄)λmin

((
K−1
C,C + λ−1I

)−1)
λmax(K̄)λmax (KC,C)

.

(71)

Finally by substituting

λmin

((
K−1
C,C + λ−1I

)−1)
=

1

1/λmin(KC,C) + λ−1
, (72)

Theorem 2 is derived.

APPENDIX D
PROOF OF THEOREM 3

Using (20), the supermodularity ratio ofJENT can be described
by

α = min
A⊆B⊂C

log
(
1− bA,jaH

A,jΣE(A)−1aA,j
)

log
(
1− bB,jaH

B,jΣE(B)−1aB,j
) . (73)

By using the inequality of the logarithm
x

1 + x
≤ log (1 + x) ≤ x (74)

and the fact that log (1− bB,jaH
B,jΣE(B)−1aB,j) ≤ 0 and

log (1− bA,jaH
A,jΣE(A)−1aA,j) ≤ 0, we can bound α by

α ≥ min
A⊆B⊂C

(−bA,jaH
A,jΣE(A)−1aA,j

)

· 1− bB,jaH
B,jΣE(B)−1aB,j

−bB,jaH
B,jΣE(B)−1aB,j

= min
A⊆B⊂C

bA,jaH
A,jΣE(A)−1aA,j

bB,jaH
B,jΣE(B)−1aB,j

· (1− bB,jaH
B,jΣE(B)−1aB,j

)
. (75)

Here, by using (68), we can bound some components of the
above equation as

aH
B,jΣE(B)−1aB,j
= λ−2eT

jM
−1
B K−1

C,CKC,EΣE(B)−1KE,CK−1
C,CM

−1
B ej
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≤ λ−2λmax

(
ΣE(B)−1

)
λmax

(
K̄
)
eT
jM

−2
B ej

≤ λ−2λmax

(
ΣE(B)−1

)
λmax

(
K̄
)
λmax

(
M−1
B
)
[M−1

B ]j,j

≤ λ−2λmax

(
K−1
E,E
)
λmax

(
K̄
)
λmax

(
M−1
B
)
[M−1

B ]j,j

≤ λ−2λmax

(
K−1
E,E
)
λmax

(
K̄
)
λmax (KC,C) [M−1

B ]j,j ,

(76)

aH
A,jΣE(A)−1aA,j
≥ λ−2λmin

(
ΣE(A)−1

)
λmin

(
K̄
)
λmin

(
M−1
A
)
[M−1

A ]j,j

≥ λ−2λmin

(
ΣE(C)−1

)
λmin

(
K̄
)
λmin

(
M−1
A
)
[M−1

A ]j,j

≥ λ−2
λmin

(
ΣE(C)−1

)
λmin

(
K̄
)
[M−1

A ]j,j

1/λmin(KC,C) + λ−1

= λ−2
λmin

(
ΣE(C)−1

)
λmin

(
K̄
)
λmin(KC,C)[M−1

A ]j,j

1 + λ−1λmin(KC,C)
,

(77)

where ΣE(C) = KE,E −KE,C(KC,C + λI)−1KC,E . Here, we
used the fact that the covariance matrix ΣE(S) satisfies

ΣE(C) � ΣE(S) �KE,E . (78)

The second term of (75) can modified as

1− bB,jaH
B,jΣE(B)−1aB,j

= 1− λ−1eT
jM

−1
B K−1

C,CKC,EΣE(B)−1KE,CK−1
C,CM

−1
B eT

j

1 + λ−1[M−1
B ]j,j

=
1

λ+ [M−1
B ]j,j

(
λ+ eT

jM
−1
B ej

−eT
jM

−1
B K−1

C,CKC,EΣE(B)−1KE,CK−1
C,CM

−1
B eT

j

)

=
1

λ+ [M−1
B ]j,j

(
λ+ eT

j

(
M−1
B

−M−1
B K−1

C,CKC,EΣE(B)−1KE,CK−1
C,CM

−1
B
)
eT
j

)
. (79)

Here, we reformulate ΣE(B) as

ΣE(B) = KE,E −KE,CK−1
C,CKC,E

+KE,CK−1
C,CM

−1
B K−1

C,CKC,E . (80)

This can be derived by applying

ΦS
(
ΦT
SKC,CΦS + λI

)−1
ΦT
S

= K−1
C,C −K−1

C,C
(
K−1
C,C + λ−1 diag (w)

)−1
K−1
C,C (81)

to (9). Here, the following matrix which appears in (79) can be
shown to be positive seimidefinite as

M−1
B −M−1

B K−1
C,CKC,EΣE(B)−1KE,CK−1

C,CM
−1
B � 0.

(82)

This is because the above matrix is the schur complement of a
positive semidefinite matrix[

M−1
B M−1

B K−1
C,CKC,E

KE,CK−1
C,CM

−1
B ΣE(B)

]

=

[
M−1
B M−1

B K−1
C,CKC,E

KE,CK−1
C,CM

−1
B KE,CK−1

C,CM
−1
B K−1

C,CKC,E

]

+

[
0 0

0 KE,E −KE,CK−1
C,CKC,E

]

� 0. (83)

From (82) and (79), we obtain

1− bB,jaH
B,jΣE(B)−1aB,j ≥

λ

λ+ [M−1
B ]j,j

≥ 1

1 + λ−1 maxj [KC,C ]j,j
. (84)

Finally, by substituting (76), (77) and (84) to (75) and by using
the fact that M−1

B �M−1
A , Theorem 3 is derived.

APPENDIX E PROOF OF CONVEXITY OF (P3)

The Hessian of JMSE can be calculated as

ΔwJMSE(w) = 2λ−1M−1
w �

(
M−1

w K̄M−1
w

)
. (85)

Here, since the Hessian is constructed as the Hadamard product
of two positive semidefinite matrices, it is positive semidefinite.
Thus, JMSE is convex.

Next, the Hessian of JENT can be calculated as

ΔwJENT(w) = Δw log det (ΣE (w))

= λ−2
(
AwΣ−1E (w)AT

w

)
� (2M−1

w −AwΣ−1E (w)AT
w

)
, (86)

where Aw = M−1
w K−1

C,CKC,E . Here, since AwΣ−1E (w)AT
w is

positive semidefinite, if the right term of the Hadamard product
in (86) is also positive semidefinite, the Hessian matrix would
also be positive semidefinite.

Since Gram matrices are always positive semidefinite,[
KE,E KE,C
KC,E KC,C

]
� 0

⇔KE,E −KE,CK−1
C,CKC,E � 0. (87)

Using the fact that KE,E −KE,CK−1
C,CKC,E is positive semidef-

inite, we can define another positive semidefinite matrix as

Kw +K−1
C,CKC,E (KE,E −KE,CKC,CKC,E)

−1 KE,CK−1
C,C

=
(
M−1

w −AwΣ−1w AT
w

)−1
. (88)

This shows that M−1
w −AwΣ−1w Aw is also positive semidef-

inite, and thus that the right term of the Hadamard product in
(86) is positive semidefinite. Thus, JENT is convex.
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