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Abstract—We address here the issue of jointly estimating the
angle parameters of a single sinusoid with Wiener carrier phase
noise and observed in additive, white, Gaussian noise (AWGN). We
develop the theoretical foundation for time-domain, phase-based,
joint maximum likelihood (ML) estimation of the unknown carrier
frequency and the initial carrier phase, with simultaneous maxi-
mum a posteriori probability (MAP) estimation of the time-varying
carrier phase noise. The derivation is based on the amplitude
and phase-form of the noisy received signal model together with
the use of the best, linearized, additive observation phase noise
model due to AWGN. Our newly derived estimators are closed-form
expressions, consisting of both the phase and the magnitude of
all the received signal samples. More importantly, they all have a
low-complexity, sample-by-sample iterative processing structure,
which can be implemented iteratively in real-time. As a basis for
comparison, the Cramer-Rao lower bound (CRLB) for the ML es-
timators and the Bayesian CRLB (BCRLB) for the MAP estimator
are derived in the presence of carrier phase noise, and the results
simply depend on the signal-to-noise ratio (SNR), the observation
length and the phase noise variance. It is theoretically shown that
the estimates obtained are unbiased, and the mean-square error
(MSE) of the estimators attain the CRLB/BCRLB at high SNR.
The MSE performance as a function of the SNR, the observation
length and the phase noise variance is verified using Monte Carlo
simulation, which shows a remarkable improvement in estimation
accuracy in large phase noise.

Index Terms—MAP/ML estimation, carrier phase noise, Wiener
process, phase-based time-domain frequency/phase estimation,
(Bayesian) Cramer-Rao lower bound, MMSE estimation, weighted
phase averager.

I. INTRODUCTION

E STIMATING the parameters, e.g., the carrier frequency
and phase of a sine wave with noise is a classic and
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important issue in communications [1]–[3], biomedical engi-
neering [4]–[6], radar/sonar applications [7], [8], and other areas
of signal processing, e.g., power-quality monitoring in the power
grid [9], [10]. All these physical applications can resort to almost
the same signal model for theoretical performance analysis,
where a single sinusoidal carrier wave is used.

Based on the general discrete-time single-sinusoid signal
model, a variety of frequency estimation algorithms were de-
veloped in additive, white, Gaussian noise (AWGN). Due to
the nonlinear dependence of the observed data on angular pa-
rameters, most estimators cannot be derived in explicit closed
form, and can hardly get a good trade-off between estimation
accuracy and computational complexity. The most common
approach so far is to model the frequency and phase as unknown
and nonrandom parameters, and apply the theory of maximum
likelihood (ML) estimation [11]–[14]. One well-known solution
is the Fourier-transform-based frequency-domain method, i.e.,
to locate the peak of the periodogram through a 1-D search,
which is computationally intensive [11], [12]. The other popular
alternative is called phase-based, time-domain estimation, using
the received signal phases as the observation data samples to be
fed into the estimator, where the received phase is expressed
as the sum of the transmitted signal phase and an additive
observation phase noise (AOPN) due to the AWGN [13], [14].
Even though ML estimation has been implemented over the past
several decades, the actual structure of the time-domain ML
frequency/phase estimator in AWGN is derived explicitly only
recently in [3], which makes full use of both the magnitude and
the phase of the observations to achieve the best possible esti-
mation accuracy. However, all these prior art on joint frequency
and phase estimation is only for the pure AWGN channel, and
has not taken into account the detrimental impact of oscillator
phase noise.

As is well known, all natural and man-made oscillators
(whether optical, electronic, acoustic, atomic, or any other)
exhibit phase and frequency instabilities collectively known as
phase noise. Oscillator phase noise is one of the fundamental per-
formance impairments in modern communication, radar, spec-
troscopic, and metrological systems [15], [16]. To be specific,
in order to achieve higher spectral efficiency, ultra-high-speed
communications nowadays are moving to higher spectral bands.
The system performance is often limited by the phase noise
introduced by local oscillators used for up/down-conversion,
and the higher the carrier frequency used the greater the level
of carrier phase noise encountered [17], [18]. Besides, with
the advent of coherent optics, the role of laser oscillator phase
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noise is becoming well recognized also in the context of optical
transmission, and many digital signal processing algorithms are
used to compensate for the consequential damage [2], [19]. In
radar applications for real-time ranging and imaging, such as
frequency modulated continuous wave (FMCW) radar and syn-
thetic aperture radar (SAR) systems, the uncompensated phase
noise may cause a time-variant shift, spurious sidelobes, and a
broadening of the impulse response, as well as a low-frequency
phase modulation of the radar signal, which severely degrades
the detection and tracking performance [20], [21]. Moreover, for
non-contact biomedical (cardiopulmonary) monitoring, where
continuous-wave radar technology is employed to estimate the
heart rate frequency, the residual phase noise from an on-chip
oscillator has a significant effect on the detection sensitivity
of the small phase variations created by heart and respiration
motion [22], [23]. Therefore, phase noise is an inevitable factor
that should be taken into account in parameter estimation and
performance analysis in practical applications.

Considering the time-varying phase noise, the non-stationary
Wiener process model is commonly used to characterize the
jitter behaviour of practical oscillators in wireless, optical and
radar applications [18], [20], [24]. However, in order to simplify
theoretical analysis, most algorithms are designed based on
the assumption of a quasi-static phase and do not consider the
time-varying nature of the carrier phase, and thus results in a sig-
nificant deterioration of the estimation performance. Moreover,
there is only limited published work that uses the Wiener phase
noise model directly in joint frequency/phase estimation of a sine
wave in noise. For example, [25] analyzed the Cramer-Rao lower
bound (CRLB) for frequency estimation in the presence of phase
noise, where only an asymptotic approximation of the bound
is derived by using a Monte Carlo average, and the estimator
designed therein is quite complicated for a receiver implemen-
tation. Reference [26] considered the linear minimum-mean-
square error (LMMSE) recursive estimation of the Wiener phase
noise, and [27] simulated the effect of the Wiener phase noise on
an iterative decision-directed frequency and phase noise estima-
tion technique, using the generalized expectation-maximization
algorithm on a truncated basis expansion of the phase. Our
carrier phase recovery work in [28] for linear, suppressed-carrier
digital modulations also modelled the unknown carrier phase
as a constant, nonrandom parameter, and applied the ML esti-
mation theory. The estimator can be applied only to the case
of very small phase noise in practice. Thus, in [29], we further
developed a low-complexity, complex-weighted decision-aided,
adaptive complex phasor estimator, which automatically adapts
its effective filter length according to the signal-to-noise ratio
(SNR), laser-linewidth-symbol-duration product and modula-
tion format. In summary, no systematic approach for deriving
the joint ML frequency and phase estimator in Wiener phase
noise has been developed, and there is no direct method for
analyzing the performance of estimators in the presence of such
phase noise in the literature.

Note that using the frequency-domain ML approach first
proposed in [12] is not suitable for estimation in the presence of
carrier phase noise. The frequency-domain approach normally
takes the discrete Fourier transform (DFT) of the received noisy
samples and locates the peak of the periodogram. Due to the
carrier phase noise, the peak is broadened and the peak location is
more prone to errors. Therefore, these methods are very sensitive
to noise and cannot be refined in the presence of carrier phase

noise. Moreover, the numerical complexity of the DFT-based
method is more than ten times larger than the complexity of
the time-domain approach using phase angle calculations of the
sample sequence [30]. Therefore, the time-domain approach is
advantageous and more promising when there is carrier phase
noise.

This paper thus derives the explicit structures of phase based,
joint ML/MAP estimation of unknown single-sinusoid angle
parameters in time-varying phase noise. The joint ML estimation
of the unknown but deterministic frequency and initial phase and
MAP estimation of the unknown and random phase noise are
implemented in time-domain processing, based on the discrete-
time received observations. Here, the Wiener phase noise model
and the best linearized AOPN model due to the AWGN proposed
in our earlier work are used throughout the paper. The main
contributions of this paper are summarised as follows:

1) Our newly derived ML/MAP estimators are closed-form,
making full use of both the received signal phases and
magnitudes. The derivation is based on the fact that using
the received signal phases with the instantaneous received
amplitude information incorporated in the AOPN model
leads to the same ML/MAP estimates of the angle param-
eters as using the in-phase and quadrature components of
the received signals [31]. More importantly, they all have
a low-complexity, sample-by-sample iterative processing
structure, which avoids the operation of matrix inversion
and can be implemented easily in real-time. Moreover,
in practical cases with unknown transmitted amplitude,
the ML/MAP estimators can be implemented by using the
received noisy signal magnitude to replace the transmitted
amplitude. Simulations show that the estimation accuracy
remains almost the same for a large SNR region.

2) We further provide the theoretical analysis of the estima-
tion error variances of the ML/MAP estimators. As a basis
for comparison, the explicit CRLBs for estimating the
unknown but deterministic frequency and initial phase,
and the exact Bayesian CRLB (BCRLB) for estimating
the random phase noise are derived, which indicate the
best estimation performance that can be achieved in the
presence of phase noise. It is theoretically shown that
the ML/MAP estimates obtained are unbiased, and the
mean-square error (MSE) of the estimators attain the
CRLB/BCRLB at high SNR.

3) Performance analysis of all the estimators are further
provided by Monte Carlo simulations, where the improved
phase unwrapping algorithm proposed in [31, Sec. IV-C]
is used. The specific dependence of the estimation per-
formance on the SNR, the phase noise variance and the
number of independent observations is demonstrated in
detail by simulation results. It is worth noting that the
high-SNR approximation for the derivation will not affect
the ML/MAP estimation accuracy, and the threshold SNR
can go as low as -4 dB in small phase noise.

4) The linear minimum-MSE (LMMSE) implementation of
the weighted phase averager (WPA) estimator is also
discussed as an alternative for the frequency estimation in
carrier phase noise. Even though it performs worse than
the ML estimator, it is easier to implement in practice,
since it makes use of the phase differences between the
contiguous noisy received signal samples and can avoid
the phase unwrapping in most cases.
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This paper is organized as follows. Section II introduces
the signal model with Wiener carrier phase noise and channel
AWGN represented by the best linearized AOPN model. Sec-
tion III presents the time-domain phase-based frequency/phase
ML/MAP estimators. The iterative implementation is discussed
in Section IV. Section V analyzes the MSE performance of
the estimators and obtains the explicit CRLBs and BCRLB.
Section VI discusses the phase unwrapping and the LMMSE
implementation of the WPA frequency estimator in phase noise.
Numerical and simulation results are given in Section VII.
Section VIII concludes the paper.

II. SIGNAL MODEL IN WIENER PHASE NOISE

Here, we consider a single sinusoid with unknown frequency
and initial phase observed in AWGN and carrier phase noise.
The complex, baseband received signal r(k) in discrete-time k
is given by

r(k) = Aej(ωk+φ+θ(k)) + n(k) (1)

where A is the transmitted signal amplitude which is assumed
to be known when necessary, ω is the unknown nonrandom
frequency and φ is the unknown nonrandom initial phase. The
sequence {θ(k), k = 0, 1, 2 · · · } is the carrier phase noise over
the interval (−π,+π], due to the imperfect oscillators. The
random-walk phase noise model used here is the Wiener process,
i.e., we have θ(k) = θ(k − 1) + Δθ(k), where θ(0) = 0 and
{Δθ(k)} is a sequence of independent, identically distributed
(i.i.d.), zero-mean, real Gaussian random variables with variance
σ2
p (rad2). The AWGN {n(k)} is a sequence of discrete-time, cir-

cularly symmetric, zero-mean, i.i.d., complex Gaussian random
variables with covariance functionE[n(k)n∗(k − l)] = N0δ(l).
Here, the SNR is defined as A2/N0.

The received signal is further rewritten in polar-coordinates
form (|r(k)|,∠r(k)) as

r(k) = |r(k)|ej∠r(k)

= |r(k)|ej(ωk+φ+θ(k)+ε(k)). (2)

Here, |r(k)| and∠r(k) are the received signal amplitude and the
unwrapped received signal phase, respectively. Note that ∠r(k)
can be obtained from the principal argument of r(k) by phase
unwrapping. Term ε(k) is the AOPN due to the AWGN n(k),
and [31, Eq. (9)] shows that ε(k) is Tikhonov distributed condi-
tioned on knowing |r(k)|. Further, it is shown that the Tikhonov
probability density function (pdf) becomes the Gaussian pdf for
high SNR,1 leading to the best linearized AOPN model given by

p(ε(k) | |r(k)|) =
exp
[
− ε(k)2

2α

]
√
2πα

, α =
N0

2A|r(k)| . (3)

We will use this Gaussian-distributed AOPN model, i.e., ε(k) ∼
N(0, α), throughout this paper.

The received signal phases {∠r(k)} up till time k = N − 1
can be expressed in the vector form as

∠r = ωN+ φ1+ θ + ε (4)

where ∠r = [∠r(0),∠r(1) · · ·∠r(N − 1)]T , N =
[0, 1 · · ·N − 1]T , 1 = [1, 1 · · · 1]T , ε = [ε(0), ε(1) · · · ε(N −

1In practice, our simulations in Section VII show that this approximation
works for values of SNR as low as 0 dB in ML estimation for a large range of
phase noise variances.

1)]T and θ = [θ(0), θ(1) · · · θ(N − 1)]T . All the above vectors
are N -dimensional column vectors, and superscript T denotes
the vector transpose. Note that θ and ε are statistically
independent of each other. We have θ ∼ N(0,Σθ) and
ε ∼ N(0,Σε), where the covariance matrices Σθ and Σε can
be determined as

Σθ = Cov(θ,θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0

0 σ2
p σ2

p σ2
p · · · σ2

p

0 σ2
p 2σ2

p 2σ2
p · · · 2σ2

p

0 σ2
p 2σ2

p 3σ2
p · · · 3σ2

p
...

...
...

...
. . .

...
0 σ2

p 2σ2
p 3σ2

p · · · (N − 1)σ2
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

and

Σε = Cov(ε, ε) =

⎡⎢⎢⎢⎢⎢⎣
N0

2A|r(0)| 0 · · · 0

0 N0

2A|r(1)| 0
...

... 0
. . . 0

0 · · · 0 N0

2A|r(N−1)|

⎤⎥⎥⎥⎥⎥⎦ .
(6)

Note that Σθ is a N ×N symmetric matrix, and Σε is a N ×N
diagonal matrix.

III. ML ESTIMATION OF ω, φ AND MAP ESTIMATION OF θ

We consider two basic criteria here, namely, the ML criterion
and the MAP criterion that are widely used in signal parameter
estimation. The ML criterion is for the parameters ω and φ
that are treated as unknown but deterministic, and the MAP
criterion is for the unknown and random parameters θ here. In
this section, we present the joint ML estimation of ω and φ and
MAP estimation of θ, which is optimal using the observations
{r(k), k = 0, 1, . . . , N − 1}.

In [31, Eqs. (3–4)] for the case of pure AWGN (i.e., θ(k) = 0),
we have shown that statistically |r(k)| has no dependence on ω
and φ, and the pdf term p(|r(k)| | ω, φ) reduces to p(|r(k)|).
Moreover, given ω and φ, the only randomness in ∠r(k) is
due to ε(k) in pure AWGN, and the conditional pdf p(∠r(k) |
ω, φ, |r(k)|) becomes pε(k)(∠r(k)− (ωk + φ) | |r(k)|), where
pε(k)() denotes the pdf of the random variable ε(k). Hence,
accordingly in the presence of phase noise, the likelihood func-
tion p(r(k) | ω, φ, θ(k)) can be expressed in polar coordinates
(|r(k)|,∠r(k)) as

p(r(k) | ω, φ, θ(k))
= pε(k)(∠r(k)− (ωk + φ+ θ(k)) | |r(k)|)C(|r(k)|) (7)

where the constant C(|r(k)|) is a function of |r(k)|, which has
no dependence on the angle parameters. This equivalence means
that the magnitude of r(k) can be dropped once it is incorporated
into the statistics of the argument of r(k) in the estimation pro-
cess. This result, therefore, establishes the theoretical basis for
phase-based estimation of the single-sinusoid angle parameters.
That is, using the received signal phases {∠r(k)} with received
signal amplitudes {|r(k)|} incorporated into the statistics of the
AOPN {ε(k)} can lead to the same ML/MAP estimates for ω,
φ and θ as using the received signals {r(k)}N−1

k=0 .
Based on this phase-based time-domain approach established

in our earlier work [31], we will estimate ω, φ and {θ(k)}N−1
k=0
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using all the N received arguments of {r(k)}N−1
k=0 , i.e., the

measurements of {∠r(k)}N−1
k=0 . The estimates of ω, φ and θ

can be obtained by maximizing the joint pdf p(∠r,θ|ω, φ):

ω̂(N−1), φ̂(N−1), θ̂
(N−1)

= argmax
ω,φ,θ

p(∠r,θ|ω, φ)

= argmax
ω,φ,θ

p(θ|∠r, ω, φ)p(∠r|ω, φ).
(8)

Here, ω̂(N−1) andφ̂(N−1) denote the ML estimates of the un-
known frequency and initial phase at the time point k = N − 1,

respectively, and θ̂
(N−1)

denotes the MAP estimates of the phase
noise up till time k = N − 1.

From (8), we first consider the ML estimation of ω and
φ by maximizing p(∠r|ω, φ). Conditioning on ω and φ, we
have ∠r|ω,φ ∼ N(ωN+ φ1,Σr) with the covariance matrix
Cov(∠r,∠r) given by Σr = Σθ +Σε. That is, due to the in-
dependent Gaussian-distributed θ and ε, the likelihood function
p(∠r|ω, φ) can be evaluated as

p(∠r|ω, φ) = (2π)−
N
2 det(Σr)

− 1
2

× exp

[
−1

2
(∠r− ωN− φ1)TΣ−1

r (∠r− ωN− φ1)

]
. (9)

Here, det(Σr)
− 1

2 , where det() denotes the matrix determi-
nant, is a constant independent of ω and φ. Thus, maximizing
p(∠r|ω, φ) is equivalent to minimizingΛ(ω, φ) = (∠r− ωN−
φ1)TΣ−1

r (∠r− ωN− φ1) with respect to ω and φ. That is,
the necessary condition to get the ML estimates of ω and φ,
respectively, is that the corresponding values should satisfy

∂Λ(ω, φ)

∂ω
= 0 and

∂Λ(ω, φ)

∂φ
= 0. (10)

By solving the above equations, we can get the ML estimates
φ̂(N−1) and ω̂(N−1), respectively, given by

φ̂(N−1) =
1TΣr

−1(∠r− ωN)

1TΣr
−11

(11)

and

ω̂(N−1) =
NTΣr

−1(∠r− φ1)

NTΣr
−1N

. (12)

Further, by jointly solving (11) and (12), the explicit ML es-
timates of the frequency ω and the initial phase φ are finally
derived as

ω̂(N−1)

=

(
NTΣr

−1∠r
) (

1TΣr
−11
)− (NTΣr

−11
) (

1TΣr
−1∠r

)(
NTΣr

−1N
) (

1TΣr
−11
)− (1TΣr

−1N
)2

(13)

and

φ̂(N−1)

=

(
1TΣr

−1∠r
) (

NTΣr
−1N

)− (1TΣr
−1N

) (
NTΣr

−1∠r
)(

NTΣr
−1N

) (
1TΣr

−11
)− (1TΣr

−1N
)2 .

(14)

For the case of no carrier phase noise, i.e.,σ2
p = 0, the covariance

matrix Σr in (13) and (14) becomes the diagonal matrix Σε. In
this way, we can have

(
NTΣr

−1∠r
)
=
(
NTΣε

−1∠r
)
=

2A
N0

(
N−1∑
k=0

k|r(k)|∠r(k)
)
.

(15)

And all the other product terms in (13) and (14) can reduce to
have similar forms of cumulative sums. Thus, the ML estimates
in (13) and (14) reduce to be exactly the same as those ML
estimates in [3, Eqs. (16–17)] derived only in the presence of
AWGN, when there is no carrier phase noise.

Next, we consider the MAP estimation of the Wiener phase
noise θ. Since θ is a priori Gaussian, and ∠r|ω,φ is also a
priori Gaussian, it follows that p(θ|∠r, ω, φ) is a conditional
Gaussian pdf. Thus, for given ω and φ, the conditional pdf
p(θ|∠r, ω, φ) is maximized with respect to θ at the point

θ̂
(N−1)|ω,φ = E[θ|∠r, ω, φ], whereE() denotes the expectation

operation. Also, using Bayes’ theorem

p(θ|∠r, ω, φ) = p(∠r|θ, ω, φ)p(θ|ω, φ)
p(∠r|ω, φ) (16)

the MAP estimate θ̂
(N−1)

is equivalently obtained as

θ̂
(N−1)|ω,φ = argmax

θ
p(∠r|θ, ω, φ)p(θ|ω, φ) = argmin

θ[
(∠r− ωN− φ1− θ)TΣ−1

ε (∠r− ωN− φ1− θ)

+θTΣ−1
θ θ
]
. (17)

By solving (17), i.e., solving the equation

∂p(∠r|θ, ω, φ)p(θ|ω, φ)
∂θ

= 0 (18)

the MAP estimate of θ given ω and φ can be derived as

θ̂
(N−1)|ω,φ = Σθ(Σθ +Σε)

−1(∠r− ωN− φ1)

= ΣθΣr
−1(∠r− ωN− φ1). (19)

Finally, substituting the ML estimates ω̂(N−1) and φ̂(N−1) in
(13) and (14) into (19), we obtain the explicit MAP estimate

θ̂
(N−1)|ω̂,φ̂.

In this way, the triple (ω̂(N−1), φ̂(N−1), θ̂
(N−1)

) in (13), (14)
and (19) give the explicit joint ML estimates of ω and φ and
MAP estimate of θ. In the next section, we show that one can

iteratively update the estimates ω̂(N−1), φ̂(N−1) and θ̂
(N−1)

as
N increases, i.e., as more measurements are available.

IV. ITERATIVE IMPLEMENTATION

Note that all the estimates (13), (14) and (19) can be computed
iteratively as the number of samples N increases.

For the derivation of the simple iterative implementation, we
first need to efficiently compute the inverse of the matrix Σr as
N increases to N + 1. Here, we let Σr(N+1) denote the value of
the matrix Σr at time point k = N . The (N + 1)-square matrix
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Σr(N+1) can be first expressed in block-matrix form as

Σr(N+1) =

[
Σr(N) Nσ2

p

σ2
pN

T Nσ2
p +

N0

2A|r(N)|

]
. (20)

Then using the lemma of Schur complementation [32], the
inverse of Σr(N+1) can be derived in terms of the inverse of
the N -square matrix Σr(N), and thus given in block-matrix
form as (21) shown at the bottom of this page, where we have

S = Nσ2
p +

N0

2A|r(N)| − σ4
pN

T (Σr(N))−1 N (22)

which is a scalar updated asN increases. At the time pointk = 1,
i.e., N = 2, (Σr(2))

−1 is given straightforwardly as

(
Σr(2)

)−1
=

[
( N0

2A|r(0)| )
−1 0

0 (σ2
p +

N0

2A|r(1)| )
−1

]
. (23)

As timek increases, in order to iteratively update the estimates
ω̂, φ̂ in (13) and (14), we need to separately update the five
terms (NTΣr

−1∠r), (1TΣr
−11), (NTΣr

−11), (1TΣr
−1∠r)

and (NTΣr
−1N) inside. For simplicity, at time k = N − 1, we

denote

A(N−1) =
(
NTΣr

−1∠r
)(N−1)

, B(N−1) =
(
1TΣr

−11
)(N−1)

C(N−1) =
(
NTΣr

−11
)(N−1)

, D(N−1) =
(
1TΣr

−1∠r
)(N−1)

E(N−1) =
(
NTΣr

−1N
)(N−1)

. (24)

At the starting time k = 1, using (23), we can easily have

A(1) = ∠r(1)
(
σ2
p +

N0

2A|r(1)|
)−1

,

B(1) =

(
N0

2A|r(0)|
)−1

+

(
σ2
p +

N0

2A|r(1)|
)−1

,

C(1) =

(
σ2
p +

N0

2A|r(1)|
)−1

,

D(1) = ∠r(0)
(

N0

2A|r(0)|
)−1

+ ∠r(1)
(
σ2
p +

N0

2A|r(1)|
)−1

,

E(1) = C(1) (25)

which are simple to calculate directly. Substituting (25) into (13)
and (14), we simply have ω̂(1) = ∠r(1)− ∠r(0) and φ̂(1) =
∠r(0).

Further, applying the recursive matrix inversion result (21)
and using the multiplication lemma of block matrices [32], we
can derive A(N), B(N), C(N), D(N) and E(N) in terms of
(A(N−1), B(N−1), C(N−1), D(N−1), E(N−1)) given as

A(N)= (1−Nσ2
pS

−1)A(N−1)

+σ2
pS

−1E(N−1)
(
σ2
pA

(N−1)−∠r(N)
)
+NS−1∠r(N),

B(N) = B(N−1) + S−1
(
σ2
pC

(N−1) − 1
)2

,

C(N) = (1−Nσ2
pS

−1)C(N−1)

+ σ2
pS

−1E(N−1)
(
σ2
pC

(N−1) − 1
)
+NS−1,

D(N) = D(N−1) + σ4
pS

−1A(N−1)C(N−1)

− σ2
pS

−1
(
A(N−1) + ∠r(N)C(N−1)

)
+ S−1∠r(N),

E(N) = E(N−1) + S−1
(
σ2
pE

(N−1) −N
)2

,

S(N) = S = Nσ2
p +

N0

2A|r(N)| − σ4
pE

(N−1). (26)

Finally, substituting the updated (A(N), B(N), C(N), D(N),
E(N)) into (13) and (14), we can get the updated estimates
ω̂(N) and φ̂(N) straightforwardly. It is worth emphasizing that
starting from (25), the updating process in (26) followed by
substitution into (13) and (14) only involves the basic scalar
operations, and avoids the matrix inversion and other complex
matrix operations. Since the computational complexity of each
iteration is O(1), the overall computational complexity of our
estimators using (26) is thus O(N). Therefore, the process can
be practically implemented in real-time, which makes full use
of the new received sample {|r(N)|,∠r(N)} at time k = N .

Moreover, substituting the updated estimates ω̂(N) and φ̂(N)

into (19), we can update θ̂ at time k = N , that is

θ̂
(N)|ω̂(N),φ̂(N) = Σθ

(N){Σr
−1}(N)(

∠r(N) − ω̂(N)N(N) − φ̂(N)1(N)
)
. (27)

Note that {Σr
−1}(N) can be recursively obtained by (21), which

avoids the matrix inversion operation. Thus, the iterative imple-
mentation of (27) requires only the matrix operations of addition,
subtraction and multiplication.

Throughout the above analysis, the amplitude A of the sinu-
soid is assumed known and used in implementation. However,
in most practical cases, the amplitude A may be unknown at
the receiver. We consider two ways to overcome this issue.
One is to replace A by the received noisy signal magnitude
|r(k)|, as was pointed out and discussed in our earlier work [19],
[31]. Simulations presented later will verify that the estimation
accuracy is not affected much when using |r(k)| to replace A in
the estimators, especially for high SNR when |r(k)| is almost
equal to A for most times k. Another way is to first estimate A
using our results in [33]. The method proposed therein enables
us to estimate A independently of the frequency and phase, i.e.,
using |r(k)| only. With the estimated A, the accuracy of the
proposed estimation algorithms here is not affected much also.

(
Σr(N+1)

)−1
=

[
(Σr(N))−1 + σ4

pS
−1 (Σr(N))−1 NNT (Σr(N))−1 −σ2

pS
−1 (Σr(N))−1 N

−σ2
pS

−1NT (Σr(N))−1 S−1

]
. (21)
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V. PERFORMANCE ANALYSIS AND LOWER BOUNDS

It is well known that the CRLB and the BCRLB are two
important performance limits which indicate the best estimation
performance that can be achieved with the available observa-
tions. The CRLB is a lower bound on the variance of any
unbiased estimate for the unknown but deterministic parameters,
e.g., ω and φ here. The BCRLB provides a lower bound on the
MMSE in estimating a random parameter, e.g., θ here. In this
section, we will analyze the MSE performance of the estimators
(13), (14) and (19), and derive the unbiased CRLBs for (ω, φ)
and the BCRLB for θ. Note that all the analysis here assumes
that there is no phase unwrapping failures. In the following, we
will eliminate the superscript (N − 1) on ω̂(N−1), φ̂(N−1) and

θ̂
(N−1)

for simplicity.

A. CRLBs and Performance of ML Estimators for (ω, φ)

The quality of the estimates of the frequency ω and the
carrier phase φ can be measured in terms of their biases and
their variances. Here, we use ω0 and φ0 to denote the actual
values assumed by the unknown parameters ω and φ, respec-
tively. Generally, it is desirable to obtain unbiased estimates,
i.e., we want E(ω̂) = ω0 and E(φ̂) = φ0. Define the estimation
errors as ω̃ = ω̂ − ω0 and φ̃ = φ̂− φ0. Substituting (4) into (13)
and (14), the estimation errors can thus be given, respectively,
as (28) and (29) shown at the bottom of this page. Due to
the fact that E(θ + ε) = 0, we thus have E(ω̂ − ω0) = 0 and
E(φ̂− φ0) = 0, which verifies that the ML estimates ω̂ and φ̂
in (13) and (14) are unbiased.

Turning to the variances of ω̂ and φ̂, i.e., σ2
ω̃ = E[(ω̂ − ω0)

2]

andσ2
˜φ
= E[(φ̂− φ0)

2], they can be evaluated straightforwardly

as follows. For σ2
ω̃, we first have (30) shown at the bottom of

this page. It further reduces to

σ2
ω̃ = E{|r|}

[
1TΣr

−11(
NTΣr

−1N
) (

1TΣr
−11
)− (1TΣr

−1N
)2
]
.

(31)

This is due to the facts that E[(θ + ε)(θ + ε)T ] = Σr, and Σε

(equivalently Σr) is random due to its dependence on the set of
magnitudes |r| = {|r(k)|}N−1

k=0 that are random. Similarly, for

σ2
˜φ
, we have

σ2
˜φ
= E{|r|}

[
NTΣr

−1N(
NTΣr

−1N
) (

1TΣr
−11
)− (1TΣr

−1N
)2
]
.

(32)

We can see that it is very complex to further evaluate σ2
ω̃ and σ2

˜φ

in (31) and (32) using the pdf of |r|. However, using the further
high SNR approximation that |r(k)| ≈ A for most times k,
the covariance matrix Σr reduces to be Σ′

r = Σθ + N0

2A2 IN×N ,
where IN×N is the N ×N identity matrix. Therefore, for high
SNR, the variances (31) and (32) can be simplified, respectively,
as

σ2
ω̃ =

1TΣ′
r
−11(

NTΣ′
r
−1N

) (
1TΣ′

r
−11
)− (1TΣ′

r
−1N

)2 (33)

and

σ2
˜φ
=

NTΣ′
r
−1N(

NTΣ′
r
−1N

) (
1TΣ′

r
−11
)− (1TΣ′

r
−1N

)2 . (34)

From (33) and (34), we can see that the estimation error variances
at high SNR depend on the SNRA2/N0, the phase noise variance
σ2
p and the number of independent observations N . The higher

the SNR, the larger the N or the smaller the σ2
p, the lower are

the estimation error variances. Section IV above implies that the
inverse of Σ′

r can be computed recursively as N increases, and
this recursive inversion will allow (33) and (34) to be computed
recursively in explicit forms. That is, we have (1TΣ′

r
−11)(N) =

B(N), (NTΣ′
r
−11)(N) = C(N), and (NTΣ′

r
−1N)(N) = E(N)

given exactly the same as those in (26), only with the changes:

S(N) = Nσ2
p +

N0

2A2
− σ4

pE
(N−1),

E(1) = C(1) = (σ2
p +

N0

2A2
)−1, B(1) =

2A2

N0
+ C(1). (35)

Next, we consider to derive the unbiased CRLBs for (ω, φ).
It is well known that the unbiased CRLBs are the diagonal
elements of the inverse of the Fisher information matrixJF [34,
Ch. 2]. Givenω and φ, the log-likelihood function of p(∠r|ω, φ)

ω̂ − ω0 =

(
NTΣr

−1(θ + ε)
) (

1TΣr
−11
)− (NTΣr

−11
) (

1TΣr
−1(θ + ε)

)(
NTΣr

−1N
) (

1TΣr
−11
)− (1TΣr

−1N
)2 . (28)

φ̂− φ0 =

(
1TΣr

−1(θ + ε)
) (

NTΣr
−1N

)− (1TΣr
−1N

) (
NTΣr

−1(θ + ε)
)(

NTΣr
−1N

) (
1TΣr

−11
)− (1TΣr

−1N
)2 . (29)

σ2
ω̃ = E{θ,ε,|r|}

⎡⎢⎣(NTΣr
−1(θ + ε)

)2 (
1TΣr

−11
)2

+
(
NTΣr

−11
)2 (

1TΣr
−1(θ + ε)

)2((
NTΣr

−1N
) (

1TΣr
−11
)− (1TΣr

−1N
)2)2

−2
(
1TΣr

−11
) (

NTΣr
−11
) (

NTΣr
−1(θ + ε)(θ + ε)TΣr

−11T
)((

NTΣr
−1N

) (
1TΣr

−11
)− (1TΣr

−1N
)2)2

⎤⎥⎦ . (30)
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from (9) is given by

log p(∠r|ω, φ) =

C(Σr) −
1

2
(∠r− ωN− φ1)TΣ−1

r (∠r− ωN− φ1) (36)

where C(Σr) is only a function of det(Σr) which is independent
of ω and φ. Then, it is easily shown that for the unknown
parameter vector [ωφ]T , the Fisher information matrix JF is
derived as

JF = −E

[
∂2 log p(∠r|ω,φ)

∂ω2

∂2 log p(∠r|ω,φ)
∂ω∂φ

∂2 log p(∠r|ω,φ)
∂φ∂ω

∂2 log p(∠r|ω,φ)
∂φ2

]

=

[
NTΣ′

r
−1N NTΣ′

r
−11

NTΣ′
r
−11 1TΣ′

r
−11

]
. (37)

Thus, we have

J−1
F =

[
1TΣ′

r
−11 −NTΣ′

r
−11

−NTΣ′
r
−11 NTΣ′

r
−1N

]
(
NTΣ′

r
−1N

) (
1TΣ′

r
−11
)− (1TΣ′

r
−1N

)2 . (38)

The CRLBs for ω and φ, i.e., CRLBω and CRLBφ, are the
first and second diagonal elements of the matrix J−1

F in (38),
respectively. It is worth noting that CRLBω and CRLBφ are
exactly the same as the variances of ω̂ and φ̂ in (33) and (34).
That is, for high SNR, we have

σ2
ω̃ = CRLBω, andσ2

˜φ
= CRLBφ. (39)

The ML estimators (13) and (14) are thus unbiased and asymp-
totically efficient, since their variances attain the CRLBs at high
SNR. Moreover, for the case of no carrier phase noise, i.e.,
σ2
p = 0, our CRLBω and CRLBφ here will reduce to be

CRLBω|σp=0 =
N0

A2

6

N(N + 1)(N − 1)

CRLBφ|σp=0 =
N0

A2

2N − 1

N(N + 1)
(40)

which are exactly the same as those results in [3, Eqs. (22–23)].
We can see that CRLBφ is approximately linearly decreasing in
N for largeN , i.e., CRLBφ ∼ 1/N . Whereas, CRLBω decreases
much faster than CRLBφ as N increases, since we almost have
CRLBω ∼ 1/N3. From (40), we can deduce that the effects of
N on the CRLBs for ω and φ in (39) are also different in phase
noise, which are similar to the case of no carrier phase noise.
This phenomenon is verified by numerical results shown later.

B. BCRLB and Performance of MAP Estimator for θ

Similar to the performance analysis on the ML estimators of
(ω, φ) shown above, the aim in this section is to analytically
evaluate the MSE performance of the MAP estimator θ̂|ω,φ in
(19), and further derive the BCRLB for the random phase noise
θ.

We first define the estimation error vector as θ̃|ω,φ = θ̂|ω,φ −
θ and the error covariance matrix as Σ

˜θ = E[θ̃|ω,φ(θ̃|ω,φ)
T ].

Substituting (4) into (19) with exactly known ω and φ, we can

easily have

E[θ̃|ω,φ] = E[ΣθΣr
−1(θ + ε)− θ] = 0 (41)

and

Σ
˜θ

= E{θ,ε,|r|}[(ΣθΣr
−1(θ + ε)− θ)(ΣθΣr

−1(θ + ε)− θ)T ]

= E{|r|}
[
ΣθΣr

−1Σε

]
(42)

due to the fact that E[θ] = E[ε] = 0 and {θ, ε} are independent
of each other. The MAP estimator of θ is thus unbiased. For high
SNR with |r(k)| ≈ A for most times k, the covariance matrix
Σ

˜θ in (42) thus reduces approximately to

Σ
˜θ =

N0

2A2
Σθ

[
Σθ +

N0

2A2
IN×N

]−1

=

[
Σθ

−1 +
2A2

N0
IN×N

]−1

(43)

where the second identity is due to the matrix inversion
lemma [32]: (I+A−1)−1 = A(I+A)−1. We see that the es-
timation error variances for θ at high SNR also depend on the
SNR A2/N0, the phase noise variance σ2

p and the number of
independent observations N .

Next, given (ω, φ), the BCRLB for θ is considered. Since
θ is random with known a priori Gaussian pdf, the BCRLBs
for {θ(k), k = 0, 1 · · ·N − 1} are the diagonal elements of the
inverse of the information matrix JT given by [34, Ch. 2]

JT = J ′
F + JP (44)

whereJ ′
F is the Fisher information matrix representing informa-

tion obtained from the measurements {∠r}, and JP represents
the a priori information of θ. According to the Bayes’ theorem
(16), the explicit expressions ofJ ′

F andJP can be derived based
on the log-likelihood functions of p(∠r|θ, ω, φ) and p(θ|ω, φ),
respectively, as

J ′
F = E

[
∂ log p(∠r|θ, ω, φ)

∂θ

(
∂ log p(∠r|θ, ω, φ)

∂θ

)T
]

= Σ′
ε
−1 (45)

where we have Σ′
ε =

N0

2A2 IN×N , and

JP = E

[
∂ log p(θ|ω, φ)

∂θ

(
∂ log p(θ|ω, φ)

∂θ

)T
]

= Σ−1
θ . (46)

Finally, substituting (45) and (46) into (44), we thus have the
BCRLB for θ given by

BCRLBθ = J−1
T = (Σ−1

θ +Σ′
ε
−1
)−1

= Σθ(Σθ +Σ′
ε)

−1
Σ′

ε (47)

where the last identity is due to the matrix inversion lemma [32]:
A−1 +B−1 = A−1(A+B)B−1. It is worth noting that (47) is
equivalent to (43), and we thus have Σ

˜θ = BCRLBθ for high
SNR. This means that the estimation error variance of the MAP
estimator (19) with known (ω, φ) can attain the BCRLB at high
SNR, which verifies its asymptotic efficiency.
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More importantly, we can see from (47) that BCRLBθ mainly
depends on the AOPN covariance matrix Σ′

ε and the phase
noise covariance matrix Σθ . That is, the relationship between
the inverse SNR N0

A2 and the phase noise variance σ2
p deter-

mines the value of BCRLBθ . For very large phase noise or
extremely high SNR, i.e., σ2

p � N0

A2 , BCRLBθ approximately
becomes Σ′

ε, which means that the AOPN effect dominates in
the BCRLBθ . On the hand, for very small phase noise or low
SNR, i.e., (N − 1)σ2

p � N0

A2 , BCRLBθ asymptotically reduces
to be Σ′

θ , which means that the phase noise effect dominates in
the BCRLBθ .

It is worth noting that these performance analysis results for
the BCRLB for θ are only for the case of perfectly known values
of ω and φ. For the general case of imperfectly estimated values
of ω and φ, we can determine the performance of the estimator
for θ only using simulations, and these results will be shown in
Section VII later.

VI. DISCUSSIONS ON PHASE UNWRAPPING AND

LMMSE-WPA FREQUENCY ESTIMATION

In this section, we will first analyze the improved phase
unwrapping algorithm used for the implementation of ML/MAP
estimators. Then, to avoid unacceptable performance degra-
dation due to phase unwrapping failure in phase noise, the
LMMSE-WPA estimator is further discussed.

A. Phase Unwrapping

Note that all the estimators (13), (14) and (19) make use
of both the measurement phases {∠r(k)}N−1

k=0 and the mea-
surement magnitudes {|r(k)|}N−1

k=0 in practical implementation.
Since the actual phase data samples are obtained from the princi-
pal arguments {arg[r(k)]}which are within the interval [−π, π),
phase unwrapping is thus required to generate the unwrapped
received signal phases {∠r(k)}. We will use the improved phase
unwrapping algorithm proposed in [31, Sec. IV-C] throughout
the simulations, which is briefly discussed as follows. To retrieve
the actual unwrapped phases {∠r(k)}, the phase differences
between adjacent data samples are used, and defined as

Δ(k) = arg[r∗(k − 1)r(k)]

= ω +Δθ(k) + ε(k)− ε(k − 1) (48)

where Δ(k) denotes the phase difference between data samples
at time k − 1 and k, and ∗ denotes the conjugate operation. In
practice, {Δ(k)} can be obtained by projecting data sample r(k)
onto r(k − 1) and then taking the phase of the resulting complex
quantity. Specifically, based on the first observation on the phase
at time k = 0, i.e., ∠r(0), a sequence of angle data {ϕ(k)} can
be computed as

ϕ(1) = ∠r(0) + Δ(1),

ϕ(2) = ϕ(1) + Δ(2),

ϕ(3) = ϕ(2) + Δ(3),

...

ϕ(N − 1) = ϕ(N − 2) + Δ(N − 1),

... (49)

It is obvious that {∠r(k)} can be retrieved from the com-
puted {ϕ(k)} as they are mathematically identical. Thus, in
practical implementation, the phase of r(k) is collected by
unwrapping arg[r(k)] to within a 2π-interval centered around
the computed value ϕ(k), i.e., the value of ∠r(k) chosen is the
one lying in the interval (ϕ(k)− π, ϕ(k) + π]. This is simply
done by adding multiples of ±2π to arg[r(k)], when we have
| arg[r(k)]− ϕ(k)| > π. Note that this unwrapped phase may
be different from the true value of ∠r(k). A phase unwrapping
failure occurs when |∠r(k)− ϕ(k)| > π [35].

The necessary conditions for a good performance of this phase
unwrapping operation in phase noise are thus that∠r(0) is equal
to the principal argument of r(0), i.e., we have [31]

−π ≤ ∠r(0) = arg[r(0)] = φ+ ε(0) ≤ π (50)

and that Δ(k) in (48) for any k satisfies

−π ≤ Δ(k) = ω +Δθ(k) + ε(k)− ε(k − 1) ≤ π. (51)

Clearly, the validity of these two conditions is expected to depend
on the SNR as well as the values of ω and φ, since a value of ω
and φ close to ±π can lead easily to the actual value of φ+ ε(0)
in (50) andω +Δθ(k) + ε(k)− ε(k − 1) in (51) falling outside
of the boundaries of the interval, due to a small amount of AOPN.
When the conditions (50) and/or (51) are not satisfied, arg[r(k)]
cannot be unwrapped correctly to∠r(k) and a phase unwrapping
failure will occur. The probabilities that ∠r(0) and Δ(k) lie
outside the interval [−π, π] can be computed simply, using the
best linearized model (3). That is, given ω and φ, the conditional
probabilities Pr[|∠r(0)| ≥ π | ω, φ] and Pr[|Δ(k)| ≥ π | ω, φ]
are given as

Pr[|∠r(0)| ≥ π | ω, φ] = Q

⎛⎝ π + φ√
N0

2A|r(0)|

⎞⎠+Q

⎛⎝ π − φ√
N0

2A|r(0)|

⎞⎠

Pr[|Δ(k)| ≥ π | ω, φ] = Q

⎛⎝ π + ω√
σ2
p +

N0

2A|r(k)| +
N0

2A|r(k−1)|

⎞⎠

+Q

⎛⎝ π − ω√
σ2
p +

N0

2A|r(k)| +
N0

2A|r(k−1)|

⎞⎠
(52)

where Q(x) = 1√
2π

∫∞
x exp(−u2

2 )du is the Gaussian Q-
function. It is worth noting from (49) that the algorithm is
limited by the unwrapping failure propagation, since a particular
failure at time point j will affect all succeeding points, because
Δ(j) is added to each of {ϕ(k)}∞k=j+1. Therefore, the exact
phase unwrapping failure probability is difficult to obtain due
to the error propagation and the nonlinearity of the modulo-2π
operation.

B. LMMSE Implementation of the WPA Frequency Estimator

Phase unwrapping is a very challenging problem in phase
extraction, and no perfect phase-unwrapping solution has been
obtained even with an enormous research effort [35], [36]. Thus,
to avoid phase unwrapping algorithms used in practice, the WPA
estimator using the differenced received signal phase is first
proposed in [14].
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In this section, we will introduce the LMMSE implementation
of the WPA estimator in the presence of carrier phase noise, to es-
timate the unknown frequency ω at time point k = N − 1 based
on all the past and current observations r(k), k = 0, 1, . . . , N −
1. As mentioned in [14], the parameter to be estimated here is
only the frequency, and the phase is considered to be a nuisance
parameter, since the phase differences involved cancel the initial
carrier phaseφ and only keep the incremental phase noiseΔθ(k)
at each time.

Suppose that a fixed block of N data samples {r(k)}N−1
k=0

is collected for the processing, the inputs to be fed into the
estimator are the N − 1 phase differences {Δ(k)}N−1

k=1 defined
in (48). Therefore, using the vector Δ to denote a block of phase
differences, we have

Δ = 1ω +Ξ (53)

where Δ = [Δ(1) Δ(2) · · ·Δ(N − 1)]T , 1 = [1 1 · · · 1]T
with components all equal to 1, and Ξ = [Δθ(1) + ε(1)−
ε(0), Δθ(2) + ε(2)− ε(1) · · ·Δθ(N − 1) + ε(N − 1)−
ε(N − 2)]T . Note that Δ, 1 and Ξ are all (N − 1)-dimensional
column vectors.

The frequency estimate made based on Δ in (53) is denoted
as ω̂Δ here. The LMMSE implementation of the WPA estimator
is a linear function of {Δ(k)}, i.e., we have ω̂Δ = wTΔ, where
w is an (N − 1)-dimensional weighting column vector. By
minimizing the MSE E[(ω̂Δ − ω)2], the solution is thus given
by [31, Eq. (42)]

ω̂Δ = wTΔ =
1TC−1Δ

1TC−11
. (54)

Here, C = [cij ] is the covariance matrix of the noise vector Ξ,
which has a tridiagonal form and whose components depend on
the specific AOPN model. If the best linearized AOPN model
(3) is used, we have

cij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N0

2A|r(i)| +
N0

2A|r(i−1)| + σ2
p, i = j

− N0

2A|r(j)| , i− j = 1

− N0

2A|r(i)| , j − i = 1

0, |i− j| > 1.

(55)

We can see that this estimator (54) uses the online received
magnitude information |r(k)| to identify those instantaneous
received signal phase samples with higher noise variances, and
are therefore weighted less. Our AOPN model (3) shows that
a smaller received signal magnitude indicates a received signal
phase sample with a larger variance. Accordingly, in the region
of low SNR when large noise samples are more common, this
feature can be exploited to indicate to the estimator the exact
positions of the observation data samples which are less reliable,
and thus should be weighted less in their contribution to the
estimator (54).

Note that in comparison to the ML estimator, it can be easily
verified using Monte Carlo simulations that the accuracy of the
LMMSE-WPA estimator is not sensitive to the small changes on
small values of ω0. However, for larger values of ω0, especially
values that are near to +π or −π, the estimation accuracy will
be affected. Specifically, we can see from (48) that the sum
(Δθ(k) + ε(k)− ε(k − 1)) can more easily drive the phase
difference Δ(k) across the +π boundary when ω0 is near to
+π, meaning that the probability increases as ω0 increases or as
the SNR decreases or as σ2

p increases. Based on the condition

Fig. 1. CRLBs for estimation of ω and φ in phase noise as a function of SNR
given N = 16.

in (51), when Δ(k) goes across the +π boundary by an amount
of, say, α > 0, it will be wrapped around and will appear as the
value−π + α. This will make that particular value ofΔ(k) very
noisy, and thus degrade the estimation performance.

VII. NUMERICAL AND SIMULATION RESULTS

This section presents the numerical and simulation results to
illustrate the behavior of the variance of the ML estimators (13)
and (14), the MSE of the MAP estimator (19), the MSE of the
LMMSE-WPA estimator (54), the CRLBω and CRLBφ in (33)
and (34) and the BCRLBθ in (47) as a function of the various
parameters, e.g., the SNR, the number of observations N and
the phase noise variance σ2

p.
The inverse MSE (IMSE) of all the estimators, for exam-

ple, defined as IMSEω = −10 log10{
∑q

k=1[ω − ω̂]2/q} and
IMSEφ = −10 log10{

∑q
k=1[φ− φ̂]2/q}, are obtained using

Monte Carlo simulations, where q denotes the iteration number
for each calculation of IMSE. We have q = 105 to ensure the
accuracy. The inverse CRLBs and BCRLB are also computed
in decibels as the benchmarks for numerical comparison. As a
figure of merit to characterize the performances of estimators,
we define the threshold SNR of an estimator as the value of
SNR at which its inverse variance curve dips by 1 dB from the
inverse CRLB/BCRLB curve, as is common in the literature [3].
Note that the phase unwrapping algorithm we implement here
is the improved phase unwrapping algorithm proposed in [31,
Sec. IV-C]. As discussed in Section IV, to attain a good phase
unwrapping performance, one must satisfy the necessary condi-
tions (50) and (51).

A. Numerical Analysis of CRLBs and BCRLBs

As a basis for comparison, the inverse CRLBs and BCRLBs
are first numerically analysed. As Fig. 1 shows for N = 16, the
CRLBω is much smaller than the CRLBφ through the whole
SNR region, which is expected as the result (40) implies. And
as σ2

p increases, the CRLBs increases inevitably for ω and φ,
and the CRLBω deteriorates faster than the CRLBφ for the same
SNR. As Fig. 2 shows, as σ2

p increases or the SNR decreases, the
BCRLBθ for any k increases distinctly. Moreover, as k increases
from 1 to N − 1, the BCRLB for θ(k) increases obviously,
which is expected.

Fig. 3 shows the effect of different N on the CRLBs for ω
and φ and the BCRLB for θ, respectively. We can see from
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Fig. 2. BCRLBs for estimation of {θ(k), k = 1 : N − 1} as a function of k
given N = 16 and various σ2

p and SNR.

Fig. 3. (B)CRLBs with different N given σ2
p = 10−2rad2. (a) For estimation

of ω and φ. (b) For estimation of {θ(k), k = 1 : N − 1}.

Fig. 3(a) that even for large phase noise, the CRLB ω decreases
much faster than the CRLBφ with the increase in N , which is in
accordance with the no carrier phase noise case, as Section IV.A
explains. Fig. 3(b) shows that for the comparable values of

1
2SNR = 0.05 and σ2

p = 0.01 rad2, the inverse BCRLB remains
around 19.7 dB for a larger range of k given larger N .

B. Effect of Parameters on the ML Estimation Performance

Due to the nature of the phase unwrapping failures, the
simulated estimation performance is expected to be sensitive

Fig. 4. Simulated IMSE comparison for ML estimation of ω and φ with
different angle parameters given N = 16.

Fig. 5. Simulated IMSE comparison for ML estimation of ω and φ with
different ω0 given N = 11 and φ0 = 0.25π.

to the actual values of the angle parameters being estimated.
For instance, as discussed in [3] for the pure AWGN case, the
estimation performance will degrade as the actual frequency ω0

increases. For the phase noise case with σ2
p = 10−4rad2, Fig. 4

shows that the estimation performance degrades as ω0 or φ0

increases. We can see that as ω0 increases from 0.05 to 0.1 only,
the threshold SNR for ML estimation of ω and φ increases from
0 dB to about 7 and 4 dB, respectively. Similarly, for ω0 = 0.05
and φ0 = 0.4π, the SNR threshold for ML estimation of ω and
φ becomes 4 dB and 2 dB, respectively.

Note that the quantitative performance loss with respect to the
increase ofω0 orφ0 also depends on the specific value ofN . This
is because that the larger N will lead to the larger probability of
phase unwrapping failure in the observation window. As Fig. 5
shows for N = 11, as ω0 increases to 0.1, the threshold SNR
for estimation of ω increases about 4 dB, whereas the threshold
SNR for estimation of φ remains about 0 dB. In comparison to
the case of N = 16 in Fig. 4, the performance loss for N = 11
is much smaller as ω0 increases.

Therefore, to simply illustrate the performance of the newly
derived estimators in phase noise, we set small values of ω0 =
0.05 and φ0 = 0.25π throughout the following simulations.
Especially when ω0, N and σ2

p are small, the unwrapping failure
hardly happens and could be ignored as SNR increases. For the
cases with large values of ω0, N or σ2

p, one should discard those
runs in which a phase unwrapping failure occurred, otherwise,
the estimation errors would be very large and the simulated MSE
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Fig. 6. Simulated IMSE and ICRLBs for ML estimation of ω and φ with
N = 16 and σ2

p = 0 and 10−2rad2.

Fig. 7. Simulated IMSE comparison for the MAP estimation of {θ(k), k =
1 : 15} with N = 16 and σ2

p = 10−4rad2.

will not be compatible with the analytical prediction and the
CRLB.

C. Simulated IMSE Analysis of the ML/MAP Estimators

As Fig. 6 shows for both σ2
p = 0 and 10−2rad2, the simulated

MSE quickly attains the CRLBω and CRLBφ as SNR increases.
The simulation results show that forN = 16, the threshold SNRs
for the ML estimation ofω and φ are all about 0 dB. This implies
that a good estimation performance can be achieved at low SNR
in various phase noise, even though we assume high SNR when
deriving our ML estimators.

The simulated IMSE performance for the MAP estimation
of {θ(k), k = 1 : N} with N = 16 is shown in Figs. 7 and 8.
First, Fig. 7 shows that at the same SNR value of 10 dB, the
IMSE performance with the exact ω and φ coincides with the
inverse BCRLB, whereas the performance using the estimated
values still dips by about 1 dB from the inverse BCRLB curve.
This means that the MAP estimator (19) using the estimated
ω and φ performs worse than that using the true ω0 and φ0,
which is expected. Then, Fig. 8 shows the detailed simulated
IMSE performance given exact ω0 and φ0. As Fig. 8(a) shows
for σ2

p = 10−4rad 2, the MSE can attain the BCRLB for any k
in the SNR range of [0, 10]dB. Whereas, Fig. 8(b) shows that
the threshold SNR is about 5 dB for σ2

p = 10−2 rad2, and the
MSE of the MAP estimator for any θ(k) attains the BCRLB
at 10 dB. Fig. 8(b) thus shows the asymptotic efficiency of the

Fig. 8. Inverse BCRLBs and simulated IMSE for the MAP estimation of
{θ(k), k = 1 : 15} with N = 16. (a) σ2

p = 10−4rad 2. (b) σ2
p = 10−2 rad2.

MAP estimator for {θ(k), k = 1 : N} as SNR increases, even
in large phase noise.

D. Performance Verification for Estimation
With Unknown Amplitude

As mentioned in Section IV, to solve the practical issue
when the amplitude A may be unknown at the receiver, we
can replace A by the received noisy signal magnitude |r(k)| in
the implementation of the ML/MAP estimators. When testing
the estimation accuracy in the SNR region of [0 ∼ 10]dB, we
will have the same simulation results as in Figs. 6 and 8 for
σ2
p = 0 ∼ 10−2rad 2. To illustrate in distinction, we only show

the case of estimation in low SNR [−4 ∼ 5] dB in Fig. 9 here. As
Fig. 9(a) shows, the accuracy of the ML estimators retains in low
SNR when replacing A by |r(k)|. For the MAP estimation of
{θ(k), k = 1 : N − 1}, we can verify that the accuracy remains
almost the same in the SNR region above 0 dB. However, the
replacement will degrade the estimation accuracy in low SNR
below 0 dB, as Fig. 9(b) shows for SNR = −4 dB.

Moreover, Fig. 9 also shows that implementing with known
amplitude A, the threshold SNR can be as low as −4 dB for
both ML estimation and MAP estimation in phase noise of σ2

p =

10−3rad2. It emphasizes again that the outstanding estimation
performance can be achieved even in low SNR.
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Fig. 9. Simulated IMSE with/without knowing A given N = 16 and σ2
p =

10−3rad2. (a) For ML estimation of ω and φ. (b) For MAP estimation of
{θ(k), k = 1 : N − 1}.

Fig. 10. Simulated IMSE comparison for different frequency estimators given
ω0 = 0.05 and N = 16.

E. Comparison with the LMMSE-WPA and Improved
Kay’s Estimators

First, for the comparison with the LMMSE-WPA frequency
estimator (54), Fig. 10 shows that the LMMSE-WPA estimation
performance deteriorates much faster than the ML one as SNR
decreases. The threshold SNR of the LMMSE-WPA estimation
is about 7 dB, and its estimation accuracy is not sensitive to the
small changes of the frequency ω0 as expected.

Fig. 11. Simulated IMSE comparison with the ML estimators [3, Eqs. (16–17)]
in phase noise. (a) σ2

p = 10−2rad 2. (b) σ2
p = 0.1 rad2.

Moreover, several classical frequency estimation techniques
are mostly considered for designing practical systems [1].
The frequency-domain method is based on the interpolation
of Fourier coefficients. One can test using simulations that it
requires a huge number of samples for reliable discrete Fourier
transform, which can not guarantee the real-time estimation
performance. The time-domain method mostly used is the well-
known Kay’s method with different smoothing parameters. Sim-
ilar to the LMMSE implementation of the WPA estimator, it is
easy to implement in practice. As Fig. 10 shows, the improved
Kay’s estimator in [1, Eqs. (15–16)] only performs slightly worse
than the LMMSE implementation.

Note that in most literatures for parameter estimation in
phase noise (e.g., [25]–[27]), the non-linear character of the
complicated estimation rules proposed renders ML estimation
infeasible. Therefore, for simplicity, most of them finally turn
to the approximate solution: least-squares estimation, that is
very similar to the Kay’s estimator except for the weighting
coefficients. From Fig. 10, we believe that all the estimators
whose structure is similar to the Kay’s estimator will have similar
performance, and the ML estimator we derive here will give the
optimal solution in both accuracy and efficiency.

F. Comparison with the ML Estimators Designed
in Pure AWGN

As Fig. 11(a) shows for σ2
p = 10−2rad 2, the phase esti-

mator [3, Eq. (17)] has about 1.3 dB performance loss at
SNR = 10 dB. Fig. 11(b) shows that the frequency estimator
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[3, Eq. (16)] cannot converge to the CRLBω at high SNR for
σ2
p = 0.1 rad2. As expected, the performance loss using [3, Eqs.

(16–17)] cannot be eliminated, even with the SNR increased in
large phase noise. Moreover, Fig. 11(b) demonstrates a remark-
able performance improvement using the ML phase estimation
(14), compared to using [3, Eq. (17)]. We can see that the MSE
performance of [3, Eq. (17)] still dips by 6 dB from the CRLBφ

curve at high SNR of 10 dB.
Undoubtedly, the estimation performance in phase noise can

be much improved with the ML estimators (13) and (14) used,
instead of using the ML estimators [3, Eqs. (16–17)] designed in
pure AWGN. In addition, asσ2

p increases to 0.1 rd2, the threshold
SNR becomes about 5 dB, as Fig. 11(b) shows. This is to be
expected, since all the estimators derived here will have lower
performance as the phase noise variance increases, even though
the phase noise statistics is taken into account optimally in their
design.

VIII. CONCLUSION

The joint ML estimators for the frequency and initial phase
and MAP estimator for the Wiener phase noise are derived in
closed form. They are all expressed in weighted linear combina-
tions of the received signal phases, which are simple to be itera-
tively implemented in practice. At high SNR, the estimators can
attain the performance limits specified by the CRLB/BCRLB,
which can serve as the benchmarks for the estimation accuracy in
phase noise. The LMMSE implementation of the WPA estimator
is also given as an alternative for the frequency estimation in
phase noise. Numerical comparison and simulation results show
in detail how the MSE performs as the SNR, the phase noise
variance or the number of observations varies. The estimation
performance is remarkably improved when the estimators take
into account the carrier phase noise, compared to most existing
estimators in both accuracy and efficiency.
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