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Total Least Squares Phase Retrieval
Sidharth Gupta and Ivan Dokmanić

Abstract—We address the phase retrieval problem with errors in
the sensing vectors. A number of recent methods for phase retrieval
are based on least squares (LS) formulations which assume errors
in the quadratic measurements. We extend this approach to handle
errors in the sensing vectors by adopting the total least squares
(TLS) framework that is used in linear inverse problems with
operator errors. We show how gradient descent and the specific
geometry of the phase retrieval problem can be used to obtain
a simple and efficient TLS solution. Additionally, we derive the
gradients of the TLS and LS solutions with respect to the sensing
vectors and measurements which enables us to calculate the so-
lution errors. By analyzing these error expressions we determine
conditions under which each method should outperform the other.
We run simulations to demonstrate that our method can lead to
more accurate solutions. We further demonstrate the effectiveness
of our approach by performing phase retrieval experiments on real
optical hardware which naturally contains both sensing vector and
measurement errors.

Index Terms—Phase retrieval, total least squares, operator error,
sensing vector error, quadratic equations.

I. INTRODUCTION

IN THE phase retrieval problem we seek to recover the signal
x ∈ C

N from complex quadratic measurements

ym ≈ |〈am,x〉|2, m = 1, . . . ,M (1)

where ym ∈ R are observed measurements and am ∈ C
N are

sensing vectors. This problem appears in a plethora of applied
science applications such as x-ray diffraction crystallography
or astronomy where the sensing vectors are Fourier basis vec-
tors [1] and imaging through scattering media where the sensing
vectors may be complex random Gaussian [2].

In a prototypical phase retrieval problem, an object, x, is
illuminated and the resulting optical field is measured with a de-
tector. This optical field is complex-valued but common camera
sensors only measure intensity, {| 〈am,x〉 |2}Mm=1, and thus the
measurement phase information is lost. The left and right hand
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sides in (1) are only approximately equal because in practical
settings there can be errors in the measurements and sensing
vectors. In this work we focus on gradient-based optimization
strategies to solve (1) where M > N . Gradient-based methods
have proven successful when imaging through random scattering
media [2] or with coded diffraction Fourier patterns [3].

Many recent approaches for solving the phase retrieval prob-
lem solve variants of the following nonlinear and nonconvex
least squares (LS) problem,

min
x

M∑
m=1

(
ym − |〈am,x〉|2

)2
, (LS-PR)

which we can alternatively rewrite as

min
x,

r1,...,rM

M∑
m=1

r2m (2)

s.t. ym + rm = |〈am,x〉|2, m = 1, . . . ,M

with rm ∈ R. Thus, LS seeks the smallest correction to the
measurements so that (ym + rm) can be obtained from quadratic
measurements | 〈am,x〉 |2 for each m. This is analogous to LS
for linear inverse problems where corrections that bring the
measurements into the range space of the linear operator are
required instead.

In many practical settings, the sensing vectors, {am}Mm=1, are
only approximately known via calibration. In this work we show
that properly accounting for errors in the sensing vectors may
lead to a more accurate estimate of x. Inspired by the total least
squares (TLS) framework for linear [4], [5] and nonlinear [6]
inverse problems, we extend the LS formulation (2) to find
corrections for both the measurements and the sensing vectors.
In TLS phase retrieval, we optimize the objective

min
x,

r1,...,rM ,
e1,...,eM

M∑
m=1

λyr
2
m + λa ‖em‖22 (3)

s.t. ym + rm = |〈am + em,x〉|2, m = 1, . . . ,M

with corrections em ∈ C
N for 1 ≤ m ≤M . Scalars λy ∈ R

and λa ∈ R are nonnegative regularization weights. Now, for
eachmwe want to find minimum weighted norm corrections so
that (ym + rm) can be obtained from quadratic measurements
| 〈am + em,x〉 |2. Efficiently obtaining the sensing vector cor-
rections {em}Mm=1 is a major challenge when moving from the
LS problem (2) to the TLS problem (3).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0312-2938
https://orcid.org/0000-0001-7132-5214
mailto:gupta67@illinois.edu
mailto:ivan.dokmanic@unibas.ch
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A. Related Work

Algorithms by Gerchberg and Saxton [7] and Fienup [8] are
the most well-known approaches for solving the phase retrieval
problem when the sensing vectors are the rows of the Fourier ma-
trix, as in many practical imaging scenarios [9]. These methods
iteratively reduce the error between the observed measurements
and the measurements generated from the solution at the current
iterate. Another class of algorithms based on message passing
have also been developed [10], [11]. Despite the nonconvexity
of the problem, these error reduction and message passing algo-
rithms work well in practice. They do not directly use gradient
descent to obtain a solution.

Recently a series of works have shown that for suitable
measurement models, the nonconvex LS objective (LS-PR)
can be globally optimized via gradient descent updates. The
Wirtinger flow algorithm is one of the most well-known methods
and proposes the framework comprising a spectral initialization
followed by gradient descent updates [3]. Spectral initialization
ensures that the iterates start in a convex basin near a global
optimum when there are enough measurements in an error-free
setting. This initialization was first proposed as part of the
AltMinPhase algorithm [12]. Multiple works have extended this
approach by modifying the initialization, gradient updates and
objective for phase retrieval [13], [14], and other quadratic prob-
lems with sensing matrices rather than sensing vectors [15] like
the unassigned distance geometry problem [16]. There are also
extensions that incorporate signal priors such as sparsity [17],
[18]. None of these gradient descent approaches, however, ac-
count for sensing vector or sensing matrix errors.

Another group of works have developed convex optimization
approaches, which are closely related to low-rank matrix re-
covery techniques, for solving the phase retrieval problem [19].
These methods use the fact that the measurements in (1) can
be expressed using the Frobenius matrix inner product, ym ≈
| 〈am,x〉 |2 = x∗ama∗mx = 〈ama∗m,xx

∗〉. With this formu-
lation, phase retrieval amounts to recovering a rank-1 positive
semidefinite matrix, X = xx∗, from linear matrix inner prod-
uct measurements, {〈ama∗m,xx

∗〉}Mm=1 [20], [21]. In practice,
lifting the problem from recovering vectors in C

N to matrices in
C

N×N poses significant computational and memory challenges
for even moderately sized problems. Matrix sketching algo-
rithms [22] and convex methods which do not require lifting [23]
have since been developed to address these challenges.

For linear inverse problems, the TLS method is an established
approach for handling errors in both the measurements and the
operator [4], [5]. For linear problems, TLS can be efficiently
solved using the singular value decomposition (SVD). For the
quadratic case considered in this paper, such an approach is not
apparent because of the magnitude-squared nonlinearity in (1).
We therefore also cannot use the SVD to analyze the solution
error as is done in the linear case [24]. Linear TLS has been
extended to settings with structured operator errors [25], [26],
sparse signals [27], and signals with norm constraints [28]. We
note that Yagle and Bell use linear TLS to solve a particular
subproblem in a phase retrieval algorithm which only addresses
errors in the measurements [29].

There also exist algorithms for nonlinear TLS which aim to
solve a general optimization problem for inverse problems with
arbitrary nonlinearities [6], [30], [31]. The general optimization
problem is similar to (3) except for the constraint which requires
nonlinear rather than quadratic consistency. However, by using
the specific structure of the phase retrieval problem (1) we are
able to obtain efficient algorithms and perform error analysis for
TLS phase retrieval.

Our gradient descent strategy uses alternating updates to solve
the TLS phase retrieval problem. While alternating updates have
been successfully utilized to solve the linear TLS problem [27],
it is not straightforward to extend this approach to phase retrieval
because of its quadratic nature. We show how to use the geometry
of the optimization problem (3) to perform alternating updates
for TLS phase retrieval.

B. Contributions and Paper Organization

We propose a TLS framework for solving the phase retrieval
problem when there are errors in the sensing vectors. In Sec-
tion II we explain our gradient descent strategy to solve the
TLS phase retrieval problem which motivates an alternating
updates procedure to solve the problem. With this approach
there are additional computational challenges which we show
can be made efficient by incorporating the geometry of the phase
retrieval problem. In Section III we derive expressions for the
reconstruction errors for the TLS and LS solutions. This gives
us insight into when each method should perform well. This
derivation requires the usage of theorems about differentiation
of argmins and different matrix inversion lemmas. Through sim-
ulations in Section IV we show that the TLS approach can lead
to solutions of greater accuracy when there are sensing vector
errors. We further verify the applicability of our framework
through experiments on real optical hardware in Section V. We
see that TLS outperforms LS when aiming to recover random
signals and real images. We conclude and motivate future work
in Section VI.

II. TLS FOR PHASE RETRIEVAL

In this section we show how to solve the TLS phase retrieval
problem. Recall (3),

min
x,

r1,...,rM ,
e1,...,eM

1

2M

M∑
m=1

λyr
2
m + λa ‖em‖22 , (4)

s.t. ym + rm = |〈am + em,x〉|2, m = 1, . . . ,M,

which has been normalized by the number of measurements by
the scaling 1

M . We can rearrange the constraint and substitute
rm = | 〈am + em,x〉 |2 − ym for 1 ≤ m ≤M to obtain,

min
x

1

2M

M∑
m=1

min
em

λa ‖em‖22 + λy

(
ym − |〈am + em,x〉|2

)2
.

(5)
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Further we denote themth corrected sensing vector as âm :=
(am + em) to obtain the equivalent formulations

min
x

1

2M

M∑
m=1

min
âm

λa ‖am − âm‖22+λy
(
ym−|〈âm,x〉|2

)2
︸ ︷︷ ︸

Im(x)

,

(TLS-PR1)

and

min
x,

â1,...,âM

1

2M

M∑
m=1

λa ‖am − âm‖22+λy
(
ym − |〈âm,x〉|2

)2
︸ ︷︷ ︸

J (x,â1,...,âM )

.

(TLS-PR2)

As each data consistency term, (ym − | 〈âm,x〉 |2)2, is pro-

portional to ‖x‖42 in an error-free setting, we set λy =
λ†y

‖x(0)‖42 in
order to make the scaling of the objective invariant with respect
to the norm of x. The vector x(0) is an initial guess for x and
λ†y is a regularization parameter. Furthermore, to account for
the fact that the sensing vector corrections, (am − âm), are
N -dimensional and the data consistency terms are scalar we

set λa = λ†a
N where λ†a is a regularization parameter.

In line with recent methods such as the Wirtinger flow algo-
rithm [3], our high level strategy is to obtain x by solving

argmin
x

1

2M

M∑
m=1

Im(x), (6)

using gradient descent. To perform gradient descent with respect
to x we can use Wirtinger gradient updates [3],

x(τ+1) = x(τ) − μ∥∥x(0)
∥∥2
2

· 1

2M

M∑
m=1

∇xIm
(
x(τ)
)
, (7)

where μ is the step size and ‖x(0)‖2 is a guess for ‖x‖2. The
gradient is given by

∇xIm(x) = 2

(∣∣∣〈â†m,x〉∣∣∣2 − ym) â†mâ†∗mx, (8)

where â†m is the solution to the following nonconvex optimiza-
tion problem

â†m = argmin
a

λa ‖am − a‖22 + λy

(
ym − |〈a,x〉|2

)2
. (9)

This motivates the following alternating updates procedure to
solve the TLS problem:

1) Obtain an initial guess, x(0) ∈ C
N , for x.

2) Repeat steps 2a and 2b until convergence:
a) With x fixed, obtain corrected sensing vectors,
{â†m}Mm=1, by solving (9) for 1 ≤ m ≤M .

b) With {â†m}Mm=1 fixed, take one gradient descent step
to update x using (7).

The main challenge in our approach is obtaining corrected
sensing vectors {â†m}Mm=1 by solving (9) so that we can perform
gradient descent updates for x using (7). As (TLS-PR2) is
nonconvex, a good initial guess, x(0), can place us near a global

minimum. There are multiple initialization options such as the
spectral initialization for certain measurement models [12].

In the remainder of this section we will examine the geometry
of the optimization problem in (TLS-PR1) and show how it can
be leveraged to efficiently solve (9) and obtain corrected sensing
vectors. This is summarized by Proposition 1 below. We will then
present the complete TLS phase retrieval algorithm. Lastly, we
also interpret the regularization parameters,λa andλy , by show-
ing that the TLS solution is the maximum likelihood estimator
for a quadratic complex-valued error-in-variables (EIV) model.

A. Optimization Geometry

Moving from the LS formulation to the TLS formulation intro-
duces significant computational issues. In addition to optimizing
over vector x, we must additionally optimize over M sensing
vectors in (TLS-PR1), with typicallyM > N . We now study the
optimization geometry of (TLS-PR1) and show that theM inner
minimizations over the N -dimensional vectors, {âm}Mm=1, can
be simplified to minimizing over M scalars which improves
efficiency. For ease of visualization in this subsection, we con-
sider the real-valued problem (all quantities in (1), (LS-PR) and
(TLS-PR1) are real) and we set λa = λy = 1.

For a given vectorxwe compare the values of the LS and TLS
objectives, (LS-PR) and (TLS-PR1). The left column of Fig. 1
visualizes the phase retrieval problem with M = 5 data points,
{(am, ym)}Mm=1, when N = 2 and ‖x‖2 = 1. The middle col-
umn shows the same data points from a different viewing angle.
In phase retrieval we fit a paraboloid, y(a) = | 〈a,x〉 |2 that is
parameterized by x to the data points, {(am, ym)}Mm=1. If there
is no sensing vector or measurement error, the data points lie
on the paraboloid ((1) holds with equality). The left and middle
figures show that the surface y(a) = | 〈a,x〉 |2 does not change
in the subspace perpendicular to x, denoted as x⊥. This can also
be verified by considering the values of a that would result in
the inner product 〈a,x〉 being zero. Crucially this means that
the shortest paths between the data points and the paraboloid
have no component in the x⊥ subspace. As a result, we can
view the problem in 2D from a viewpoint that looks into the x⊥

subspace as shown in the right column of Fig. 1. This 2D plot
shows two options for measuring closeness between the surface
and the data points. The LS objective (LS-PR), is the sum of the
squared vertical distance between the 2D parabola and each data
point as indicated by the dashed lines. On the other hand, due to
the minima over all âm, the TLS objective (TLS-PR1), is the sum
of the squared Euclidean or orthogonal distance between the 2D
parabola and each data point as shown by the solid lines. A sim-
ilar geometrical interpretation is seen with linear TLS [4], [5].

Considering this geometry, to solve the inner minimizations
in (TLS-PR1), we find the closest point on the paraboloid to
each data point. As the shortest path has no component in the
x⊥ subspace, our task of finding the closest point on a (N + 1)-
dimensional paraboloid to a (N + 1)-dimensional data point
reduces to a 2D geometry problem of finding the closest point on
a parabola to a 2D data point. Rather than finding the minimizing
N -dimensional â†m for each data point, we instead only need to
find the component of â†m in the x direction that is closest. This
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Fig. 1. Visualization of the phase retrieval problem when ‖x‖2 = 1. The left column shows M = 5 data points, {(am, ym)}Mm=1, when N = 2. A paraboloid
is fitted to the data points. The middle column shows the same paraboloid and data points from a different viewing angle. The right column shows the problem
from a viewpoint that looks into the x⊥ subspace. The dashed lines show the distances minimized by the LS objective, (LS-PR). The solid lines show the distances
minimized by the TLS objective, (TLS-PR1).

component is a scalar and is given by the inner product, νm =〈
â†m,x

〉
. We can then construct â†m by adding the unchanged

component in the x⊥ subspace,

â†m := â†m(νm) =
νm
‖x‖2

x̂+ (am − 〈am, x̂〉 x̂), (10)

where x̂ is x normalized.
If λa and λy are not one, a perpendicular distance is not

minimized. As λa
λy

gets larger, the solid lines in the right column
of Fig. 1 become more vertical because there is a relatively
larger penalty for correcting the sensing vectors and the problem
moves towards a LS approach. Conversely, the lines become
more horizontal as λa

λy
gets smaller. Irrespective of the values of

λa andλy , the shortest paths between the paraboloid and the data
points still have no component in the x⊥ subspace and (10) can
be used to obtain each â†m. We further note that this geometry
also holds for the complex-valued phase retrieval problem (1).

B. Correcting Complex-Valued Sensing Vectors

Our strategy is to set up each inner minimization over âm in
(TLS-PR1) as the minimization of a fourth degree equation with
respect to scalar νm = 〈âm,x〉 rather than vector âm. We then
directly obtain the minimizer of this equation.

The M inner minimization problems in (TLS-PR1) are in-
dependent of each other and we can independently solve each
summand for a fixed vector x. Consider the objective function
of optimization problem Im(x),

fm (âm) = λa ‖am − âm‖22 + λy

(
ym − |x∗âm|2

)2
. (11)

Proposition 1 states that arg minâm
fm(âm) can be obtained

by solving two scalar variable cubic equations and using (10).
Proposition 1: Let sets R+ and R− be the positive real

solutions of

αr3 + βr ± |γ| = 0 (12)

whereα = 2λy‖x‖22 ∈ R,β = λa − 2λyym‖x‖22 ∈ R and γ =
−λax∗am ∈ C. Further, with κ denoting the phase of γ, let

S+ = {ejκr | r ∈ R+} and S− = {−ejκr | r ∈ R−}. (13)

Then fm(âm) is minimized by â†m(s†) where

s† = argmin
s∈S+∪S−

fm

(
â†m(s)

)
(14)

and â†m(·) is defined in (10).
Proof: Expanding fm(âm) gives

fm(âm) = λa

(
‖am‖22 − a∗mâm − â∗mam + â∗mâm

)
+ λy

(
y2m − 2ymâ∗mxx∗âm + (â∗mxx∗âm)2

)
.

(15)

We can use Wirtinger derivatives to calculate the derivative
of the real-valued fm(âm) with respect to the complex vector
âm [3],

∇âm
fm =

(
λa (−a∗m + â∗m)

+λy

(
−2ymâ∗mxx∗ + 2|x∗âm|2â∗mxx∗

))∗
= λa (âm − am)

+ λy

(
−2ymxx∗âm + 2|x∗âm|2xx∗âm

)
.

(16)

Setting the derivative to zero, and then left-multiplying by
nonzero x∗ gives

2λy ‖x‖22 |x∗âm|2 (x∗âm) − 2λyym ‖x‖22 (x∗âm)

+ λa (x
∗âm)− λax∗am = 0

2λy ‖x‖22 |x∗âm|2 (x∗âm) +
(
λa − 2λyym ‖x‖22

)
(x∗âm)

− λax∗am = 0. (17)

The left hand side is now scalar-valued and is a function of
scalar νm = 〈âm,x〉 = x∗âm ∈ C instead of a vector. Recall-
ing our analysis of the optimization geometry in Section II-A, we
can solve for νm and then obtain â†m = â†m(νm) using (10). If
we substitute α = 2λy‖x‖22 ∈ R, β = λa − 2λyym‖x‖22 ∈ R
and γ = −λax∗am ∈ C we wish to solve the following for νm,

α|νm|2νm + βνm + γ = 0. (18)
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Because the sensing vectors and ground truth signal are com-
plex, this cubic equation is a function of νm ∈ C and its con-
jugate ν̄m (|νm|2 = νmν̄m). We therefore cannot use standard
cubic root finding formulae. Further note that the coefficients
α and β are always real and γ may be complex. To solve, first
multiply by ν̄m,

α|νm|4 + β|νm|2 + γν̄m = 0. (19)

Next, with complex-exponential representation, νm = rejφ

and γ = |γ|ejκ (recall γ is known), the equation becomes

αr3 + βr + |γ|ej(κ−φ) = 0. (20)

The real and imaginary parts of the left hand side should both
equate to zero. Using Euler’s identity, ejθ = cos(θ) + j sin(θ),
we arrive at the following simultaneous equations,{

sin(κ− φ) = 0

αr3 + βr + |γ| cos(κ− φ) = 0.
(21)

For the first equation to hold, cos(κ− φ) = ±1 and so the
phase of νm has two possible values; φ = κ or φ = (κ− π).
To obtain the magnitude of νm we can solve the following two
cubic equations for r to get six values, three from each,

αr3 + βr + |γ| = 0 and φ = κ (22)

αr3 + βr − |γ| = 0 and φ = κ− π. (23)

As the solutions of these two cubic equations are magnitudes
of complex numbers, we let sets R+ and R− be the positive
real solutions of (22) and (23) respectively. To obtain values
for νm we combine R+ and R− with their phases to get S+

and S−—multiply the elements of R+ by ejκ and multiply the
elements ofR− by ej(κ−π) = −ejκ. We then construct candidate
minimizers of fm(·) by using the possible values for νm, the set,
S+ ∪ S−, as the argument for (10). Finally, the global minimizer
is the candidate minimizer that gives the minimum value as the
argument of fm(·). �

To solve (22) and (23) for r, Cardano’s formula for cubic equa-
tions or a general cubic root formula derived from Cardano’s
formula can be used (see Appendix A). Furthermore we note
that the procedure to update the sensing vectors is independent
of the sensing vector measurement model.

C. TLS Phase Retrieval Algorithm

Now that we have a method for solving the inner mini-
mizations in (TLS-PR1), we present the complete TLS phase
retrieval algorithm in Algorithm 1. We say that the algorithm
has converged if the value of J (x, â†1, . . . , â†M ) in (TLS-PR2)
between consecutive iterates is less than some threshold. In
practice all sensing vectors can be updated (lines 5-16) in parallel
for a givenx because all sensing vectors are independent of each
other.

D. ML Estimator for EIV Models

Proposition 2 below provides an interpretation of the regu-
larization parameters in (TLS-PR1) by connecting them to the
error level. It states that under certain assumptions the solution

Algorithm 1: TLS Phase Retrieval.

Input: Erroneous sensing vectors {am}Mm=1; Erroneous
observations {ym}Mm=1; Convergence threshold T ; Step
size η; Regularization parameters λy and λa.

Output: Recovered signal x ∈ C
N .

1: x← Initialization(y1, . . . , yM ,a1, . . . ,aM )
2: loss_prev← −∞
3: loss_curr←∞
4: while |loss_curr - loss_prev| > T do

// Update each sensing vector for a given x
5: for each m ∈ {1, . . . ,M} do
6: α← 2λy‖x‖22
7: β ← λa − 2λyym‖x‖22
8: γ ← −λax∗am

9: κ← Angle(γ)
10: R+ ← PosRealRoots(αr3 + βr + |γ|)
11: R− ← PosRealRoots(αr3 + βr − |γ|)
12: S+ ← ejκ ·R+

13: S− ← − ejκ ·R−
14: s† = arg mins∈S+∪S−fm(â†m(s))

15: â†m ← â†m(s†)
16: end for

// Update x with sensing vectors fixed
17: x← x_gradient_step(x, â†1, . . . , â

†
M )

18: loss_prev← loss_curr
19: loss_curr← J (x, â†1, . . . , â†M )
20: end while

to (TLS-PR1) is the maximum likelihood (ML) estimator for the
complex-valued EIV model given by

ym = |〈ãm, x̃〉|2 + (−ηm), am = ãm + (−δm) (24)

for 1 ≤ m ≤M . With this EIV model we aim to recover x̃ and
{ãm}Mm=1 from {ym}Mm=1 and {am}Mm=1 which are known. The
quantities {ηm}Mm=1 and {δm}Mm=1 are random error perturba-
tions. This result is an extension of the relationship between
linear TLS and the linear error-in-variables model [25], [32].
Similarly, this result is a specific instance of what is seen for
nonlinear TLS [6].

Proposition 2: Assume in (24) that {ηm}Mm=1 are iid zero-
mean Gaussian with covariance σ2

ηI , {δm}Mm=1 are independent
of each other and each is an iid zero-mean complex Gaus-
sian vector with covariance 2σ2

δ , i.e. vec([Re(δm) | Im(δm)]) ∼
N (0, σ2

δI). Further assume that {ηm}Mm=1 and {δm}Mm=1 are
independent of each other and that {ãm}Mm=1 and x̃ are deter-
ministic. Under these assumptions, the solution to optimization
problem (TLS-PR1), when λa = 1

σ2
δ

and λy = 1
σ2
η

, is the maxi-
mum likelihood estimator for (24).

Proof: The proof follows a standard procedure and is pro-
vided in Appendix B. �
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III. TLS AND LS SOLUTION RECONSTRUCTION ERRORS

In this section we evaluate the reconstruction error for the TLS
and LS phase retrieval solutions by deriving their Taylor expan-
sions. Through these expressions we are able to gain insight into
the behavior of the TLS solution relative to the LS solution and
understand when each method performs well. We also use these
expressions to understand how the reconstruction errors rely on
the level of the measurement and the sensing vector errors when
all the errors are Gaussian. Since this analysis is cumbersome,
in this section we will consider the real-valued phase retrieval
problem where the ground truth signal, the sensing vectors and
the sensing vector errors in (1) are real. Simulations in Section IV
show that the reasoning carries through to the complex problem.
In our derivations we will use theorems about differentiation of
argmins and various matrix inversion lemmas.

We denote the ground truth signal as x# and the TLS and LS
solutions as x†TLS and x†LS. If there are no errors in the sensing
vectors or measurements, x# and −x# are both optimum LS
and TLS solutions for (LS-PR) and (TLS-PR2) (with the mth
corrected sensing vector being am). Due to this inherent sign
ambiguity it is standard to define the reconstruction errors as

min
σ

∥∥∥x# − σ · x†TLS

∥∥∥
2

and min
σ

∥∥∥x# − σ · x†LS
∥∥∥
2

(25)

where σ ∈ {1,−1}. Our results are unchanged if the analysis
is done with optimum solution x# (σ = 1) or with optimum
solution −x# (σ = −1). Consequently, we choose optimum
solution x# with σ = 1 in the following analysis.

A. Reconstruction Error Analysis

The erroneous sensing vectors and measurements in (1) can be
expressed as perturbed versions of error-free sensing vectors and
measurements, {ãm}Mm=1 and {ỹm}Mm=1. We denote the sensing
vector and measurement error perturbations as {δm}Mm=1 and
{ηm}Mm=1. Stacking these into vectors we define,

t̃ =
[
ãT
1 , . . . , ã

T
M , ỹ1, . . . , ỹM

]T
∈ R(MN+M), (26)

γ =
[
δT1 , . . . , δ

T
M , η1, . . . , ηM

]T ∈ R(MN+M), (27)

t = t̃+ γ

=
[
aT
1 , . . . ,a

T
M , y1, . . . , yM

]T ∈ R(MN+M). (28)

In order to calculate the reconstruction errors we need access
to expressions for x†TLS and x†LS. We begin by noting that
the solutions are functions of the sensing vectors and mea-
surements, x†TLS(t) and x†LS(t). If there are no errors in the
sensing vectors or measurements, an optimum LS solution for
(LS-PR) isx†LS(̃t) = x#. Similarly an optimum TLS solution in
(TLS-PR2) for x†TLS(̃t) = x# with the mth corrected sensing
vector being am (no correction needed). Now, if we instead
have sensing vector and measurement errors, our solutions are
x†TLS(̃t+ γ) and x†LS(̃t+ γ) which we can interpret as per-
turbed versions of x†LS(̃t) = x†TLS(̃t) = x#. Assuming ‖γ‖ is
small, we can study the first-order terms in the Taylor series

expansions of x†TLS(t) and x†LS(t) to measure the perturbation
from x#.

The Taylor series expansion of x†TLS(t) = x†TLS(̃t+ γ) at
the no error point, t̃, is

x†TLS(̃t+ γ) = x†TLS(̃t) +∇tx
†
TLS(t)

∣∣
t=˜t

γ +O(‖γ‖22)
= x# +∇tx

†
TLS(t)

∣∣
t=˜t

γ +O(‖γ‖22), (29)

where O(‖γ‖22) represents terms with norm of order ‖γ‖22. The
Taylor series expansion for x†LS(t) can be written similarly.
Using these expansions, to the first-order when ‖γ‖ is small,
the reconstruction errors for the TLS and LS problems are

eTLS :=
∥∥∥∇tx

†
TLS(t)

∣∣
t=˜t

γ
∥∥∥
2

(30)

eLS :=
∥∥∥∇tx

†
LS(t)

∣∣
t=˜t

γ
∥∥∥
2

(31)

To evaluate eTLS and eLS we must calculate the derivatives
∇tx

†
TLS(t) ∈ RN×(MN+M) and ∇tx

†
LS(t) ∈ RN×(MN+M)

which are the derivatives of the argmins of (TLS-PR2) and
(LS-PR). We use the method by Gould et al. to take derivatives
of argmin problems [33].

With the substitutionem = âm − am and multiplicative con-
stants absorbed into λa and λy , the TLS optimization problem
(TLS-PR2) can be rewritten as

q† = argmin
q

M∑
m=1

λa‖em‖22+λy
(
ym−|〈am+em,x〉|2

)2
︸ ︷︷ ︸

f(q,t)

s.t. q =
[
eT1 · · · eTM xT

]T
∈ RMN+N . (32)

The solution, g(t) := q†, is a function of t and x†TLS(t) is the
last N entries of g(t), denoted as g(t)−N ,

g(t) := q† = argmin
q

f(q, t) ∈ RMN+N , (33)

x†TLS(t) = g(t)−N ∈ RN . (34)

The derivatives of g(t) with respect to the kth sensing vector
and measurement can be computed after specific second deriva-
tives of f(q, t) are computed [33],

∇ak
g(t)=−(∇2

qqf(q, t)
)−1(∇2

akq
f(q, t)

)∈R(MN+N)×N .

(35)

d

dyk
g(t) = − (∇2

qqf(q, t)
)−1( d

dyk
∇qf(q, t)

)
∈ RMN+N .

(36)

We can then obtain ∇tx
†
TLS(t) by vertically stacking the

derivatives (35) and (36) for 1 ≤ k ≤M to form ∇tg(t) ∈
R(MN+N)×(MN+M),

∇tg(t) =
[
∇a1

g(t), . . . ,∇aM
g(t), d

dy1
g(t), . . . , d

dyM
g(t)
]
,

(37)

and taking the last N rows. Appendix C-A contains the deriva-
tions for the last N rows of (35) and (36).
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The same approach can be used for the LS problem by
considering its optimization problem,

x†LS = argmin
x

M∑
m=1

(
ym − |〈am,x〉|2

)2
. (38)

The corresponding derivative derivations are in Appendix
C-B.

Proposition 3 below states the expressions for eTLS and eLS.
We denote

Ỹ = diag (ỹ1, . . . , ỹM ) ∈ RM×M (39)

Ã =

⎡⎢⎢⎣
— ãT

1 —
...

— ãT
M —

⎤⎥⎥⎦ ∈ RM×N (40)

EY = diag (η1, . . . , ηM ) ∈ RM×M (41)

EA =

⎡⎢⎢⎣
— δT1 —

...

— δTM —

⎤⎥⎥⎦ ∈ RM×N (42)

and use these quantities to define diagonal matrix,D, and vector,
w,

D =

(
IM + 4

λy
λa

∥∥x#
∥∥2
2
Ỹ

)−1
∈ RM×M (43)

w =
(
(2Ỹ )−1EY Ã−EA

)
x# ∈ RM . (44)

Proposition 3: To the first-order, the reconstruction errors for
the solution x†TLS to the TLS optimization problem (32), and,
the solution x†LS to the LS optimization problem (38) are

eTLS =

∥∥∥∥(ÃT
Ỹ DÃ

)−1
Ã

T
Ỹ Dw

∥∥∥∥
2

(45)

eLS =

∥∥∥∥(ÃT
Ỹ Ã
)−1

Ã
T
Ỹ w

∥∥∥∥
2

. (46)

Proof: Lemma 1 in Appendix C states the Taylor series
expansions around the no error point, t̃, for the TLS and LS
solutions. The result in this proposition follows by considering
only the zeroth and first-order terms. �

As expected, whenγ → 0, the errorsEA andEY tend to zero
which makes the vector w zero and the reconstruction errors are
zero. The difference between the TLS and LS reconstruction
errors in Proposition 3 is due to the diagonal matrix D. As
λy
λa
→ 0,D → IM and eTLS → eLS. This is because the relative

weighting of the sensing error consistency terms in (TLS-PR2),
‖am − âm‖22 for all m, increases which makes modifying the
sensing vectors increasingly costly and the TLS problem moves
closer to the LS problem. Additionally, there are also error
models under which the reconstruction errors are equal. For
example, if EY = ryỸ and EA = rAÃ where ry, rA ∈ R.

Furthermore, if M = N and Ã is invertible, we can again
have eTLS = eLS. However, having M = N is not a practical
setting for the real-valued phase retrieval problem because the

map from x# to [
〈
ã1,x

#
〉2
, . . . ,

〈
ãm,x

#
〉2
]T is not injective,

even after accounting for the sign ambiguity [34]. The same
holds for the complex-valued phase retrieval problem, even after
accounting for the global phase shift [35]. Therefore, we can
expect to require more measurements to obtain a unique solution
to the phase retrieval problem with the TLS framework.

The reconstruction errors in Proposition 3 can be further
interpreted by assuming a distribution for the measurement and
sensing vectors errors; in Proposition 4 we assume that the
nonzero entries of EY and EA are iid zero-mean Gaussian
(with different variances for EY and EA).

Proposition 4: With the setting of Proposition 3, assume
that the diagonal elements of the diagonal matrix EY are iid
zero-mean Gaussian with variance σ2

η and that the rows of
EA are independent zero-mean Gaussian random vectors with
covariance σ2

δI . If EY and EA are independent of each other,
the expected squared first-order reconstruction errors are

E
[
e2TLS

]
= σ2

δ ·
∥∥x#
∥∥2
2

∥∥∥∥(ÃT
Ỹ DÃ

)−1
Ã

T
Ỹ D

∥∥∥∥2
F

+
σ2
η

4
·
∥∥∥∥(ÃT

Ỹ DÃ
)−1

Ã
T
Ỹ

1
2D

∥∥∥∥2
F

(47)

E
[
e2LS
]
= σ2

δ ·
∥∥x#
∥∥2
2

∥∥∥∥(ÃT
Ỹ Ã
)−1

Ã
T
Ỹ

∥∥∥∥2
F

+
σ2
η

4
·
∥∥∥∥(ÃT

Ỹ Ã
)−1

Ã
T
Ỹ

1
2

∥∥∥∥2
F

. (48)

Proof: The expectations are computed in Appendix D. �
Just like in Proposition 3, the difference between the TLS and

LS expressions in Proposition 4 are due to the diagonal matrix
D. Each expression is a sum of two terms—the first term shows
how the expectations depend on σ2

δ and the second term shows
how they depend on σ2

η.

B. Reconstruction Error Numerical Experiments

The expressions in Proposition 3 provide a means to un-
derstand when each approach should perform well. Further-
more, their squared-expectations in Proposition 4 allow us to
verify the optimal maximum likelihood parameters stated in
Proposition 2.

Impact of varying error strength and number of measure-
ments: We compare TLS and LS by numerically evaluating (45)
and (46) with different measurement and sensing vector error
levels while varying the number of measurements.

These experiments only consider the first-order error. The
actual error is computed in a variety of experiments in Sec-
tion IV. We will use SNR to quantify the measurement
and sensing vector error level. The measurement SNR is
−20 log10(‖EY ‖F /‖Ỹ ‖F ) and similarly the sensing vector
SNR is−20 log10(‖EA‖F /‖Ã‖F ). Furthermore we define the
relative reconstruction errors, rel.eTLS = eTLS

‖x#‖ and rel.eLS =
eLS

‖x#‖ .
We plot the relative reconstruction errors as the oversampling

ratio M
N is varied with N = 100. Regularization parameters λy



GUPTA AND DOKMANIĆ: TOTAL LEAST SQUARES PHASE RETRIEVAL 543

Fig. 2. Relative reconstruction errors, (45) and (46) for different values of M
N

when sensing vector SNR is 40 dB and measurement SNR is varied. All errors
are Gaussian.

and λa are set to one. For each value of M
N we do 100 trials

and each trial uses new sensing vectors, ground truth signals
and errors. The standard deviation of the trials is indicated
by error bars in the upcoming plots. The sensing vectors and
ground truth signal are iid standard real Gaussian. Furthermore,
the measurement and sensing vector errors are iid zero-mean
real Gaussian with variance such that the sensing vector SNR
is 40 dB. In Fig. 2(a) the measurement SNR is 65 dB and TLS
has lower reconstruction error than LS. When the measurement
SNR decreases to 40 dB in Fig. 2(b), LS outperforms TLS.
Although these experiments use the first-order error, they are
consistent with our intuition. The relative performance of TLS
is better when most of the error is due to sensing vector error.
We also see that the performance of both methods improves as
the number of measurements increases. Lastly, from Fig. 2(b),
TLS may improve relatively faster than LS as the number of
measurements increase.

Verification of optimal ML parameters: The expression for
TLS (47) in Proposition 4 enables us to verify the optimal
maximum likelihood parameters for λy and λa from Proposition
2. Although Proposition 2 is stated for the complex-valued
phase retrieval problem, the same procedure shows that the
optimal parameters are the same for real-valued phase retrieval
we considered here. The theoretically optimal parameter ratio is
λy
λa

=
σ2
δ

σ2
η

.

To verify numerically whether this agrees with Proposition 4,
we vary λy

λa
(which is contained in D) around the optimal ratio

and plot the TLS expression (47). We do this multiple times and
in each run use a different iid standard real Gaussian ground
truth signal and a different set of iid standard real Gaussian
sensing vectors. As in Proposition 4, the errors in each run are
iid zero-mean Gaussian and their variances are set to obtain
different SNRs. Fig. 3 shows the different runs with the minima
marked in red and the theoretically optimal ratio indicated by
the dashed black lines. We can see that all the minima are at the
optimal ratio which verifies Proposition 2. In the top row, most
of the error is due to measurement error and the optimal ratio is
low. This further highlights that TLS sensing vector corrections
are less important when most of the error is due to measurement
error.

We further note that the consistency between Propositions 2
and 4 demonstrates that the first-order expressions can be used
to explain the performance of our TLS framework. Section IV
shows that the real reconstruction errors follow the same trends
as the numerical simulations in this section.

IV. TLS PHASE RETRIEVAL SIMULATIONS

We compare the performance of TLS phase retrieval against
LS phase retrieval through simulations.1 To obtain a LS solution
we use the Wirtinger flow method [3].

In this section we set the regularization parameters of (TLS-
PR2) to λa = 1

N and λy = 1
‖x(0)‖42 in all experiments with x(0)

being an initial guess for x#. These regularization parameters
are tuned later in Section V. We fix the ground truth signal
to be iid complex Gaussian with N = 100. Furthermore, the
TLS and LS iterations are stopped when their objective function
values change by less than 10−6 between successive iterates. The
ground truth signal, TLS solution and LS solution are denoted as
x#, x†TLS and x†LS. In all experiments we generateM quadratic
measurements using M clean sensing vectors. The TLS and
LS methods must then recover the signal x# from erroneous
measurements and sensing vectors. We use SNR, as defined in
Section III, to quantify measurement and sensing vector error.
Also as in Section III, the plots in this section indicate the
standard deviation of the trials using error bars.

A. Measurement Models

In our experiments we will consider the complex-valued
Gaussian and coded diffraction pattern measurement models.
However, Algorithm 1 is not restricted to these measurement
models. Recently in optical computing applications, random
Gaussian scattering media have been used to do rapid high-
dimensional randomized linear algebra, kernel classification and
dimensionality reduction using laser light [36], [37]. The coded
diffraction pattern model modulates the signal with different
patterns before taking the Fourier transform. It is inspired by the
fact that in coherent x-ray imaging the field at the detector is the
Fourier transform of the signal [9].

1Code available at https://github.com/swing-research/tls_phase.
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Fig. 3. The TLS expected squared reconstruction error (47) is plotted for different ratios,
λy
λa

, to verify the optimal maximum likelihood parameters. Each subplot
shows a different combination of sensing vector and measurement SNR. The minima are marked in red and the theoretically optimal ratio is indicated by the dashed
black lines.

When using the Gaussian measurement model, the nth
entry of sensing vector m, amn, is distributed by the
complex normal distribution for the complex-valued problem,
amn ∼ N (0, 1) + jN (0, 1). For the real-valued problem it is
the standard normal distribution, amn ∼ N (0, 1). The Gaussian
measurement model sensing vector entries are independent
of each other and the sensing vectors are also independent
of each other. A description of the coded diffraction pattern
measurement model is in Appendix G.

In this section of the main paper, the complex Gaussian mea-
surement model is used. In Appendix G-A these experiments are
repeated for the coded diffraction pattern measurement model
and the same behavior is seen.

B. Algorithm Initialization

In our experiments we opt to do the initialization of the
signal being recovered (line 1 of Algorithm 1) via a spectral
initialization. This method comprising a spectral initialization
followed by gradient descent updates has been proven to lead
to globally optimal solutions for the LS phase retrieval problem
(LS-PR) in an error-free setting under the Gaussian and coded
diffraction pattern models [3], [12].

The spectral initialization is the leading eigenvector of the
matrix

∑
m ymama∗m ∈ C

N×N which we efficiently compute
using 50 power method iterations. This eigenvector is scaled
appropriately by estimating the norm of the signal of interest as
( 1

2M

∑
m ym)1/2.

C. Signal Recovery

To evaluate performance we compute the distance between the
ground truth signal and the recovered signal. As the value of the
objective function (TLS-PR1) is the same forx and phase shifted
ejϕx, we cannot distinguish between x and its phase-shifted
variant. We therefore use a standard definition of distance that
is invariant to phase shifts which is detailed in Definition 1.

Definition 1: Denote the ground truth as x# ∈ C
N and

let x† ∈ C
N be a solution to the phase retrieval prob-

lem. The distance between x# and x†, dist(x#,x†), is de-
fined as dist(x#,x†) = minϕ∈[0,2π) ‖x# − ejϕx†‖2. Further-
more, the relative distance is defined as rel.dist(x#,x†) =
dist(x#,x†)
‖x#‖2 and the reconstruction SNR in dB is defined as

−20 log10(rel.dist(x#,x†)).
Combinations of sensing vector and measurement error: To

understand how performance changes with different amounts
of sensing vector and measurement error, we add different
amounts of random iid complex Gaussian error to sensing
vectors and random iid real Gaussian error to measurements.
For each combination of sensing vector error and measurement
error we perform 100 phase retrieval trials. In each trial we
generate a new ground truth signal and M new sensing vectors
to produce M new error-free measurements. In each trial we
then add new random error perturbations to the sensing vectors
and measurements. We evaluate performance by subtracting the
relative distance of the TLS solution from that of the LS solution,
(rel.dist(x#,x†LS)− rel.dist(x#,x†TLS)), and average across
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Fig. 4. Average difference in relative distance of TLS and LS solutions,
rel.dist(x#,x†LS)− rel.dist(x#,x†TLS), for the Gaussian measurement
model for different measurement and sensing vector SNR combinations when
M
N ∈ {8, 16, 32}.

all 100 trials. If this average is positive, TLS has outperformed
LS.

We use a step size of μ = 0.5
λa

for TLS and μ = 0.02 for LS
to perform the gradient update for x in (7). The TLS step size
is inversely proportional to λa because the relative importance
of the data consistency term is inversely proportional to the
sensing vector consistency term in (TLS-PR2). Fig. 4 shows
the performance for M

N ∈ {8, 16, 32}. Note that the minimum
sensing vector SNR is 10 dB when M

N = 8 and 5 dB in the
other cases. For a fixed sensing vector SNR, the performance of
TLS decreases when the measurement SNR decreases. This is

Fig. 5. Relative distance of reconstructions using TLS and LS for the Gaussian
measurement model for different M

N when measurement SNR is 20 dB and
measurement SNR is varied. All errors are Gaussian.

expected because more of the error is in the measurements which
LS is designed for. In general TLS is better when the sensing
vector SNR decreases for a fixed measurement SNR because
TLS phase retrieval accounts for sensing vector error. However,
this trend starts to break for very low sensing vector SNR as
shown at 5 dB when M

N = 16. Increasing the number of mea-
surements overcomes this issue and in general improves TLS
performance as was indicated by the first-order reconstruction
errors with Gaussian error in Figs. 2(a) and 2(b).

Impact of varying the number of measurements: To clearly
see the impact of varying the number of measurements we fix
the measurement SNR to 20 dB and sensing vector SNR to
10 dB and plot the reconstruction relative distance for TLS
and LS in Fig. 5(a). We do 100 trials for each value of M

N .
The performance improvement of TLS over LS increases as
the number of measurements are increased. In Fig. 5(b) we
increase the sensing vector SNR to 30 dB. When the balance
of the Gaussian error shifts more towards the measurements,
LS performs better. This is identical to what was seen with the
first-order reconstruction errors in Fig. 2(a) and (b).

Accuracy of first-order reconstruction errors: Appendix E
contains the description of an experiment where we verify the
accuracy of the reconstruction error expressions in Proposition 3
against the real errors. As expected, it shows that the first-order
expressions in Proposition 3 increase in accuracy as the sensing
vector and measurement error decreases—this corresponds to
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the norm of γ in (27) decreasing, but that these expressions may
only serve as a rough rule of thumb when errors are large.

Sensing vectors and measurements error model: The simula-
tions in this section use iid random Gaussian errors. In Appendix
F we design errors that require access to the ground truth signal
norm and to the error-free measurements. We show that the
improvement of TLS over LS can be larger in this artificial
scenario.

D. Corrected Sensing Vector Verification

To characterize the sensing vector corrections performed by
our algorithm, we define a metric sensitive to the relative cor-
rection error of the sensing vectors. The metric only considers
corrections in the direction of the recovered signal because our
algorithm only corrects the component of the sensing vectors
in the direction of this signal due to the optimization geometry
(Section II-A).

Definition 2: Denote the complex-valued ground truth signal
and sensing vectors asx# anda# := {a#

m}Mm=1. Let their coun-
terparts obtained by solving the TLS phase retrieval problem be
x† anda† := {a†m}Mm=1. Further letϕ = arg minϕ∈[0,2π)‖x# −
ejϕx†‖2. Then, denoting y(a,x) = [〈a1,x〉 , . . . , 〈aM ,x〉],
the relative sensing vector correction error between a#

and a† is defined as rel.corr({a#, x#}, {a†, x†}) =
‖y(a#, x#)− y(a†, ejϕx†)‖2

‖y(a#, x#)‖2 .

To evaluate performance, we denote the ground truth and
TLS corrected sensing vectors as {ãm}Mm=1 and {â†m}Mm=1.
For the sensing vectors in the previous experiments of Fig. 4
we compute rel.corr({ã, x#}, {â†, x†TLS}) and average across
the 100 trials. Fig. 6 shows the relative correction error when
M
N ∈ {16, 32}. We see that as the sensing vector SNR increases,
the relative correction error decreases. Furthermore, as the mea-
surement SNR decreases, the relative correction error increases.
These relative correction error increases are more pronounced
when the sensing vector SNR is high, a setting where sensing
vector correction is needed less. This observation is consistent
with Fig. 4—when sensing vector SNR is high, the TLS sensing
vector corrections hinder TLS performance and LS outperforms
TLS.

Next we investigate how the number of measurements impacts
the relative correction error. We do this with the sensing vectors
from the previous experiments in Figs. 5 (a) and 5 (b). Fig. 7
shows the averages over the 100 trials. Here the measurement
SNR was fixed to 20 dB and the sensing vector SNR was
10 dB or 30 dB. Consistent with what was seen previously,
the performance of TLS improves with increasing number of
measurements. Additionally, increasing the number of measure-
ments provides greater gains when the sensing vector SNR is
lower.

V. EXPERIMENTS ON REAL OPTICAL HARDWARE

In this section we show that TLS phase retrieval outperforms
LS phase retrieval when using real optical hardware. We use
an Optical Processing Unit (OPU) which enables rapid random

Fig. 6. Average relative sensing vector correction error when using TLS,
rel.corr({ã, x#}, {pa†, ejϕx†TLS), for the Gaussian measurement model for

different measurement and sensing vector SNR combinations when M
N ∈{16, 32}.

Fig. 7. Relative sensing vector correction error when using TLS for the
Gaussian measurement model for different M

N when measurement SNR is 20 dB.
The sensing vector SNR is 10 dB or 30 dB.

high-dimensional matrix-vector multiplication.2 A known signal
x# ∈ RN is encoded onto coherent laser light using a digi-
tal micro-mirror device (DMD) which is then shined through
a Gaussian multiple scattering medium as shown in Fig. 8.
We denote the transmission matrix of the Gaussian medium
as A ∈ C

M×N . The M rows of the transmission matrix are
sensing vectors, am ∈ C

N for 1 ≤ m ≤M . The intensity of

2Visit https://www.lighton.ai/lighton-cloud/ for a publicly available cloud
OPU with a scikit-learn interface.
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Fig. 8. The optical processing unit (OPU). A coherent laser beam spatially
encodes a signal, x, via a digital micro-mirror device (DMD) which is then
shined through a random medium. A camera measures the squared magnitude
of the scattered light.

the scattered light in the sensor plane, ym ≈ |
〈
am,x

#
〉 |2 for

all m, is then measured using a camera. We do phase retrieval
using the optical measurements to reconstruct the input, x#.
The input signals are limited to real-valued binary images due
to the DMD.

The OPU measurements and sensing vectors both contain
errors. Errors in the optical measurements are caused by 8-bit
quantized camera measurements and Poisson noise which scales
with the square root of the mean intensity of the scattered light.
Additionally, there are measurement errors due to thermal effects
and other system properties that result in a noise floor. Thus
the lowest intensity that can be measured is not zero, even if
an all-zero signal, x# = 0, is encoded on the laser light and
shined through the scattering medium. The sensing vectors are
erroneous because the entries of A are unknown and must
be calibrated from erroneous optical measurements [2]. There
may also be other sources of experimental error. Unlike in the
computer simulations of Section IV, when using the OPU, we
do not know the exact error model and we also do not know the
levels of the errors in the measurements and sensing vectors.

In the experiments, the TLS and LS step sizes are tuned to 0.4
λa

and 0.005. The initialization method and termination criteria
are the same as in Section IV. Additionally, we use the fact that
the images being reconstructed are real-valued and binary to
regularize both the TLS and LS methods. After the initialization
(Algorithm 1, Step 1 for TLS) and eachx update step (Algorithm
1, Step 17 for TLS) we take the elementwise absolute value of the
signal to set the phase of all elements to zero. We then normalize
the entries of x†TLS and x†LS with absolute value larger than one
to one.

Appendix H contains details of the sensing vector calibration
method used and further OPU experimental details.

Random ground truth signals: Our ground truth signals are
real-valued random binary images of sizeN = 16× 16 = 256.
We vary the oversampling ratio, M

N , and perform 100 trials for
each ratio. In each trial a new ground truth image and set of
calibrated sensing vectors is used. On a held out set of ten images
and with M

N = 8 we tune λa = 40 and λy = ‖x(0)‖−42 in (TLS-
PR2) where x(0) is the initialization. Fig. 9 shows that the SNR
of the reconstructed images using TLS is higher than when using
LS for all numbers of measurements. Additionally, in Fig. 10 we

Fig. 9. SNR of reconstructed random binary images when using TLS and LS
for phase retrieval on the OPU. Values of M

N between five and 48 are used.

Fig. 10. Standard deviation of the SNR in Fig. 9 when random binary images
are reconstructed on the OPU.

plot the standard deviation of the results in Fig. 9 and show that
the TLS method has lower variability.

Real image ground truth signals: We reconstruct binary im-
ages of sizeN = 32× 32 = 1024 for M

N ∈ {5, 8, 12}. On a held
out set of five images and with M

N = 5 we tune λa = 20 and
again λy = ‖x(0)‖−42 in (TLS-PR2) where x(0) is the initial-
ization. Fig. 11 shows the original images, their reconstructions
and their reconstruction SNR. For a given oversampling ratio,
the TLS approach reports better SNR values and reconstructs
images of better visual quality as compared to the LS approach.

VI. CONCLUSION

We have developed a TLS framework for solving the phase
retrieval problem that accounts for both sensing vector error
and measurement error. One of the keys to solving the TLS
problem via gradient descent was studying the geometry of
the TLS optimization problem to realize that the sensing vec-
tors can be efficiently updated by solving a scalar variable
optimization problem instead of a vector variable optimization
problem. By deriving the Taylor series expansions for the TLS
and LS solutions we have also obtained approximate expressions
for their reconstruction error. These expressions enabled us to
anticipate the accuracy of the TLS solution relative to the LS
solution and understand when which approach will lead to a
better solution. We verify the TLS method through a range of
computer simulations. Furthermore, in experiments with real
optical hardware, TLS outperforms LS.
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Fig. 11. Reconstructions of 32× 32 images and reconstruction SNR when
using TLS and LS on the OPU. The oversampling ratio is varied.

Presently we correct the sensing vectors based on the one
signal that we wish to recover. An interesting future line of
work lies in multi-signal TLS for sensing vector denoising
so that subsequent signals can be recovered without requiring
sensing vector corrections if their measurements use the same
set of sensing vectors. There are multiple areas where this is
required. An upcoming application is in optical neural network
backpropagation where unknown random sensing vectors are
the rows of weight matrices of fully-connected layers. Denoised
and more accurate rows will enable better machine learning
performance.

There exist other applications of phase retrieval with un-
certain sensing vectors. Ptychography, which can be modeled
analogously to (1), is a prime example [38]. Ptychography has
recently been addressed by least squares, comprising spectral
initialization followed by gradient descent [39]. It would be
interesting to see whether our TLS phase retrieval algorithm
brings about improvements. Other ptychography methods use
alternating updates to recover the object and the sensing vec-
tors [40]. Our geometric intuition may help reduce the number
of unknowns in sensing vector updates and thus improve the
overall computational efficiency of these algorithms.

APPENDIX A
ROOTS OF CUBIC EQUATIONS

Consider finding the roots of the following cubic equation

ax3 + bx2 + cx+ d = 0. (49)

Denote

ψ0 = b2 − 3ac (50)

ψ1 = 2b3 − 9abc+ 27a2d (51)

ψ3 =
3

√
ψ1 +

√
ψ2
1 − 4ψ3

0

2
. (52)

Then for k ∈ {0, 1, 2} the three roots, xk, are

xk = − 1

3a

(
b+ θkψ3 +

ψ0

θkψ3

)
(53)

where θ is the cube root of unity, θ = −1+√−3
2 .

Note that the cubic equations in this paper are with b = 0
which simplifies the above expressions.

APPENDIX B
PROOF OF PROPOSITION 2

The ML estimator estimates both x̃ and {ãm}Mm=1 from
the data {ym}Mm=1 and {am}Mm=1 by minimizing the negative
conditional log-likelihood

argmin
x,e1,...,eM

− ln

(
M∏

m=1

Pr{ym,am|x̃ = x, ãm = am + em}
)

With x̃ and {ãm}Mm=1 given, the only randomness in each
ym and am are due to ηm and δm. Furthermore as {ηm}Mm=1

and {δm}Mm=1 are independent, the negative conditional log-
likelihood is,

M∑
m=1

− ln(Pr{ηm = |〈am + em,x〉|2 − ym})

− ln(Pr{δm = em}). (54)

Using the assumptions on the error distributions,

ln(Pr{ηm = |〈am + em,x〉|2 − ym})

= Kη − 1

2σ2
η

(
ym − |〈am + em,x〉|2

)2
(55)

and

ln (Pr {δm = em}) = Kδ − 1

2σ2
δ

‖em‖22 (56)

whereKη andKδ are constants independent ofx and {em}Mm=1.
Substituting these into (54) gives

argmin
x,e1,...,eM

M∑
m=1

1

σ2
δ

‖em‖22 +
1

σ2
η

(
ym − |〈am + em,x〉|2

)2
.
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GUPTA AND DOKMANIĆ: TOTAL LEAST SQUARES PHASE RETRIEVAL 549

[5] I. Markovsky and S. Van Huffel, “Overview of total least-squares meth-
ods,” Signal Process., vol. 87, no. 10, pp. 2283–2302, 2007.

[6] P. T. Boggs, R. H. Byrd, and R. B. Schnabel, “A stable and efficient
algorithm for nonlinear orthogonal distance regression,” SIAM J. Sci. Stat.
Comput., vol. 8, no. 6, pp. 1052–1078, 1987.

[7] R. W. Gerchberg, “A practical algorithm for the determination of phase
from image and diffraction plane pictures,” Optik, vol. 35, pp. 237–246,
1972.

[8] J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier
transform,” Opt. Lett., vol. 3, no. 1, pp. 27–29, 1978.

[9] R. E. Blahut, Theory of Remote Image Formation. Cambridge, U.K.:
Cambridge Univ. Press, 2004, ch. 8, pp. 254–286.

[10] B. Rajaei, S. Gigan, F. Krzakala, and L. Daudet, “Robust phase retrieval
with the swept approximate message passing (prsamp) algorithm,” Image
Process. On Line, vol. 7, pp. 43–55, 2017.

[11] M. K. Sharma, C. A. Metzler, S. Nagesh, R. G. Baraniuk, O. Cossairt,
and A. Veeraraghavan, “Inverse scattering via transmission matrices:
Broadband illumination and fast phase retrieval algorithms,” IEEE Trans.
Comput. Imag., vol. 6, pp. 95–108, 2020, doi: 10.1109/TCI.2019.2919257.

[12] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating
minimization,” in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 2796–
2804.

[13] G. Wang, G. B. Giannakis, and Y. C. Eldar, “Solving systems of random
quadratic equations via truncated amplitude flow,” IEEE Trans. Inf. The-
ory, vol. 64, no. 2, pp. 773–794, Feb. 2018.

[14] Y. Chen and E. Candes, “Solving random quadratic systems of equations is
nearly as easy as solving linear systems,” in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 739–747.

[15] S. Huang, S. Gupta, and I. Dokmanić, “Solving complex quadratic systems
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