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Innovative and Additive Outlier Robust Kalman
Filtering With a Robust Particle Filter

Alexander T. M. Fisch

Abstract—In this paper, we propose CE-BASS, a particle mixture
Kalman filter which is robust to both innovative and additive
outliers, and able to fully capture multi-modality in the distribution
of the hidden state. Furthermore, the particle sampling approach
re-samples past states, which enables CE-BASS to handle innova-
tive outliers which are not immediately visible in the observations,
such as trend changes. The filter is computationally efficient as
we derive new, accurate approximations to the optimal proposal
distributions for the particles. The proposed algorithm is shown
to compare well with existing approaches and is applied to both
machine temperature and server data.

Index Terms—Kalman filter, anomaly detection, particle
filtering, robust filtering.

I. INTRODUCTION AND LITERATURE REVIEW

NOMALY detection is an area of considerable importance
A and has been subject to increasing attention in recent years.
Comprehensive reviews of the area can be found in [1], [2].
The field’s growing importance arises from the increasing range
of applications to which anomaly detection lends itself: from
fraud prevention [1], [2], to fault detection [1], [2], and even
the detection of exoplanets [3]. More recently, the emergence
of the Internet of Things and the ubiquity of sensors has led to
emergence of the online detection of anomalies as an important
statistical challenge.

Kalman filters [4] provide a convenient framework to detect
anomalies within a streaming data context. In particular, they can
be updated in a fully online fashion at a fixed computational cost.
At each time point, Kalman filters also provide an estimate both
for the expectation and variance of the next observation. These
can be used to determine whether that observation is anomalous
or not. However, the major drawback of Kalman filters is their
lack of robustness to outliers: once the filter has encountered
an outlier, it will often produce inaccurate predictions for many
future time points.
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The anomaly detection literature distinguishes between two
types of outliers. The first are additive outliers, sometimes
referred to as observational outliers [5], which affect the obser-
vational noise only. The other type are innovative, or process [6],
outliers. These affect the updates of the hidden states. In practice,
both have a similar effect on the next observation, but quite
different effects on subsequent observations. Moreover, some
innovative outliers cannot be detected immediately as their
influence on the observations is only noticeable after, or over, a
period of time.

A range of robust Kalman filters has been proposed to date.
Many side-step the problem of distinguishing between the two
outlier types. By far the largest class of filters aims to be
robust against heavy tailed additive outliers. Examples of such
filters include [7], [8], which assume t-distributed additive noise
and perform inference using variational Bayes, [9], who use
Huberised, i.e. truncated, residuals, and [10] who inflate the
noise covariance matrix whenever an outlier is encountered. A
few filters have also been developed with the aim of achieving
robustness against innovative outliers [9]. The problem with
such filters is that they exacerbate the shortcomings of the
Kalman filter when they encounter the other type of anomaly:
additive outlier robust Kalman filters, for example, update their
hidden states even less than the classical Kalman filter when
encountering innovative outliers.

In principle, it seems straightforward to combine the ideas of
these two types of robust Kalman filter. One body of literature
proposes to use Huberisation of both innovative and additive
residuals [5], [10]. Others [6], [11] have modelled both addi-
tive and innovative outliers using ¢-distributions, by imposing
Wishart priors on the precision matrix of both the innovations
and additions and maintaining the posterior by using variational
Bayes approaches. The issue with these filters comes from how
they approximate the filtering distribution of the state. Both
return uni-modal posteriors after encountering an anomaly. This
is a shortcoming given that the posterior after an anomaly is
likely to be multi-modal (see Fig. 2 below) as different types of
anomalies contain different amounts of information about the
state: If we have an anomaly at time ¢, then if this is an additive
anomaly it has little information about the state at time ¢, and
thus the new filtering distribution for the state will be close to
the predictive distribution for the state given the data up to time
t — 1. Whereas if it is an innovative anomaly then the state will
have changed substantially from what was predicted.

The ideal approach to constructing a robust filter would be
to model the possibility of outliers in both the observation
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Fig. 1. Two examples of time series which are realisations of outlier infested

Kalman models. (a) was simulated using the setup defined in (2), witho 4 = 1,
oy = 0.1, and outliers defined by W709 = 3600, V400 = 100, and W7o =
10000. Conversely (b) second example was simulated using the model defined

in(3)usingo 4 =1, 051) =0.1, 052) = 0.01 and outliers defined by Wl(é()) =
3600, Vaoo = 100, and W2) = 40000.

(a) zo9|Y0:00 (®) z100[Y0:100 (c) z101|Yo:101

Fig. 2. The distribution of the hidden state x; for the process depicted in
Fig. 1(a). When we observe the abrupt change in the observations at time 100, we
have a bi-modal posterior as the observation may be an additive or an innovative
outlier.

and system noise, and then use a filter algorithm that attempts
to calculate, or approximate, the true filtering distribution for
the model. An early attempt to do this was the spline based
approach of [12], but the computational complexity increases
very quickly with the number of dimensions and such a filter
becomes impracticable when the state dimension is greater than
3. As a result we consider using particle filters [13], [14]. These
are able to produce Monte Carlo approximations to the filtering
distribution for an appropriate model that allows for outliers,
and, in principle, can work even if the filtering distribution is
multi-modal. However the Monte Carlo error of standard imple-
mentations of the particle filter can be prohibitively large [10].

In this paper, we develop an efficient particle filter by us-
ing a combination of Rao-Blackwellisation and well-designed
proposal distributions. The idea of Rao-Blackwellisation is to
integrate out part of the state so that the particle filter approxi-
mates the filtering distribution of a lower-dimensional projection
of the state. In our application this projection is whether each
component of the additive and innovative noise is an outlier,
and if it is how much the variance of the noise has been inflated.
Conditional on this information, the state space model becomes
linear-Gaussian and we can implement a Kalman Filter to cal-
culate exactly the conditional filtering distribution, while being
able to fully capture multi modal posteriors. This idea is similar
to that which underpins the Mixture Kalman Filter [15].
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Whilst Rao-Blackwellisation improves the Monte Carlo ac-
curacy of the filter, such a filter can still have the shortcom-
ings noted by [10] and perform poorly without good proposal
distributions for the information we condition on. One of the
main contributions of this work is a proposal distribution that
accurately approximates the conditional distribution of the vari-
ance inflation for each component of the noise, and hence
approximates the optimal proposal distribution [16]. As a result
of this proposal, we find that accurate results can be obtained
even with only a few particles.

Another important challenge addressed by this paper is that
certain innovative outliers can not immediately be detected. An
innovative outlier in a latent trend component for instance can
cause a trend change which may only become apparent — i.e.
produce a visible outlier in the observations — many observations
after the innovative outlier in the trend occurred. Itis nevertheless
important to capture such outliers as they can affect a potentially
unlimited number of observations to come. The proposed par-
ticle filter includes the possibility to back-sample the variance
inflation particles in light of more recent observations, which
enables it to capture these important anomalies.

The remainder of this paper is organised as follows: We
discuss our robust noise model, consisting of a mixture distri-
bution of Gaussian noise, representing typical behaviour, and
heavy tailed noise, representing atypical behaviour, for both the
additive (observational) and innovative (system) noise process
in Section II. We then introduce the proposal distribution for
the scale of the noise in Section III, before extending it to
anomalies which are not immediately identifiable in Section I'V.
The proposed filter is compared to others in Section V and
applied to router data and a benchmark machine temperature
data-set in Section VI. The proposed methodology, which we
call Computationally Efficient Bayesian Anomaly detection by
Sequential Sampling (CE-BASS) has been implemented in the
the R package RobKF available on CRAN [17].

II. MODEL AND EXAMPLES

Throughout this paper, we will consider inference about a
latent state, X, through partial observations, Y, modelled as

Y, = CX, + SiVie,
X, = AX, | + S Wiv,. )

Here the additive noise, €; € RP, and the innovations v; € R?
are both i.i.d. standard multivariate Gaussian. The matrices X 4
and X; denote the covariance of the additive and innovation
noise respectively. Without loss of generality we assume that
these matrices are diagonal, as a general model can be trans-
formed to one which satisfies this assumption by applying a suit-
able rotation to the observation and/or the state (see Section Il in
the Supplementary Material for details). The diagonal matrices
V; and W, are used to capture additive and innovative outliers
respectively, with large diagonal entries of V corresponding to
additive outliers and large diagonal entries of W corresponding
to innovative outliers. The classical Kalman model is recovered
by setting W, = I and V; = I for all times .
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The model in (1) can be used to model a range of time series
behaviours. We will use the following two examples throughout
the paper:

Example 1: The random walk model with both changepoints
and outliers, similar to the problem considered by [18], can be
formulated as

1 1
Y, = Xy +ViP0ae, Xe=Xi 1 +Weom. (2)

Here atypically large values of V; correspond to outliers,
whilst atypically large values of W, correspond to changes. A
realisation of this model can be found in Fig. 1(a). This example
illustrates the challenge of the bi-modal hidden state distribution
introduced by anomalies. Fig. 2 expands on this point.

Example 2: A time series with changes in trend, level shifts,
as well as outliers, similar to the model considered by [19], can
be formulated as

Y, = Xt(l) + V%JAEt

2
()1+(
3

X = X2+ (W)

with the first component of the hidden state denoting the current
position and the second indicating the trend. Here, outliers are
modelled by large values of V; whilst level shift and changes

in trend are modelled by atypically large values of Wt(l) and

—x® 4

1
X DY om0,

o 3)

Wt(z) respectively. A realisation of this model can be found in
Fig. 1(b).

A key feature of this second model is that an outlier in the
trend component, X 1‘/(2)’ may only become detectable many
observations after the outlier — this challenging issue mentioned
in the introduction is addressed via the methods in Section IV.
A wide rage of other commonly used time series features, such
as auto-correlation, moving averages, etc. can be incorporated
in the model.

In the rest of the paper we will use the notation that a
superscript (7, j) on a matrix refers to the (4, j)th entry of that
matrix, and the superscript (¢, :) refers to the ith row. To infer
the locations of anomalies we use the model

1
=1+7)) —— @

W(J J) _
W,E“)

(3,9) _ (@)
Vit =14+ N A
for 1 <7 <pand1 < j <q. The Bernoulli random variables
)\gi) ~ Ber(r;) and %(j )~ Ber(s;) are indicators that deter-
mine whether an anomaly is present or not for 1 < i < p and
1 < j < g respectively. For additional interpretability, we im-
pose that at most one anomaly is present at any given time ¢, and
define 7; and s; to be the probabilities that )\(’) 1and ’y(J ) =1
respectively. The inverse scale, or precision, of an anomaly is
assumed to be distributed as a scaled gamma random variable.
That is if T'(a, b) denotes a gamma random variable with shape
parameter a and rate parameter b, then V(z D~ :I'(a;, a;) and
ng 9 d;T(bj,bj)forl <i <pandl < j < grespectively.

The proposed model bears similarities to the model used
by [11]. Both use a mixture of Gaussian and heavy tailed
noise. The main difference is that the anomalous behaviour is

characterised by noise which is the sum of a Gaussian and a ¢-
distribution in our model as opposed to just a t-distribution in the
model used by [11]. This ensures that anomalies coincide with
strictly greater noise and makes the result more interpretable. In
practice, however, the noise distribution considered in this paper
and in [11] are likely to be of very similar shape.

III. PARTICLE FILTER

We now turn to filtering the model defined by (1) and (4).
The main feature we exploit is the fact that if we knew the
value of (V;, W) at all times ¢, we could just run the classical
Kalman filter over the data. Consequently, our approach will
consist of sampling particles for (V;, W), conditional on which
the classical Kalman update equations for the hidden state x;
can be used. This approach, very similar to the mixture Kalman
filter [15], [20], is summarised by the pseudocode in Algorithm
1. Details of sub-routines for this and later algorithms can be
found in Section VI of the Supplementary Material.

For each time, t, the code loops over the existing particles,
(V¢, W,), and simulates M’ descendants for each of them in
Step 4. They and their associated weights, denoted by prob, are
stored in a set of candidate particles. If we have IV particles at
time ¢, keeping all candidates would produce N M’ particles at
time ¢ 4 1. To avoid the number of particles growing exponen-
tially with ¢, Step 7 resamples the candidates with probability
proportional to their weights to keep just N particles; there
are various algorithms that can be used, see [21]. The filtering
distribution for each of these particles is then calculated using
the Kalman Filter updates in Step 10. As the particles store the
V; and W, matrices it is simple to extract information about
whether there have been any outliers: if a particle has an entry
on the diagonal of V; or W, that is not one then that particle
corresponds, respectively, to an additive or innovative outlier.

The main challenge in the above approach consists of select-
ing a good sampling procedure for the particles. Whilst it may
be a natural choice to sample particles (V11, Wy 1) from their
prior distribution, this is not suitable for the problem considered
in this paper. In particular, this sampling procedure would not be
robust to outliers: the stronger an anomaly was, the less likely
we would be to sample a particle with an appropriate value of
(Vir1, Wiiq), as discussed by [10].

Adopting ideas from [16] and [22], we overcome the
above challenge by sampling particles from an approxima-
tion to the conditional distribution of (V;i1, Wy1) given
observation Y,;;;. Denote the model’s prior distribution for
(Vii1, Wipq) in (4) by mo(-). The conditional distribution
m(Wii1, Vie1|Yaq) for the descendants of a particle whose
filtering distribution for x; is N (u, X) is then proportional to

m0(W, V)L (Y,CAp,CASATCT+3,V+CE,WCT).

Here we have dropped time indices for convenience, and
L(x, pu, X) denotes the likelihood of an observation x under
a N (p, 3)-model. Since at most one component is anomalous,
we can re-write this as a sum over which, if any, component is
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Algorithm 1: Basic Particle Filter (No Back-sampling).

Input:  An initial state estimate (t9, Xo)
A number of descendants, M’ = M(p+q) + 1
A number of particles to be maintained, V.
A stream of observations Y1, Yo, ...
Initialise: Set Particles(0) = {(po, Xo0)}
1: fortc Ndo
Candidates < {}
for (p, X) € Particles(t) do
(V, W, prob) +
Sample_Particles(M, 1,2, Y11, A,C, X4, X7)
Candidates <
Candidates U {(u, X, V, W, prob)}
end for
Descendants < Resample(N, Candidates)
Particles(t + 1) + {}
for (1,3, V, W, prob) € Descendants do
(;U'neun Enew) «—
KF_Upd(Yiy1, 14, 2, C, A, VX4, W)
11: Particles(t + 1) <
Particles(t + 1) U{(Hnew, Znew) }
12: end for
13: end for

Rl

bed

YRR

anomalous

q
Iiw=rv=nm(LI[Y) + Z I[{W:IJr 16) ,V:I}ﬁj (W(M)>
i1 w(3,9)

(V9.

Here, IU) denote a matrix whose (4, 7)th entry is 1 and all
other entries are zero, and we use the shorthand

i ({/(i,i)) <1 I+ ‘;(z Y)

S 1)
7 (WD) = (T4 ——— 1Y
WG’
Since the target distribution 7(W, V|Y) is intractable, we
construct an approximation to it, which we denote ¢(W, V|Y),

and use this as our proposal distribution. This proposal is pro-
portional to

(i,%)

p
+ Z I[{W:I v=rt 10
i=1 ’ v

and

q
Lew=1v=1350 + ZH{W:H. 1G). ,V:I}ﬂjqj (W(M))
j=1 w(d.3)

(

p

D U wyorygs gy i (V00).

i=1

Clearly, there is no benefit in simulating multiple identical
descendants, so we wish to sample precisely one dependent that
corresponds to no outliers. To do this, and also to have the same
number of descendant particles for each possible type of outlier,
we set g = 1+M(p+q B = 1+M p+a)’ and Bﬂ - HMAi(lerQ)’
and use stratified subsampling as in [20]. This leads to M’ =
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M (p + ¢) + 1 total descendants per particle, M for each of the
p additive and ¢ innovative outliers, and one for no outlier. Each
of these particles is then given a weight proportional to

W(Wt+lavt+1‘Yt+1)
A(Wei1, Vi1 Yeqa)

The main challenge now consists of obtaining proposal dis-
tributions ¢;(-) for 1 < ¢ < pand §;(-) for 1 < j < ¢ that pro-
vide good approximations to the conditional posteriors which
are proportional to 7;(-) and 7;(-) respectively. In the next
subsection, we therefore derive proposal distributions that pro-
vide leading order approximations to the conditional posteri-
ors. To simplify notation, we define the predictive variance
3 = CAXATCT + 3, + CX;CT and use it throughout the
remainder of this paper. We also begin by assuming that C
contains no columns that are identically 0, as if this is the case
then the observation at time ¢ contains no information about
at least one component of the state at time ¢. The proposal
introduced in the following subsection also forms the basis of
back-sampling introduced in Section IV, which allows us to
relax this assumption on C.

A. Proposal Distributions

F9r 1<i<p, we would~ like the proposal distribution
cjl-(V(if)) for the precision, V(»%) | to be as close as possible
to 7; (V) or, equivalently, proportional to

exp <_ % (Y-CAp) <E+ vu’; I(i) Y- CAM)
fi (v(i’”)

)

and (E +

(ir0)
$4 24 0| =
Vi)

where f;() denotes the PDF of the ;1"(a;, a;)-distributed prior
of V(1)
It should be noted that the intractable terms,
(4,) (i,4) -t
DI ; DI
)P . S () ZA 1@ 5

+ V(z %) V(1 ) ©)
can both be expanded using the matrix determinant lemma and
the Sherman-Morrison formula respectively, as they are rank 1
updates of a determinant and inverse respectively. Indeed, by the
matrix determinant lemma,

‘ (i) (1) D 7 (iy0)
o (1+2A (z: ) +O(V ) ,

the leading order term is conjugate to the prior of V(&) More-
over, by the Sherman Morrison formula the second term in (5)
is equal to

2
2—11(7:)2—1 1 1 V(z,?,)

(271>(i,i) N (271>(i7i) E%i)

up to O((V#HD)2), Crucially, the first two terms are constant in
V(&9 while the third is linear in V(%) and therefore returns a
term which is conjugate to the prior of V(&9 Furthermore, we
are most concerned about accurately sampling the particle when
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an anomaly occurs in the ith component, which happens when
the precision, V(i’i), and the higher order terms, become small.

Keeping only the leading order terms in the determinant and
the exponential term results in a proposal distribution for AVAGD)

of the form
1y () 2
(2 ) (Y — CAp)

NP 1 5;
VD w50 | a; + 5t a(i B) )
23 (2—1) ’

More detailed derivations, including the associated weight,
are given by Theorem 1 in the Supplementary Material. This
proposal has the property that as the observed anomaly in the
ith component becomes larger, i.e. as
2

) (2’1) “V iy~ cap)
EX‘J) (271)(132‘)

increases, the mean of the proposal for V(@0 diverges from the
prior mean and behaves asymptotically like

(271> (1,%)
(2’1) “V iy~ cap)

Consequently, the variance and the squared residual will be
on the same scale, thus achieving computational robustness.

A very similar approach can be used to obtain a proposal distri-
bution g; (W 7)) which provides aleading order approximation
for the distribution proportional to 7(I + W(lj,ﬂ 10D, 1|Y). The
proposal consists of sampling

2

(2a; + 1)2Y

2

¢ [N (Y-cap
22({)’4) (CTﬁflC)(M)

and is of very similar form to the proposal distribution for
particles with an additive outlier and well defined if C has no
columns that just contain zeros. Further details, including the
associated weight, are given in Theorem 2 in the Supplementary
Material. Like the proposal distribution for particles with an
additive anomaly this proposal is computationally robust: it
ensures that the squared residual and the variance will be on
the same scale as the anomaly in the jth innovative component
becomes stronger.

Finally, the “proposal” for particles without anomalies con-
sists of deterministically setting V. = I and W = 1. The weight
associated with this particle is proportional to the likelihood, the
closed form of which is given in Theorem 3 in the Supplementary
Material.

~ 1
WG ~ T bj+5,b+

B. Choices of Parameters

The choice of hyper-parameters, particularly &; and o;, has
a significant effect on the performance of the proposed filter.
One reason for this is that an outlier observation could be the
result of either an additive or an innovative outlier. It may be that
the root cause can only be determined after further observations
are made. Thus, we wish to choose hyper-parameters in such a
way as to ensure that observed anomalies, which are equally well

explained by different classes of anomalies, are given similar im-
portance weights. This will not automatically happen for larger
outlier observations, as the model could asymptotically always
prefer to explain it as an additive outlier or as an innovative
outlier. The following result describes how we can choose the
hyper-parameters of the model to avoid this. The idea is to look at
the particle filter weights for describing an extreme observation
as either an additive or an innovative outlier, if that is possible,
and ensuring they are of similar order to each other.

Theorem 4: To simplify notation we drop the temporal sub-
scripts and let the prior for the hidden state X; be N(u,X)
and the observation at time ¢ + 1 be Y. For either an additive
anomaly for component ¢ or an innovative anomaly for compo-
nent j we can standardise the size of the anomaly to define &

such that
de; sC:d)
NG NG
,/(z: 1) 1/(07‘2 10)

If the shape parameters for the prior for the precision of all
anomalies are set to be the same, thatisa; = ... =ap, = b1 =
... =bg = ¢, and if the prior mean for the precision of each
anomaly is chosen to be

Y -CAp= or Y -CAp =

i) [ e—1 (1) i - (3.9)
&i = 254&71) (2 1) and a'] = ZgJ’J) (CTE 10) )
then, to leading order, the particle weights of additive and
innovative anomalies are asymptotically proportional to

c D(ct3 c T(c+3
g en (38 s Nt e (49)

(5) (5)
2 2
respectively, as § — 0o.

The choice of hyper-parameters given in this theorem leads to
all components being given equal asymptotic importance weight
under an arbitrarily large anomaly. Setting all the a;s and b;s to
the same constant is advisable due to the fact that the convolution
of two t-distributions whose means drift further and further apart

yields two stable, i.e. non-vanishing modes if and only if they
have the same scale parameter.

. o —1 . . .
While ¥  is not fixed but time dependent, it nevertheless
converges to a limit under an observable Kalman filter model.
In practice, we therefore use this limit to set &; and 6.

C. Example 1 — Revisited

The proposed filter can be applied to the data displayed in
Fig. 1(a) to detect anomalies in an online fashion. It is worth
pointing out that the filter re-evaluates past anomalies as more
data becomes available. This can be seen in Fig. 3: When
initially encountering the anomaly at time ¢ = 100 the filter
gives approximately equal weight to the possibility of it being an
additive outlier and to it being an innovative one. It is only when
the next observation becomes available, that the filter (correctly)
classifies it as an innovative anomaly. Note that only N = 20
particles were used and only M = 1 descendent of each anomaly
type was sampled per particle.



52

250 500 750 1000 o 250 500 750 1000

(b) t =101 (c) Full data
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(a) t =100

Fig. 3. Robust particle filter output at various times. Additive anomalies are
denoted by red points, innovative anomalies by blue lines. Grey observations
are yet to be observed.

IV. PARTICLE FILTER WITH BACK-SAMPLING — CE-BASS

As mentioned in the introduction, it is possible that innovative
outliers may not immediately be observed. One such example
are innovative outliers in the trend component of the model
described in (3). The filter as described in Algorithm 1 can not
deal with such anomalies as it only inflates the variance of the
innovative process at time ¢ when there is evidence from Y, that
an outlier occurred. We remedy this by back-sampling particles
representing innovative outliers at a later time once we have more
observations, and therefore more evidence for an anomaly is
available. This can be done using nearly identical approximation
strategies as used in the previous section and allows to relax the
assumptions made in the previous section that C has no columns
that just contain zeros, to only requiring that the system be
observable.

A. Back-Sampling Particles Using the Last k + 1
Observations

The proposed back-sampling strategy at time ¢ consists of
sampling particles for (Vi11-, .. . Vig1, Wes1-k, .., Wig1)
given a N (p;—k, X4 y) filtering distribution for x;_j and ob-
servations Y;_x+1, - - -, Y¢—. Specifically, we sample particles
with an innovative single anomaly in W, ;_j; assuming no
other innovative anomalies or additive anomalies. Conditional
on these augmented particles classical Kalman updates can once
more be used as shown in Algorithm 2.

At each iteration of Algorithm 2 we first simulate candidate
weighted particles. At time ¢, for each particle at time ¢ — 1 we
calculate the candidate particle that corresponds to no outlier
at time ¢ (Sample_typical in Step 4), and also simulate M
candidate particles for each possible type of additive outlier
(Sample_additive in Step 6). These can be carried out as before.
Simulating candidate particles for innovative outliers is different
and involves the idea of back-sampling. The algorithm has
a user-defined maximum horizon (max_horizon). For each
k=1,...,max_horizon we consider all particles attime t — k
and simulate a set of descendants which have an innovative
outlier at time ¢ — k£ + 1 and then no further outliers until time
t. This is performed at step 14 with the Inn_Des function. This
function outputs a set of M sample values for V and W at time
t — k + 1 for each type of innovative outlier, and each sample
has an associated importance sampling weight. Importantly as
we are comparing new particles proposed from old particles at
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different times in the past, the importance sampling weights
need to include a factor that estimates the evidence, i.e. the
marginal probability of the data, at the time of the old particle
— see Section IV in the Supplementary Material for a more
detailed explanation for this. We calculate the usual particle
filter estimate of the evidence at each iteration in steps 21 to 24.
The weights of these particles are down-weighted by a factor of
1/max_horizon to account for the fact that the same innovative
anomaly will be proposed multiple times.

After obtaining the full set of candidates, we resample them
with probability proportional to their weight, for example using
stratified resampling [14], and then use the Kalman Filter update
to obtain the corresponding filtered mean and variance for the
state at time ¢. For the back-sampled particles from time ¢ —
k + 1 for k > 1 we need to apply the Kalman Filter update for
k time steps, and this is done under the particle’s assumption of
no outliers at times ¢t — k + 2,...,t.

Algorithm 1 is a special case of Algorithm 2 which arises
from setting the maximum horizon to 1. The Sample_Particles
function in Algorithm 1 corresponds to the simulation of candi-
dates for no outlier, an additive outlier or an innovative outlier
that are listed separately in Algorithm 2.

We now describe how we sample candidate particles which
allow for innovative outliers in Step 14 of Algorithm 2. The idea
is that we can use the same idea as previously, but for a larger
state-space model that considers jointly all the observations
since time ¢t — k + 1.

To sample a particle with an innovative anomaly in the jth
component of Wy i, we define an augmented observation

= (Y - YEDT

tributed with mean C(k)Aut_ 1 and variance

vector Yt +)1 = . This is normally dis-

& az, AT (6 +2[ OV wma (60) ] R0,

where

CY = € (0geiq, (A"

7

. T
(A1) (©)

for 0 <4 < k denote the augmented matrices mapping the hid-
den states and innovations to the observations and

Vt—&l k=a 0
R = 0 0
0 V;ﬁle

In asimilar spirit, we define the augmented predictive variance
& (k)
3 " tobe

k
T T
ciazm ot (6) + 30 [cgm ()
=0

As aresult of this reformulation, we retrieve update equations
consisting of a single Kalman step, albeit with slightly different
dimensions of the observation, (k + 1)p instead of p. It is
therefore possible to use the sampling procedure for innovative
outliers introduced in Section III-A providing (C(*))(+7) £ 0,

+ 11 @34,
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Algorithm 2: Particle Filter (With Back Sampling) — CE-
BASS.
Input:

An initial state estimate (fto, Xo).
A number of descendants, M’ = M (p + q) + 1.
A number of particles to be maintained, V.
A stream of observations Y1, Yo, ...
Initialise: Set Particles(0) = {(po, X0,1)}
EV(t)=1
Set max_horizon
I: fortec Ndo
2 Cand + {}
3 for (p, X) € Particles(t) do
4: (V, W, prob) < Sample_typical(pt, X, Y11, A,C, X4, X7)
5: Cand + Cand U {(p,3,V,W,prob- EV (t),1)}
6: Add_Des < Sample_additive(pt, 2, Y11, A,C,3 4,3, M)
7 for (V, W, prob) € Add_Des do
8: Cand <+ Cand U {(p, X, V, W, prob- EV(t),1)}
9: end for

10: end for

11:  fork e {1,...,mazxz_horizon} do

12: for (p,X) € Particles(t — k + 1) do

13: Y [YE 0 YELT

14: Inn_DeseBS_inn(p,,E,Y,A,C,EA,EI,M,k)

15: for (V, W, prob) € Inn_Des do

16: Cand «+ CandU{(u,Z,V,W,%m),k)}
17: end for

18: end for

19: end for

20:  EV(t+ 1) + 0 >Calculate estimate of evidence at time ¢ + 1
21:  for (u, 3, V,W,prob, k) € Cand do

22: EV(t+1)«+ EV(t+ 1)+ prob/|Cand|

23: end for

24:  Descendants < Resample(N, Cand)>Resample particles

25:  Particles(t) < {} >>Calculate pt,+1 and X, 4 for each particle
26:  for (u, 3, V, W, prob, k) € Descendants do

27: (e, 2) + KF_Upd(Yiqok, 1,2, C, A, VE,, WX)
28: if £ > 1 then

29: foriec {2,...,k} do

30: (0, 2) < KF_Upd(Yeqrpin, by 2, C, A, 34, 3))
31: end for

32: end if

33: Particles(t + 1) < Particles(t + 1) U {(p, X2)}

34: end for

35: end for

This consists of sampling particles for Wiijll ;; from

1 J; <(é(k))T)(jﬁ) (2%))71 AU
2777 on () ((C“‘))T (2(1@)—1 é(k)>(j-,j)

for the residual igi)l—kYin)lfk — C®) Ap; . The associated
weight is given in Theorem 5 in the Supplementary Material. For
details of how we choose the hyper-parameters for this proposal
see Section I in the Supplementary Material.

A range of observations guide the choice of the maxi-
mum horizon. We assume that the Kalman model is ob-
servable, i.e. that there exists a k such that the matrix
[(C)T,(CA)T,...,(CA*)T] has full column rank. Let k* de-
note the lowest such k. We suggest choosing the maximum
horizon so that it is at least equal to or bigger than k¥, as any
innovative anomaly capable of influencing the observations must
do so within k" time steps. Increasing the maximum horizon
further can be beneficial, as it allows detection of weaker, but

/
i
J
H

/

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

(a) t =820 (b) t =821 (c) Full data

Fig. 4. Robust particle filter output at various times. Additive anomalies are
denoted by red points, innovative anomalies by blue lines. Grey observations
are yet to be observed.

persistent, innovative anomalies (e.g. weak changes in mean).
However, this comes at an increased computational cost. It can
therefore be recommended to set it to as large a value as is
computationally feasible.

In some situations we may wish to only consider back-
sampling a set of previous time-points. This could be to reduce
computational cost, or to account for the above proposal distri-
bution not being well defined for % if (C*))(-7) is the 0 vector.
This is possible if we change step 11 of Algorithm 2 to consider
only k within some subset of {1, ..., max_horizon}.

B. Example

With back-sampling, we are now able to tackle the example
from Fig. 1(b). We used a maximum horizon of 40 We main-
tained N = 40 particles and sampled M = 1 descendants of
each type. The output of the particle filter can be seenin Fig. 4. As
before, the filter updates its output as new observations become
available. Whilst the trend innovation occurs at time t = 800, the
anomaly is first detected around time ¢ = 820. Even then, there
is a large amount of uncertainty regarding the precise location
of the anomaly which only gets resolved at a later time.

C. Computational Cost

First and foremost, CE-BASS is fully on-line; i.e. its com-
putational cost does not increase in time. This constant com-
putational cost of each individual step is O(NM (p> + ¢*))
when no back-sampling is used and dominated by the cost of
matrix multiplications/inversions. Back-sampling at a horizon
k increases the dimension of the predictive variance matrix
3 from p X p to pk x pk. Since it has to be inverted for k =
1,...,maz_horizon, the computational cost is proportional to
max_horizon®t.

When processing Example 1 on a standard laptop, our C++
implementations took an average of 3.3 ms (CE-BASS), 0.7 ms
(IORKF from [9]), 0.8 ms (AORKF from [9]), 1.1 ms [8], and
0.7ms (classical Kalman filter) for each iteration. This in-
creased to 51.8 ms (CE-BASS), 0.8 ms (IORKF from [9]), 0.8 ms
(AORKEF from [9]), 1.2ms [8], and 0.8 ms (classical Kalman
filter) per iteration for the second example.

V. SIMULATIONS

We now turn to comparing CE-BASS against other methods.
In particular, we compare against the ¢-distribution based addi-
tive outlier robust filter by [8], the Huberisation, i.e. truncation,
based additive outlier robust filter by [9], the Huberisation
based innovative outlier robust filter by [9], and the classical
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Kalman Filter [4]. All these algorithms are implemented in the
accompanying package.

We consider four different models and generate 1000 obser-
vations for each. For each of the four models, we consider a
case in which no anomalies are present, a case in which only
additive anomalies are present, a case in which only innovative
anomalies are present, and a case in which both additive and
innovative anomalies are present. When anomalies are added,
they are added at times ¢ = 100, t = 300, ¢ = 600, and ¢ = 900.
Specifically we considered the following three models:

1) The model of Example 1 witho4 = 1 and o7 = 0.1.

We consider a case with only additive outliers, a case
with only innovative outliers, and a case where an additive
outlier at ¢ = 100, is followed by two innovative outliers
at times ¢t = 300 and ¢ = 600, which were then followed
by an additive outlier at time ¢t = 900. To simulate addi-

1
tive anomalies, we set V>0 4¢; = 10 and to simulate the
1

innovative outliers we set W,2o ;1 = 10.
2) The random walk model with two measurements

1 1
K(l)ZXt-l-(Vt(l))QUS)égl), Xi=Xi 1+Wlom

1
Y@ =X, + (Vt(2)) Toe?,

where JS) = Jf) =1 for +=1,2 and o7 = 0.1. We

consider a case with only additive outliers (one in the first
component, then two in the second, then one in the first),
a case with only innovative outliers, and a case where an
additive outlier in the first component at time ¢ = 100 is
followed by two innovative outliers at times ¢ = 300 and
t = 600, which are then followed by an additive outlier
in the second component at time ¢ = 900. For additive
anomalies, (m(l))%afj)ei” =10 or (Vt(2))%0f)e§2) =
10 and for innovative outliers, Wt% orvy = 10.

3) The model of Example 2 with 04 =1, a§1) = 0.1 and

U§2) = 0.01. We consider a case with only additive out-
liers, a case with only innovative outliers (one in the second
component, then one in the first, then one in the second,
then one in the first), and a case with an additive outlier
at t = 100, followed by an innovative outlier affecting
the first component of the hidden state at times ¢ = 300,
followed by an innovative outlier affecting the second
component of the hidden state at times ¢t = 600, followed
by an additive outlier at time ¢ = 900. The additive anoma-

lies were instances where V;% ¢, = 30 and the innova-
tive outliers were instances where (Wt(l))%ngl) =100 or
(W?)zp = 500.

4) An extension of Example 2 where the position is also

observed. The equations governing the hidden state are as
before whilst the equations governing the observations are

1
RO =X (W) oD

v = x4 (V)" oe?
where 01(41) = 01(42) = 1. We consider a case with only
additive outliers (in the first component only), a case with
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only innovative outliers (one in the second component,
then one in the first, then one in the second, then one in the
first), and a case with an additive outlier at time ¢t = 100,
followed by an innovative outlier affecting the first
component of the hidden state at time ¢ = 300, followed
by an innovative outlier affecting the second component
of the hidden state at time t = 600, followed by an
additive outlier at time ¢ = 900. For additive anomalies,
(Vt(l))%ag)egl) =30 and for innovative outliers,
W Mze WM =100 or (W) 259 = 500.

We evaluate the different methods based on average predictive
log-likelihood and average predictive mean squared error. That
is we calculate the one step-ahead predictive distribution for the
next observation, and respectively evaluate the log-predictive
density of the observation or evaluate the square error of the
mean of the predictive distribution, and then average these
quantities over the observations. We exclude all observations
corresponding to anomalies from the calculation of these aver-
ages since the filters can not be expected to predict them. When
calculating the average mean squared error we additionally
remove one observation after the anomaly in the first setting
and two observations in the third setting from the performance
metric. This is to give the filter enough information to determine
which type of anomaly the outlier corresponds to and return to
a unimodal posterior: the MSE is a less informative metric for
multimodal posteriors, as it is minimised at the posterior mean
and this can be in a region of negligible posterior mass.

The average log-likelihoods across all models can be found in
Fig. 5, while the qualitatively very similar results for the mean
squared error can be found in the Supplementary Material. We
see that the performance of CE-BASS compares favourably with
that of the competing methods. In particular it is as accurate
as the Kalman filter in the absence of anomalies and is more
accurate than the additive outlier and innovative outlier robust
filters even when only additive or innovative outliers are present,
i.e. the settings for which these algorithms were designed.

VI. APPLICATION

We now apply CE-BASS with two different types of model
to illustrate how CE-BASS can be used on real datasets. The
first dataset is a labelled benchmark dataset which consists of
temperature readings on a large industrial machine. Here, we will
use a model which considerably restricts the movements of the
hidden states when no anomalies are present, and thus emulates
a changepoint model. The second is an unlabelled dataset which
consists of repeated throughput measurements on a router. For
that application we will use a model which has a considerable
amount of flexibility and where the hidden states tend to follow
the observations and therefore detect localised anomalies.

A. Machine Temperature Data

We now apply CE-BASS to the machine temperature data
taken from the Numenta Anomaly Benchmark (NAB, [23])
which can be accessed at https:// github.com/numenta/ NAB. The
data consists of over 20000 readings from a temperature sensor
on a large industrial machine and is displayed in Fig. 6(a)
along the three periods of anomalous behaviour labelled by
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Fig. 5. Violin plots for the average predictive log-likelihood of the five filters
(IOAO: CE-BASS, KF: The classical Kalman Filter, AO T: [8], AO H: [9], IO:
[9]) over the four different scenarios under a range of models. Higher values
correspond to better performance. Methods are omitted on the graphs if they
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Fig.6. Machine temperature dataset. The known anomalous regions are shown
by the red regions. The estimated locations of innovative outliers are shown by
blue vertical lines. For the IO-RKF some of these are at very similar times — and
these can only be noticed by eye through the wider vertical lines on the plot.

an engineer. The first corresponds to a planned shutdown and
the second to an early warning sign of the third anomaly — a
catastrophic failure.

In order to do so, we use the random walk model from
Example 1 with the aim of detecting persistent changes in mean.
We therefore use a maximum backsampling horizon of 250 but
to reduce computational cost we only consider back-sampling
at a sub-set of earlier times, so in Step 11 of Algorithm 2
we consider only k € {1,5,10, 20,40, 80,150,250} and fix
o7 = 1/100000 4 to ensure that long and weak anomalies will
not be interpreted as a persistent shift in the typical state. We
use the first 15% of the data, marked by [23] as training data,
to estimate the standard deviation o4 as well as the initial
mean [ using the median absolute deviation and the median
respectively. Using robust covariance methods we also detect
very strong auto-correlation (p = 0.99) and therefore took the
default probabilities for anomalies to the power of 1%{)

The results of this analysis can be seen in Fig. 6(b). We note
that all anomalies flagged by the engineer are also being detected
by CE-BASS. Two additional innovative anomalies around a
prolonged drop which preceded the planned shutdown are also
detected. They could be a false positive or an early warning sign
of an anomaly prevented by the shutdown which has not been
noticed by the engineer. For comparison, five anomaly detection
methods were tested on this data in [23]: only one of these was
able to detect all three anomalies and that method had three
additional false positives.

We also applied the innovative outlier robust Kalman filter
by [9] using the same values of o4, o7, A, C, and . The
initial mean po was set to the value of the first observation.
For the purpose of comparison, we chose the threshold for an
anomaly such that the number of detected anomalies is equal to
that found by CE-BASS. The result of this analysis is displayed
in Fig. 6(c). The detected anomalies overlap with just the first
and last of the known anomalies, and it picks up an additional
anomaly between the second and third known anomalies. It can
be seen that the detected anomalies correspond to the largest
jumps in observed values. This highlights the practical value of
CE-BASS’s back-sampling as it is able to detect weaker, but
persistent changes, such as the second anomalous window of
the machine temperature dataset.

B. Router Data

The online analysis of aggregated traffic data on servers
is an important challenge in both predictive maintenance and
cyber security. This is because anomalies in throughput can
point towards problems in the network such as malfunctions or
malicious behaviour. Detecting anomalies as soon as possible
therefore means that the root cause can be addressed more
quickly — potentially even before user experience is affected
or harm caused.

In this section, we consider 19 days worth of (unlabelled)
data that represents the input data rate observed at an IP router
interface in the core of a telecommunications network. The data
is gathered at a frequency of one observation every 30 seconds.
To preserve confidentiality, we de-seasonalised the data for days
11 to 19 using a seasonality model trained on days 1 to 10 and,
for the purpose of this paper, consider only the de-seasonalised
data for days 11 to 19 which can be found in Figs. 7(a) to 7(i).
The main features apparent in the daily series are spikes, outliers,
and changepoints. In order to capture these, we use an AR(1)
model with slowly changing mean to model the observations Y;.
Formally, we used the model

Y, = Xt(l) + Xt(Q) + Vioaey,
X0 = X0, + WO,
X2 = pxZ + WPy,

Here, anomalies in ¢; correspond to isolated outliers, anoma-
lies in ngl) correspond to level shifts and outliers in 77,52) corre-
spond to spikes.

We use the first 1000 observations of the first day, to estimate

the hyper-parameters. We first used robust loess-smoothing to
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Fig. 7. CE-BASS applied to 9 days of de-seasonalised router data. Lines
correspond to innovative anomalies, i.e. spikes or level shifts.

obtain a smoothed signal g; from the original time series y;. Tak-
ing a robust estimate of the variance of ¢, — 1, we estimated

afrl) = 0.0157. Using arobust AR(1) regression on the residuals
Yyt — Ui, we further estimated 052) = 0.516 and p = 0.815. We

then set o4 = 1/1005") = 0.0516,

The result obtained from running CE-BASS with these pa-
rameters on the daily router data is displayed in Figs. 7(a) to
7(1). A large number of anomalies are flagged, including a large
number of outliers and spikes, but also some level shifts (Day
14). Discussion with engineers highlighted that the anomalies
detected matched well with their knowledge of the data. This
shows CE-BASS’s ability to return a large number of diverse
features which can be used as inputs to a supervised algorithm
should labels become available.

VII. DISCUSSION

We have presented CE-BASS, arobust particle filter algorithm
that can deal with both innovative and additive outliers. The main
limitation of this algorithm is that it assumes only a single outlier,
that is one affecting a single component of either the additive or
innovative noise, is possible at any time-step. This assumption is
needed to obtain our efficient proposal distribution for particles,
and one important extension of our work would be to relax
this assumption. We show in simulations in the Supplementary
Material that that the performance of CE-BASS can deteriorate
in situations where multiple outliers occur simultaneously. Par-
ticular care should be taken if we have transformed the model
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or observation equation to remove correlations in the noise,
as described in Section II. In this case an outlier in, say, one
component of the observation vector could appear as an outlier
affecting multiple components of the transformed observation.
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