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Abstract—This paper presents signal processing methods to en-
hance the energy vs. accuracy trade-off of in-memory computing
(IMC) architectures. First, an optimal clipping criterion (OCC) for
signal quantization is proposed in order to minimize the precision of
column analog-to-digital converters (ADCs) at iso-accuracy. For a
Gaussian distributed signal, the OCC is shown to reduce the column
ADC precision requirements by 3 bits at a signal-to-quantization
noise ratio (SQNR) of 22.5 dB over the commonly used full range
(FR) quantizer. Next, the input-sliced weight-parallel (ISWP) IMC
architecture is presented as a generalization of the popular bit-
serial bit-parallel (BSBP) architecture. Quantization noise analysis
of the ISWP indicates that its accuracy is comparable to BSBP while
providing an order-of-magnitude reduction in energy consumption
due to fewer array invocations and smaller ADC precision. Com-
bining OCC and ISWP noise analysis, we map popular DNNs such
as VGG-9 (CIFAR-10), ResNet-18 (CIFAR-10), and AlexNet (Ima-
geNet) on a OCC-enabled ISWP architecture and show a reduction
in energy consumption by an order-of-magnitude at iso-accuracy
over the BSBP architecture that employs FR-based ADCs.

Index Terms—Optimal clipping, quantization, bit slicing, in-
memory computing.

I. INTRODUCTION

D EEP neural networks (DNNs) are among most powerful
predictive models in many applications such as image [1],

[2], speech [3], [4], and language [5], [6] processing. However,
their high computational complexity hinders their deployment
onto resource-limited devices [7]–[9]. Accentuating the diffi-
culty of DNN deployment is the use of classical von Neumann
compute architectures which suffer from the memory wall prob-
lem whereby the energy and latency costs are dominated by
memory access [10].

The in-memory computing (IMC) architecture [11]–[13]
strives to eliminate the separation between storage and compute.
It does so by realizing functional operations such as dot-products
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within the bitcell array (BCA) during memory reads. In the
process, the energy-delay product (EDP) of inference tasks
can be reduced by up to two orders-of-magnitude compared
to an equivalent von Neumann architecture [14]. Since IMCs
address the memory wall problem, it is particularly attractive
for memory-centric workloads such as machine learning algo-
rithms. In recent years, a large number of IMC implementations
of DNNs have been proposed [14]–[26].

However, in spite of these advances, the computational preci-
sion of IMCs is limited. This is because: 1) IMC computations
have been restricted to simple binary operations [27]–[30] in
order to adhere to the binary storage formats in memory; 2)
mapping of high-dimensional dot-products onto IMCs is often
limited by analog noise sources, which are not yet fully under-
stood or characterized [31], [32]; and 3) the dense BCA layout
imposes strict area constraints on the column analog-to-digital
converters (ADCs) and hence the realizable ADC precision [14].
Today, the IMC precision is limited by the achievable precision
of the column ADCs and methods to increase IMC precision
remain elusive. Even if ADC precision were to be increased
somehow, the impact on the system level energy and latency
would be severe [32]. Unfortunately, meeting application-level
accuracy requirements with such precision constraints on ADCs
is challenging.

Efforts to address some of the above mentioned limitations
have relied on ad-hoc trial-and-error methods. The lack of an
analytical framework to guide the design of IMCs has led to
designs that are overly conservative and therefore sub-optimal
in terms of efficiency. For example, the use of the bit-growth
criterion (BGC) to set ADC precision [34] avoids loss in fidelity
of bitline computations in the BCA but results in much higher
precision than necessary. Some IMC designs employ fewer ADC
bits than suggested by the BGC and justify it via extensive simu-
lations to ensure that the DNN accuracy is preserved. However,
such methods do not provide any guarantees.

Our work addresses the above mentioned precision limits
of IMCs by employing quantization noise analysis commonly
employed in the design of digital signal processing systems [35].
Specifically, we make the following contributions:
� We propose the Optimal Clipping Criterion (OCC) to

minimize the column ADC precision requirements. The
signal-to-quantization ratio (SQNR) of OCC is shown to
be within 0.8 dB of the well-known optimal Lloyd-Max
(LM) quantizer [36]. OCC improves the SQNR by 14 dB
over the commonly employed full range (FR) quantizer,
which translates to a 3-bit reduction in the ADC precision.
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� We study the quantization noise in a input-serial weight-
parallel (ISWP) IMC which generalizes the popular bit-
serial weight-parallel IMC of [21]. We show that, using
bit slicing techniques, significant energy savings can be
achieved with minimal loss in accuracy. Specifically, we
prove that an multi-bit IMC dot-product can be computed
within a single memory access while suffering no more
than 2 dB SQNR drop.

� We apply our analysis on OCC and ISWP to DNN imple-
mentation using IMC. We consider mapping of the VGG-9,
ResNet-18 and AlexNet networks and contrast our method
to common practices in IMC. We show that ADC precision
can be lowered by 2-to-3 bits and energy consumption can
be reduced by an order of magnitude while maintaining
accuracy.

This paper is organized as follows: The problem setup with
the corresponding IMC model and architecture is introduced in
Section II-A. The OCC method for minimizing column ADC
precision is presented in Section III. An analysis of the ISWP
architecture is described in Section IV. Numerical results for
DNN mapping onto IMC are presented in Section V. Finally,
Section VI summarizes and concludes this paper.

II. PROBLEM SETUP

Consider an N -dimensional dot-product y = wTx of real
valued (signed) weight and (unsigned) input vectors of precision
BW and BX bits, respectively, given by:

w =

⎡
⎢⎢⎣
w1

...

wN

⎤
⎥⎥⎦ ; wi = wm

(
−wi,0 +

BW−1∑
b=1

wi,b2
−b

)
(1)

x =

⎡
⎢⎢⎣
x1

...

xN

⎤
⎥⎥⎦ ; xi = xm

BX−1∑
b=0

xi,b2
−b−1, (2)

where wi,b ∈ {0, 1} and xi,b ∈ {0, 1} are the bth bits of wi ∈
[−wm, wm] and xi ∈ [0, xm], respectively. The choice of un-
signed inputs is to account for the use of activations (e.g., ReLU)
in DNNs.

A. The Input-Serial Weight-Parallel (ISWP) IMC

We consider the input-serial weight-parallel (ISWP) architec-
ture (see Fig. 1) [31] which generalizes the architecture [21] by
allowing for multi-bit inputs per read cycle.

The ISWP architecture stores w in the columns of the BCA
where the bits of wi are arrayed across BW columns in the ith

row. When computing a dot-product, ISWP serializes theBX -bit
input vector x into NS = �BX

BS
� input slices of BS bits each,

where the ith element xi of x is given by

xi = xm

NS−1∑
s=0

x
(BS)
i,s 2−sBs (3)

Fig. 1. The input-serial weight-parallel (ISWP) architecture.

with x
(BS)
i,s being the sth slice as shown below:

x
(BS)
i,s =

BS−1∑
b=0

x
(1)
i,sBS+b2

−b−1. (4)

For example, using a bit vector representation, if xi =
[xi,0, xi,1, xi,2, xi,3] is a 4-bit scalar then we can split it into two

bit slices x(2)
i,0 = [xi,0, xi,1] and x

(2)
i,1 = [xi,2, xi,3] with BS = 2

and NS = 2.
Processing the inputs one slice per read cycle, the multi-bit

dot-product y = wTx is realized using the following powers-
of-two summing (POTS):

y = xmwm

NS−1∑
s=0

(
−ys,0 +

BW−1∑
b=1

ys,b2
−b

)
2−sBS , (5)

where the bitline (BL) dot-product ys,b is computed as:

ys,b =

N∑
i=1

w
(1)
i,b x

(BS)
i,s . (6)

on the bth BL.
Thus, the ISWP architecture computes anN -dimensional dot-

product between a BS-bit input and a binary weight and is a
generalization of the bit-serial bit-parallel (BSBP) architecture
in [21] which computes a fully binarized N -dimensional dot-
product, i.e., BS = 1.

B. Quantization and Analog Noise Effects

The BL dot-product ys,b in (6) is computed in the analog
domain. Due to noise, the observed BL dot-product ys,b is given
by:

ys,b = ys,b + qAs,b
+ ηas,b

, (7)

where qAs,b
and ηas,b

are the column ADC quantization noise
and the analog noise on the bth BL, respectively. An expression
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TABLE I
VALUES OF ANALOG NOISE PARAMETERS IN A 65 NM PROCESS

for the variance of qAs,b
will be presented in Section III since it

depends on the quantization method employed in the ADC.
The analog noise term ηas,b

includes effects from capaci-
tor mismatch, thermal effects, and charge injection. These are
fundamental noise sources residing in the core of the ISWP
architecture and are hard to overcome via circuit design methods
due to the tight area constraints. The variance of the analog noise
term ηas,b

is given by [31]:

σ2
ηas,b

= N

⎛
⎝E

[(
w(1)x(BS)

)2]
ρ1

(1− 2−BS )2Co
+

ρ2
Co

+
ρ3
C2

o

⎞
⎠ , (8)

where w(1) and x(BS) are the unindexed weight bits and input
slices, respectively, Co is the nominal extrinsic bitcell (BC)
capacitance, and ρ1, ρ2, and ρ3 are technology and layout
dependent parameters. For a 65 nm process [31], the values
of these parameters are listed in Table I. The capacitance Co

is an extrinsic metal-on-metal (MOM) capacitance that is not a
part of a standard SRAM bitcell [21]. This capacitance allows
for summing across bitcells within a column in a highly linear
fashion. Being an extrinsic capacitance, its value can be assigned
independent of the SRAM bitcell. As seen in (8), the noise
variance decreases when Co increases. However, increasing
Co causes higher CV 2 energy consumption and also reduces
storage density. Thus, like all IMCs [12], the ISWP architecture
exhibits a fundamental trade-off between its energy efficiency
and computational accuracy.

The impact of the noise sources in (7) on the accuracy of the
dot-product in (5) will be derived in Section IV.

C. Energy Consumption

An IMC’s energy efficiency is quantified by the energy per
1-bit multiply-accumulate (MAC) operation EOP [32]:

EOP =
NS

BX

(
EBC +

EADC

N

)
, (9)

where EBC is the energy consumed by the 1-bit MAC within the
bitcell given by

EBC = E

[
x(BS)

]
CoV

2
DD (10)

where E[x(BS)] is the mean value of an input slice, equal to 0.5,
nominally, andVDD is the supply voltage. Equation (9) indicates
that the IMC’s energy efficiency improves when BS increases
since NS , number of array accesses, reduces.

For a BA-bit ADC, EADC is given by [37], [38]:

EADC = k1

(
BA + log2

(
ym
YADC

))
+ k2

(
ym
YADC

)2

4BA ,

(11)

where k1 = 10−13 J and k2 = 10−18 J are fitting parameters,
ym is the maximum value of the BL dot-product ys,b, and YADC

is the ADC input range. These energy models are based on real-
world data obtained by curve fitting to silicon measurements
of over 700 silicon ADC designs spanning the years 1997-2021
and across various technology nodes from 0.5 um to 16 nm [32],
[37], [38]. Equation (11) also indicates that the ADC energy
quadruples per bit of increase in its precision BA, emphasizing
the need for minimizing it without impacting accuracy. The next
section presents a method to realize this objective.

III. THE OPTIMAL CLIPPING CRITERION

Quantization of a signal x ∈ [xmin, xmax] to B bits is the
process of mapping its value to one of 2B pre-defined levels
{ri}2Bi=1. The quantized signal is obtained as:

xq = arg min
{ri}2Bi=1

|x− ri| (12)

and the quantization noise is defined as:

qx = x− xq (13)

The quantization levels ri are chosen to minimize a fidelity
metric such as the mean-squared error (MSE) defined as:

J = E
[
(x− xq)

2
]
= σ2

qx
. (14)

For mathematical tractability, we assume qx is a zero-mean
random variable independent of x.

Given a signal distribution fx(), the classical Lloyd-Max
(LM) algorithm [36] determines a set of quantization levels
{ri}2Bi=1 minimizing the quantizer’s MSE in (14). Such a quan-
tizer is referred to as the LM quantizer.

Alternatively, it is common to use a full range (FR) uniform
quantizer which assigns the quantization levels: ri = xmin +
(i− 1)Δ, for i = 1, . . . , 2B , where Δ = (xmax − xmin)2

−B

is the quantization step size. The quantization noise qx as a
uniformly distributed random variable [39], [40], i.e., qx ∼
U [−Δ

2 ,
Δ
2 ], and hence it is easy to show that σ2

qx
= Δ2

12 .

A. Clipped Quantization

Recently, we have shown that a uniform quantizer’s accuracy
can be improved by allowing for signal clipping [41]. Specif-
ically, all quantization levels are placed in a narrow interval
[xL, xR], with xL > xmin and xR < xmax. The resulting quan-
tizer has an MSE consisting of quantization and clipping noise
terms [41]:

J =
Δ2

12
+ σ2

c , (15)

where, by virtue of the reduced quantization range, the step size
is given by Δ = (xR − xL)2

−B and the clipping noise variance
equals:

σ2
c = E

[
(x− xL)

2|AL

]
P (AL) + E

[
(x− xR)

2|AR

]
P (AR)

(16)

where AL � {x < xL} and AR � {x > xR} are clipping
events. Thus, a clipped uniform quantizer exhibits a fundamental
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trade-off between its quantization and clipping noise. Hereafter,
we demonstrate how to optimally clip a signal.

B. Optimally Clipped Quantization

We present the optimal clipping criterion (OCC) for signals
with a Gaussian distribution. Such signals are very prominent in
machine learning systems, particularly in high-dimensional dot-
product outputs by virtue of the Central Limit Theorem [42]. The
following theorem provides a method to compute the optimal
clipping levels for a Gaussian signal:

Theorem 1: Given a Gaussian signal x ∼ N (μx, σ
2
x) and

a B-bit uniform quantizer, the optimal quantization range
is [μx − ζ (OCC)σx, μx + ζ (OCC)σx] where the optimal clipping
level ζ (OCC) is the converging point of the following recursive
expression:

ζn+1 =

√
2
π e

− ζ2n
2

4−B

3 + 2Q(ζn)
, (17)

where Q() represents the complementary CDF of a standard
Gaussian N (0, 1).

Proof: See Appendix. �
An important consequence of Theorem 1 is that ζ (OCC) de-

pends on the number of bits B. Second, (17) does not explicitly
compute ζ (OCC) and requires an initial guess ζ0. We found that no
more than 10 iterations are needed when ζ0 = 4, i.e., the process
is computationally simple.

The OCC quantizer is compared with the LM and FR quan-
tizers in Fig. 2 where a standard Gaussian signal confined to the
interval [−6, 6], is quantized to 6 bits. The quantization range
[−6, 6] ensures that > 99.99% of the probability mass of the
standard Gaussian signal is included for the purposes of studying
quantization effects arising from three methods: (a) uniform, (b)
Lloyd-Max, and (c) OCC.

Note, the LM quantizer (Fig. 2(a)) places most of its quan-
tization levels ri near the mean. Intuitively, most of the repre-
sentation is allocated to high-density regions which minimizes
the MSE. Unfortunately, the non-uniformity of the quantization
levels makes it difficult to design efficient arithmetic units to
further process the quantizer output [43], [44].

In contrast, the FR quantizer has a large MSE. Indeed, many
of its quantization levels are placed on the tails of the distribution
which is data deficient as shown in Fig. 2(b). However, FR is
popular because its uniformly spaced quantization levels makes
it easy to design efficient arithmetic units to process its output.

Fig. 2(c) shows that OCC pin-points the region of high signal
probability density and quantizes it uniformly. As a result, the
OCC quantizer’s accuracy is close to that of the LM quantizer
and, similar to the FR quantizer, it has uniformly spaced quanti-
zation levels. In this way, OCC preserves the desirable properties
of both.

Fig. 3 plots the MSE of an quantized standard Gaussian as
a function of the clipping level ζ for different values of B. It
illustrates two observations regarding OCC: 1) as suggested
by Theorem 1, the optimal clipping level ζ (OCC) depends on
(increases with) the quantizer’s precision B; and 2) there is an

Fig. 2. Illustration of various quantization strategies for a standard Gaussian
signal: (a) Lloyd-Max, (b) full range (FR) uniform, and (c) uniform quantizer
using the proposed optimally clipped criterion (OCC). The predicted and simu-
lated MSEs are obtained via evaluation of (14) using numerical integration and
Monte Carlo simulations, respectively.

Fig. 3. Trade-off between quantization and clipping noise with OCC and
dependence of ζ(OCC) (marked as crosses) on precisionB for a standard Gaussian
signal.

intrinsic trade-off between the clipping noise and quantization
noise alluded in (15), e.g., when ζ > ζ (OCC) clipping noise is
reduced at the expense of the quantization noise due to the use
of a large step-size Δ and vice versa. Thus, the optimal clipping
level ζ (OCC) is one that balances clipping and quantization noise.

Table II lists ζ (OCC) for varying values of B and compares
σ2

(OCC) and σ2
(LM), the quantization noise variances for the OCC

and LM quantizers, respectively. We find that σ2
(OCC) is usually

about ∼ 20% higher than σ2
(LM) and at worst 56% when B = 5.

Equivalently, the OCC has an SQNR within 0.8 dB of LM. Thus,
the OCC, being a uniform quantizer, is a practical alternative to
LM.
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Fig. 4. Comparison of FR, OCC, and LM for output and ADC quantization: (a) SQNRy vs. BY in digital dot-products, (b) SQNRy vs. BA in IMC dot-products,
and (c) SNRy vs. BA in IMC dot-products. The dot-product dimension is N = 256 and input/weight precisions are set as BX = BW = 4. The maximum
achievable SQNR in (a) and (b) is 22.5 dB (horizontal dotted line). The bitcell capacitance used in (c) is Co = 1 fF and the maximum achievable SNR is 14 dB
(horizontal dotted line). Solid lines ‘E’ are obtained via evaluation of (18), (22), (21), (23), and (25); dashed lines ‘S’ are obtained using Monte Carlo simulations.

TABLE II
COMPARISON OF MSE BETWEEN OCC AND LM FOR

A STANDARD GAUSSIAN SIGNAL

C. Application to Dot-Product Computation

In this section, we apply OCC to quantize the output of the dot-
product described in Section II-A and compare it with LM and
FR quantizers. Since these are general methods for quantization,
we consider both digital and IMC computation of dot-products.

Specifically, we consider a N = 256-dimensional dot-
product where inputs and weights are uniformly distributed in
the intervals [0,1] and [−1, 1], respectively. Input and weight
precisions are chosen as BX = BW = 4.

1) Applying OCC to Digital Dot-Products: A digital realiza-
tion of the dot-product y = wTx exhibits three sources of noise
at its output y: output-referred input quantization noise qx→y ,
output-referred weight quantization noise qw→y , and output
quantization noise qy . The resulting SQNR is given by:

SQNRy =
σ2
y

σ2
qx→y

+ σ2
qw→y

+ σ2
qy

(18)

where

σ2
qx→y

=
Nx2

mσ2
w4

−BX

12
; σ2

qw→y
=

Nw2
mE[x2]4−BW

3
, (19)

and σ2
qy

depends on the quantization strategy, i.e., LM, FR or
OCC.

An upper bound on the SQNR ≤ 22.5 dB is obtained by
setting σ2

qy
= 0 in (18). This upper bound is achieved when

employing the bit-growth criterion (BGC) [45] below:

BY = BX +BW + log2(N). (20)

This criterion is known to be overly conservative. Instead, we
consider three output quantization strategies: (1) FR employing
the range [−N,N ], (2) OCC, and (3) LM. For each method, the
output precision BY is swept and the SQNR is evaluated both
analytically using (18), (14), and (15)) and empirically using
Monte Carlo simulations.

The results in Fig. 4 indicate: (1) OCC’s accuracy matches
that of LM’s. An asymptotic SQNR of ∼ 22.5 dB is attained
when BY ≥ 6 for both quantizers. In contrast, the commonly
employed FR has a much smaller SQNR. Its gap with respect to
LM and OCC can be as high as 20 dB forBY = 5. In addition, it
requires BY ≥ 10 to reach the SQNR asymptote of ∼ 22.5 dB.
Thus, OCC achieves a 4-bit reduction in output precision over
FR, which is substantial.

2) OCC in IMC Dot-Products: An IMC realization of the
dot-product y = wTx exhibits four sources of noise at its out-
put y: (1) output-referred input quantization noise qx→y; (2)
output-referred weight quantization noise qw→y , (3) total ADC
quantization noise qA→y; and (4) noise due to analog circuit
non-idealities ηa→y . Due to the mixture of quantization and
circuit noise sources, we employ the term signal-to-noise ratio
(SNR) to quantify the dot-product accuracy, where:

SNRy =
σ2
y

σ2
qx→y

+ σ2
qw→y

+ σ2
qA→y

+ σ2
ηa→y

, (21)

where σ2
qx→y

and σ2
qw→y

are given by (19), while σ2
qA→y

depends
on the quantization strategy employed by the column ADCs and
any subsequent processing such as POTS, and σ2

ηa→y
depends

upon the specific circuit style employed in the IMC.
We further define the SQNR of an IMC as an upper bound on

the SNR by setting ηa→y = 0, i.e., zero analog noise in (21):

SQNRy =
σ2
y

σ2
qx→y

+ σ2
qw→y

+ σ2
qA→y

. (22)

We consider the bit-serial bit-parallel (BSBP) architecture,
which can be obtained from the ISWP architecture in Section II-
A by setting BS = 1 so that NS = BX . The BSBP architecture
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is a popular architecture today [21] because of its scalability, i.e.,
its accuracy is the highest when computing dot-products with
large dimensions. For the BSBP architecture, it can be shown
that:

σ2
qA→y

=
4

9
x2
mw2

m

(
1− 4−BX

) (
1− 4−BW

)
σ2
qAs,b

, (23)

where σ2
qAs,b

= σ2
(B)Var(ys,b) (B ∈ {OCC,LM,FR}) is the col-

umn ADC quantization noise variance (see (7)) which depends
on the ADC precision BA, N and the quantization strategy
employed, i.e., LM, FR or OCC.

A special case of (23) is when the input and weight bits are
i.i.d. and Be(0.5), i.e., Bernoulli RVs with parameter p = 0.5.
In that case, σ2

qAs,b
= 3 N

16 σ2
(Q), and therefore:

σ2
qA→y

=
N

12
σ2
(Q)x

2
mw2

m

(
1− 4−BX

) (
1− 4−BW

)
(24)

We first study the SQNR in (22). The asymptote of 22.5 dB
is identical to the digital dot-product case and can be obtained
by setting σ2

qA→y
= 0 in (22). Fig. 4(b) illustrates that as BA

is increased, the SQNR achieved by LM and OCC are nearly
identical. Compared to FR, OCC yields a 14 dB improvement
in SQNR when BA = 4. Furthermore, OCC reaches the SQNR
asymptote for BA ≥ 5 as compared to FR which requires BA ≥
8. Hence, OCC reduces the column ADC precision of IMCs
requirements by 3 bits over the commonly employed FR method.

To study the impact of various quantization noise strategies
on the SNR, the total analog noise variance for the BSBP
architecture is given by:

σ2
ηa→y

=
4

9
x2
mw2

m

(
1− 4−BX

) (
1− 4−BW

)
σ2
ηas,b

(25)

with σ2
ηas,b

given by (8). Employing a practical value of Co =

1 fF results in an asymptotic SNR of 14 dB obtained by setting
σ2
qA→y

= 0 in (21). Fig. 4(c) shows that the SNR achieved with
OCC is close to that of LM for all values of BA. Furthermore,
OCC improves upon FR by up to 10 dB when BA = 4. The
asymptote of ∼ 14 dB is attained when BA ≥ 5, implying a
3-bit reduction compared to FR which requires BA ≥ 8 to reach
the SNR asymptote.

These results indicate that OCC is a practical alternative to
LM and results in a non-trivial reduction in the column ADC
precision in IMCs.

IV. ACCURACY ANALYSIS OF THE ISWP ARCHITECTURE

The analysis in Section III focused on the SQNR of indi-
vidual dot-products using OCC, LM and FR to quantize the
column ADC inputs. However, the ISWP architecture computes
multi-bit dot-products by slicing the inputs, computing multiple
lower-precision dot-products and then combining their outputs
via POTS (see Fig. 1). In this section, we investigate how the
choice of input slice precisionBS and the use of OCC affects the
total ADC quantization noise qA→y at the output of a multi-bit
dot-product computed by the ISWP architecture.

Fig. 5. Multi-bit dot-product computation in an ISWP architecture. The la-
tency per array invocation is denoted as TA.

A. Noise Analysis for Bit-Sliced Computation

Fig. 5 shows that an ISWP architecture computes a BX ×
BW -bit dot-product by slicing the input into NS slices of BS

bits each, using a DAC to convert each slice sequentially into the
analog domain, computing a BS ×BW -bit N -dimensional BL
dot-product with a maximum (BGC) precision ofBS + log2(N)
bits, using a BA-bit column ADC to quantize the analog dot-
product, and finally accumulating the digitized BL dot-products
over NS array invocations. Thus, NS intermediate ADC quan-
tizations occur and its impact on the final output qA→y needs to
be analyzed.

We prove in the Appendix that, when bits of the input x(1)
i,b

and the weights w(1)
i,b are i.i.d and Be(0.5) distributed, the total

ADC quantization noise when employing OCC is given by:

σ2
qA→y

=
N

36
× σ2

(OCC)x
2
mw2

m

(
1− 4−BX

) (
1− 4−BW

)× β,

(26)

where β is the bit slicing gain and is given by:

β =
5− 2−BS

1 + 2−BS
. (27)

Comparing (24) with (26)–(27) shows that β/3 is the factor
by which the total ADC quantization noise qA→y is amplified
over the case when BS = 1. Furthermore, (27) indicates that
β approaches a value of 5 as BS → ∞. This implies that bit
slicing causes at most a 1.6× increase in total ADC quantization
noise variance corresponding to a 2 dB SQNR worst-case drop,
equivalent to a third of an least-significant bit (LSB) [46].

Contrast this with the popular choice ofBS = 1 used to obtain
the BSBP architecture. This choice is motivated in part to min-
imize the impact of ADC quantization noise, also indicated by
(26)–(27). In doing so, however, the BSBP architecture requires
NS = BX array invocations vs. NS = �BX/BS� invocations
required by the ISWP architecture. Since (9) shows that the
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energy efficiency is proportional to NS , the BSBP architecture
incurs a significant energy and latency penalty for limited gains
in accuracy. This conclusion runs counter to the prevalent prac-
tice and rationale for using BSBP. Our analysis indicates that
there is a better option: the ISWP architecture with BS = BX .

We also analyze the impact of bit slicing on analog noise. In
the Appendix, we prove that:

σ2
ηa→y

=
4x2

mw2
m

(
1− 4−BX

) (
1− 4−BW

)
3 (1− 4−BS )

σ2
ηas,b

(28)

with:

σ2
ηas,b

= N

(
ρ1

(
2− 2−BS

)
12 (1− 2−BS )Co

+
ρ2
Co

+
ρ3
C2

o

)
. (29)

Thus, when BS increases, σ2
ηa→y

decreases, though not dras-
tically. This is not surprising since higher BS leads to fewer
array invocations and hence less accumulation of analog circuit
non-idealities.

B. Impact on Multi-Bit Dot-Product Accuracy

We use the same setup as in Section III, but consider higher
input precision BX to increase the choices for BS . Specifically,
we keep BW = 4, N = 256 but use BX = 8 and BX = 10.
For each case, we sweep the value of BS = 1, . . . , BX . The
column ADC precision BA is also fixed to 3, 4, or 5 bits and the
quantization method is OCC.

Fig. 6(a) shows that the choice of BS has a minor impact
on the SQNR, e.g., when BA = 3, the SQNR lies between ∼
14 dB for BS = 1 and ∼ 12 dB for BS → BX . This validates
our contention that single bit slicing offers no more than a 2 dB
SQNR boost. In general, when the ADC precisionBA increases,
SQNR is insensitive to BS .

Fig. 6(b) shows that the SNR in (21) with Co = 1 fF , is
minimally affected by the choice of BS , e.g., when BA = 3,
the SNR lies between ∼ 11.5 dB for BS = 1 and ∼ 10.5 dB for
BS → BX . As expected the SNR is lower than the correspond-
ing SQNR due to the presence of analog noise. Thus, in the case
of the SNR too, the loss in accuracy due to multi-bit slicing is
just 1 dB. In fact, when BA = 5, the SNR∼ 14 dB more or less
independent of BS .

To summarize, the analysis in this section recommends choos-
ing BS = BX whenever possible. Such fully sliced (FS) IMC
designs significantly improve energy efficiency with negligible
loss in accuracy. Since, it is accepted that deep nets can be im-
plemented with activations being quantized to BX ∼ 4− 6 bits,
the resulting savings in energy and latency will be significant.

V. REALIZING DNN ON THE ISWP ARCHITECTURE

We illustrate the application of our analyses in Sections III
and IV to characterize the accuracy and energy efficiency of
mapping various DNNs on the ISWP architecture.

A. Setup

We consider the following networks and datasets: VGG-9 [47]
and ResNet-18 [2] deployed on CIFAR-10 [48], and AlexNet [1]

Fig. 6. Impact of bit slicing on the accuracy of IMC dot-products: (a) SQNRy

vs. BS and (b) SNRy vs. BS . The legend is included at the top of the figure and
lists various values ofBX andBA used. The dot-product dimension isN = 256
and weight precision is set as BW = 4. The bitcell capacitance used in (c) is
Co = 1 fF . Solid lines ‘E’ are obtained via evaluation of (18), (22), (21), (26),
(28), and (29); dashed lines ‘S’ are obtained using Monte Carlo simulations.

TABLE III
ACCURACY, PRECISION, AND THE DOT-PRODUCT SQNR

deployed on ImageNet [49], and employ the following method-
ology:

1) For each pre-trained floating-point (FL) network, we em-
ploy the methodology in [50] to obtain the smallest ac-
tivation precision (BX ) and weight precision (BW ) such
thatBX = BW and the fixed-point (FX) network accuracy
remains within 1% of that of the FL baseline (see Table III).

2) For each network, we randomly select 4000 dot-products
from all layers to mapped on an ISWP architecture with an
array size of Nrow = 256 rows. Since, DNN dot-products
have very high dimensions, i.e., N > 1000 is not uncom-
mon, we partition the dot-product computations across
multiple banks as required.
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Fig. 7. The trade-off between SNR and ADC precision in DNNs: (a) VGG-9 on CIFAR-10, (b) ResNet-18 on CIFAR-10, and (c) AlexNet on ImageNet. The
dotted black line corresponds to the output-referred input SQNR in each case and sets an upper bound on the achievable SNR.

Fig. 8. The trade-off between SNR and energy consumption (measured using EOP in (9)) in DNNs: (a) VGG-9 on CIFAR-10, (b) ResNet-18 on CIFAR-10, and
(c) AlexNet on ImageNet.

3) We estimate the SNR via ensemble averaging over dot-
products within each network where this averaging is
performed both spatially, i.e., across dot-products sampled
from the network, and temporally, i.e., over randomized
network inputs. In this way, the Monte Carlo simulations
are emulating the ISWP architecture to compute dot-
products from which the SNR is estimated numerically.

4) We estimate the energy per operation EOP from (9) and
(11).

We consider three implementation methods: (1) (1,FR) which
is the conventional BSBP architecture using BS = 1 and FR
quantization in the ADC; (2) (1,OCC) which employs BS = 1
and OCC quantization in the ADC; and (3) (BX ,OCC) which
is the FS (fully-sliced) architecture with BS = BX and OCC
quantization in the ADC.

B. SNR vs. ADC Precision

We set bitcell capacitance to be sufficiently high so that the
analog noise term σηa→y

in (21) is negligible. Fig. 7 shows
that (1,OCC) requires an ADC precision BA that is between
2-3 bits lower than the conventional approach of using an FR
quantizer (1,FR) across the three networks. Alternatively, for
the same ADC precision, (1,OCC) achieves between 15 dB
to 35 dB higher SNRy than (1,FR). As mentioned earlier, the
energy consumption of of ADCs is exponential in BA (see
(11)) since these operate in the noise-limited regime. Hence,

the aforementioned reduction in ADC precision results in a
significant savings in energy consumption of the ADCs.

Fig. 7 also indicates that (BX ,OCC) exhibits minimal loss
in SNRy as compared to (1,OCC) implying that the use of
BS = BX , i.e., processing a BX -bit input in one array invo-
cation (NS = 1) is feasible. Doing to leads to an additional
reduction in array energy consumption by a factor of BX .

Thus, the use of (BX ,OCC) reduces both EADC and NS in (9)
leading to significant overall energy savings. Next, we quantify
these energy savings.

C. SNR vs. Energy-Efficiency Trade-off

Fig. 8 shows that (BX ,OCC) enhances the fundamental
energy-efficiency metric EOP in (9) by a factor of 7.8×-to-12×
over the conventional (1,FR) or BSBP architecture. The bulk
(6×-to-10×) of energy savings arises from (BX ,OCC) invoking
the array once (NS = 1) compared to (1,FR). For example, the
higher input precision of 10 bits in AlexNet results in a 10×
savings in energy consumption. The rest of the energy savings
are from the reduction in ADC precision from the use of OCC.
These results are observed to be consistent across all three
networks.

In summary, we have demonstrated that OCC and bit slicing
reduces the energy consumption of the ISWP architecture by an
order-of-magnitude compared to the conventional approach at
iso-accuracy.
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VI. CONCLUSION

We have presented the optimal clipping criterion (OCC)
method for minimizing the ADC precision in IMCs and found
that it saves between 2-3 bits in ADC precision. The ISWP
architecture, a generalization of the popular BSBP IMC, was
proposed to reduce the number of array invocations. Application
of OCC to the ISWP architecture is shown to provide about an
order-of-magnitude reduction in the energy cost per operation at
iso-accuracy. Since IMCs have already shown to be close to two
orders-of-magnitude more efficient than digital architectures at
iso-accuracy [18], our work extends these gains and empowers
IMC designers to push the limits of the energy vs. accuracy
trade-off intrinsic to IMCs. Though OCC is particularly useful
for IMCs, it is also highly effective when minimizing the output
precision of digital filters and dot-products since it provides
a theoretically justified alternative to the bit-growth criterion
(BGC) commonly employed by digital designers.

Many types of IMC designs are being proposed today. How-
ever, not much work is being done in comprehending their
energy vs. accuracy trade-off primarily due to the challenging
nature of this problem. This paper has formulated a framework
based on quantization noise analysis employed in digital signal
processing systems in order to analyze the energy vs. accuracy
trade-off in IMCs and employed this analysis to motivate the
ISWP architecture. We believe the framework in this paper can
be repurposed to analyze other IMCs resulting in significantly
improved IMCs in the future. Future work can also include
further validating the results of the proposed methods on real-life
integrated circuit prototypes of IMCs.
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APPENDIX

Proof of Theorem 1: Without loss of generality, we con-
sider B-bit uniform quantization of a unit Gaussian signal
x ∼ N (0, 1) in the range [xL, xR]. A necessary condition for
optimality is xR = −xL = ζ by virtue of the distribution’s
symmetry. The MSE in (15) can be written as the following
function of ζ:

f(ζ) =
ζ22−2B

3
+ 2

∫ ∞

ζ

1√
2π

(x− ζ)2e−
x2

2 dx, (30)

where we used Δx = ζ2−B and σ2
c = 2E[(x− ζ)21{x>ζ}]. Our

task is to find ζ (OCC) minimizing f(ζ) in (30) which can be
written as:

f(ζ) = f0(ζ) +

√
2

π
(f1(ζ) + f2(ζ) + f3(ζ)) (31)

with f0(ζ) =
ζ22−2B

3 , f1(ζ) =
∫∞
ζ x2e−

x2

2 dx, f2(ζ) =

−2ζ
∫∞
ζ xe−

x2

2 dx, and f3(ζ) = ζ2
∫∞
ζ e−

x2

2 dx. It follows
that:

f ′
0(ζ) = 2ζ

2−2B

3
and f ′

1(ζ) = −ζ2e−
ζ2

2 (32)

f ′
2(ζ) = −2

∫ ∞

ζ

xe−
x2

2 dx+ 2ζ2e−
ζ2

2 = 2(ζ2 − 1)e−
ζ2

2

(33)

f ′
3(ζ) = 2ζ

∫ ∞

ζ

e−
x2

2 dx− ζ2e−
ζ2

2 . (34)

Combining (31), (32), (33), and (34) yields:

f ′(ζ) = 2ζ
2−2B

3
+

√
2

π

(
2ζ

∫ ∞

ζ

e−
x2

2 dx− 2e−
ζ2

2

)

= 2

[
g0(ζ) +

√
2

π
(g1(ζ) + g2(ζ))

]
, (35)

where g0(ζ) = ζ 2−2B

3 , g1(ζ) = ζ
∫∞
ζ e−

x2

2 dx, and g2(ζ) =

−e−
ζ2

2 . It follows that:

g′0(ζ) =
2−2B

3
and g′2(ζ) = ζe−

ζ2

2 (36)

g′1(ζ) =
∫ ∞

ζ

e−
x2

2 dx− ζe−
ζ2

2 . (37)

Combining (35), (36), and (37) yields:

f ′′(ζ) = 2

(
2−2B

3
+

√
2

π

∫ ∞

ζ

e−
x2

2 dx

)
, (38)

which is strictly positive for any ζ. Hence, f(ζ) is convex and can
be minimized using Newton’s algorithm [51] via the following
recursion:

ζn+1 = ζn − f ′(ζn)
f ′′(ζn)

. (39)

Replacing (35) and (38) into (39) and substituting√
2
π

∫∞
ζ e−

x2

2 dx = 2Q(ζ) yields (17) in Theorem 1 which con-
cludes our proof.

Derivation of (26): Combining (5) and (7), we have:

qA→y = xmwm

NS−1∑
s=0

(
−qAs,0

+

BW−1∑
b=1

qAs,b
2−b

)
2−sBS

and it follows that:

σ2
qA→y

= x2
mw2

m

NS−1∑
s=0

BW−1∑
b=0

σ2
qAs,b

4−b4−sBS

=
4x2

mw2
m

3
σ2
qAs,b

(
1− 4−BW

) (
1− 4−BX

)
1− 4−BS

. (40)

Recall the column ADC uses the OCC so that:

σ2
qAs,b

= Var(ys,b)σ
2
(OCC) = NVar(x(BS)

s w
(1)
b )σ2

(OCC). (41)

From the equiprobable bitwise representation assumption
we have w

(1)
b ∼ Be(0.5) is a Bernoulli random variable and

x
(BS)
s = us

2BS
where us ∼ U(0, 2BS − 1) is a discrete uniform

random variable. Hence, it can be shown that:

Var
(
x(BS)
s w

(1)
b

)
=

(
1− 2−BS

) (
5− 2−BS

)
48

. (42)
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Substituting (42) and (41) into (40) yields (26) which con-
cludes our proof.

Derivation of (28)–(29): First, (28) follows from combining
(5) and (7) in a similar fashion as was done to obtain (40). Then,
(29) is obtained from (8) by evaluating:

E

[(
x(BS)
s w

(1)
b

)2
]
=

1

12

(
1− 2−BS

) (
2− 2−BS

)
.

This result itself is a consequence of the equiprobable bitwise
representation assumption discussed in the derivation of (26).
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