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Coupled Regularized Sample Covariance Matrix
Estimator for Multiple Classes

Elias Raninen

Abstract—The estimation of covariance matrices of multiple
classes with limited training data is a difficult problem. The sample
covariance matrix (SCM) is known to perform poorly when the
number of variables is large compared to the available number
of samples. In order to reduce the mean squared error (MSE) of
the SCM, regularized (shrinkage) SCM estimators are often used.
In this work, we consider regularized SCM (RSCM) estimators
for multiclass problems that couple together two different target
matrices for regularization: the pooled (average) SCM of the classes
and the scaled identity matrix. Regularization toward the pooled
SCM is beneficial when the population covariances are similar,
whereas regularization toward the identity matrix guarantees that
the estimators are positive definite. We derive the MSE optimal
tuning parameters for the estimators as well as propose a method
for their estimation under the assumption that the class populations
follow (unspecified) elliptical distributions with finite fourth-order
moments. The MSE performance of the proposed coupled RSCMs
are evaluated with simulations and in a regularized discriminant
analysis (RDA) classification set-up on real data. The results based
on three different real data sets indicate comparable performance
to cross-validation but with a significant speed-up in computation
time.

Index Terms—Covariance matrix estimation, regularization,
shrinkage, elliptical distribution, regularized discriminant
analysis.

1. INTRODUCTION

N INCREASINGLY common scenario in modern super-
A vised learning problems is that the dimension p of the
data is large compared to the number of available training
samples n or exceed it multifold (p > n). Such scenarios are
commonly referred to as high-dimensional or insufficient sample
support problems. In this paper, we address the problem of high-
dimensional covariance matrix estimation in a multiclass setup,
where there are K different classes or populations, each compris-
ing ng, k =1,..., K, independent and identically distributed
(i.i.d.) p-dimensional samples. Estimates of the covariance ma-
trices are needed in many multivariate analysis problems, such
as in principal component analysis and canonical correlation
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analysis [1], discriminant analysis [2], Gaussian mixture models
(GMM) [3], as well as in many engineering applications, e.g., in
array signal processing [4], genomics [5], portfolio optimization
in finance [6], and graphical models [7]. The success of the
analysis is often directly lined with the accuracy of the estimated
covariance matrix.

The covariance matrix of class k € {1,..., K} is defined as

S = El(xie — ) (Xan — 1) '],

where x;;, denotes the ith sample from class k and p;, = E[x;1]
is the mean of class k. The conventional estimate for the covari-
ance matrix is the unbiased sample covariance matrix (SCM)
defined for class k by

g

Z (xik — X)) (xix — Xi) |,

i=1

1
nkfl

Sk =

where X = (1/ny) >, Xk is the sample mean of class k. In
high-dimensional settings, the SCM is known to work poorly
due to its high variability. Furthermore, if n;, < p, then the SCM
is singular, and hence, its inverse cannot be computed.

Better estimators can be developed by using regularization,
where the key idea is to shift or shrink the estimator toward a pre-
determined target or model. This can significantly decrease the
variance of the estimator and improve the overall performance
by reducing its mean squared error (MSE). This phenomenon
can be understood via the following well-known bias-variance
decomposition of the MSE. For an estimator 3N , of 33y, the MSE
can be written as

MSE(S,) = E Mzk . Ekm

. JNTP TP
- 52 -misal] + -1sa
where the first term on the right-hand side is the variance and
the second term is the squared bias of the estimator. Since the
SCM is unbiased, its MSE is equal to its variance. By using a
regularized SCM (RSCM), however, it is possible to reduce the
MSE significantly at the cost of introducing some bias.

In general, regularization combines an unstructured estimate
with a predefined model or target. The target in regularization
can be decided based on a prior knowledge, assumptions, or
on a property, which we want to enforce. Regularization can
be accomplished different ways. For instance, the SCM can be
combined linearly with a target matrix as, e.g., in [5], [6], [8]-
[13]. The approaches for parameter tuning differs between the
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methods. A popular approach taken in [8] is based on estimating
the asymptotically optimal (in terms of minimizing the MSE)
tuning parameters. Under additional distributional assumptions,
the method of [8] has later been improved for Gaussian sam-
ples in [10] and elliptically distributed samples in [13]. Other
approaches for tuning parameter selection are for example
the expected likelihood approach [14], [15]. Alternatively, the
eigenvalues of the SCM can be transformed non-linearly toward
a specific structure as in [16] and [17]. Multiple targets can also
be used. For instance, in [18], a double shrinkage covariance
matrix estimator was considered, which shrinks simultaneously
toward a spherical matrix and a diagonal matrix. A somewhat
related RSCM formulation had been proposed in [3] in the
setting of Gaussian mixture models. In [19], the estimator of [8]
was extended to multiple simultaneous target matrices, which
satisfy a certain target structure. In [20], a linear multi-target
shrinkage covariance matrix estimator was proposed, which
optimizes the tuning parameters using low-complexity leave-
one-out cross-validation. There are also methods tailored for
multiclass problems. For instance, [21] considered covariance
matrix estimation from two possibly mismatched data sets using
the maximum likelihood principle. In our previous work [22],
linear pooling of SCMs was considered and was applied to
portfolio optimization. In the context of discriminant analysis
classification, a popular RSCM was proposed in [2]. Inspired
by [2], this paper focuses on two specific target matrices: the
pooled SCM and the spherical matrix.

The rest of the paper is organized as follows. In Section II,
we give some background and motivation for the proposed
estimator. In Section III, we analyze some properties of the pro-
posed estimator as well as discuss the optimization of the tuning
parameters. In Section IV, we show how the theoretical tuning
parameters can be estimated in practice when the unknown class
populations follow unspecified elliptically symmetric distribu-
tions. Section V discusses some practical considerations and
how to use the method in choosing the tuning parameters in
RDA. In Section VI, synthetic simulation studies are conducted
in order to assess the MSE performance of the estimator. The
method is then compared to cross-validation in choosing the
tuning parameters for RDA classification using three different
real data sets. Lastly, Section VII concludes.

Notation: Throughout the paper, unless stated otherwise, all
norms are Frobenius norms defined by [|A||2 = (A, A)p =
tr(AT A), where the inner product of two matrices (of appropri-
ate dimensions) A and B is defined by (A, B)r = tr(A"B).
For any square matrix A, we frequently use the notation I =
(1/p)tr(A)I and AT = A — 4. For a vector a € RP, the Eu-
clidean norm is defined as ||a]| = vaTa. We define R =
{a € R : a > 0}. For a scalar variable a, we use the following
shorthand notation J, = d/0a for the partial derivative with
respect to a. For scalars a < b and ¢, we define the clamp or
clip function [c]% = max{a, min{b, c}}, which projects ¢ onto
to the interval [a, b]. Lastly, Unif{a,b} and Unif(a, b) denote
the discrete and continuous univariate uniform distributions on
the set {a,a+ 1,...,b— 1,b} and on the open interval (a, ),
respectively.
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II. BACKGROUND AND MOTIVATION

In multiclass problems, when the classes can be assumed to
have a similar covariance structure, it is beneficial to shrink the
individual class covariance matrix estimates toward the pooled
(average) SCM of the classes,

K
S = stk, (1)
k=1

where
Nk
n1+n2+...+nK.

For example, the methods proposed in [2], [23], and [24] used
the convex combination

(8) = BSk + (1 - B)S, )

where 8 € [0, 1], as an estimate for the class covariance matrix.
The methods in [2], [23], and [24] were designed for discrim-
inant analysis (DA) classification in which the problem is to
classify a new sample x to one of the K classes using the
discriminant rule

T =

k= argmin (x—f,) 2, (x— fi) +log|Spl, 3
ke{l,...,K}

where f;, and 3%, denote estimates of the mean and the co-
variance matrix of class k, respectively. Different DA methods
differ in the approach used to estimate the class means and
class covariance matrices. For example, quadratic discriminant
analysis (QDA) uses sample means and SCMs in (3). In [lin-
ear discriminant analysis (LDA) the pooled SCM S in (1) is
used for all classes. If the true covariance matrices are equal,
31 =3, =--- =%k =13, then LDA is well justified since
the pooled SCM is an unbiased estimator of X, i.e., E[S] =
> E[S;] = (32, m;)(¥) = 3. However, even in the case
that the true population covariance matrices differ substantially,
LDA often outperforms QDA when the sample size is small
compared to the dimension [23], [25]. This is due to the high
variance of the class SCMs compared to the pooled SCM. The
partially pooled estimator (2) includes QDA and LDA as special
cases when 8 = 1 and 3 = 0, respectively.

In a very high-dimensional case, when p > > ; 15, the par-
tially pooled estimator (2) will no longer be positive definite.
In regularized discriminant analysis [2] (RDA), this problem is
solved by coupling the pooled estimator with a spherical target
matrix, that is, by regularization toward a scaled identity matrix
via

Si(e 8) = aS(B) + (1 - a)lg, 5, @)

where 3,(3) is given in (2) and Iy, 5) = (1/p)tr(Zk(8))L
The success of regularization depends on proper selection
of the tuning parameters. In classification problems, cross-
validating the classification error is the standard method for
choosing the tuning parameters. Cross-validation can, however,
be computationally very costly for large data sets. In certain
high-dimensional binary classification settings, it is possible
to leverage on results from random matrix theory in order to
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estimate the (asymptotically) optimal tuning parameters, which
minimize the classification error [26], [27].

The main contribution of this work is to develop a computa-
tionally efficient method for choosing the tuning parameters in
a multiclass covariance matrix estimation setting, where there
can be more than two classes, and where the RSCMs are defined
in (4). Specifically, we find estimates of the tuning parameters
that minimize the class-specific MSE:

~ 2
(af. B}) = arg min E [Hmw) =0 } 5)
a,8€[0,1] F

for each population k = 1, ..., K. The expressions for the op-
timal tuning parameters will depend on unknown population
parameters since the MSE expression involves the unknown
covariance matrix. However, we show that the MSE can be
estimated fairly easily by assuming that the class populations
follow unspecified elliptically symmetric distributions.

It is worth noting that, in RDA [2] the tuning parameters
are common across the classes, whereas in this paper we use
class-specific tuning parameters. However, in cases when it is
useful to use common tuning parameters, they can easily be
acquired by averaging as explained in Subsection V-B. Hence,
our proposed method can be used to obtain tuning parameters for
the original RDA [2] framework, for which there already exist
widely established toolboxes in programming languages such as
R (see e.g., [28], [29]). Lastly, an important distinction to [2] is
that our method is not only targeted for classification problems
but is suitable for other applications as well. For example, [21]
considered the problem of estimating a covariance matrix from
two data sets, where the population covariance matrix of the first
data set is different but close to the population covariance matrix
of the second data set. This type of problems are encountered
in radar processing as well as in hyperspectral imaging appli-
cations, where the additional data sets may have been acquired
with slightly different measurement configurations, and hence,
have slightly different population parameters.

The current paper extends our earlier preliminary work
in [30], which considered the estimation of the MSE optimal
tuning parameters for the partially pooled estimator in (2). Here,
we consider the more general estimator in (4), which includes
additional shrinkage toward the scaled identity matrix, and is
therefore applicable also in the cases whenp > 3. n.

III. ESTIMATOR

Let us first consider four special cases of the estimator (4):

C1) The unpooled regularized SCM estimator omits the
pooled SCM and only shrinks toward the scaled identity
matrix:

S (o, B = 1) = aSk + (1 — ap) s, .

This type of shrinkage is typically considered in sin-
gle class covariance matrix estimation (see e.g., [8]
and [13]).

The partially pooled estimator omits regularization to-
ward the scaled identity and only shrinks toward the

C2)
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NMSE

Fig. 1. The theoretical NMSE as a function of the tuning parameters («, /3)
for class 4 of the setup A in Section VL.

pooled SCM:

Silar =1, 8k) = Zk(Br) = BuSk + (1 — Br)S.

C3) The fully pooled estimator uses the pooled SCM for
every class k£ and shrinks it toward the scaled identity
matrix:

ﬁk(ak,ﬂk = 0) = RS + (1 — Oék)Is.

Such shrinkage can be considered if all classes have an
identical distribution.

The scaled identity estimator uses the partially pooled
estimator to scale the identity matrix:

c4)

k(o = 0,81) = L.+ (1-50)8)-

Since it is clear that the tuning parameters are class-specific,
we drop the subscripts from oy, and §j and denote them from
now on simply by « and .

Fig. 1 depicts the theoretical normalized MSE (NMSE),
NMSE(Z (e, 8)) = MSE(Z(, 8))/||Zx||2. of the estima-
tor (4) as a function of the tuning parameters (v, ). The figure
corresponds to setup A of the numerical study of Section VI.
In the figure, the small gray dots depict the estimated tuning
parameters (showing 400 realizations of the 4000 Monte Carlo
trials). The blue square () denotes the mean (mg, mg) of the
estimated tuning parameters over the Monte Carlo runs. The
optimal tuning parameter pair («*, 8*) is denoted by the black
triangle (A). The special cases (C1-C4) correspond to the edges
of the («, 8)-plane.

As can be observed from Fig. 1, the optimal tuning parameter
pair is in this case closest to Is. Hence, in this particular case it
would be a good strategy to use the pooled SCM and regularize
it toward a scaled identity matrix, i.e., to use the fully pooled
estimator (C3). As can be noted, the proposed method is able
to automatically choose the tuning parameters in a near optimal
way.

Let us now give an expression for the MSE of the estimator.
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Theorem 1: The MSE of the estimator (4) is a bivariate
polynomial of the form

MSE(ﬁ]k(Oﬁ B)) = a?B2Cas + a?BCa1 + a®Cag + 2Cog
+ aBCr1 + aCio + BCo1 + Coo,  (6)

where the coefficients, C;;, depend on the scalars tr(3;),
E[[|S; 112, E[|Ts, 2], and (S, %)

Proof: See Appendix A for the proof and the expressions for
the coefficients Cj;. [ |

The estimation of the coefficients Cj; is deferred to Sec-
tion IV. Given estimates of the coefficients, the critical points
of (6) can be solved numerically (see Appendix A).

A useful property of the MSE polynomial in (6) is that
given a fixed value of either o or (3, the optimization of the
remaining tuning parameter is a convex problem. This is known
as biconvexity.

Theorem 2: The MSE (6) is a biconvex function. The optimal
tuning parameter «* given a fixed value of 8 € [0, 1] is

* 1 BC11 + Cho

at = |53 . (7)

2 32Ca2 + BCa1 + Coo |
Likewise, the optimal tuning parameter 5* given a fixed value

ofa € [0,1] is

g = ~1a%Cy1 +aCh + Ciy '
2 a?Ca + Coz 0
Proof: See Appendix A-C. |

The optimal tuning parameter for the special cases (C1-C4)
can be solved using (7) and (8) of Theorem 2.

®

A. PFartially Pooled Estimator Without Identity Shrinkage

Let us next highlight certain properties of the partially pooled
estimator (2) of (C2) corresponding to the case ﬁ]k(a =1,0).
The propositions below provide additional insights on the opti-
mal parameter S* in this case.

Proposition 1: The optimal tuning parameter 5* given a = 1
satisfies g* < 1.

Proof: The proof follows from showing that the numerator
of (8) is always less than the denominator, which is always pos-
itive. By setting o = 1, after some algebra, we have that —1/2
times the numerator, i.e., (—1/2)(Ca1 + C11 + Co1), is equal
to E[(S — Sk, S — X )r] and the denominator (Cas + Cp2) is
equal to E[||S — Si||Z] (See Appendix A). Subtracting the nu-
merator from the denominator, we get

E[|S — Skl — E[(S — Sk, S — k)]
=E[(S — Sk, Xk — Sk)F]

= (1= ) (B[ISkll2) — 1=k ]15)

= (1 - m) E[|Sk — Zk[7] > 0,

which holds almost surely (a.s.) for any continuous
distribution. |

This has the important implication that in a multiclass problem
it is always possible to reduce the MSE of the SCM by using
regularization toward the pooled SCM.
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In the special case that all of the population covariance matri-
ces are equal, we would like to only use the pooled SCM. This
is exactly what happens as is shown in the next proposition.

Proposition 2: Consider multiple populations generated by
the same distribution such that they have equal covariance ma-
trices 31 = ... = Y and equal sample sizes 71 = ... = 7.
Given that & = 1 then * = 0.

Proof: The proof follows from showing that if the true pop-
ulation covariance matrices and the sample sizes are equal,
then the numerator of (8) is zero and the denominator is non-
zero. Observe that if ¥j, = X, and 7, = 75, Vj, then we have
E[Sk[12] = E[IS;]2] and (£, S)p = [SyJ2, V). Hence,
opening up the numerator E[(S — S, S — X )r] yields

E[|ISI[z] — E[(S, Zk)r] — E[(Sk, S)r] + E[(Sk, ) r]
= E[|S|z] — E[{Sk, S)¢]

— E 2 _
J

:07

E[ISklF] + (D mimi— > m | IZkllf

7] JJ#k

which  follows from Zj 7r]2- = Kn? = (Kny)me = 7,
Doz mimy = K(K — D= (Kmg)(K —Dmp = 1—m,
and >, . mj = (K —1)m, =1 — 7. Furthermore, using
this result we see that the denominator, E[[|S — Sy ||2], is a.s.
positive. Opening up the denominator, we have

E[S|I3] + E[ISklIf] — 2E[S, Sk)¥]
= E[||Skll7] — E[(S,Sk)r]

= (1 m) E[ISsl2] — Y (S 50
J.i#k

= (1= m) (EIISHIE] - IS4lz) > 0as.

B. Streamlined Analytical Estimator

An alternative estimator to (4) can be obtained if we change
the a-regularization target so that the estimator becomes

Si(a, 8) = aZ,(8) + (1 — a)r, )

where T € {Sy, S} and 3 () is defined in (2). This simplifies
the expression for the MSE and allows for an analytical solution
for the tuning parameters. In [3] and [18], somewhat similar
formulations were used with different targets in a GMM and a
single class covariance matrix estimation setting, respectively.
Note that the difference between (9) and (4) is in the scale of
the identity target. The trace of (9) (sum of the eigenvalues) is
dependent on «, whereas in (4) this is not the case. However,
when tr(It) ~ tr(Ig, 4)), the performance of the two estima-
tors is expected to be similar. The MSE of (9) is given in the
next theorem.
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Theorem 3: The theoretical MSE of the (streamlined analyt-
ical) estimator (9) is a bivariate polynomial of the form

MSE(f]k(a, B)) = a?B%Bay + o BBy + a*Bayy

+ afB11 + aBig + Boo.
The coefficients B;; depend on the scalars tr(X;), E[[|S;||Z],

E[|[Is,[[#], and (3;,%;)p. If (a*,8*) € (0, 1) % (0,1), the
optimal tuning parameters («*, 8*) minimizing the MSE are
2B10Baz — B11 B2y

of = — and B* =
B%l — 4320B22 ﬁ

2B11Byy — B19Ba1
2B19B2s — B11Ba1

Otherwise, the optimal parameters are on the boundary of the
feasible set [0, 1] x [0, 1], and are given by one of the following

options
. 1 Blo} '
i) a*=| —=-——1| and p* =0,
{ 2 Bao |
.. 1 Bip+ B11 ] !
i) o =| — = and 3* =
{ 2 Bay + Bay + Bao |
1BQI+BH]1
iii) o* =1and * = [— s
g 2 ) Bos o
iv) «* = 0, which implies 3 = It and that the MSE does
not depend on f3.
Proof: See Appendix B for the proof and the expressions for
the coefficients B;;. u

IV. ESTIMATING THE TUNING PARAMETERS

The MSE and the optimal tuning parameters in Theorem 1
and Theorem 3 depend on the coefficients C;; and B;;, which
in turn are functions of the unknown scalars

tr(3;), EllIS; ][],

Hence, estimates of the optimal tuning parameters can be
formed by a plug-in method, i.e., replacing the above unknown
parameters by their estimates. Such estimates are constructed in
this section under the very general assumption that the samples
are generated from unspecified elliptical distributions with finite
fourth-order moments.

Elliptical distributions are a location-scale family of spheri-
cal distributions generalizing many common distributions, such
as the multivariate normal distribution (MVN) and Student’s
t-distribution to name a few. The probability density function
(p.d.f.) of an elliptically distributed sample x from class k is up
to a normalizing constant of the form

1267205 (x — ) TS (x = )

where p;, and ¥, are the mean and the positive definite covari-
ance matrix of the distribution, respectively. The function gy, :
R>¢ — Rxg is called the density generator, which determines
the distribution. For example, gj(t) = exp(—t/2) defines the
MVN distribution. For references about elliptical distributions
see, e.g., [31] and [32].

Estimates of the unknown scalars, tr(2) and |2y |%, can be
obtained by finding estimates of the scale parameter 7y, and the

E[||Is, [|#] and (;, %)) 5. (10)
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sphericity parameter -y defined as

tr(Z =ell?
Mk = () gng T = oadlid kHFg € [L,p].
p ”IEkHF

Observe that ||Is, |2 = pn? and ||Zk||% = pykn;. Under the
ellipticity assumption, the unknowns E[||Sk||Z] and E[||Is, ||2]
are functions of the scale, sphericity, and the elliptical kurtosis
as shown in the next lemma. The elliptical kurtosis is defined
as ki, = (1/3)kurt(x;), where kurt(z;) is the excess kurtosis of
any marginal variable z; of a random vector from the kth class.

Lemma 1: [13, Lemma 2.] Consider an elliptical distribution
with covariance matrix 3; and finite fourth-order moments.
Then,

E[[|SklIE] = pni (Tikp + (1 + 71k + T21)7%) and

E[|Ts, [IE] = n (1 + 720)p + 271678).

where 71, = :l/(’rL]€ — ].) + /ik/nk, and o = Iik/nk.

In the following subsections, we show how to estimate the
unknown parameters, 7y, Yk, Kk, and (2;, 3;)p. We use the
same approach as in [22].

A. Estimation of the Elliptical Kurtosis

The elliptical kurtosis of class & is estimated by the sample

average
1 & 2

Lo L B

b max{3p; : p+2},
where k; :m(-4)/( (-2))2
the kurtosis of the jth variable (of class k), and m;
= ik ((xik)j — (X)) is the gth order sample moment
Here, the notation (-); picks the jth variable from the vector.
The maximum constraint ensures that &, respects the theoretical
lower bound of —2/(p + 2) [33]. Note that, the finite fourth-

order moments are required in order to have a finite elliptical
kurtosis.

— 3 is the sample estimate of
(o) _

B. Estimation of the Sphericity

It would be natural to use the SCM in order to develop an
estimator for ;. However, following [13], [22], [30], and [34],
we use the following simple and well performing estimator

~ png &2 1 P
= S -
Vi {nk—l (|| kllF nk)]l,

which uses the sample spatial sign covariance matrix (SSCM)
defined as

T
X’Lk‘ - ll'k sz - ll/k)
ik — pae])?

=) Z ,
where the mean p, is estimated by the spatial median [35] 1), =
argmin, y .* ||x;x — pl|. Particularly, in [13], the SSCM
based sphericity estimator was compared to a SCM based
sphericity estimator, when sampling from elliptical distribu-
tions. The SSCM based estimator performed better in all cases
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except when sampling from a MVN distribution. Furthermore,
when p is known, in [22] it was shown that the expectation of
the estimator is asymptotically unbiased as the dimension grows
if vx/p — 0as p — oo. This assumption was shown to hold, for
example, for the first order autoregressive (AR(1)) covariance
matrix but not for the compound symmetry (CS) covariance
matrix (see Section VI for the definitions of these covariance
matrix structures) [22].

C. Estimation of the Scale and the Inner Products

The scale n;, as well as the inner products (X;, 3 ), for i #
J, can be estimated by using the SCMs, i.e., by 7y, = tr(Sg)/p
and (S;, S;)r, respectively. However, regarding the inner prod-
ucts (3;,3;)p, we use the same SSCM based estimator as
in [22], which is 7;7;p%(Si,S;)r. When i = j, we estimate
(Zk, Zi)r = |2kl by P

V. PRACTICAL CONSIDERATIONS

In this section, we first discuss how to compute the estimates
of the optimal tuning parameters in practise. Then, we discuss
regularizing the tuning parameters themselves, which will in
effect make the method compatible with RDA [2].

A. Computation of the Optimal Tuning Parameters

A straightforward way of solving for the optimal tuning
parameters (5) for the proposed estimator (4) is to form a two-
dimensional grid of (a, 8) € [0, 1] x [0, 1] and choose the point,
which yields the minimum (estimated) MSE in (6). The solution
can further be fine-tuned via an alternating convex minimization
by iterating between (7) and (8). Convergence of the iterations is
addressed in Appendix A—C. This method of finding the optimal
tuning parameters was used in the simulations of Section VI,
where the method is denoted by POLY (due to the polynomial
structure of the MSE in Theorem 1). In the simulations, the
particular (o, 3)-grid was constructed from all pairs in the set
{0,0.05,...,1} > (e, B).

An alternative way of solving for the optimal tuning param-
eters is to find the critical points of the MSE polynomial (6),
which is addressed in Appendix A.

Given estimates for the coefficients C;;, evaluating the equa-
tions (6), (7), and (8) is computationally very light. Most of
the computation is due to estimating the coefficients and not in
optimizing the tuning parameters.

The streamlined analytical estimator (9) with T = S, which
is discussed in Section III-B, is denoted by POLYs. In this case,
the tuning parameters are found using the plug-in estimates of
the optimal values stated in Theorem 3.

B. Averaging of the Tuning Parameters

The estimation accuracy of the optimal tuning parameters
(o, Br)E_| depend on the estimates of the statistical population
parameters discussed in Section IV. If the estimation of these
parameters is difficult for some data sets, which can happen
if the elliptical distribution assumption does not fit the data
well, regularization of the tuning parameters themselves can
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be useful. A possible way to accomplish this is to average the
tuning parameters of the classes by using & = % > Gy, and

B = % > By in place of the class-specific tuning parameters.
Averaging the estimated class tuning parameters is reasonable
as long as the optimal tuning parameters are not too different
from each other, which is the case when the class covariance
matrices are similar. If the population covariance matrices are
very different from each other, averaging the estimated tuning
parameters might degrade the performance. However, by using

(&, ) as common tuning parameters for all classes in (4), the re-
sulting RSCM estimator will be compatible with RDA proposed
in [2]. Thus, this method can be used instead of cross-validation
as an alternative way for choosing the tuning parameters for
RDA. In Section VI, we illustrate that this approach enables a
significant speed up in the computation of RDA with no effective
loss in performance.

The averaged version of the estimator (4), which uses the
mean of the estimated tuning parameters for all classes is denoted
by POLY-Ave. Regarding the streamlined analytical estimator
of (9), the averaged version is denoted by POLYs-Ave.

VI. NUMERICAL STUDIES

In this section, the performance of the proposed estimators is
reported and compared against other competing methods. First,
in Subsection VI-A, the MSE performance of the method is
examined with synthetic simulations. Then, in Subsection VI-B
the method is applied to RDA classification and compared to
cross-validation in choosing the tuning parameters.

A. Synthetic Simulations

We evaluated the empirical NMSE performance of the pro-
posed methods as well as the accuracy of the plug-in estimates
k> Rk Yk, and the estimates of the inner products (¥;, 3 j>F.
The results were averaged over 4000 Monte Carlo trials. We
simulated four different setups: A, B, C, and D. In each setup,
we generated K = 4 classes, each of dimension p = 200. The
data was generated from a multivariate Student’s ¢, -distribution
with various degrees of freedom v and the means of the classes
were generated from the standard normal distribution N, (0, I)
and held fixed over the Monte Carlo trials for setups A, B, and
C. Regarding setup D, the mean as well as the other parameters
were randomly generated again for each Monte Carlo trial. The
four different setups were as follows.

A) AR(1) process

® 1y = 25,1y =50,n3 =75, and ny = 100.
e v = 8 for all classes.
o (Zi)i; = o) 7', where gy = 0.2, 0, = 0.3, 03 = 0.4,
and o4 = 0.5.
B) Compound symmetry
® 1y = 25,1y =50,n3 =75, and ny = 100.
® v = §for all classes.
® (X)i =1 and (Xy);; = ok for i # j, where g1 =
0.2, 02 = 0.3, o3 = 0.4, and g4 = 0.5.
C) Mixed structures
e n;, =100, forall k =1,2,3,4.
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Class 3 Class 4

The theoretical NMSE as a function of the tuning parameters (cv, 3) for the setup C (mixed setup). The black triangle (A) denotes the optimal tuning

parameter pair. The first 400 realizations of the estimated tuning parameters over the 4000 Monte Carlo trials are shown as the gray dots. The blue square (H)

denotes the mean of the estimated tuning parameters.

e 1 =12, v, =8, v3 =12, and vy = 8.

® 3; and ¥ are as in setup A with o1 = g2 = 0.6 and
33 and ¥4 are as in setup B with o3 = g4 = 0.1.

D) Randomized

For each £ = 1,2, 3,4 and each Monte Carlo trial:

e n; = Unif{10,200}.

e v, = Unif{5,12}.

® M= Np(ovI)'

e 3 either AR(1) or CS with equal probability and o, =
Unif(0,0.9).

In addition to the proposed estimators, in the simulations
we include the sample covariance matrix (SCM), the pooled
SCM (1) (POOL), the partially pooled estimator (2) using
the method from [30] (PPOOL) for choosing Sy, the method
from [13] (ELL1), which is designed for single class covariance
matrix estimation and uses a convex combination ;S + (1 —
Br )N 1. We also include the estimators proposed in [22] (LIN1
and LIN2), which use a nonnegative linear combination of the
class SCMs. LIN2 differs from LINI in that it incorporates
additional shrinkage toward the identity matrix. In addition,
we include the shrinkage covariance matrix estimator proposed
in [20] (LOOCV1 and LOOCV2). The method is based on
estimating the covariance matrix via a nonnegative linear com-
bination of the SCM and target matrices using (low-complexity)
leave-one-out cross-validation. In the simulations, for each class
k, LOOCV1 uses the pooled SCM and the identity matrix as
target matrices for regularizing the SCM of class k. Respectively,
for each class &, LOOCV?2 uses the individual SCMs of the
other classes as well as the identity matrix as target matrices for
regularizing the SCM of class k.

The empirical NMSE, Ave||2; — 1|2 /||Z |2, is reported
for each class in Table I. As can be noted, in the setups A,
B, and C, the proposed methods: POLY, POLYs, POLY-Ave,
and POLYs-Ave yielded significantly lower NMSE than the
methods: SCM, POOL, PPOOL, ELL1, LIN1, and LOOCV1.
The only methods, which performed comparably well to POLY
and POLYs were LIN2 and LOOCV2. In setup A (AR(1) case),
the best performing methods were POLY, POLYs, and LIN2,
which all had a similar NMSE. In setup B (CS case), the meth-
ods POLY, POLYs performed best (LIN2 and LOOCV2 had a
slightly higher NMSE or higher standard deviation). In the setup
C (mixed case), LIN2 and LOOCV2 had similar performance

TABLE I
EMPIRICAL NMSE (x 10) OF SETUPS A, B, C, AND D. THE SAMPLE STANDARD
DEVIATION (x 10) 1S GIVEN IN THE PARENTHESIS

Class 1 Class 2 Class 3 Class 4 ‘ Sum
Setup A. AR(1)
SCM 1154 (73.8) 51.5(32.8) 29.7 (12.8) 184 (82) | 214.9 (81.5)
POOL 12.5 3.1) 10.6 (2.8) 8.9 (2.3) 7.6 (1.9) 39.6 (10.1)
PPOOL 12.4 (2.6) 10.4 (2.3) 8.8 (1.8) 7.5 (1.6) 39.1 (8.2)
Ell-RSCM 1.1 (0.4) 1.7 (0.2) 2.6 (0.1) 3.3 (0.1) 8.6 (0.5)
LOOCV1 10.6 (20.9) 9.6 (19.5) 8.8 (6.9) 8.3 (5.6) 37.3 (28.6)
LOOCV2 1.1 (0.6) 1.4 (0.2) 2.1 (0.1) 3.0 (0.1) 7.6 (0.7)
LINI 53 (0.5) 4.8 (0.3) 4.6 (0.3) 4.7 (0.3) 19.4 (1.1)
LIN2 0.9 (0.5) 1.3 (0.2) 2.1 (0.1) 3.0 (0.1) 7.3 (0.6)
POLY 0.9 (0.3) 1.3 (0.1) 2.1 (0.1) 3.0 (0.1) 7.2 (0.5)
POLYs 0.8 (0.1) 1.3 (0.1) 2.1 (0.1) 3.0 (0.1) 7.1 (0.3)
POLY-Ave 1.0 (0.5) 1.4 (0.3) 2.1 (0.1) 3.1 (0.1) 7.7 (0.7)
POLYs-Ave 1.0 (0.3) 1.4 (0.2) 2.1 (0.1) 3.1 (0.1) 7.6 (0.5)
Setup B. Compound symmetry
SCM 14.7 (11.4) 3.6 (3.3) 1.5 (1.0) 0.8 (0.8) 20.6 (11.9)
POOL 10.5 (4.9) 1.8 (1.3) 0.5 (0.3) 0.7 (0.4) 13.5 (6.1)
PPOOL 6.6 (3.4) 1.4 (1.0) 0.5 (0.3) 0.6 (0.4) 9.0 (4.0)
Ell-RSCM 5.7 (1.3) 2.9 (1.1) 1.4 (0.7) 0.7 (0.5) 10.7 (1.9)
LOOCV1 1.7 (4.0) 1.0 (1.8) 0.7 (0.8) 0.7 (0.7) 4.1 (4.5)
LOOCV2 1.5 (3.0) 0.9 (1.2) 0.8 (0.7) 0.7 (0.6) 3.8 (3.3)
LIN1 1.6 (2.2) 0.8 (0.9) 0.6 (0.5) 0.6 (0.4) 3.6 (2.4)
LIN2 1.3 (2.1) 0.7 (0.9) 0.6 (0.5) 0.6 (0.4) 32(24)
POLY 1.3 (1.7) 0.7 (0.7) 0.6 (0.4) 0.6 (0.4) 3.2 (2.0)
POLYs 1.3 (1.7) 0.7 (0.7) 0.6 (0.4) 0.6 (0.4) 3.1 (2.0)
POLY-Ave 3322 0.5 (0.4) 0.8 (0.4) 1.4 (0.5) 6.0 (1.9)
POLYs-Ave 3.3 (2.2) 0.5 (0.4) 0.8 (0.4) 1.4 (0.5) 6.0 (1.9)
Setup C. Mixed
SCM 12.1 (1.9) 14.7 (6.1) 8.6 (1.5) 10.3 (4.1) 45.6 (1.7)
POOL 6.3 (0.9) 6.3 (0.9) 4.5 (0.5) 4.5(0.5) 21.5 (2.0)
PPOOL 5.4 (0.5) 5.7 (0.7) 3.8 (0.4) 4.0 (0.5) 19.0 (1.5)
Ell-RSCM 3.7.(0.1) 3.9(0.2) 3.9 (0.5) 4.1 (0.6) 15.5 (0.8)
LOOCV1 4.9 (0.6) 5.6 (2.4) 4.5 (0.5) 5.0 (1.8) 20.0 (2.9)
LOOCV2 2.9 (0.1) 2.9 (0.1) 2.8 (0.4) 2.8 (0.4) 11.4 (0.8)
LIN1 3.6 (0.2) 3.6 (0.2) 3.0 (0.4) 3.1 (0.4) 13.4 (0.8)
LIN2 2.9 (0.1) 2.9 (0.2) 2.8 (0.4) 2.8 (0.4) 11.4 (0.8)
POLY 3.3 (0.1) 3.4(0.2) 3.4 (0.5 3.5(0.5) 13.7 (0.8)
POLYs 3.3 (0.1) 3.4(0.2) 3.4 (0.5) 3.5 (0.5) 13.7 (0.8)
POLY-Ave 3.3 (0.1) 3.5(0.4) 3.4 (0.4) 3.6 (0.5) 13.9 (0.8)
POLYs-Ave 3.3 (0.1) 3.5(0.4) 3.4 (0.4) 3.6 (0.5) 13.9 (0.8)
Setup D. Randomized
SCM 20.6 (72.9) 192 (39.7) 19.6 (48.7) 23.0 (115.1) | 82.4 (149.3)
POOL 41.7 (110.9) 37.9 (102.3) 38.0 (86.3) 41.5(88.0) | 159.1 (254.9)
PPOOL 10.1 (16.0) 9.9 (17.5) 9.9 (17.6) 10.7 (23.6) | 40.6 (37.1)
Ell-RSCM 2.1 (1.8) 2.1 (1.7) 2.1 (1.8) 2.1 (3.6) 8.4 (4.8)
LOOCV1 3.6 (39.5) 2.7 (4.7) 3.0 (13.2)  3.2(16.2) 12,5 (45.2)
LOOCV2 1.7.(9.7) 1.5 (1.7) 1.5 (1.7) 1.6 (2.6) 6.3 (10.4)
LIN1 3.0 (3.0) 2.9 (2.3) 3.0 (2.5) 3.1 (4.1 12.0 (6.0)
LIN2 1.5 (2.3) 1.4 (1.4) 1.5 (1.7) 1.5 (3.6) 6.0 (4.9)
POLY 1.7 (1.6) 1.6 (1.5) 1.7 (1.6) 1.7 (3.5) 6.6 (4.7)
POLYs 1.7 (1.6) 1.6 (1.5) 1.7 (1.6) 1.7 (3.6) 6.6 (4.9)
POLY-Ave 6.2 (16.3) 54 @87 5.8 (10.8) 6.2 (12.1) 23.5 (22.6)
POLYs-Ave 6.2 (15.4) 54 8.7 57 (11.1) 6.3 (24.4) 23.6 (33.6)

and a slightly lower NMSE than the proposed methods. In setup
D (randomized case), LIN2 and LOOCV?2 had slightly lower
NMSE than POLY and POLYs. However, LOOCV?2 had over
two times the standard deviation compared to LIN2, POLY, and
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Fig. 3. Boxplots of the estimates of the parameters 7, Kk, Y&, and the inner

products (3;, X ;) for setup C. The black triangles (A) denote the true values.

POLYs. In summary, when the covariance matrices had a similar
structure (setup A and setup B), the proposed POLY and POLY's
methods performed best, whereas when the covariance matrices
had a different structure LOOCV2 and LIN2 had a slight edge.
The averaged versions of the proposed methods, POLY-Ave and
POLYs-Ave, performed well, when the covariance matrices had
similar structure (setup A and setup B), whereas in setup C and
setup D, their performance degraded compared to the methods
using class-specific tuning parameters. Lastly, the performances
of POLY and POLYs were almost identical as well as the
performances of POLY-Ave and POLYs-Ave.

Fig. 3 shows the boxplots of the estimated statistical param-
eters 7, Kk, Yk, and the inner products (3;,3;)r of setup
C, where classes 1 and 2 have an AR(1) covariance structure
and classes 3 and 4 have a CS structure. The median of the
estimated scales 7, coincide with the true values (shown as
black triangles (A) in the plot). The elliptical kurtosis xj, was
more difficult to estimate for heavier tailed distributions (classes
2 and 4 with v = 8 degrees of freedom) than lighter tailed
distributions (classes 1 and 3 with v = 12 degrees of freedom).
The sphericity 7, was well estimated for classes 1 and 2, which
both had the AR(1) covariance structure. Regarding classes 3
and 4, which had the CS covariance structure, the sphericity
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TABLE II
SPECIFICATIONS OF THE DATA SETS

Data set ‘ dimension p  classes K samples ny

Sonar | 59 2 ny = 111, no = 97
Vowel | 9 11 ny = 90 for all k
Tonosphere | 32 2 ny = 126, ny = 225

estimates were noticeably biased. This was most likely due
to the sphericity estimate not being asymptotically unbiased
for the covariance matrix with CS structure [22]. The inner
products were well estimated except for those pairs for which
both covariance matrices had a CS structure, i.e., (3;, X;)r, for
(17]) = {(37 3), (37 4)’ (4a 4)}

The estimated tuning parameters are shown in Fig. 2 for the
setup C. The figure depicts the theoretical NMSE of the estimator
as a function of the tuning parameters. The optimal tuning
parameter pair (o*, 3*) is denoted by the black triangle (A). The
small gray dots correspond to the estimated tuning parameters.
The first 400 estimates from the 4000 Monte Carlo trials are
shown. The mean of the estimated tuning parameters, denoted
by the blue square (M), was very close to the optimal value,
although a slight bias could be observed. The estimated tuning
parameters were clustered tightly around the optimal point,
especially for classes 1 and 2 whose covariance matrices had an
AR(1) structure. Regarding classes 3 and 4, whose covariance
matrices had the CS structure, there was slightly more spread in
the estimates.

B. Discriminant Analysis

We evaluated the performance of the proposed method POLY-
Ave in discriminant analysis classification. The implementation
was written in R (programming language) using three different
real data sets: Sonar, Vowel, and Ionosphere, which were ob-
tained from [36] via the R package mlbench [37]. The features
in the data sets, which were constant for some of the classes were
removed. Specifically, from the Vowel data set, we removed the
first feature, and from the Ionosphere data set, we removed the
first two features. The final specifications of the data sets are
given in Table II. In our implementation, we used the package
SpatialNP [38] for computing the SSCM more efficiently, and
the package tictoc [39] for recording the computation times of
the methods.

In the simulations, we randomly selected a proportion of the
samples as training data for estimating the sample means and
RSCMs. The remaining data was used as test data to estimate the
classification accuracy using the classification rule given in (3).
The training set size is given as the number of training samples
divided by the total number of samples in the data set. So, the
training set size is given as a number between zero and one,
where, e.g., 0.3 corresponds to the case where 30% of the data is
used as training data and 70% of the data is used as test data to
estimate the classification accuracy. The results were averaged
over 10 independent Monte Carlo repetitions for each training
set size.
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Fig.4. Classification accuracy and computation time of the different methods
for choosing the tuning parameters.

For comparison to our proposed method, we included
two different methods for implementing cross-validation.
The first method chooses the tuning parameters from a
two-dimensional grid of candidate parameter values as the
minimizer of the 5-fold or 10-fold cross-validated mis-
classification rate. In 10-fold cross-validation the two-
dimensional grid of tuning parameters scans all the pairs
in the set {0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1} >
«, 8. Correspondingly, in 5-fold cross-validation the set is
{0,0.25,0.5,0.75,1} 3 «, . This method is denoted by 5-CV
and 10-CV and was implemented using the packages: caret [40]
and KlaR [28], [29]. The second cross-validation method is
also based on selecting the tuning parameters that minimize the
cross-validated misclassification rate. However, instead of using
a predefined two-dimensional grid, the second method uses a
Nelder-Mead-algorithm included in the R package KlaR [28],
[29]. This method was implemented using both 5-fold and
10-fold cross-validation and is denoted by 5-CV-NM and 10-
CV-NM, respectively.

Fig. 4 depicts the mean classification accuracy on the test
set as a function of the training set size as well as the median
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Fig. 5. The estimated tuning parameters for the data sets.

computation time. It can be seen that all of the tested methods
gave comparable classification performance. Depending on the
data set and training set size, there were only minor differences.
The computation time was, however, substantially longer for the
cross-validation based methods and it tended to increase along
with the training data size faster than for the proposed method.
The chosen tuning parameter values are shown in Fig. 5. It can
be seen that for the cross-validation based methods the tuning
parameter values varied a lot with different training set sizes. The
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tuning parameters remained much more stable for our proposed
method.

VII. CONCLUSION

Two regularized sample covariance matrix estimators speci-
fied in (4) and in (9) for multiclass problems were considered
in this work and their theoretically optimal (in terms of MSE)
class-specific tuning parameters were derived in Theorem 1 and
Theorem 3, respectively. Since the optimal tuning parameters
depend on unknown scalar parameters in (10), a method for
their estimation was proposed. The usefulness of the method
was supported by the conducted numerical simulations, which
demonstrated very good MSE performance when compared to
similar methods. By averaging the class-specific tuning parame-
ters, the method was applied for choosing the tuning parameters
in an RDA classification framework. The proposed approach
had comparable classification performance to cross-validation
on each of the three tested real data sets, but had significantly
faster computation time. The codes for the proposed methods in
Matlab, R, and Python programming languages are available at
https://github.com/EliasRaninen.

APPENDIX A
THE MSE AND OPTIMAL TUNING PARAMETERS

A Notation and Useful Identities

Let A and B be symmetric positive semidefinite matrices of
same size. Using the notation

1 tA)

I and AT=A —1,,
we have the following identities:
tr(Ia) = tr(A)
tr(Al) =0
IanyB=1Ia+1n
(A+B)!=Al+B!
<IA»IB>F = <IA,B>F = <A7IB>F = p_ltI‘(A>tI'(B)
(AL Ig)r =0
(AL, BYYp = (A,B)r — (Ia,IB)F
<AI, >F = <A7 >F - <IA3 >F
o |AYE = (Al — TallF
Because of linearity, we also have E[Iao] = Igja) and
E[AT] = E[A]L. Regarding expressions involving the pooled
SCM S, we have
ISIE =32, 72 ISall + 32525 mim;(Si, Sj)F
||IS||12~* =2 7| Ts, % + Zz’;&j mimji(1s,, IS]->F
(-, 8)r =2, m(- 8))r
e (W Is)p =2, mi( Is; )r.

B MSE of the Estimator

The estimator 3, (cv, 3) in (4) can be rewritten as
Si(a, B) = ap(Sk — 8)' +aS' + B, _g) + Is.
The squared error || 2 (a, 8) — S || is

2
Haﬁ(Sk — S)I + aSI + ﬂI(sk__s) + Is - EkHF
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= O42ﬂ26~'22 + 0125021 + @52012 + a?Cyo + ﬁzéoz

+ aBC11 4 aCio + BCo1 + Coo,

where
Cao = ||SE — SY|2 oy = 2(S] — ST, SN
Cia =0 Con = |1

Coz = |Is, — Is|z Cun = —2(S} — 8", Sp)r
Cio = —2(S%, Zp)r Cor = 2(Is, — Is,Is — Zi)r
Coo = [[Is — Sz -

Taking the expectation of the squared error gives the MSE,
with the coefficients Cy,,, = E[é’mn], where m,n € {0,1,2}.

For example, Ch = E[Cy] = E[||S|[%] = E[|S|[F] —
E[Is|[E],  where  E[IS|[E] = >, 7 E[IS:[IF] + X4,
(B Zr and  E[|[Is[F] = 32, 77 E[||Ts, 2] +
> iz TiTj{Is,, Is;)r. The estimation of these terms is
explained in Section IV.

The optimal tuning parameters can be solved exactly as fol-
lows. Let L, = MSE(3;,). The gradient equations of the MSE

can be written as

OaLi = 2a8%Cas + 208Co1 + 2aC + BC11 + Chg
aﬁLk = 2&26022 + 042021 + 2BCh2 + aC11 + Coy.

Set 0, L1, = 0. Then, solving for a gives

1 BC11 + Cho
o=—= (11
2 32Ca3 + BCa1 + Cog

when 32C459 + BCo1 + Coy # 0, which holds a.s. for contin-
uous distributions (see Appendix A-C). By substituting (11)
into the equation dzLj, = 0, after some algebra, we obtain a
rational function. The zeros of the rational function can be
computed from the roots of its numerator, which is a quintic
(fifth order) polynomial in 3. To this end, general polynomial
solvers can be used. The critical points of the MSE are obtained
by substituting the roots into (11). The optimal tuning parameters
then correspond to the critical point, which yields the minimum
estimated MSE. If this critical point is not in the feasible set
[0,1] x [0, 1], the other critical points and the boundaries need
to be considered, i.e., the special cases C1-C4 (see Section III).
For this purpose the equations (7) and (8) of Theorem 2 can be
used.

In practise, it may be simpler to find an approximately optimal
tuning parameter pair by forming a two-dimensional grid of
(a, B) and choosing the point with the smallest estimated MSE
as explained in Subsection V-A. The approximate solution can
then further be finetuned by iterating (7) and (8) (see Ap-
pendix A-C).

C Alternate Convex Minimization

By considering one of the tuning parameters « or [ fixed,
the optimization of the remaining one is a convex problem.
This is known as biconvexity. To prove this, we show that the
second derivatives of the MSE L, are positive (implying strict
convexity). Indeed, we have

02 Ly, = 2B2Cay + 280 +2C5 > 0
8[23[% = 2&2022 + 2002 > 0.
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The first equation is an upward opening quadratic function in
(. Hence, it is positive if its corresponding discriminant function
is negative (there are no real roots). Indeed, the discriminant,
C3, — 4C95C4, is negative, i.e.,

(2E[(S), — S",8")p])? — 4E[|S}, — ST|F]E[|S"[[F] < Oas.,

which follows from the Cauchy-Schwartz inequality. The second
equation is also positive since C'y2 and Cj, are a.s. both positive.

Having concluded that the problem is biconvex, the (uncon-
strained) solution for /3 given a fixed value of « is

1 a?Co1 + aChy + Coy

b= 2 a2Cpn + Co

The corresponding (unconstrained) solution for a given a
fixed value of 8 was already given in (11). To guarantee that
a, B € [0, 1], a projection to the feasible set by the clip function
[-]§ has to be applied. Hence, we obtain (7) and (8).

Lastly, we make some remarks about the convergence of
sequentially iterating (7) and (8). Let (") and 5(*) denote the tun-
ing parameter values at the ith iteration. Denote the MSE func-
tion to be minimized as Ly : X x Y — R, where X = [0, 1]
and Y = [0, 1]. Since the MSE L, is bounded from below and
the sequence {L(a(, 3())};cy is monotonically decreasing,
it converges [41, Theorem 4.5]. Then, since Ly, is continuous, X
and Y are closed sets, and both (7) and (8) have unique solutions
(due to strict convexity) in the compact set [0,1], by [41, Theo-
rem 4.9], we have lim; . ||(a+1) g0+D) — (o) 30| =
0. Furthermore, since X and Y are subsets of R, the algo-
rithm is coordinate-wise and the sequence { (a(¥), 3())};cy con-
verges [41, pp. 398]. If the accumulation point of the sequence
{(a®, B}y is in the interior of [0, 1] x [0, 1], then it is a
stationary point [41, Corollary 4.10]. However, in theory, the
stationary point can be a global minimum, local minimum, or
a saddle point. Therefore, it is important to select the starting
point for the iterations carefully.

APPENDIX B
STREAMLINED ANALYTICAL ESTIMATOR

Let T € {S, Si}, then the analytical estimator is
(o, B) = af(S; —S) +a(S — Ig) + Ir.
The squared error is
laB(Sk = 8) + (S — Ir) + It — Zp g
= a?B°Byy + &*BBa1 + o Byg + afB1y + aBig + Boo,
where

Byy =[Sk — 8|7 By =2(Sk — 8,8 —In)r
By = IS —Tx|} Biy = 2(S, — 8,Ir — S)r
Bip = 2(S — I, It — )¢ Boo = |[Ir — Zi |l

By taking the expectation, we get the MSE, ie., By, =

E[Bn), form,n € {0, 1,2}. The partial derivatives of the MSE
are

Do Ly = 2a8%Bag + 2a3Ba; + 2aBag + BB11 + Big
0Ly, = 20425322 + a?By1 + aBi;.
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By setting dsLj;, =0, it is easy to see that (a« =0,/ =
—Big /BH) is a critical point. Note, however, that when o = 0,
the estimator does not depend on §. Then, if we assume « # 0,
solving for 3 yields

. _laBs + By
B 2 OéBQQ ’

Substituting this expression into d,, L = 0 and solving for «

yields

_ 2B19B2s — B11Bay

(12)
B%l — 4BsgBos
Substituting this back to the equation for 5 gives
3= 2B11 By — B10321. (13)
2B10B22 — B11 By
The Hessian matrix is
LO(O( LO(
H= 7.
Lpga Lpgp

where the second partial derivatives are
Loo = 0% Ly, = 26°Bay + 28Ba1 + 2By
Lgg = 03Ly, = 20° By
Lgo = Log = 0,03 L1, = 403 By + 2a B2y + Byy.
The determinant of the Hessian matrix is
det(H) = LaoLgs — LZg.

For the critical point (o =0,/ = —Byo/B11), we have
Lgg =0 and Log = By;. The determinant of the Hessian is
then — B3, < 0. This implies that the eigenvalues of the Hessian
matrix have different signs, and hence, the corresponding critical
point is a saddle point. Regarding the other critical point defined
by (12) and (13), after some manipulations, one has that the
determinant of the Hessian is

(2B19 B2z — B11B21)?
4B9yBas — B3,
which is positive since by applying the Cauchy-Schwartz in-
equality

0 < B = (2E[(Sx — S,S — I)p])?

< AE[|[Sk — S|F]E[|S — Ir|[F] = 4B22Bxo,

which holds with strict inequalities a.s. for any continuous distri-
bution. Furthermore, as also Lgg > 0 a.s. (and hence L, > 0
a.s.), the second critical point is a local minimum.
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