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Abstract—Recently, deep learned enabled end-to-end commu-
nication systems have been developed to merge all physical layer
blocks in the traditional communication systems, which make joint
transceiver optimization possible. Powered by deep learning, nat-
ural language processing has achieved great success in analyzing
and understanding a large amount of language texts. Inspired by
research results in both areas, we aim to provide a new view on
communication systems from the semantic level. Particularly, we
propose a deep learning based semantic communication system,
named DeepSC, for text transmission. Based on the Transformer,
the DeepSC aims at maximizing the system capacity and minimiz-
ing the semantic errors by recovering the meaning of sentences,
rather than bit- or symbol-errors in traditional communications.
Moreover, transfer learning is used to ensure the DeepSC appli-
cable to different communication environments and to accelerate
the model training process. To justify the performance of semantic
communications accurately, we also initialize a new metric, named
sentence similarity. Compared with the traditional communication
system without considering semantic information exchange, the
proposed DeepSC is more robust to channel variation and is able
to achieve better performance, especially in the low signal-to-noise
(SNR) regime, as demonstrated by the extensive simulation results.

Index Terms—Deep learning, end-to-end communication,
semantic communication, transfer learning, Transformer.

I. INTRODUCTION

BASED on Shannon and Weaver [2], communication could
be categorized into three levels: i) transmission of symbols;

ii) semantic exchange of transmitted symbols; iii) effects of se-
mantic information exchange. The first level of communication
mainly concerns about the successful transmission of symbols
from the transmitter to the receiver, where the transmission
accuracy is mainly measured at the level of bits or symbols.
The second level of communication deals with the semantic in-
formation sent from the transmitter and the meaning interpreted
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at the receiver, named as semantic communication. The third
level deals with the effects of communication that turn into the
ability of the receiver to perform certain tasks in the way desired
by the transmitter.

In the past decades, communications primarily focus on how
to accurately and effectively transmit symbols (measured by
bits) from the transmitter to the receiver. In such systems,
bit-error rate (BER) or symbol-error rate (SER) is usually taken
as the performance metrics [2]. With the development from the
first generation (1G) to the fifth generation (5G), the achieved
transmission rate has been improved tens of thousands of times
and the system capacity is gradually approaching to the Shan-
non limit. Recently, various new applications appear, such as
autonomous transportation, consumer robotics, environmental
monitoring, and tele-health [3], [4]. The interconnection of these
applications will generate a staggering amount of data in the
order of zetta-bytes. Besides, these applications need to support
massive connectivity over limited spectrum resources but require
lower latency, which poses critical challenges to traditional
source-channel coding. Semantic communications can process
data in the semantic domain by extracting the meanings of
data and filtering out the useless, irrelevant, and unessential
information, which further compresses data while reserving the
meanings. Moreover, semantic communication is expected to be
robust to terrible channel environments, i.e., low signal-to-noise
ratio (SNR) region, which fits well the applications requiring
high reliability. These factors motivate us to develop intelligent
communication systems by considering the semantic meaning
behind digital bits to enhance the accuracy and efficiency of
communications.

Different from the conventional communications, semantic
communications aim to transmit the information relevant to
the transmission goal. For example, for text transmission, the
meaning is thereby essential information and the expression,
i.e., is expression of word, are unnecessary. By doing so, the
data traffic would be reduced significantly. Such a system could
be particularly useful when the bandwidth is limited, the SNR is
low, or the BER/SER is high in typical communication systems.

Historically, the concept of semantic communication was
developed several decades ago. Inspired by Weaver [2], Carnap
et al. [5] were the first to introduce the semantic information
theory (SIT) based on logical probabilities ranging over the
contents. Afterwards, a generic model of semantic communi-
cation (GMSC) was proposed as an extension of the SIT, where
the concepts of semantic noise and semantic channel were first
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defined [6]. As pointed out in [7], the analysis and design of a
communication system for optimal transmission of intelligence
are faced with several challenges. For instance, how to define
error in the intelligence transmission? In [8], a lossless semantic
data compression theory by applying the GMSC was developed,
which means that data can be compressed at semantic level so
that the size of the data to be transmitted can be reduced signifi-
cantly. Recently, an end-to-end (E2E) semantic communication
framework integrates the semantic inference and physical layer
communication problems, where the transceiver is optimized
to reach the Nash equilibrium while minimizing the average
semantic errors [9]. However, the semantic error in [9] measures
the meaning of each word rather than the whole sentence. These
aforementioned works provide some insights and remarks for
the design of semantic communications, but many issues remain
unexplored.

Recent advancements on deep learning (DL) based natural
language processing (NLP) and communication systems inspire
us to investigate semantic communication to realize the sec-
ond level communications as aforementioned [10]–[15]. The
considered semantic communication system mainly focuses on
the joint semantic-channel coding and decoding, which aims
to extract and encode the semantic information of sentences
rather than simply a sequence of bits or a word. For the semantic
communication system, we face the following questions:

Question 1: How to define the meaning behind the bits?
Question 2: How to measure the semantic error of sentences?
Question 3: How to jointly design the semantic and channel

coding?

In this paper, we investigate the semantic communication
system by applying machine translation techniques in NLP to
physical layer communications. Specifically, we propose a DL
enabled semantic communication system (DeepSC) to address
the aforementioned challenges. The main contributions of this
paper are summarized as follows:
� Based on the Transformer [16], a novel framework for

the DeepSC is proposed, which can effectively extract
the semantic information from texts with robustness to
noise. In the proposed DeepSC, a joint semantic-channel
coding is designed to cope with channel noise and semantic
distortion, which addresses aforementioned Question 3.

� The transceiver of the DeepSC is composed of semantic
encoder, channel encoder, channel decoder, and semantic
decoder. To understand the semantic meaning as well as
maximize the system capacity at the same time, the receiver
is optimized with two loss functions: cross-entropy and
mutual information. Moreover, a new metric is proposed
to accurately reflect the performance of the DeepSC at the
semantic level. These address the aforementioned Ques-
tions 1 and 2.

� To make the DeepSC applicable to various communica-
tion scenarios, deep transfer learning is adopted to ac-
celerate the model re-training. With the re-trained model,
the DeepSC can recognise various knowledge input and
recover semantic information from distortion.

� Based on extensive simulation results, the proposed
DeepSC outperforms the traditional communication sys-
tem and improves the system robustness at the low SNR
regime.

The rest of this paper is organized as follows. Related work
is briefly reviewed in Section II. The framework of a semantic
communication system is presented and a corresponding prob-
lem is formulated in Section III. Section IV details the proposed
DeepSC and extends it to dynamic environments. Numerical
results are presented in Section VI to show the performance of
the DeepSC. Finally, Section VII concludes this paper.
Notation: Cn×m and Rn×m represent sets of complex and

real matrices of size n×m, respectively. Bold-font variables
denote matrices or vectors. x ∼ CN(μ, σ2) means variable x
follows a circularly-symmetric complex Gaussian distribution
with mean μ and covariance σ2. (·)T and (·)H denote the
transpose and Hermitian, respectively. �{·} and �{·} refer to
the real and imaginary parts of a complex number. Finally,a⊗ b
indicates the inner product of vectors a and b.

II. RELATED WORK

This section provides a brief review of the related work on the
E2E physical layer communication systems and the deep neural
network (DNN) techniques adopted in NLP.

A. End-to-End Physical Layer Communication Systems

DL techniques have shown great potential in processing vari-
ous intelligent tasks, i.e., computer vision and NLP. Meanwhile,
it is possible to train neural networks and run them on mobile
devices due to the increasing hardware computing capability.
In the communication area, some pioneering works have been
carried on DL based E2E physical layer communication sys-
tems, which merge the blocks in traditional communication
systems [17]–[23]. By adopting the structure of autoencoder in
DL and removing block structure, the transmitter and receiver
in the E2E system are optimized jointly as an E2E reconstruc-
tion task. It has been demonstrated that such an E2E system
outperforms uncoded binary phase shift keying (BPSK) and
Hamming coded BPSK in terms of BER [17]. Besides, there
are several initial works on dealing with the missing channel
gradient during training. A DNN based two-phase of training
processing has been proposed, where the transceiver is trained
by an stochastic channel model and the receiver is fine-tuned
under real channels [18]. Reinforcement learning has been ex-
ploited in [19] to acquire the channel gradient under an unknown
channel model, which achieves better performance than the
differential quadrature phase-shift keying (DQPSK) over real
channels. A conditional generative adversarial net (GAN) has
been applied in [20] to use a DNN to represent the channel
distortion so that the gradients can pass through a unknown
channel to the transmitter DNN during the training of the E2E
communication system. Meta-learning combined with a limited
number of pilots has been developed for training the transceiver
and enables the fast training of network with less amount of
data [21].
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Considering the types of sources, the joint source-channel
coding for texts [22] and images [23] aims to recover the source
information at the receiver directly rather than the digital bits.
Meanwhile, traditional metrics, such as BER, cannot reflect the
performance for such systems well. Therefore, word-error rate
and peak signal-to-noise ratio (PSNR) are adopted for measuring
the accuracy of source information recovery.

B. Semantic Representation in Natural Language Processing

NLP makes machines understand human languages, with the
main goal to understand the syntax and text. Initially, natural
language can be described by the joint probability model accord-
ing to the context [24]. Thus, language models provide context
to distinguish words and phrases that have similar semantic
meaning. Although such NLP technologies based on statistical
model are developed to describe the probability of a certain
word coming after another in a sentence, it is hard to deal with
long sentences, i.e. the ones over 15 words, and the syntax.
To understand long sentences, the word2vec model in [25]
captures the relationship among words, which makes similar
words ending up with a closer distance in the vector space. Even
if these dense word vectors can capture the relationship among
words, they fail to describe syntax information. In order to solve
such problems, the underlying meaning of texts is represented
by using various DL techniques, which is able to extract the
semantic information in long sentences and their syntax. A deep
contextualized word representation has been proposed in [26],
which models both complex characteristics of word usages, e.g.,
syntax and semantics, and how these usages vary across linguis-
tic contexts (i.e., to model polysemy). However, the above word
representation approaches are designed for specific tasks and
may need to be redesigned whenever the task changes. In [27], a
general word representation model, named bidirectional encoder
representations from transformers (BERT), has been developed
to provide word vectors for various NLP tasks without requiring
redesign of word representations.

C. Comparison of State-of-Art NLP Techniques

There are three types of neural networks used for NLP
tasks, including recurrent neural networks (RNNs), convolu-
tional neural networks (CNNs) and fully-connected neural net-
works (FCNs) [28]. By introducing RNNs, language models
can learn the whole sentences and capture the syntax informa-
tion effectively [29]. However, for long sentences, particularly,
the distance between subject and predicate is more than 10
words, RNNs cannot find the correct subject and predicate.
For example, for sentence “the person who works in the new
post office is walking to the store”, RNNs fail to recognise the
relationship between “the person” and “is”. Besides, because
of linear sequence structure, RNNs lack of parallel computing
capability, which means that RNNs are time-consuming. CNNs
were born with the capability of parallel computing [30]. How-
ever, even if CNNs can use deeper network to extract semantic
information in long sentences, its performance is not as good
as that of RNNs because the kernel size in CNNs is small to
guarantee the computational efficiency. By combining with the

Fig. 1. The framework of proposed DL enabled semantic communication
system, DeepSC.

attention mechanism, language models based on FCNs, such
as Transformer [16], pay more attention to the useful seman-
tic information for performance improvement on various NLP
tasks. It is worth noting that the Transformer has the advantages
of both RNNs and CNNs [16]. Particularly, the self-attention
mechanism is adopted, which enables the models to understand
sentences regardless of their lengths.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The considered system model consists of two levels: se-
mantic level and transmission level, as shown in Fig. 1. The
semantic level addresses semantic information processing for
encoding and decoding to extract the semantic information.
The transmission level guarantees that semantic information
can be exchanged correctly over the transmission medium.
Overall, we consider an intelligent E2E communication system
with the stochastic physical channel, where the transmitter and
the receiver have certain background knowledge, i.e., different
training data. The background knowledge could be various for
different application scenarios.

Definition 1: Semantic noise is a type of disturbance in the
exchange of a message that interferes with the interpretation of
the message due to ambiguity in words, a sentence or symbols
used in the message transmission.

Definition 2: Physical channel noise is caused by the physical
channel impairment, such as, additive white Gaussian noise
(AWGN), fading channel, and multiple path, which incurs the
signal attenuation and distortion.

A. Problem Description

As in Fig. 1, the transmitter maps a sentence, s, into a complex
symbol stream,x, and then passes it through the physical channel
with transmission impairments, such as distortion and noise. The
received, y, is decoded at the receiver to estimate the original
sentence, s. We jointly design the transmitter and receiver with
DNNs since DL enables us to train a model with inputting
variable-length sentences and different languages.

Particularly, we assume that the input of the DeepSC is a
sentence, s = [w1, w2, . . . , wL], where wl represents the l-th
word in the sentence. As shown in Fig. 1, the transmitter consists
of two parts, named semantic encoder and channel encoder, to
extract the semantic information from s and guarantee successful
transmission of semantic information over the physical channel.
The encoded symbol stream can be represented by

x = Cα (Sβ (s)) , (1)
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where x ∈ CM×1, Sβ(·) is the semantic encoder network with
the parameter set β and Cα(·) is the channel encoder with the
parameter set α. In order to simplify the analysis, we assume
the coherent time is M . If x is sent, the signal received at the
receiver will be

y = hx+ n, (2)

wherey ∈ CM×1,h represents the Rayleigh fading channel with
CN(0, 1) and n ∼ CN(0, σ2

n). For E2E training of the encoder
and the decoder, the channel must allow back-propagation.
Physical channels can be formulated by neural networks. For
example, simple neural networks could be used to model the
AWGN channel, multiplicative Gaussian noise channel, and
the erasure channel [22]. While for the fading channels, more
complicated neural networks are required [20]. In this paper,
we mainly consider the AWGN channels and Rayleigh fading
channels for simplicity while focus on semantic coding and
decoding.

As shown in Fig. 1, the receiver includes channel decoder and
semantic decoder to recover the transmitted symbols and then
transmitted sentences, respectively. The decoded signal can be
represented as

ŝ = S−1
χ

(
C−1

δ (y)
)
, (3)

where the ŝ is the recovered sentence, C−1
δ (·) is the channel

decoder with the parameter set δ and S−1
χ (·) is the semantic

decoder network with the parameter set χ.
The goal of the system is to minimize the semantic errors

while reducing the number of symbols to be transmitted. How-
ever, we face two challenges in the considered system. The
first challenge is how to design joint semantic-channel coding.
The other one is semantic transmission, which has not been
considered in the traditional communication system. Even if
the existing communication system can achieve a low BER,
several bits, distorted by the noise and beyond error correction
capability, could lead to understanding difficulty as the partial
semantic information of the whole sentence might be missed.
In order to achieve successful recovery at semantic level, we
design semantic and channel coding jointly in order to keep the
meaning between ŝ and s unchanged, which is enabled by a new
DNN framework. The cross-entropy (CE) is used as the loss
function to measure the difference between s and ŝ, which can
be formulated as

LCE(s, ŝ;α,β,χ, δ) =

−
∑
l=1

q (wl) log (p (wl)) + (1− q (wl)) log (1− p (wl)) ,

(4)
where q(wl) is the real probability that the l-th word,wl, appears
in estimated sentence s, and p(wl) is the predicted probability
that the i-th word, wi, appears in sentence ŝ. The CE can
measure the difference between two probability distributions.
Through reducing the loss value of CE, the network can learn
the word distribution, q(wl), in the source sentence, s, which
indicates that the syntax, phrase, the meaning of words in context
can be learnt by the network. Besides, jointly designing and
training semantic-channel coding can make the whole network

learning the knowledge for the specific goal. In other words, the
channel coding can pay more attention in protecting the semantic
information related to transmission goal while neglecting other
irrelevant information. Separately designing will make channel
coding addressing all information equally.

B. Channel Encoder and Decoder Design

One important goal on designing a communication system is
to maximize the capacity or the data transmission rate. Com-
pared with BER, the mutual information can provide extra
information to train a receiver. The mutual information of the
transmitted symbols, x, and the received symbols, y, can be
computed by

I (x;y) =

∫
X×Yp(x, y) log

p(x, y)

p(x)p(y)
dxdy

= Ep(x,y)

[
log

p(x, y)

p(y)p(x)

]
,

(5)

where (x,y) is a pair of random variables with values over the
space X × Y , where X and Y are the spaces for x and y. p(x)
and p(y) are the marginal probability of sending x and received
y, respectively, and p(x, y) is the joint probability of x and y.
The mutual information is equivalent to the Kullback-Leibler
(KL) divergence between the marginal probabilities and the joint
probability, which is given by

I (x;y) = DKL (p(x, y) ‖p(x)p(y) ) . (6)

From [31], we have the following theorem,
Theorem 1: The KL divergence admits the following dual

representation

DKL (P ‖Q ) = sup
T :Ω→R

EP [T ]− log
(
EQ

[
eT

])
, (7)

where the supremum is taken over all functions T such that the
two expectations are finite.

According to Theorem 1, the KL divergence can also be
represented as

DKL (p(x, y) ‖p(x)p(y) ) � Ep(x,y) [T ]− log
(
Ep(x)p(y)

[
eT

])
.

(8)
Thus, the lower bound of I(x;y) can be obtained from (6) and
(8). In order to find a tight bound on the I(x;y), an unsupervised
method is used to train the network T , where T can be approxi-
mated by neural network. Meanwhile, the expectation in (8) can
be computed by sampling, which converges to the true value
as the number of samples increases. Then, we can optimize the
encoder by maximizing the mutual information defined in (8)
and the related loss function can be given by

LMI(x,y;T ) = Ep(x,y) [fT ]− log
(
Ep(x)p(y)

[
efT

])
, (9)

where fT is composed by a neural network, in which the inputs
are samples fromp(x, y),p(x), andp(y). In our proposed design,
x is generated by the function Cα and Sβ, thus the loss function
can be represented by LMI(x,y;T,α,β) with

LMI(x,y;T,α,β) � I(x;y). (10)
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From (10), the loss function can be used to train neural net-
works to get α, β, and T . For example, the mutual information
can be estimated by training networkT when the encodersα and
β are fixed. Similarly, the encoder can be optimized by training
α and β when the mutual information is obtained.

C. Performance Metrics

Performance criteria are important to the system design. In
the E2E communication system, the BER is usually taken as the
training target by the transmitter and receiver, which sometimes
neglects the other aspect goals of communication. For text
transmission, BER cannot reflect performance well. Except from
human judgement to establish the similarity between sentences,
bilingual evaluation understudy (BLEU) score is usually used
to measure the results in machine translation [32], which will be
used as one of the performance metrics in this paper. However,
the BLEU score can only compare the difference between words
in two sentences rather than their semantic information. There-
fore, we initialize a new metric, named sentence similarity, to
describe the similarity level of two sentences in terms of their
semantic information, which is introduced in the following. This
provides a solution to Question 2.

1) BLEU Score: Through counting the difference ofn-grams
between transmitted and received texts, where n-grams means
that the size of a word group. For example, for sentence “weather
is good today,” 1-gram: “weather,” “is,” “good” and “today,”
2-grams: “weather is,” “is good” and “good today”. The same
rule applies for the rest.

For the transmitted sentence s with length ls and the decoded
sentence ŝ with length l̂s, the BLEU can be expressed as

logBLEU = min

(
1− l̂s

ls
, 0

)
+

N∑
n=1

un log pn, (11)

where un is the weights of n-grams and pn is the n-grams score,
which is

pn =

∑
k min (Ck (̂s) , Ck (s))∑

k min (Ck (̂s))
, (12)

whereCk(·) is the frequency count function for thek-th elements
in n-th grams.

The output of BLEU is a number between 0 and 1, which
indicates how similar the decoded text is to the transmitted
text, with 1 representing highest similarity. However, few human
translations will attain the score of 1 since word error may not
make the meaning of a sentence different. For instance, the two
sentences, “my car was parked there” and “my automobile was
parked there,” have the same meaning but with different BLEU
scores since they use different words. To characterize such a
feature, we propose a new metric, the sentence similarity, at the
sentence level in addition to the BLEU score.

2) Sentence Similarity: A word can take different meanings
in different contexts. For instance, the meanings of mouse in
biology and machine are different. The traditional method, such
as word2vec [25], cannot recognise the polysemy, of which
the problem is how to use an numerical vector to express the
word while the numerical vector varies in different contexts.

According to the semantic similarity, we propose to calculate
the sentence similarity between the original sentence, s, and the
recovered sentence, ŝ, as

match (̂s, s) =
BΦ (s) ·BΦ(̂s)

T

‖BΦ (s)‖ ‖BΦ (̂s)‖ , (13)

whereBΦ, representing BERT [27], is a huge pre-trained model
including billions of parameters used for extracting the semantic
information. The sentence similarity defined in (13) is a number
between 0 and 1, which indicates how similar the decoded
sentence is to the transmitted sentence, with 1 representing
highest similarity and 0 representing no similarity between s
and ŝ.

Compared with BLEU score, BERT has been fed by billions
of sentences. Therefore, it has already learnt the semantic infor-
mation from these sentences and can generate different semantic
vectors in different contexts effectively. With the BERT, the
semantic information behind a transmitted sentence, s, can be
expressed as c. Meanwhile, the semantic information conveyed
by the estimated sentence is expressed as ĉ. For c and ĉ, we can
compute the sentence similarity by match(c, ĉ).

IV. PROPOSED DEEP SEMANTIC COMMUNICATION SYSTEMS

In this section, we propose a DNN for the considered se-
mantic communication system, named as DeepSC, of which the
Transformer is adopted for text understanding. Then, transfer
learning is adopted to make the DeepSC applicable to different
background knowledge and dynamic communication environ-
ments. This provides the solutions to Question 1,3.

A. Basic Model

The proposed DeepSC is as shown in Fig. 2. Particularly, the
transmitter consists of a semantic encoder to extract the semantic
features from the texts to be transmitted and a channel encoder
to generate symbols to facilitate the transmission subsequently.
The semantic encoder includes multiple Transformer encoder
layers and the channel encoder uses dense layers with different
units. The AWGN channel is interpreted as one layer in the
model. Accordingly, the DeepSC receiver is composited with a
channel decoder for symbol detection and a semantic decoder
for text estimation, the channel decoder includes dense layers
with different units and the semantic decoder includes multiple
Transformer decoder layers. The loss function can be expressed
as

Ltotal = LCE(s, ŝ;α,β,χ, δ)− λLMI(x,y;T,α,β), (14)

where the first term is the loss function considering the sentence
similarity, which aims to minimize the semantic difference be-
tween s and ŝ by training the whole system. The second one is
the loss function for mutual information, which maximize the
achieved data rate during the transmitter training. The parameter
λ (0 ≤ λ ≤ 1) is the weight for the second term.

The core of Transformer is the multi-head self-attention mech-
anism, which enables the Transformer to view the previous
predicted word in the sequence, thereby better predicting the
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Fig. 2. The proposed neural network structure for the semantic communication system.

Fig. 3. An example of the self-attention mechanism following long-distance
dependency in the Transformer encoder.

Algorithm 1: DeepSC Network Training Algorithm.
Initialization: Initial the weights W and bias b.
1: Input: The background knowledge set K.
2: Create the index to words and words to index, and then

embedding words.
3: while Stop criterion is not met do
4: Train the mutual information estimated model.
5: Train the whole network.
6: end while
7: Output: The whole network

Sβ(·), Cα(·), C−1
δ (·), S−1

χ (·).

next word. Fig. 3 gives an example of the self-attention mecha-
nism for the word ‘it’. From Fig. 3, attention attend to a distant
dependency of the pronoun, ‘it’, completing pronoun reference
“the animal,” which demonstrates that the self-attention mecha-
nism can learn the semantic and therefore solve aforementioned
Question 1.

As shown in Algorithm 1, the training process of the DeepSC
consists of two phases due to different loss functions. After
initializing the weights,W, bias,b, and using embedding vector
to represent the input words, the first phase is to train the mutual
information model by unsupervised learning to estimate the
achieved data rate for the second phase. The second phase is to
train the whole system with (14) as the loss function. Each phase
aims to minimize the loss by gradient descent with mini-batch
until the stop criterion is met, the max number of iteration is
reached, or none of terms in the loss function is decreased any
more. Different from performing semantic coding and channel
coding separately, where the channel encoder/decoder will deal
with the digital bits rather than the semantic information, the

Fig. 4. The training framework of the DeepSC: phase 1 trains the mutual
information estimation model; phase 2 trains the whole network based on the
cross-entropy and mutual information.

joint semantic-channel coding can preserve semantic informa-
tion when compressing data, which provides the detailed solu-
tion for aforementioned Question 3. The two training phases are
described in the following:

1) Training of Mutual Information Estimation Model: The
mutual information estimation model training process is illus-
trated in Fig. 4 and the pseudocode is given in Algorithm 2. First,
the knowledge set K generates a minibatch of sentences S ∈
�B×L×1, where B is the batch size, L is the length of sentences.
Through the embedding layer, the sentences can be represented
as a dense word vector E ∈ �B×L×E , where E is the dimension
of the word vector. Then, pass the semantic encoder layer to
obtain M ∈ �B×L×V , the semantic information conveyed by
S, where V is the dimension of Transformer encoder’s output.
Then, M is encoded into symbols X to cope with the effects
from the physical channel, whereX ∈ �B×NL×2. After passing
through the channel, the receiver obtains signal Y distorted by
the channel noise. Based on (9), the loss, LMI(X,Y;T,α,β),
can be computed based on the transmitted symbols, X, and
the received symbols, Y, under the AWGN channels. Finally,
according to computed LMI, the stochastic gradient descent
(SGD) is exploited to optimize the weights and bias of fT (·).

2) Whole Network Training: The whole network training
process is illustrated in Algorithm 3. First, minibatch S from
knowledge K is encoded into M at the semantic level, then M is
encoded into symbol X for transmission over the physical chan-
nels. At the receiver, distorted symbols Y are received and then
decoded by the channel decoder layer, where M̂ ∈ �B×L×V is
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Algorithm 2: Train Mutual Information Estimation Model.
1: Input: The knowledge set K.
2: Transmitter:
3: BatchSource(K) → S.
4: Sβ(S) → M.
5: Cα(M) → X.
6: Transmit X over the channel.
7: Receiver:
8: Receive Y.
9: Compute loss LMI by (9).

10: Train T → Gradient descent (T,LMI).
11: Output: The mutual information estimated model

fT (·).

Algorithm 3: Train the Whole Network.
1: Input: The knowledge set K.
2: Transmitter:
3: BatchSource(K) → S.
4: Sβ(S) → M.
5: Cα(M) → X.
6: Transmit X over the channel.
7: Receiver:
8: Receive Y.
9: C−1

δ (Y) → M̂.
10: S−1

χ (M̂) → Ŝ.
11: Compute loss function Ltotal by (14).
12: Train β,α, δ,χ → Gradient descent (β,α, δ,

χ,Ltotal).
13: Output: The whole network

Sβ(·), Cα(·), C−1
δ (·), S−1

χ (·).

the recovered semantic information of the sources. Afterwards,
the transmitted sentences are estimated by the semantic decoder
layer. Finally, the whole network is optimized by the SGD, where
the loss is computed by (14).

B. Transfer Learning for Dynamic Environment

In practice, different communication scenarios result in the
different channels and the training data. However, the re-training
of transmitter and receiver to meet the requirements of dynamic
scenarios introduces extra costs. To address this, a deep transfer
learning approach is adopted, which focuses on storing knowl-
edge gained while solving a problem and applying it to a different
but related problem.

The training process of adopting transfer learning is illustrated
in Fig. 5 and the pseudocode is given in Algorithm 4, where the
training modules, mutual information estimation model training,
and whole network training, are the same as Algorithm 2 and
Algorithm 3. First, load the pre-trained transmitter and receiver
based on knowledge K0 and channel N0. For applications with
different background knowledge, we only need to redesign
and train part of the semantic encoder and decoder layers and
freeze the channel encoder and decoder layers. For different

Algorithm 4: Transfer Learning Based Training for Dy-
namic Environment.

Initialization: Load the pre-trained model Sβ(·), Cα(·),
C−1

δ (·), S−1
χ (·).

Function: Training for different background knowledge
1: Input: The different background knowledge set K1 .
2: Freeze Cα(·) and C−1

δ (·).
3: Redesign and train part of Sβ(·) and S−1

χ (·).
4: while Stop criterion is not met do
5: Train the mutual information estimated model.
6: Train the whole network.
7: end while
8: Output: The adopted whole network.

Function: Training for different channel conditions
9: Input: The background knowledge set K with the

different channel parameters.
10: Freeze Sβ(·) and S−1

χ (·).
11: Redesign and re-train part of Cα(·) and C−1

δ (·).
12: while Stop criterion is not met do
13: Train the mutual information estimated model.
14: Train the whole network.
15: end while
16: Output: The re-trained network.

Fig. 5. Transfer learning based training framework: (a) re-train channel en-
coder and decoder for different channels; (b) re-train semantic encoder and
decoder for different background knowledge.

communication environments, we redesign and train part of the
channel encoder and decoder layers and freeze the semantic
encoder and decoder layers. If the knowledge and channel are
totally different, the pre-trained transceiver can also reduce the
time consumption because the weights of some layers in the
pre-trained model can be reused in the new model even if the
most layers need to redesign. After the other modules are trained,
we will unfreeze them and train the whole network with few
epochs to converge to the global optimum.

V. NUMERICAL RESULTS

In this section, we compare the proposed DeepSC with other
DNN algorithms and the traditional source coding and channel
coding approaches under the AWGN channels and Rayleigh
fading channels, where we assume perfect CSI for all schemes.
The transfer learning aided DeepSC is also verified under the
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erase channel and fading channel as well as different background
knowledge.

A. Simulation Settings

The adopted dataset is the proceedings of the European Par-
liament [33], which consists of around 2.0 million sentences and
53 million words. The dataset is pre-processed into lengths of
sentences with 4 to 30 words and is split into training data and
testing data.

In the experiment, we set three Transformer encoder and
decoder layer with 8 heads and the channel encoder and decoder
are set as dense with 16 units and 128 units, respectively. For the
mutual information estimation model, we set two dense layers
with 256 units and one dense layer with 1 unit to mimic the
function T in (7), where 256 units can extract full information
and 1 unit can integrate information. These settings can be found
in Table I. For the baselines, we adopt joint source-channel
coding based on neural network and the typical methods for
separate source and channel codings.
� DNN based joint source-channel coding [22]: The net-

work consists of Bi-directional Long Short-Term Memory
(BLSTM) layers. We label it as JSCC [22] in the simulation
figures.

� Traditional methods: To perform the source and channel
coding separately, we use the following technologies re-
spectively:
– Source coding: Huffman coding, fixed-length coding

(5-bit), and Brotli coding, where Brotli coding uses
2nd context model to compress the context information
and every 128 sentences are compressed together in the
simulation.

– Channel coding: Turbo coding [34] and Reed-Solomon
(RS) coding [35]. We adopt turbo decoding method is
log-MAP algorithm with 5 iterations.

The BLEU and sentence similarity are used to measure the
performance. The simulation is performed by the computer with
Intel Core i7-9700 CPU@3.00 GHz and NVIDIA GeForce GTX
2060.

B. Basic Model

Fig. 6 shows the relationship between the BLEU score and
the SNR under the same number of transmitted symbols over
AWGN and Rayleigh fading channels, where the traditional
approaches use 8-QAM, 64-QAM, and 128-QAM for the mod-
ulation. Among the traditional baselines in Fig. 6(a), Brotli
coding outperforms the Huffman and fixed-length encoding over
AWGN channels when the turbo coding is adopted for channel
coding. The traditional approaches perform better than the DNN
based method when the SNR is above 12 dB since the distortion
from channel is decreased, where the Brotli with turbo coding
performs better than the DeepSC. We observe that all DL enabled
approaches are more competitive in the low SNR regime.

In Fig. 6(b), the DL enabled approaches outperform all tra-
ditional approaches over the Rayleigh fading channels, where
RS coding is better than turbo coding in terms of 2-grams
to 4-grams. This is because RS coding is linear block coding

TABLE I
THE SETTING OF THE DEVELOPED SEMANTIC NETWORK

with long block-length, and can correct long series of bits,
however, turbo coding is a type of convolutional coding with
short block-length, so that the adjacent words have higher error
rate. DeepSC is not only suitable for short block-length but
also performs better in decoding adjacent words, i.e., 4-grams.
Note that the BLEU score of the method with Brotil coding and
turbo coding is always 0 over Rayleigh fading channels. This
is because that 128 sentences are compressed together, while
Brotil decoding requires error-free codes after channel decoding
for the codes corresponding to the 128 sentences. However, it
is almost to guarantee the error-free transmission over Rayleigh
fading channels. Therefore, we fail to restore any of the 128
sentences compressed together in Brotil coding as shown in
Fig. 6(b). Besides, the lower BLEU score of the DL enabled
approaches may not be caused by word errors. For example,
it may be due to substitutions of words using synonyms or
rephrasing, which does not change the meaning of the word.
Fig. 6 also demonstrates that the joint semantic-channel coding
design outperforms the traditional methods, which provides
solution to Question 1 and 3.

Fig. 7 shows that the proposed performance metric, the sen-
tence similarity, with respect to the SNR under the same total
number of symbols, where the traditional approaches use 8-
QAM, 64-QAM and 128-QAM. In Fig. 7(a), the proposed metric
has shown the same tendency compared with the BLEU scores.
Note that for part of the traditional methods, i.e., Huffman with
Turbo coding, even if it can achieve about 20% word accuracy
in BLEU score (1-gram) from Fig. 6(a) when SNR = 9 dB,
people are usually unable to understand the meaning of texts
full of errors. Thus, the sentence similarity in Fig. 7(a) almost
converges to 0. For the DeepSC, it achieves more than 90%
word accuracy in BLEU score (1-gram) when SNR is higher
than 6 dB in Fig. 6(a), which means people can understand
the texts well. Therefore the sentence similarity tends to 1.
Fig. 6(b) and Fig. 7(b) show the same tendency. The benchmark,
including the DNN based JSCC method in [22] under Rayleigh
fading channels, also gets much higher score than the traditional
approaches in terms of the sentence similarity since it can capture
the features of the syntax and the relationship of the words, as
well as present texts that is easier for people to understand. Few
representative results are shown in Table II.
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Fig. 6. BLEU score versus SNR for the same total number of transmitted symbols, with Huffman coding with RS (30,42) in 64-QAM, 5-bit coding with RS
(42, 54) in 64-QAM, Huffman coding with Turbo coding in 64-QAM, 5-bit coding with Turbo coding in 128-QAM, Brotli coding with Turbo coding in 8-QAM;
the DNN based JSCC [22] trained over the AWGN channels and Rayleigh fading channels, our proposed DeepSC trained over the AWGN channels and Rayleigh
fading channels.

Fig. 7. Sentence similarity versus SNR for the same total number of transmitted symbols, with Huffman coding with RS (30,42) in 64-QAM; 5-bit coding with RS
(42, 54) in 64-QAM; Huffman coding with Turbo coding in 64-QAM; 5-bit coding with Turbo coding in 128-QAM; Brotli coding with Turbo coding in 8-QAM; an
E2E trained over the AWGN channels and Rayleigh fading channels [22]; our proposed DeepSC trained over the AWGN channels and Rayleigh fading channels.
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TABLE II
THE SAMPLE SENTENCES BETWEEN DIFFERENT METHODS OVER RAYLEIGH FADING CHANNELS WHEN SNR IS 18 dB

Fig. 8. BLEU score (1-gram) versus the average number of symbols used for
one word in the DeepSC, SNR = 12 dB.

In brief, we can conclude that the tendency in sentence similar-
ity is more closer to human judgment and the DeepSC achieves
the best performance in terms of both BLEU score and sentence
similarity. Compared to the simulation results with BLEU score
as the metric, the sentence similarity score can better measure
the semantic error, which solves the Question 2.

Fig. 8 illustrates that the impact of the number of symbols
per word on the 1-gram BLEU score when SNR is 12 dB.
As the number of symbols per word grows, the BLEU scores
increase significantly due to the increasing distance between
constellations gradually. Generally, people can understand the
basic meaning of transmitted sentences with over 85% word
accuracy in BLEU score (1-gram). For short sentences consisted
of 5 to 13 words, our proposed DeepSC can achieve 85%
accuracy with 4 symbols per word, which means that we can
use fewer symbols to represent one word in the environment
that mainly transmits short sentences. Therefore, it can achieve
high speed transmission rate. For longer sentences consisted
from of 21 to 30 words, the proposed DeepSC faces more
difficulties to understand the complex structure of the sentences
in the transmitted texts. Hence the performance is degraded with
longer sentences. One way to improve the BLEU score is to
increase the average number of symbols used for each word.

C. Mutual Information

Fig. 9 demonstrates the relationship between SNR and mutual
information after training. As we can imagine, the mutual infor-
mation increases with SNR. From the figure, the performance of
the transceiver trained with the mutual information estimation

Fig. 9. SNR versus mutual information for different trained encoders, with 8
symbols per word.

Fig. 10. The impact of different learning rates with training SNR = 12 dB.

model outperforms that without such a model. From Fig. 9, with
the proposed mutual information estimation model, the obtained
mutual information at SNR = 4 dB is approximately same as
that without the training model at SNR = 9 dB. From another
point of view, the mutual information estimation model leads to
better learning results, i.e., data distribution, at the encoder to
achieve higher data rate. In addition, this shows that introducing
(9) in loss function can improve the mutual information of the
system.

Fig. 10 draws the relationship between the loss value in (14)
and the mutual information with increasing epoch. Fig. 11 indi-
cates the relationship between BLEU score and SNR. The two
figures are based on models with the same structure but different
training parameters, i.e., learning rate. In Fig. 10, the obtained
mutual information is different, i.e., the mutual information of
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Fig. 11. BLEU score (1-gram) versus SNR for different learning rates, with
training SNR = 12 dB.

Fig. 12. Transfer learning (TL) aided DeepSC with different background
knowledge: (a) loss values versus the number of training epochs, (b) BLEU
score (1-gram) versus the SNR.

model with learning rate 0.001 increases along with decreasing
loss value while the other one with learning rate 0.002 stays zero
although the loss values of two models gradually converge to a
stable state. From Fig. 11, the BLEU score with learning rate
0.001 outperforms that with learning rate 0.002, which means
that even if the neural network converges to a stable state, it is
possible that gradient decreases to a local minimum instead of
the global minimum. During the training process, the mutual
information can be used as a tool to decide whether the model
converges effectively.

D. Transfer Learning for Dynamic Environment

In this experiment, we present the performance of transfer
learning aided DeepSC for two tasks: transmitter and receiver
re-training over different channels and diffident background
knowledge.

Fig. 12 shows the training efficiency and the performance
for different background knowledge, where the model will be
trained and re-trained in new background knowledge with the
same channel (AWGN) for different background knowledge.
The models have the same structure and re-train with the same
parameters in each scenario. From Fig. 12(a), the epochs are
reduced from 30 to 5 to reach convergence. In Fig. 12(b), the

TABLE III
THE AVERAGE SENTENCE PROCESSING RUNTIME VERSUS VARIOUS SCHEMES

pre-trained model can provide additional knowledge so that the
corresponding model training outperforms that of re-training
the whole system. This demonstrates that the transfer learning
aided DeepSC can help the transceiver to accommodate the new
requirements of communication environment.

Fig. 13 shows the training efficiency and the performance for
different channels, where the DeepSC transceiver is pre-trained
under the AWGAN channel, and then it is re-trained under the
erasure channel and the Rician fading channel, respectively, with
the same background knowledge. The models have the same
structure and re-train with the same parameters in each scenario.
From Fig. 13(a) and Fig. 13(b), the adoption of the pre-trained
model can speed up the training process for both the erasure
channel and Rician fading channel. In Fig. 13(c) and Fig. 13(d),
the performance of the DeepSC with pre-trained model is similar
to that without pre-trained model channel while the required
complexity is reduced significantly as less number of epochs is
required during the re-training process. It is further noted that
the BLEU score achieved by the DeepSC is slightly degraded
under the fading channel, especially in the lower SNR region,
compared to that under the erasure channel.

E. Complexity Analysis

The computational complexities of the proposed DeepSC,
the JSCC in [22], the RS coding, Turbo coding, are compared
in Table III in terms of the average processing runtime per
sentence.1 All the DL enabled approaches have lower runtime
than the traditional approaches, where turbo coding costs much
longer runtime in log-map iterations and the JSCC [22] requires
the lowest average time due to its simple network architecture,
however, it comes with poorer semantic processing capability.
As a comparison, the runtime of our proposed DeepSC signifi-
cantly outperforms the traditional schemes and is slight higher
than JSCC [22] but with significant performance improvement.

VI. CONCLUSION

In this paper, we have proposed a semantic communication
system, named DeepSC, which jointly performs the semantic-
channel coding for texts transmission. With the DeepSC, the
length of input texts and output symbols are variable, and the
mutual information is considered as a part of the loss function
to achieve higher data rate. Besides, the deep transfer learning
has been adopted to meet different transmission conditions
and speed up the training of new networks by exploiting the
knowledge from the pre-trained model. Moreover, we initialized
sentence similarity as a new performance metric for the semantic
error, which is a measure closer to human judgement. The sim-
ulation results has demonstrated that the DeepSC outperforms

1The runtime of source coding and decoding are omitted in the comparison.
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Fig. 13. Transfer learning aided DeepSC with different channels: (a) loss values versus epochs under the erasure channel; (b) Loss values versus epochs under
the Rician fading channel; (c) BLEU score (1-gram) versus the dropout rate; (d) BLEU score (1-gram) versus the SNR.

various benchmarks, especially in the low SNR regime. The
proposed transfer learning aided DeepSC has shown its ability to
adapt to different channels and knowledge with fast convergence
speed. Therefore, our proposed DeepSC is a good candidate for
text transmission, especially in the low SNR regime, which could
be very useful for cases with massive number of devices to be
connected with the limited spectrum resource.

We conclude the difference between semantic communica-
tion systems and conventional communication systems into the
following:

1) Different data processing domains. The former process
data in semantic domain while the latter compress data in
entropy domain.

2) Different communication targets. The conventional com-
munication systems focus on the exact data recovery while
the semantic communication systems serve for the deci-
sions or targets of the transmission.

3) Different system designs. The conventional systems only
design and optimize the information transmission mod-
ules, which are contained in the traditional transceiver,
however, the semantic systems jointly design the whole
information processing blocks from source information
to final targets of applications.

Following the concept of semantic communications proposed
in this paper, we have developed L-DeepSC [36] and DeepSC-
S [37] for text and speech transmission.
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