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Set Squeezing Procedure for Quadratically Perturbed
Chance-Constrained Programming

Xin He and Yik-Chung Wu , Senior Member, IEEE

Abstract—The set squeezing procedure, a new optimization
methodology for solving chance-constrained programming prob-
lems under continuous uncertainty distribution, is proposed in this
paper. The generally intractable chance constraints and unknown
convexity are tackled by a novel analyses of local structure of the
feasible set. Based on the newly discovered structure, it is proved
that the set squeezing procedure converges and local optimality
is guaranteed under mild conditions. Furthermore, efficient algo-
rithms are derived for the set squeezing procedure under the widely
used quadratically perturbed constraints. The developed method
is applied to the mean squared error (MSE) based probabilistic
transceiver design as an application example. Simulation results
show that the MSE outage probability can be controlled tightly,
which leads to lower transmit power, compared to the existing
dominant safe approximation method and the bounded robust
optimization method.

Index Terms—Chance-constrained programming, probabilistic
transceiver design and beamforming, outage probability
constraint.

I. INTRODUCTION

UNCERTAINTY exists in many practical optimization
problems, such as classification with modeling uncertainty

in machine learning [1], portfolio modeling in finance [2],
Lyapunov stability problem with parameter uncertainty in con-
trol system [3], and the transceiver design with channel un-
certainty in wireless communication system [4]. Two gen-
eral methods are frequently used to tackle the uncertainty
in optimization [5]. One is the bounded robust optimiza-
tion which models the uncertainty to lie in a bounded set
U and focuses on the worst-case, i.e., min{h(w)|g(w,x) ≤
0, ∀x ∈ U}[6]. The other is chance-constrained programming
which imposes probabilistic constraint allowing certain outage
probability, i.e., min{h(w)|Pr{g(w,x) ≤ 0} ≥ 1− p} [7]. If
the probability density function (PDF) of the uncertainty
is known, chance-constrained programming provides a more
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flexible control on the constraint than the bounded robust
optimization.

Within the class of chance-constrained programming, the
constraint function g(w,x) being quadratic with respect to
uncertainty x occurs in a wide range of research problems. For
example,

1) For beamforming with channel uncertainty in wireless
communications, w is the beamforming vector, x is the
channel uncertainty in the channel state information h =
ĥ+ xwith ĥbeing the estimated channel. One beamform-
ing target is to control the beamforming gain to exceed
a certain threshold ε probabilistically, i.e., Pr{|wH(ĥ+
x)|22 ≥ ε} ≥ 1− p.

2) For classification with kernel matrix uncertainty in ma-
chine learning, w is the weighting vector to be designed,
X is the uncertainty in the positive semidefinite kernel
matrixK = K̂+XXT with K̂being the estimated kernel
matrix from training data. The probabilistic constraint in
support vector machine (SVM) is Pr(wTdiag(y)(K̂+
XXT )diag(y)w ≤ ε) ≥ 1− p [8], where y is the label
of the training data.

3) For Lyapunov stability condition ∃W � 0 : XTWX−
W ≺ 0 in a discrete dynamic system zn+1 = Xzn [3], if
the parameter X contains random uncertainty, the prob-
abilistic stability condition is ∃W � 0 : Pr{XTWX−
W ≺ 0} ≥ 1− p.

Other applications involving quadratically perturbed opti-
mization include truss topology design [9], quadratic controller
synthesis [6] and multiuser transceiver design [4], [10], [11]. The
application example in this paper is focused on the transceiver
design problem in wireless communication.

However, the challenge of solving chance-constrained pro-
gramming (CCP) problem is that the integration in the proba-
bility function usually does not admit closed-form expression,
which hinders the convex analysis of the feasible set. The clas-
sic theory in chance-constrained programming reveals that the
feasible set is a convex set if g(w,x) is jointly quasiconvex on
w and x, and the PDF of x is logconcave [12]. Further convexity
analysis in [13] shows that the feasible set is convex if the outage
probability p is sufficiently small, g(w,x) being a generalized
convex function and the PDF of x is a generalized decreasing
function. Other than the above two cases, the convexity or
nonconvexity of the feasible set is generally unknown.

Existing methods for CCP problems are proposed under dif-
ferent specific conditions. Under ambiguous density information
for uncertainty, the φ-divergence is used in [14] to describe the
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uncertainty and a data-driven approach is utilized to solve the
CCP problem. On the other hand, a convex safe approximation
[15] is used to solve the CCP problem, where the uncertainty
is only described by its first and second order moments as
well as its support. Under discrete distributed uncertainty, the
CCP problem with discrete perturbation is solved in [16], the
Wasserstein distance is used in [17] to describe the ambiguous
discrete uncertainty and a mixed integer programming method
is used to solve the CCP problem. Under special constraint
functions, a Monte Carlo based method [18] is proposed to solve
the CCP problem, where the constraint function is a convex
function of the decision variable, and tractable safe approxi-
mation methods are proposed in [19], [20] for CCP problems
with linear perturbation. With accurate density information or
empirical uncertainty samples, the sample average approxima-
tion method is proposed to solve the CCP problem in [21], [22].
Owing to the large number of samples, the large number of
constraints and variables make the computation expensive. A
projected stochastic subgradient algorithm is proposed in [23]
to solve the CCP problem. However, owing to the large iteration
number of the stochastic algorithm [23], the computation cost
of the projection operation is expensive. In this paper, we focus
on the CCP problem with quadratic continuous uncertainty,
the methods with ambiguous uncertainties [14], [15], discrete
uncertainties [16], [17] and special constraints [18]–[20] are not
applicable. Furthermore, without considering the special struc-
ture of quadratic perturbation, the sample average approximation
methods [21], [22] and the stochastic algorithm [23] are not
efficient.

The leading approach for solving CCP problem with quadratic
perturbation is safe approximation. For example, Bernstein-type
inequality is an effective way to tackle the problem with con-
straint perturbed by Gaussian uncertainty [24], and has been used
to solve probabilistic robust beamforming in downlink multiuser
multiple-input single-output (MU-MISO) systems [11], [26],
[27]. Furthermore, Vysochanskii-Petunin inequality is suitable
for problems with PDF of the perturbed constraint function
being unimodal, and it has been proposed for solving chance-
constrained power control problem in wireless communica-
tions [28], [29]. Markov’s inequality is another popular choice
as it only requires the first and second order moment information
of the uncertainty, and it has been applied to classification with
missing data [30]. However, owing to the fact that the feasi-
ble set is restricted in these safe approximations, the obtained
solution in general is conservative. Recently, a tight solution
based on set squeezing procedure is obtained in the prob-
abilistic signal-to-interference-noise-ratio (SINR) constrained
beamforming [25]. However, the design and analysis in [25]
are tailored to the specific problem of SINR constrained beam-
forming, which is a special case of the indefinite quadratically
perturbed chance-constrained programming. In this paper, the
set squeezing procedure is extended for obtaining a tight solu-
tion for the general quadratically perturbed chance-constrained
programming.

In particular, the local structure of the feasible set of the
chance-constrained programming problem is analyzed first.

Based on the newly discovered feasible set structure, the prop-
erties of set squeezing procedure are established, including
the convergence guarantee of the proposed procedure and the
property of the converged solution. While the above analyses are
valid for general CCP, we further consider the implementation
of the set squeezing procedure in quadratically perturbed CCP.
Then the set squeezing procedure is demonstrated in multiuser
multiantenna systems, with probabilistic mean squared error
(MSE) constraints, which is a special case of the definite quadrat-
ically perturbed chance-constrained programming. Simulation
results show that the set squeezing procedure realizes the outage
requirement tightly, and reduces transmit power compared to the
safe approximation method.

The rest of this paper is organized as follows. In Section II,
the structure of the feasible set of the chance-constrained pro-
gramming is analyzed, and the property of the set squeezing
procedure is established. In Section III, the computational aspect
of the set squeezing procedure under quadratically perturbed
constraint function is discussed. The application of the proposed
set squeezing procedure to multiuser multiantenna system with
probabilistic MSE requirements is detailed in Section IV. Sim-
ulation results are presented in Section V, and conclusions are
drawn in Section VI.

Notation: In this paper, E(·), (·)T , and (·)H denote statistical
expectation, transposition and Hermitian, respectively, while ‖ ·
‖2 denotes the norm of a vector. In addition,Tr(·) and‖ · ‖F refer
to the trace and Frobenius norm of a matrix, respectively. The
notations vec(·) and⊗ stand for the vectorization and Kronecker
product, respectively. Symboldiag(x)denotes a diagonal matrix
with vectorx on its diagonal, and IK is aK ×K identity matrix.
For a setX , int(X ) and∂(X ) represent the interior and boundary
of X , respectively.

II. FEASIBLE SET ANALYSIS AND SET SQUEEZING PROCEDURE

A class of chance-constrained programming (CCP) is [7]

min
w

h(w)

s.t. Pr{g(w,x) ≤ 0} ≥ 1− p, (1)

where w is the real-valued or complex-valued decision variable
and x is the real-valued or complex-valued uncertainty random
variable with continuous PDF f(x) and support X0, g(w,x) is
continuously differentiable and h(w) is a convex function. The
feasible set of problem (1) is denoted as W0.

The difficulty of solving problem (1) is the integration in the
probability function, which usually does not admit closed-form
expression, and the leading approaches are to replace the proba-
bility function in (1) with its lower bounded probability inequal-
ities, e.g., Bernstein inequality [1], [11], [26], Vysochanskii-
Petunin inequality [29] and Markov’s inequality [4]. However,
these approaches only provide feasible solutions, without assur-
ance of any property. In the following, we will reveal that for
any given feasible candidate in W0, the result of the proposed
procedure provides much more information than the simple
feasible solution.
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A. Feasible Set Analysis on Chance-Constrained
Programming

For a given feasible solution wi of problem (1), it satisfies
Pr{g(wi,x) ≤ 0} ≥ 1− p. The probability can be reformu-
lated as

Pr{g(wi,x) ≤ 0} =

∫
x∈X0,g(wi,x)≤0

f(x)dx. (2)

To simplify the notation, we define the set of x in the integration
region of (2) to be

X (wi) � {x|x ∈ X0, g(wi,x) ≤ 0}. (3)

We call X (wi) a support subset generated by wi. By using this
support subset, we define another set

W(wi) � {w|g(w,x) ≤ 0, ∀x ∈ X (wi)}, (4)

with the following property.
Property 1: wi ∈ W(wi) ⊆ W0.
Proof: Since wi satisfies g(wi,x) ≤ 0 for all x ∈ X (wi) in

(3), from the definition in (4), it is obvious that wi ∈ W(wi).
Furthermore, any w in W(wi) is a feasible solution of (1) since

Pr{g(w,x) ≤ 0}

=

∫
x∈X (wi)

I(g(w,x) ≤ 0) · f(x)dx

+

∫
x∈(X0)X (wi)

I(g(w,x) ≤ 0) · f(x)dx (5)

=

∫
x∈X (wi)

1 · f(x)dx︸ ︷︷ ︸
≥1−p

+

∫
x∈(X0)X (wi)

I(g(w,x) ≤ 0) · f(x)dx︸ ︷︷ ︸
≥0

(6)

≥ 1− p, (7)

where I(·) is the indicator function. Therefore,W(wi) ⊆ W0.�
That is to say, each feasible solution wi of (1) can generate a

set W(wi) which contains wi itself, and therefore optimization
over W(wi) might find better solution than wi. We call W(wi)
a feasible subset of (1).

Now, observing from the feasible subset definition in (4),
the coupling effect between support subset X (wi) and feasi-
ble subset W(wi) reveals that deleting some elements in the
support subset X (wi) may enlarge the feasible subset W(wi).
In particular, we consider the following squeezed support subset

X (wi, qi) � {x|x ∈ X0, g(wi,x) ≤ qi}, (8)

where qi is from the following definition,
Definition 1: Let qi be the solution of Pr{g(wi,x) ≤ qi} =

1− p.
Since wi is a feasible solution, we have Pr{g(wi,x) ≤ 0} ≥

1− p. Compare this with the constraint in (8), and noticing that
g(wi,x) is a continuous random variable, there must exist qi ≤ 0

to make Pr{g(wi,x) ≤ qi} = 1− p holds. Furthermore, since
qi ≤ 0, we have

X (wi, qi) ⊆ X (wi). (9)

Now, we define another set generated from the squeezed support
subset (8) as

W(wi, qi) � {w|g(w,x) ≤ 0, ∀x ∈ X (wi, qi)} (10)

= {w| sup
x∈X (wi,qi)

g(w,x) ≤ 0}. (11)

The property of W(wi, qi) can be established as follow.
Property 2: W(wi) ⊆ W(wi, qi) ⊆ W0.
Proof: It can be shown with similar derivations from (5) to

(7) that W(wi, qi) ⊆ W0. Furthermore, according to (9), the
pointwise supremum function has following relationship

sup
x∈X (wi,qi)

g(w,x) ≤ sup
x∈X (wi)

g(w,x), (12)

based on which we have {w|supx∈X (wi)g(w,x) ≤ 0} ⊆
{w|supx∈X (wi,qi)g(w,x) ≤ 0}, and therefore

W(wi) ⊆ W(wi, qi). (13)

�
That is, the squeezed support subset X (wi, qi) in (9) enlarges

the corresponding feasible subsetW(wi, qi) in (13). Combining
Properties 1 and 2, we have wi ∈ W(wi, qi). Therefore, a
solution at least as good as wi can be found from wi+1 =
min{h(w)|w ∈ W(wi, qi)}. With the new solution wi+1, we
have

Definition 2: Let qi+1 be the solution of Pr{g(wi+1,x) ≤
qi+1} = 1− p.

With the new solution wi+1 and qi+1, the next feasible subset
W(wi+1, qi+1) is constructed as that in (10). A crucial question
is if W(wi+1, qi+1) contains new candidates, which makes
further improvement possible? We answer this question in the
following.

Theorem 1: If supx∈X (wi,qi)g(w,x) is continuous on w and
wi ∈ int(W0), then wi ∈ int(W(wi, qi)).

Proof: Since wi ∈ int(W0), we have Pr{g(wi,x) ≤ 0} >
1− p. Therefore, qi < 0 is required to make Pr{g(wi,x) ≤
qi} = 1− p hold. Due to the definition of X (wi, qi) = {x|x ∈
X0, g(wi,x) ≤ qi}, we have supx∈X (wi,qi)g(wi,x) ≤ qi <
0. By the assumption that supx∈X (wi,qi)g(w,x) is continu-
ous, there exists a ball B(wi, r) = {w|‖w −wi‖ < r, r > 0}
with center wi and radius r such that |supx∈X (wi,qi)g(w,x)−
supx∈X (wi,qi)g(wi,x)| < −qi for all w ∈ B(wi, r), which im-
plies supx∈X (wi,qi)g(w,x) < 0 for all w ∈ B(wi, r). Accord-
ing to the definition of W(wi, qi) in (11), we have B(wi, r) ⊆
W(wi, qi). Since wi is the center of a ball with radius r > 0,
wi is an interior point of W(wi, qi). �

Theorem 1 can be used to reveal the inter-relationship between
W(wi, qi) and W(wi+1, qi+1) as follows.

Theorem 2: Given supx∈X (wi,qi)g(w,x) is continuous, if
the feasible solution wi+1 is a boundary point of W(wi, qi)
and an interior point of W0, (i.e., wi+1 ∈ ∂(W(wi, qi)) and
wi+1 ∈ int(W0)), then W(wi+1, qi+1) ∩W(wi, qi) 
= ∅ and
W(wi+1, qi+1) \W(wi, qi) 
= ∅.
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Proof: First, since g(w,x) is continuous, g(w,x) is lower
semicontinuous (l.s.c.). Furthermore, since the pointwise supre-
mum preserves the l.s.c. property, supx∈X (wi,qi)g(w,x) is l.s.c.
and its sublevel set {w|supx∈X (wi,qi)g(w,x) ≤ c, c ∈ R} is
closed [31, p. 31]. Therefore, feasible subsets W(wi) and
W(wi, qi) are closed. Since W(wi, qi) is closed, wi+1 ∈
∂(W(wi, qi)) implies wi+1 ∈ W(wi, qi). Combining with the
result wi+1 ∈ W(wi+1) ⊆ W(wi+1, qi+1) owing to (13), we
have wi+1 ∈ (W(wi, qi) ∩W(wi+1, qi+1)).

Second, wi+1 ∈ int(W0) implies wi+1 ∈
int(W(wi+1, qi+1)) under continuous supx∈X (wi,qi)g(w,x)
owing to Theorem 1. Furthermore,wi+1 ∈ int(W(wi+1, qi+1))
means there exists a ball B(wi+1, r1) with center wi+1 and
radius r1 > 0 such that B(wi+1, r1) ⊆ W(wi+1, qi+1).
On the other hand, wi+1 ∈ ∂(W(wi, qi)) means there
exists a point w ∈ B(wi+1, r2) such that w /∈ W(wi, qi)
for all r2 > 0. Therefore, if we consider r2 < r1, then
w ∈ (W(wi+1, qi+1) \W(wi, qi)). �

Theorem 2 reveals the condition forW(wi+1, qi+1) to contain
new feasible candidate that does not belong toW(wi, qi), which
enables sequential optimizations to be presented next.

B. Set Squeezing Procedure and Its Properties

Based on the local structure of the feasible subsets of the
chance-constrained programming, a set squeezing procedure can
be used to solve (1). In particular, the set squeezing procedure
is an iteration between the following two steps until conver-
gence [25].
� P-step: Update X (wi, qi) in (8) by finding qi such that
Pr{g(wi,x) ≤ qi} = 1− p.

� O-step: Solvemin{h(w)|w ∈ W(wi, qi)}, and denote the
solution as wi+1. Increment i by one.

The P-step refers to probability evaluation, and the O-step
refers to optimization. The inter-connected sequential feasible
subsets enable the convergence of the set squeezing procedure
as follows.

Definition 3: If h(wi+1) ≤ h(wi), then wi+1 is a descent
solution from wi at O-step.

Lemma 1: If h(w) is bounded below or W0 is compact, and
if wi+1 is a descent solution from wi at O-step, the convergence
of the set squeezing procedure is guaranteed.

Proof: Sincewi ∈ W(wi) andW(wi) ⊆ W(wi, qi) in (13),
wi ∈ W(wi, qi) is established, which makes optimization de-
scent fromwi possible. Furthermore, a descent solution fromwi

results in h(wi+1) ≤ h(wi). Therefore, monotonic decreasing
property is established for the set squeezing procedure. With a
bounded below objective function or a compact feasible set, the
convergence is guaranteed. �

Although the inter-connected sequential feasible subsets en-
able convergence of the set squeezing procedure, if the func-
tion supx∈X (wi,qi)g(w,x) is not continuous, new feasible
candidates are not guaranteed in sequential feasible subsets,
which makes improvement in objective function value not
guaranteed beyond the first iteration. On the other hand, if
supx∈X (wi,qi)g(w,x) is continuous, new feasible candidates are
available in the next feasible subsetW(wi+1, qi+1) according to

Theorem 2, which leads to the nature of the converged solution
described as follows.

Lemma 2: If Lemma 1 holds with local optimal solution at O-
step and supx∈X (wi,qi)g(w,x) is continuous, the limit solution
w� is a local optimum of (1) or a boundary solution of (1).

Proof: Obviously, the limit solution w� lies in the bound-
ary or the interior of W0. Let q� satisfies Pr{g(w�,x) ≤
q�} = 1− p in (8). If the limit solution w� occurs in the
interior of W0, (i.e., Pr{g(w�,x) ≤ 0} > 1− p), we have
w� ∈ int(W(w�, q�)) owing to Theorem 1. Since w� is a
local optimal solution at O-step, w� is a local optimum in
the feasible subset W(w�, q�). Combining with the facts that
w� ∈ int(W(w�, q�)) and W(w�, q�) ⊆ W0, the local neigh-
borhood of w� in W(w�, q�) is the same as that in W0, which
implies w� is a local optimal solution of (1). �

Intuitively, the P-step enables new feasible candidates avail-
able in the inter-connected sequential feasible subsets if the func-
tion supx∈X (wi,qi)g(w,x) is continuous, and the descent solu-
tions at O-step ensure convergence. Note that inequality-based
safe approximation methods only provide a feasible solution,
while the proposed set squeezing procedure guarantees a local
optimum or a boundary solution under mild conditions. Even
without the local optimality, the monotonic decreasing property
of the set squeezing procedure reveals whether there is possible
improvement after just one iteration from the inequality based
initialization. Furthermore, the above analyses are valid for a
general CCP problem, and can be considered as the generaliza-
tion of [25].

III. SET SQUEEZING PROCEDURE FOR QUADRATICALLY

PERTURBED CCP

Although the proposed set squeezing procedure is concep-
tually simple, practical implementation might not be trivial.
For example, the optimization problem in O-step is infinitely
constrained, and in general is a difficult problem. Furthermore,
obtaining the tradeoff between complexity and accuracy of
the numerical integration in P-step is of interest from signal
processing perspective. In this section, we present discussions
on how these two steps can be realized for the popular class of
g(w,x) being quadratic with respect to x.

First, we present the sufficient condition to guarantee the
function supx∈X (wi,qi)g(w,x) being continuous, a condition
critical for the set squeezing procedure to generate new feasible
candidates in sequential optimizations.

Theorem 3: If the continuous function g(w,x) is a quadratic
function with respect to x, any one of the following conditions
guarantees supx∈X (wi,qi)g(w,x) being continuous,
� The uncertainty support set X0 is unbounded.
� The boundary of X0 is characterized by a real-valued

quadratic function in complex space.
Proof: See Appendix A �
The support set of many common random variables are un-

bounded, e.g., Gaussian, Laplace and t-distribution. Further-
more, the bounded uncertainty in optimization problem is usu-
ally modeled to lie within an ellipsoid [6], [32], which can be
described by a quadratic function. Therefore, many uncertainty



686 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

models in practical applications can be covered by Theorem 3.
Next, we present specific details on the O-step and P-step.

A. Handling Infinite Constraints in O-Step

The optimization problem to be solved at the O-step is

min
w

h(w)

s.t. g(w,x) ≤ 0, ∀x ∈ X0 : g(wi,x) ≤ qi. (14)

Problem (14) is in general a difficult one due to the infinite
constraints. Complicated numerical methods exist for solving
(14) if g(w,x) is a quasiconvex function [34]. Fortunately,
for the widely used quadratic function g(w,x), the infinite
constraints can be transformed into finite constraints.

First consider the case when the support of x is unbounded,
i.e., X0 = C

n. By using the S-lemma [35], [36], and due to
g(w,x) is in quadratic form with respect to x, i.e., g(w,x) �
xH
e A(w)xe, g(wi,x) � xH

e A(wi)xe with xe � [xT , 1]T , the
constraint in (14) can be equivalently formulated as

∃λ ≥ 0 : λ · (A(wi)− diag([0, qi]))−A(w) � 0. (15)

On the other hand, if the support of x is characterized
by a quadratic function X0 = {x|xH

e Bxe ≤ 0,BH = B,xe �
[xT , 1]T ,x ∈ C

n}, the S-Lemma in complex space [37] allows
the quadratic constraint in (14) be equivalently reformulated as

∃λ ≥ 0, β ≥ 0 : λ · (A(wi)− diag([0, qi]))

+ β ·B−A(w) � 0. (16)

An example of using this idea was demonstrated in [25]. If
the matrix function A(w) is a linear function of w, (15) and
(16) are linear matrix inequality (LMI) constraints. If A(w)
is a quadratic function of w, Schur complement can be used
to further reformulate the quadratic matrix inequalities (15)
and (16) into LMI. For other situations, nonlinear terms in the
matrix inequality might be lifted to an LMI representation by
introducing slack variables [36]. We will illustrate the use of
this method in the application example in the next section.

B. Efficient Probability Evaluation in P-Step

For a given feasible solution wi, the support subset update is
to find the quantile qi such that

Pr{g(wi,x) ≤ qi} = 1− p. (17)

Equation (17) can be solved by bisection method if the cu-
mulative distribution function (CDF) of g(wi,x) is known. A
straightforward method for approximating CDF of g(wi,x) is to
use Monte Carlo numerical methods. Generating samples from
a given distribution is a well-studied topic in statistics, and a
number of methods, such as inversion method and importance
sampling, exist [39]. The details are not discussed here. Note
that if the PDF of x is unknown, empirical samples from the
uncertainty are needed for the Monte Carlo method.

However, the computational complexity of the Monte Carlo
methods would be high if a very accurate qi is required. Fortu-
nately, saddlepoint approximation provides efficient and accu-
rate probability evaluation if the cumulant-generating function

(CGF) k(t) of g(wi,x) is known. For example, under g(wi,x)
being quadratic and x is Gaussian distributed, its CGF can
be derived from Chi-squared distribution [40]. After obtaining
the CGF, in the bisection procedure, a candidate qi determines
the saddlepoint t0 from k′(t0) = qi. Then the second order
saddlepoint approximation of the probability in (17) is [41,
p. 53]

Pr (g(wi,x) ≤ qi) � Φ(u) + φ(u) ·
{
1

u
− 1

v

− v−1

(
O4

8
− 5

24
(O3)

2

)
+ v−3 +

O3

2v2
− u−3

}
, (18)

where Φ(·) and φ(·) are the CDF and PDF of standard normal
distribution, u = sign(t0)

√
2(t0 · qi − k(t0)), v = t0

√
k′′(t0),

On = k(n)(t0)/{k′′(t0)}n/2, with n = {3, 4} are the normal-
ized high order derivatives. Note that [44] proposed a different
way to evaluate the probability in (17) and a closed-form solution
is obtained for the case with central quadratic form. However,
the application of [25] and our following application are in
noncentral quadratic form.

Since both Monte Carlo and saddlepoint methods are nu-
merical methods, we need to guarantee the realized outage
probability p̂ � 1− Pr(g(wi,x) ≤ qi) to lie within a small
interval ε from the target p with reliability 1− δ. For Monte
Carlo method, the number of independent samples required to
guarantee Pr(|p̂− p| ≤ ε) ≥ 1− δ is 1

2ε2 ln
2
δ [42, p. 114]. Tak-

ing p− ε as the modified outage target guarantees the realized
outage probability p̂ ∈ [p− 2ε, p] with reliability 1− δ. On the
other hand, for saddlepoint method using (18), uniformity of
relative error p̂/p is preserved over the entire range of support
of x [40], and p̂/p can be computed if g(w,x) is quadratic
and x is Gaussian distributed [43]. Therefore, if the outage
probability target is predistorted by the relative error, accurate
outage probability can be achieved.

IV. PROBABILISTIC MSE CONSTRAINED MULTIANTENNA

TRANSCEIVER DESIGN

In order to illustrate the set squeezing procedure, transceiver
design in the downlink multiuser multiantenna system is
considered. In particular, the system consists of one base station
(BS) equipped with N transmit antennas, and K active users
with the kth user equipped with Mk antennas. Lk independent
data streams are transmitted to the kth user and

∑K
k=1 Lk = L.

To guarantee data recovery, it is required that Lk ≤ Mk and
L ≤ N . LetG be theN × L precoding matrix at BS,Hk andFk

are the Mk ×N channel matrix and the Lk ×Mk equalizer of
the kth user, respectively. The received Mk × 1 noise vector at
the kth user is Gaussian distributed as CN (0,Rk)withRk � 0.
With the transmitted symbols being independent with zero-mean
and unit power, the MSE at the kth user can be derived as
MSEk(G,Fk,Hk) = ‖FkHkG−Dk‖2F +Tr(FkRkF

H
k ),

where Dk = [0Lk×
∑k−1

k=1 Lk
ILk

0Lk×
∑K

k=k+1 Lk
] [4], [32].
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Assuming the obtained channel information Ĥk is perfect, the
nonrobust MSE constrained transceiver design with MSE tar-
get εk is minG,{Fk}Kk=1

{‖G‖F |MSEk(G,Fk, Ĥk) ≤ εk, ∀k}
[45]. By modeling the channel uncertainty Δk lying in a
bounded region Uk, the bounded robust optimization aims
to guarantees the MSE requirement under all channel un-
certainty, i.e., min{‖G‖F |MSEk(G,Fk,Hk = Ĥk +Δk) ≤
εk, ∀Δk ∈ Uk, ∀k} [32]. In this paper, we consider another class
of transceiver design problems, where the PDF of Δk is known,
and the transceiver design aims at minimizing transmit power at
the BS under probabilistic MSE constraints for different users

min
G,{Fk}Kk=1

‖G‖F
s.t. Pr{MSEk(G,Fk,Hk) ≤ εk} ≥ 1− pk, ∀k,

(19)
where pk is the MSE outage probability at the kth receiver. In the
following, we consider the widely used unbiased linear channel
estimators, where the vectorized channel uncertainty vec(Δk)
can be modeled by Gaussian distributed CN (0,Σk) [46], [48].
Application of set squeezing procedure to (19) is illustrated as
follows.

Initialization: Since MSEk(G,Fk,Hk) and the MSE target
εk are positive, by applying the Markov’s inequality to the
constraint of (19), a safe approximation to (19) is obtained as

min
G,{Fk}Kk=1

‖G‖F

s.t. EHk
{MSEk(G,Fk,Hk)}/εk ≤ pk, ∀k. (20)

Taking expectation in (20) and expressing Fk � 1
ak
F̃k with

positive amplitude1/ak and receiver beamforming direction F̃k,
the initial transceiver with fixed receiver beamforming direction
F̃k can be obtained from the second order cone programming
(SOCP) problem

min
G,{ak}Kk=1

‖G‖F

s.t.
∥∥∥[vec((GT ⊗ F̃k)Σ

1
2

k

)T
vec(F̃kĤkG− akDk)

T

vec(F̃kR
1
2

k )
T
]∥∥∥

2
≤ ak

√
pkεk, ∀k. (21)

Popular choices of F̃k are identity matrix and singular vector
matrix of Ĥk [32], [45]. If (21) is not feasible for the above two
choices, random F̃k can be used in a trial-and-error fashion.

P-step: For a given feasible solution (G[i], {F[i]
k }Kk=1), ac-

cording to (17) the P-step is to find the quantile q
[i]
k such that

Pr
(
‖F[i]

k HkG
[i] −Dk‖2F +Tr(F

[i]
k Rk(F

[i]
k )H) ≤ q

[i]
k

)
= 1− pk, (22)

which can be solved by probability evaluation with bi-
section candidate q

[i]
k ∈ [Tr(F

[i]
k Rk(F

[i]
k )H), εk]. Since the

channel uncertainty vec(Δk) is Gaussian distributed, the
CGF of the random variable ‖F[i]

k HkG
[i] −Dk‖2F can be

obtained. In particular, let the singular value decomposi-
tion of ((G[i])T ⊗ F

[i]
k )(Σk/2)

1
2 = U[diag([σ1, . . ., σLLk

]),

0LLk×(NMk−LLk)]V
H with descending singular values, it is

shown in Appendix IX that the CGF of ‖F[i]
k HkG

[i] −Dk‖2F
is

k(t) =

LLk∑
j=1

(
|ηj |2σ2

j t

1− 2σ2
j t

− ln(1− 2σ2
j t)

)
, (23)

with its domain (−∞, 1/(2σ2
1)), and ηj is the jth element of the

vector [ILLk
,0LLk×(NMk−LLk)]V

H(Σk/2)
−1/2vec(Ĥk)−

diag([1/σ1, . . ., 1/σLLk
])UHvec(Dk). Then, the saddlepoint

t0 is calculated through k′(t0) = q
[i]
k − Tr(F

[i]
k Rk(F

[i]
k )H) by

bisection in the domain t0 ∈ (−∞, 1/(2σ2
1)). Note that the

uniqueness of the saddlepoint is guaranteed by the fact that the
CGF k(t) is strictly convex, i.e., k′(t) is strictly monotonically
increasing. Finally, the probability in (22) is evaluated using
equation (18).

O-step: With a feasible transceiver pair (G[i], {F[i]
k }Kk=1)

and the quantile q
[i]
k obtained in the P-step, the corresponding

problem in O-step is

min
G,{Fk}Kk=1

‖G‖F

s.t. MSEk(G,Fk,Hk) ≤ εk, ∀Hk :

MSEk(G
[i],F

[i]
k ,Hk) ≤ q

[i]
i , ∀k. (24)

Since MSEk(G,Fk,Hk) is a quadratic function of Hk, by
making use of (15), it is shown in Appendix X that the infinite
constrained problem (24) can be equivalently transformed into
the following finite constrained problem

min
G,{ak,F̃k,ck,λk}Kk=1

‖G‖F

s.t. λk ≥ 0,

[
λkA

[i]+diag([0, akεk − ck]) QH
k

Qk akILLk

]
� 0, ∀k

ak > 0, ‖[2vec(F̃kR
1
2

k )
T , ak − ck]‖2 ≤ ak + ck, ∀k,

(25)

whereQk � [GT ⊗ F̃k vec(−akDk)],A
[i]
k = (Q

[i]
k )HQ

[i]
k −

diag([0, q
[i]
k − Tr(F

[i]
k Rk(F

[i]
k )H)]) with Q

[i]
k = [(G[i])T ⊗

F
[i]
k vec(−Dk)].
The product of G and F̃k in Qk makes (25) a nonconvex

problem. However, the bilinear relationship of G and F̃k en-
ables the conventional alternating optimization between G and
all Fk = F̃k/ak.1 With (G[i], {F[i]

k }Kk=1) as initialization, the
obtained transmit power ‖G‖2F in each alternating iteration
decreases monotonically and converges [32], [45], and a descent
solution from (G[i], {F[i]

k }Kk=1) at O-step is guaranteed.
Summary and Further Properties: The proposed set squeez-

ing procedure for the transceiver design problem starts with an
initialization, and follows an iteration between (22) at P-step and
(25) at O-step until the difference between successive transmit
power is smaller than a pre-defined threshold. Since descent

1Without loss of generality, we can set ak = 1, ∀k.



688 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

solution is guaranteed at O-step, according to Lemma 1, the set
squeezing procedure converges.

For the special case of MU-MISO systems, all k users are
equipped with single antenna. In this case, the factor 1/ak
captures the amplitude information and F̃k reduces to a complex
scalar, which only causes a phase rotation of G, and does
not change the optimum of (25) [4], [10]. Therefore, without
loss of generality, we can fix F̃k = 1, ∀k, and the optimal
transceiver (G, { 1

ak
}Kk=1) can be efficiently solved from the

resulting semidefinite programming (SDP) problem. Since op-
timal solution can be obtained from SDP problem in the O-step,
and it can be proved by contradiction that local optimal solutions
of (19) cannot occur at the interior of the feasible set of (19),
according to Lemma 2, the limit solution of the set squeezing
procedure lies on the boundary of the feasible set of problem
(19) in MU-MISO systems.

For MU-MIMO system, although Lemma 2 cannot be directly
used to establish the property of the limit solution due to lack
of guarantee of local optimal solution at O-step, but thanks to
the special structure of the transceiver design problem, we can
obtain the following result.

Proposition 1: The limit solution of the set squeezing proce-
dure activates all users’ constraints in problem (19).

Proof: With fixed equalizers {Fk}Kk=1, let the optimal pre-
coder of convex subproblem (24) be G�. If the kth user’s
constraint of (24) is not active with precoder G�, the kth user’s
beamforming vectors (the 1 +

∑k−1
m=1 Lm to

∑k
m=1 Lm column

vectors of G�) can be scaled down until the kth user’s constraint
is active. This power scaling operation reduces the objective
function and other users’ MSEs strictly, which contradicts the
optimality of G�. Therefore, the optimal precoder G� for given
{Fk}Kk=1 activates all K user’s constraints in subproblem (24).

With fixed precoder G, optimization variable in (24)
now only appears in the constraints, and the problem to
be solved becomes to minimize the guaranteed MSEs ε̄k
in convex problem min{ε̄k|MSEk(G,Fk,Hk) ≤ ε̄k, ∀Hk :

MSEk(G
[i],F

[i]
k ,Hk) ≤ q

[i]
k }. With the obtained optimum

{ε̄k}Kk=1, if any inequality {ε̄k ≤ εk}Kk=1 is not active, the
solution (G, {Fk}Kk=1) does not activate allK users’ constraints
in (24), which makes the next optimal precoder with fixed
equalizers {Fk}Kk=1 reduce transmit power strictly, as discussed
in the first paragraph of this proof. Therefore, the alternat-
ing optimization of G and {Fk}Kk=1 converges to a solution

(G[i+1], {F[i+1]
k }Kk=1) which activates all K constraints in (24).

If the solution (G[i+1], {F[i+1]
k }Kk=1) does not activate the kth

constraint in the original problem (19), according to Theorem
1, (G[i+1], {F[i+1]

k }Kk=1) would not activate the corresponding
constraint in the next O-step subproblem (24). From the discus-
sion in the first paragraph of this proof, we obtain ‖G[i+2]‖F <
‖G[i+1]‖F . Therefore, the set squeezing procedure would gener-
ate transceiver solutions with strictly decreasing transmit power
in successive O-steps, as long as any constraint in (19) is not
active. That is, the limit solution activates all constraints in
(19). �

Note that the optimal solution of problem (19) activates all
users’ chance constraints. Under this condition, a calibration

method based on the safe approximation (21) might be
conceived.2 In particular, given a safe approximation solution,
its realized MSE outage is smaller than the outage target, the
parameter pk in problem (21) can be kept increasing, e.g.,
p̄k = 2npk with n = 1, 2, · · · , such that the realized outage of
the tuned safe approximation (21) with parameter p̄k is larger
than the outage target. Then bisection is applied between the
last two parameter p̄k until the realized outage of the tuned safe
approximation (21) reaches the outage target.

Since the realized outage of the tuned safe approximation
will bounce up and down around the outage target, while that of
the proposed method is monotonically increasing to the outage
target, the proposed method is expected to converge quicker than
the calibration method. Therefore, the iteration number of the
proposed method would be smaller than that of the calibration
method. Note that the precondition to use the calibration method
is that the optimal solution activates all the chance constraints,
which is the case in the transceiver design problem. However,
in other applications, this precondition might not hold, and the
convergence of the calibration method may not be guaranteed.

For the computational complexity in each iteration, the com-
putational complexity of the proposed method in P-step is
slightly larger than that of the calibration method owing to sev-
eral extra calculations in (18), the major complexity differences
come from the optimization in O-step, where the computational
complexity of the proposed SDP method is O(N6), which is
larger than the calibration method (SOCP problem) with com-
plexity order O(N4.5).

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the set squeezing procedure
in MU-MIMO transceiver design is illustrated. In the simulation,
unless specified otherwise, the BS is equipped with four antennas
and there are two active users, i.e., N = 4,K = 2. The MIMO
channel model is the widely used Kronecker model Hk =

Ψ
1
2

rkHwΨ
1
2
t , where Hw has complex Gaussian entries with zero

mean and unit variance,Ψt andΨrk are the correlation matrices
at the BS and the kth user respectively. Channel correlation
matrices are taken as the exponential model [Ψt,k]ij = ρ

|i−j|
t,k

and [Ψr,k]ij = ρ
|i−j|
r,k , the correlation coefficient of the first user

is set as ρt,1 = 0.2, ρr,1 = 0.5, while that of other users are set as
ρt,k = 0.3, ρr,k = 0.6. The received Gaussian noise at every an-
tenna is independent and identically distributed with zero mean
and variance δ2n = 0.01, i.e.,Rk = δ2nIMk

. Of the two users, the
second user is equipped with one antenna (M2 = 1) with fixed
MSE requirement ε2 = 0.2 and p2 = 10%, while the setting for
the first user is varied to test the set squeezing procedure under
different scenarios. All simulation results are averaged over 103

random channel realizations. The optimization problems are
solved on a laptop PC with Intel i7 CPU (3.6 GHz) and 16 GB
RAM, using the parser CVX and solver SDPT3 [47].

For the set squeezing procedure, the bisection accuracy in
finding the quantile q

[i]
k is 0.01%, and the bisection accuracy

2The calibration method was suggested by an anonymous reviewer.
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Fig. 1. Convergence performance of different methods under one channel
realizations.

for the saddle point t0 is 10−8. To backoff the relative error
of the saddlepoint method, all outage targets are predistorted
as pk/1.015 [43]. The relative power difference |‖G[i+1]‖2F −
G[i]‖2F |/‖G[i]‖2F ≤ 5× 10−3 is set as the termination criterion.

A. Gaussian Channel Estimation Error

In time division duplex system, owing to the channel reci-
procity property, the BS takes the estimated uplink channel
as the downlink channel. Therefore, the channel uncertainty
comes from the estimation error, which is usually modelled as
Gaussian distribution. With the linear minimum mean square
error channel estimator, the channel estimation error covariance
matrix is Σk = ((Ψ−T

t ⊗Ψ−1
rk ) +

P 2
t

δ2n
INMk

)−1 [4], [48]. In the

following, the pilot-to-noise ratio is set as P 2
t

δ2n
= 102 (i.e., 20 dB).

The convergence performance of the set squeezing procedure
is compared with the calibration method at Fig. 1 under one
channel realization. With p1 = 5%, ε1 = 0.1, Fig. 1(a) shows
that the realized MSE outage probability (p̂k) of the set squeez-
ing procedure monotonically approaches to the outage target,
while that of the calibration method oscillates around the outage
target. Under multiple channel realizations, Fig. 2(a) shows that
the proposed set squeezing procedure converges quicker than

Fig. 2. Convergence performance of different methods under multiple channel
realizations.

Fig. 3. Simulation times of different methods.

the calibration method. Note that the transmit power oscillation
behavior of Fig. 1(b) is averaged out in Fig. 2(b) under multiple
channel realizations. Owing to the quick convergence speed
of the proposed method, its simulation time (the average time
between the initialization and the converged solution) is smaller
than that of the calibration method as shown in Fig. 3. Note that
the results with “Iteration Number 0” in Figs. 1 and 2 are the
initialization results [4].
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Fig. 4. Convergence performance of the set squeezing procedure for multiple
data streams.

With multiple data streams in the second user, M1 = L1 = 2
and p1 = 15%, the convergence performance of the set squeez-
ing procedure is illustrated at Fig. 4. Fig. 4(a) shows that the
outage probabilities gradually approach the outage target, irre-
spective to the MSE requirement value ε1. Furthermore, it is
noticed that the outage probabilities is very close to the 15%
outage target at the second iteration, the remaining space to
reduce the transmit power is small, and therefore the transmit
powers in Fig. 4(b) decrease slowly after the second iteration.
Furthermore, from Fig. 4(b), it is observed that the proposed set
squeezing procedure reduces the transmit powers significantly
in the first iteration, owing to the large feasible subset provided
by the set squeezing procedure.

With eight transmit antennas and four users, i.e.,
N = 8,K = 4, {Mk = 1}4k=1, ε1 = 0.1, {εk = 0.2}4k=2, the
convergence performance of the set squeezing procedure is
illustrated at Fig. 5. Fig. 5 shows that the realized outage
probabilities of all four users converge to their outage targets
within three iterations. Figs. 2, 4 and 5 reveal that the proposed
method converges quickly under different settings.

Next, we compare the performance of the set squeezing
procedure to that of non-robust method [45] and safe approxi-
mation method. In particular, the safe approximation based on

Fig. 5. The convergence performance of the set squeezing procedure for four
users.

Vysochanskii-Petunin (V-P) inequality [29] was chosen for com-
parison since it is specially designed for Gaussian uncertainty,
the proposed procedure uses the feasible solution in [29] as the
initial solution. For fair comparison, the channel realizations are
chosen to be feasible for the proposed and the other two methods,
and the first user is equipped with single antenna (M1 = 1),
as V-P method is only valid for MU-MISO system. In Fig. 6,
the converged MSE outage probability (Fig. 6(a) for user 1 and
Fig. 6(b) for user 2) and transmit power are shown versus ε1
with p1 = 15% and p2 = 10%. It is observed from Figs. 6(a)
and 6(b) that the MSE outage probability targets for both users
are realized tightly by the set squeezing procedure over a wide
range of MSE requirement ε1, while the non-robust method fails
to satisfy the outage requirements and the V-P method reaches
conservative probabilities of 9% and 5% for the first user and
the second user, respectively. As a result of the tightly controlled
outage performance from the set squeezing procedure, 0.5 to
1 dB transmit power gain is achieved compared to the V-P
method as shown in Fig. 6(c). Since the set squeezing procedure
in this example takes the feasible solution of the V-P method as
the initial solution, both method have the same feasibility rates,
which are around 78% and 98% for ε1 = 0.05 and ε1 = 0.2, re-
spectively. On the other hand, in Fig. 7, MSE outage probability
(for user 1 only, results for user 2 is similar to Fig. 6(b)) and
transmit power are shown versus outage requirement p1 with
ε1 = 0.2. It can be observed that similar conclusions can be
drawn as in Fig. 6, i.e., the set squeezing procedure realizes the
outage target tightly, and achieves about 1 dB transmit power
saving compared to the V-P method.

B. Uniform Channel Quantization Error

In frequency division duplex system, the base station takes the
quantized channel from the mobile user as the downlink channel.
Therefore, the channel uncertainty mainly comes from the quan-
tization error. Under high-resolution quantization, it is common
to assume that the quantization error is uniform distributed in
a sphere [49], [50]. In particular, the channel uncertainty is
modelled to lie in a sphere ‖Hk − Ĥk‖2F ≤ r2k with radius rk =√
2NMkb, where b is the error bound per dimension in bounded
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Fig. 6. Achieved MSE outage probability and transit power versus different
MSE requirements.

robust transceiver design [32]. Under this model, the support
of the random channel in (16) is {Hk|xH

e Bkxe ≤ 0,xe =

[vec(Hk)
T , 1]T ,Bk = [

INMk
−vec(Ĥk)

−vec(Ĥk)
H ‖Ĥk‖2F − r2k

]}, and the LMI

in (25) becomes [βkBk + λkA
[i] +diag([0, akεk − ck]) QH

k
Qk akILLk

] � 0

with extra slack variable βk ≥ 0. Since saddlepoint method
cannot be applied to this case, Monte Carlo method is used in the
P-step. In particular, 216 uniform quantization error samples are

Fig. 7. Achieved MSE outage probability and transit power versus different
outage targets under ε1 = 0.2.

generated, which guarantees the probability evaluation accuracy
within 1% from the true value with reliability 99.999%. Two
data streams are transmitted to the first user with two antennas
(M1 = 2), and the MSE requirement for the first user is ε1 = 0.4.

Fig. 8 compares the performance of the non-robust
method [45], bounded robust method [32] and the set squeezing
procedure (with [32] as initialization) with b ranges from 0.01
to 0.21. It is observed from Fig. 8(a) that the proposed method
guarantees MSE target to be fulfilled tightly under different
channel uncertainty bounds, while the MSE outage probability
of the non-robust method are larger than 52% and increases with
the increasing quantization error norm. For the bounded robust
method, it achieves a strictly zero outage, but at the cost of very
high transmit power as shown in Fig. 8(b). On the other hand, the
transmit power performance of the proposed method in Fig. 8(b)
shows a 5 to 12 dB saving from the bounded robust method,
and is close to that of non-robust method. In summary, the
non-robust method fails to satisfy the MSE requirement and the
bounded robust method is conservative owing to the worst-case
target, while the proposed set squeezing procedure provides a
flexible balance between stabilizing MSE requirement and sav-
ing power.
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Fig. 8. Achieved MSE outage probability and transit power versus different
channel uncertainty error bounds.

VI. CONCLUSION

In this paper, by exploiting the local structure of the feasible
set, the set squeezing procedure was established to solve the gen-
eral quadratically perturbed chance constrained programming
problem. With the convergence and local optimality of the set
squeezing procedure guaranteed under mild conditions, the set
squeezing procedure overcome the conservative nature of the
safe approximation method and the bounded robust optimization
method. With probabilistic MSE constrained transceiver design
as an example, simulation results validated that the MSE outage
can be controlled tightly, which leads to lower transmit power
while achieving the target MSE outage probability.

APPENDIX A
PROOF OF THE THEOREM 3

We will write the generic quadratic function inx as a quadratic
form inxe � [xT , 1]T , so that the continuous quadratic function
is g(w,x) � xH

e A(w)xe, where A(w) is a finite dimension
matrix with elements continuously depend on w. If the support
set X0 is unbounded, by using S-Lemma [35], [36], the feasible
subset W(wi, qi) in (10) can be generated from a linear matrix
inequality (LMI) Φ(λ,w) � 0 with Φ(λ,w) = λ(A(wi)−
diag([0, qi]))−A(w) and λ ≥ 0. The LMI requirement is
equivalent to infλ≥0{−min eig[Φ(λ,w)]} ≤ 0, where eig[·]
is the eigenvalues of Φ(λ,w). Compare with (11), we

obtain supx∈X (wi,qi)g(w,x) = infλ≥0{−min eig[Φ(λ,w)]}.
Note that the pointwise supremum operation preserves
the lower semicontinuous (l.s.c.) property [31, p. 23],
supx∈X (wi,qi)g(w,x) is l.s.c.. Furthermore, since all eigenval-
ues of Φ(λ,w) with fixed λ depend continuously on w [33,
p. 130], the pointwise minimum of finite continuous functions
is still a continuous function, i.e., min eig[Φ(λ,w)] with fixed
λ depends continuously on w. Since the pointwise infimum
operation preserves the upper semicontinuous (u.s.c.) property,
supx∈X (wi,qi)g(w,x) = infλ≥0{−min eig[Φ(λ,w)]} is u.s.c..
Therefore, supx∈X (wi,qi)g(w,x) is both l.s.c. and u.s.c., which
implies supx∈X (wi,qi)g(w,x) is continuous.

On the other hand, if the boundary function of X0

is a real-valued quadratic function in complex space,
X0 = {x|xH

e Bxe ≤ 0,BH = B,xe � [xT , 1]T ,x ∈ C
n}.

It can be shown using S-Lemma in complex space [37] that
supx∈X (wi,qi)g(w,x) = infλ≥0,β≥0{−min eig[Φ(λ, β,w)]}
with Φ(λ, β,w) = λ(A(wi)− diag([0, qi])) + βB−A(w),
and the continuous property of supx∈X (wi,qi)g(w,x) still holds
with similar proof as above.

APPENDIX B
FINDING THE CGF OF ‖F[i]

k HkG
[i] −Dk‖2F

With the estimated channel Ĥk, and for circularly-
symmetric jointly-complex-Gaussian (CSCG) channel uncer-
tainty vec(Δk) ∼ CN (0,Σk), the random channel is hk =

vec(Hk) ∼ CN (vec(Ĥk),Σk). Then

‖F[i]
k HkG

[i] −Dk‖2F
= ‖((G[i])T ⊗ F

[i]
k )hk − vec(Dk)‖22, (26)

= ‖((G[i])T ⊗ F
[i]
k )Σ̄

1
2

k · ḧk − vec(Dk)‖22, (27)

where Σ̄k = Σk/2, and decorrelation ḧk = Σ̄
− 1

2

k hk en-
sures independent between elements in ḧk, i.e., ḧk ∼
CN (Σ̄

− 1
2

k vec(Ĥk), 2INMk
). Now, we perform singular value

decomposition

((G[i])T ⊗ F
[i]
k )Σ̄

1
2

k

= U

[
diag([σ1, . . ., σLLk

])︸ ︷︷ ︸
Dσ

0LLk×(NMk−LLk)

]
VH ,

(28)

where the singular values {σj}LLk
j=1 are ordered in descending

order, and U,V are unitary matrices. Since there are L indepen-
dent data streams transmitted and Lk independent data stream
received at the kth user, feasible solution ((G[i])T ⊗ F

[i]
k ) must

have rank LLk, which implies all singular values in (28) are
positive. Putting (28) into (27), we have

‖F[i]
k HkG

[i] −Dk‖2F
= ‖[Dσ,0LLk×(NMk−LLk)]V

H ḧk −UHvec(Dk)‖22 (29)

=
∥∥∥Dσ

(
[ILLk

,0LLk×(NMk−LLk)]

×VH ḧk −D−1
σ UHvec(Dk)

)∥∥∥2
2
. (30)
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Since the unitary transformed term VH ḧk ∼
CN (VHΣ̄

− 1
2

k vec(Ĥk), 2INMk
) is an independent and

identically distributed complex Gaussian vector, the statistical
representation of (30) is

‖F[i]
k HkG

[i] −Dk‖2F ∼
LLk∑
j=1

σ2
jχ

2
(|ηj |2,2), (31)

which is a weighted sum of independent noncentral chi-squared
variables χ2

(|ηj |2,2) with degrees of freedom two, and ηj is
the jth element of the vector [ILLk

,0LLk×(NMk−LLk)] ·
VH(Σk/2)

−1/2vec(Ĥk)− diag([1/σ1, . . ., 1/σLLk
])UHvec

(Dk).
Finally, since the moment-generating function of χ2

(|ηj |2,2) is

exp(|ηj |2t/(1− 2t))/(1− 2t) with domain 2t < 1, the CGF of
the sum of independent random variables in (31) is

k(t) =

LLk∑
j=1

(
|ηj |2σ2

j t

1− 2σ2
j t

− ln(1− 2σ2
j t)

)
, (32)

with domain (−∞, 1/(2σ2
1)), owing to the reason that σ1 is the

largest singular value.

APPENDIX C
TRANSFORMING OPTIMIZATION PROBLEM (24) INTO (25)

Using the factorized equalizerFk � 1
ak
F̃k with ak > 0, mul-

tiplying ak on both sides of the inequality in the kth constraint
of (24), we get

ak > 0, akMSEk(G,Fk,Hk) ≤ akεk,

∀Hk : MSEk(G
[i],F

[i]
k ,Hk) ≤ q

[i]
k . (33)

Putting the MSE expression into the first MSE inequality of (33),
we have

akMSEk(G,Fk,Hk)− akεk

= ak

∥∥∥∥ 1

ak
F̃kHkG−Dk

∥∥∥∥2
F

+
1

ak
Tr(F̃kRkF̃

H
k )− akεk

(34)

= uH
k

(
1

ak
QH

k Qk

− diag

([
01×NMk

, akεk − 1

ak
Tr(F̃kRkF̃

H
k )

]))
uk,

(35)

where uk � [vec(Hk)
T , 1]T and Qk � [GT ⊗

F̃k vec(−akDk)]. Similarly, with the MSE expres-
sion applied to the second MSE inequality of (33),
we have uH

k A
[i]
k uk ≤ 0, where A

[i]
k = (Q

[i]
k )HQ

[i]
k −

diag([0, q
[i]
k − Tr(F

[i]
k Rk(F

[i]
k )H)]) with Q

[i]
k = [(G[i])T ⊗

F
[i]
k vec(−Dk)]. Therefore, (33) becomes

ak > 0,uH
k

(
1

ak
QH

k Qk

− diag

([
0, akεk − 1

ak
Tr(F̃kRkF̃

H
k )

]))
uk ≤ 0,

∀uk : uH
k A

[i]
k uk ≤ 0. (36)

Now, (36) is in the same form as the constraint in (14) with
unbounded support set. Therefore, applying (15), equation (36)
is transformed as

∃λk ≥ 0 : ak > 0,

λkA
[i] + diag

([
0, akεk − 1

ak
Tr(F̃kRkF̃

H
k )

])

− 1

ak
QH

k Qk � 0. (37)

By using the Schur complement, (37) can be equivalently for-
mulated as

∃λk ≥ 0 :[
λkA

[i] + diag([0, akεk − 1
ak
Tr(F̃kRkF̃

H
k )]) QH

k

Qk akILLk

]
� 0, ak > 0.

(38)
Introducing a slack variable ck with ck ≥ 1

ak
Tr(F̃kRkF̃

H
k ), the

feasible set (G, ak, F̃k, λk)of (38) is lifted to a higher dimension
set (G, ak, F̃k, λk, ck) as follows

∃λk ≥ 0 :

[
λkA

[i] + diag([0, akεk − ck]) QH
k

Qk akILLk

]
� 0,

ak > 0, ck ≥ 1

ak
Tr(F̃kRkF̃

H
k ). (39)

Note that any feasible solution (G, ak, F̃k, λk) in ((39))
satisfy the constraint in (38). Furthermore, any feasible so-
lution in (38) must satisfy the constraint in (39) with ck =
1
ak
Tr(F̃kRkF̃

H
k ). Therefore, the lifting process does not change

the feasible set of (38) on (G, ak, F̃k, λk).
Since the noise covariance matrix Rk � 0, Tr(F̃kRkF̃

H
k ) ≥

0. Therefore, the last two constraints of (39) are equivalent to

ak > 0, ck ≥ 0, akck ≥ ‖vec(F̃kR
1
2

k )‖22, (40)

which can be expressed as the following SOCP form

ak > 0, ‖[2vec(F̃kR
1
2

k )
T , ak − ck]‖2 ≤ ak + ck. (41)
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