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Abstract—Intelligent reflecting surface (IRS) has recently been
envisioned to offer unprecedented massive multiple-input multiple-
output (MIMO)-like gains by deploying large-scale and low-cost
passive reflection elements. By adjusting the reflection coefficients,
the IRS can change the phase shifts on the impinging electromag-
netic waves so that it can smartly reconfigure the signal propagation
environment and enhance the power of the desired received signal
or suppress the interference signal. In this paper, we consider
downlink multigroup multicast communication systems assisted
by an IRS. We aim for maximizing the sum rate of all the mul-
ticasting groups by the joint optimization of the precoding matrix
at the base station (BS) and the reflection coefficients at the IRS
under both the power and unit-modulus constraint. To tackle this
non-convex problem, we propose two efficient algorithms under the
majorization–minimization (MM) algorithm framework. Specifi-
cally, a concave lower bound surrogate objective function of each
user’s rate has been derived firstly, based on which two sets of
variables can be updated alternately by solving two corresponding
second-order cone programming (SOCP) problems. Then, in order
to reduce the computational complexity, we derive another concave
lower bound function of each group’s rate for each set of variables
at every iteration, and obtain the closed-form solutions under
these loose surrogate objective functions. Finally, the simulation
results demonstrate the benefits in terms of the spectral and energy
efficiency of the introduced IRS and the effectiveness in terms of
the convergence and complexity of our proposed algorithms.

Index Terms—Intelligent reflecting surface (IRS), large
intelligent surface (LIS), multigroup, multicast, alternating
optimization, majorization–minimization (MM).

I. INTRODUCTION

IN THE era of 5G and Internet of Things by 2020, it is pre-
dicted that the network capacity will increase by 1000 folds

to serve at least 50 billions devices through wireless communica-
tions [1] and the capacity is expected to be achieved with lower
energy consumption. To meet those Quality of Service (QoS)
requirements, intelligent reflecting surface (IRS), as a promising
new technology, has been proposed recently to achieve high
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spectral and energy efficiency. It is an artificial passive radio
array structure where the phase of each passive element on
the surface can be adjusted continuously or discretely with low
power consumption [2], [3], and then change the directions of
the reflected signal into the specific receivers to enhance the
received signal power [4]–[7] or suppress interference as well
as enhance security/privacy [8], [9].

The IRS, as a new concept beyond conventional massive
multiple-input and multiple-output (MIMO) systems, maintains
all the advantages of massive MIMO systems, such as being ca-
pable of focusing large amounts of energy in three-dimensional
space which paves the way for wireless charging, remote sensing
and data transmissions. However, the differences between IRS
and massive MIMO are also obvious. Firstly, the IRS can be
densely deployed in indoor spaces, making it possible to provide
high data rates for indoor devices in the way of near-field com-
munications [10]. Secondly, in contrast to conventional active
antenna array equipped with energy-consuming radio frequency
chains and power amplifiers, the IRS with passive reflection
elements is cost-effective and energy-efficient [4], which enables
IRS to be a prospective energy-efficient technology in green
communications. Thirdly, as the IRS just reflects the signal in
a passive way, there is no thermal noise or self-interference
imposed on the received signal as in conventional full-duplex
relays.

Due to these significant advantages, IRS has been investi-
gated in various wireless communication systems. Specifically,
the authors in [4] first formulated the joint active and pas-
sive beamforming design problem both in downlink single-user
and multiple-users multiple-input single-output (MISO) sys-
tems assisted by the IRS, while the total transmit power of
the base station (BS) is minimized based on the semidefinite
relaxation (SDR) [11] and alternating optimization (AO) tech-
niques. In order to reduce the high computational complexity
incurred by SDR, Yu et al. proposed low complexity algorithms
based on MM (Majorization–Minimization or Minorization–
Maximization) algorithm in [8] and manifold optimization
in [12] to design reflection coefficients with the targets of max-
imizing the security capacity and spectral efficiency commu-
nications, respectively. Pan et al. considered the weighted sum
rate maximization problems in multicell MIMO communica-
tions [5], simultaneous wireless information and power transfer
(SWIPT) aided systems [6], artificial-noise-aided secure MIMO
communications [9], all demonstrating the significant perfor-
mance gains achieved by deploying an IRS in the networks.
A deep reinforcement learning (DRL)-based algorithm [7] and
a mobile edge computing-based algorithm [13] were proposed
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to jointly design the active and passive beamformings in IRS-
related systems. In cognitive radio (CR) communication sys-
tems, the high rate for the secondary user (SU) can be acheived
with the assistance of the IRS [14].

However, all the above-mentioned contributions only inves-
tigated the performance benefits of deploying an IRS in unicast
transmissions, where the BS sends an independent data stream
to each user. However, unicast transmissions will cause severe
interference and high system complexity when the number of
users is large. To address this issue, the multicast transmission
based on content reuse [15] (e.g., identical content may be
requested by a group of users simultaneously) has attracted wide
attention, especially for the application scenarios such as popular
TV programme or video conference. From the perspective of
operators, it can be envisioned that multicast transmission is
capable of effectively alleviating the pressure of tremendous
wireless data traffic and play a vital role in the next generation
wireless networks. Therefore, it is necessary to explore the
potential performance benefits brought by an IRS during the
multigroup multicast transmission. In specifically, in multicast
systems, the data rate of each group is limited by the user with
the worst-channel gains. Hence, the IRS can be deployed to
improve the channel conditions of the worst-case user, which
can be significantly improve the system performance.

A common performance metric in multicast transmissions is
the max-min fairness (MMF), where the minimum signal-to-
interference-plus-noise-ratio (SINR) or spectral efficiency of
users in each multicasting group or among all multicasting
groups is maximized [16]–[20]. Prior seminal treatments of
multicast transmission in single-group and multigroup are pre-
sented in [16], [17], where the MMF problems are formulated
as a fractional second-order cone programming (SOCP) and are
NP-hard in general. The SDR technique [11] was adopted to
approximately solve the SOCP problem with some mathemat-
ical manipulations. In order to reduce the high computational
complexity of SDR, several low-complexity algorithms, such as
successive convex approximation approach in the single-group
multicast scenario [18], asymptotic approach [19] and heuristic
algorithm [20] in the multigroup multicast scenario, have been
proposed by exploiting the special feature of near-orthogonal
massive MIMO channels.

In this paper, we consider an IRS-assisted multigroup multi-
cast transmission system in which a multiple-antenna BS trans-
mits independent information data streams to multiple groups,
and the single-antenna users in the same group share the same
information and suffer from interference from those signals
sent to other groups. Unfortunately, the popular SDR-based
method incurs a high computational complexity which hin-
ders its practical implementation when the number of design
parameters (e.g., precoding matrix and reflection coefficient
vector) becomes large. Furthermore, the aforementioned low-
complexity techniques designed for the IRS-aided unicast com-
munication schemes cannot be directly applied in the multigroup
multicast communication systems since the MMF metric is a
non-differentiable and complex objective function.

Against the above background, the main contributions of our
work are summarized as follows:
� To the best of our knowledge, this is the first work exploring

the performance benefits of deploying an IRS in multi-
group multicast communication systems. Specifically, we

jointly optimize the precoding matrix and the reflection
coefficient vector to maximize the sum rate of all the
multicasting groups, where the rate of each multicasting
group is limited by the minimum rate of users in the group.
This formulated problem is much more challenging than
previous problems considered in unicast systems since
our considered objective function is non-differentiable and
complex due to the nature of the multicast transmission
mechanism. In addition, the highly coupled variables and
complex sum rate expression aggravates the difficulty to
solve this problem.

� The formulated problem is solved efficiently in an iterative
manner based on the alternating optimization method un-
der the MM algorithm framework. Specifically, we firstly
minorize the original non-concave objective function by a
surrogate function which is biconcave of precoding matrix
and reflection coefficient vector, and then apply the alter-
nating optimization method to decouple those variables.
At each iteration of the alternating optimization method,
the subproblem corresponding to each set of variables is
reformulated as an SOCP problem by introducing aux-
iliary variables, which can help to transform the non-
differentiable concave objective function into a series of
convex constraints.

� To further reduce the computational complexity, we use
the MM method to derive closed-form solutions of each
subproblem, instead of solving the complex SOCP prob-
lems with a high complexity at each iteration. Specifically,
we firstly apply the log-sum-exp lower bound to approx-
imate the non-differentiable concave objective function,
yielding a differentiable concave function. Then, we derive
a tractable surrogate objective function of the log-sum-
exp function, based on which we derive the closed-form
solutions of each subproblem. Finally, we prove that the
proposed algorithm is guaranteed to converge and the
solution sequences generated by the algorithm converge
to KKT points.

� Finally, the simulation results demonstrate the superiority
of the IRS-assisted multigroup multicast system over con-
ventional massive MIMO systems in terms of the spectral
efficiency and energy efficiency. The convergence and the
low complexity of the proposed algorithms have also been
illustrated.

The remainder of this paper is organized as follows. Section II
introduces the system model and formulates the optimization
problem. An SOCP-based method is developed to solve the prob-
lem in Section III. Section IV further provides a low-complexity
algorithm. Finally, Section V and Section VI show the simulation
results and conclusions, respectively.

Notations: The following mathematical notations and sym-
bols are used throughout this paper. Vectors and matrices are
denoted by boldface lowercase letters and boldface uppercase
letters, respectively. The symbols X∗, XT, XH, and ||X||F de-
note the conjugate, transpose, Hermitian (conjugate transpose),
Frobenius norm of matrix X, respectively. The symbols ||x||1
and ||x||2 denote 1-norm and 2-norm of vector x, respectively.
The symbols Tr{·}, Re{·}, | · |, and ∠(·) denote the trace, real
part, modulus and angle of a complex number, respectively.
diag(x) is a diagonal matrix with the entries of x on its main
diagonal. [x]m means the mth element of the vector x. The
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Fig. 1. An IRS-aided multigroup multicast communication system.

Kronecker product between two matrices X and Y is denoted
by X⊗Y. X � Ymeans that X−Y is positive semidefinite.
Additionally, the symbol C denotes complex field, R represents
real field, and j �

√−1 is the imaginary unit.

II. SYSTEM MODEL

A. Signal Transmission Model

As shown in Fig. 1, we consider an IRS-aided multigroup
multicast MISO communication system. There is a BS with N
transmit antennas serving G multicasting groups. Users in the
same group share the same information data and the information
data destined for different groups are independent and different,
which means there exists inter-group interference. Let us define
the set of all multicast groups by G = {1, 2, . . ., G}. Assuming
that there are K(K ≥ G) users in total, the user set belonging to
group g ∈ G is denoted as Kg and each user can only belong to
one group, i.e., Ki∩𝒦j=∅, ∀i, j ∈ G, i �= j. The transmit signal
at the BS is

x =

G∑

g=1

fgsg, (1)

where sg is the desired independent Gaussian data symbol of
group g and follows E[|sg|2] = 1 as well as fg ∈ CN×1 is the
corresponding precoding vector. Let us denote the collection of
all precoding vectors asF =[f1, . . . , fG] ∈ CN×G satisfying the
power constraint SF = {F | Tr[FHF] ≤ PT}, where PT is the
maximum available transmit power at the BS.

In the multigroup multicast system, we propose to employ an
IRS with the goal of enhancing the received signal strength of
users by reflecting signals from the BS to the users. It is assumed
that the signal power of the multi-reflections (i.e., reflections
more than once) on the IRS is ignored due to the severe path
loss [4]. Denote M as the number of the reflection elements on
the IRS, then the reflection coefficient matrix of the IRS is mod-
eled by a diagonal matrix E = diag([e1, . . . , eM ]T) ∈ CM×M ,
where |em|2 = 1, ∀m = 1, . . . ,M [4]. Please note that the de-
sign of the practical reflection amplitude which was modeled
as a function of the phase shifts [21] is more complex and will
be investigated in our future work. The channels spanning from
the BS to user k, from the BS to the IRS, and from the IRS
to user k are denoted by hd,k ∈ CN×1, Hdr ∈ CM×N , and
hr,k ∈ CM×1, respectively.

It is assumed that the channel state information (CSI) is
perfectly known at the BS. The BS is responsible for designing
the reflection coefficients of the IRS and sends them back to the
IRS controller as shown in Fig. 1. As a result, the received signal
of user k ∈ Kg belonging to group g is

yk = (hH
d,k + hH

r,kEHdr)

G∑

g=1

fgsg + nk, (2)

where nk is the received noise at user k, which is an additive
white Gaussian noise (AWGN) following circularly symmetric
complex Gaussian (CSCG) distribution with zero mean and
variance σ2

k. Then, its achievable data rate (bps/Hz) is given
by

Rk = log2

(
1 +

|(hH
d,k + hH

r,kEHdr)fg|2
∑G

i�=g |(hH
d,k + hH

r,kEHdr)fi|2 + σ2
k

)
. (3)

Denoting by Hk = [
diag(hH

r,k)Hdr

hH
d,k

] ∈ C(M+1)×N the

equivalent channel spanning from the BS to user k and by
e = [e1, · · · eM , 1]T ∈ C(M+1)×1 the equivalent reflection
coefficient vector, we have

|(hH
d,k + hH

r,kEHdr)fg|2 = |eHHkfg|2, (4)

G∑

i�=g

|(hH
d,k + hH

r,kEHdr)fi|2 =
G∑

i�=g

|eHHkfi|2 + σ2
k. (5)

Note that e belongs to the set Se = {e | |em|2 = 1, 1 ≤ m ≤
M, eM+1 = 1}. Then, the data rate expression in (3) can be
rewritten in a compact form as

Rk (F, e) = log2

(
1 +

|eHHkfg|2∑G
i�=g |eHHkfi|2 + σ2

k

)
. (6)

Due to the nature of the multicast mechanism, the achievable
data rate of group g is limited by the minimum user rate in this
group and is defined as follows

min
k∈Kg

{Rk (F, e)} . (7)

B. Problem Formulation

In this paper, we aim to jointly optimize the precoding matrix
F and reflection coefficient vector e to maximize the sum rate of
the whole system, which is defined as the sum rate achieved by all
groups. Mathematically, the optimization problem is formulated
as

max
F,e

{
F (F, e) =

G∑

g=1

min
k∈Kg

{Rk (F, e)}
}

s.t. F ∈ SF , e ∈ Se. (8)

Problem (8) is a non-convex problem and difficult to solve
since the objective function F (F, e) is non-differentiable
and non-concave, while the unit-modulus constraint set Se is
also non-convex. In the following, we propose two efficient
algorithms based on the MM algorithm framework to solve
Problem (8).

C. Majorization-Minimization Method

The aim of the MM method [22], [23] is to find an easy-
to-solve surrogate problem with a surrogate objective function,
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then optimize it instead of the original complex one. Specifically,
suppose that f(x) is the original objective function which needs
to be maximized over a convex set Sx. Let f̃(x|xn) denote a
real-valued function of variable x with given xn. The function
f̃(x|xn) is said to minorize f(x) at a given point xn if they
satisfy the following conditions [23]:

(A1) :f̃(xn|xn) = f(xn), ∀xn ∈ Sx;

(A2) :f̃(x|xn) ≤ f(x), ∀x,xn ∈ Sx;

(A3) :f̃
′
(x|xn;d)|x=xn = f

′
(xn;d), ∀d with xn + d ∈ Sx;

(A4) :f̃(x|xn)is continuous inx and xn.

where f
′
(xn;d), defined as the direction derivative of f(xn) in

the direction d, is

f
′
(xn;d) = lim

λ→0

f(xn + λd)− f(xn)

λ
.

III. SOCP-BASED MM METHOD

In this section, we propose an SOCP-based MM method
to solve Problem (8). Specifically, under the MM algorithm
framework, we first handle the non-convex objective function
by introducing its concave surrogate function. Then, we adopt
the alternating optimization method to solve the subproblems
corresponding to different sets of variables alternately.

Note that F (F, e) is a composite function which is the linear
combinations of some pointwise minimum with non-concave
subfunction Rk(F, e). We first tackle the non-concave property
of Rk(F, e). To this end, we introduce the following lemma.

Lemma 1: Let {Fn, en} be the solutions obtained at itera-
tion n− 1, then Rk(F, e) is minorized by a concave surrogate
function R̃k(F, e|Fn, en) defined by

R̃k (F, e|Fn, en)

= constk + 2Re
{
ake

HHkfg
}− bk

G∑

i=1

|eHHkfi|2

≤ Rk (F, e) , (9)

where

ak =
(fng )

HHH
k e

n

∑G
i �=g |(en)HHkfni |2 + σ2

k

,

bk =

|(en)HHkf
n
g |2(∑G

i �=g |(en)HHkfni |2 + σ2
k

)(∑G
i=1 |(en)HHkfni |2 + σ2

k

) ,

constk=Rk (F
n, en)−bkσ2

k−bk
(

G∑

i=1

|(en)HHkf
n
i |2+σ2

k

)
,

at fixed point {Fn, en}.
Proof: Please refer to Appendix A. �
Based on the above theorem, Problem (8) can be transformed

into the following surrogate problem:

max
F,e

{
F̃ (F, e|Fn, en) =

G∑

g=1

min
k∈Kg

{
R̃k (F, e|Fn, en)

}}

s.t. F ∈ SF , e ∈ Se. (10)

We note that R̃k(F, e|Fn, en) is biconcave of F and e [24],
since R̃k(F|Fn) = R̃k(F, e|Fn, en) with given e is concave of
F and R̃k(e|en) = R̃k(F, e|Fn, en) with given F is concave
of e. This biconvex problem enables us to use the alternating
optimization (AO) method to alternately update F and e.

A. Optimizing the Precoding Matrix F

In this subsection, we aim to optimize the precoding matrix
F with given e. With some manipulations, R̃k(F, e|Fn, en) in
(9) can be shown to be a quadratic function of F:

R̃k (F|Fn) = constk + 2Re
{
ake

HHkfg
}− bk

G∑

i=1

|eHHkfi|2

= constk + 2Re
{
Tr

[
CH

k F
]}− Tr

[
FHBkF

]
,

(11)

where Bk = bkH
H
k ee

HHk, CH
k = aktge

HHk, and tg ∈ RG×1
is a selection vector in which the gth element is equal to one and
all the other elements are equal to zero.

By using (11), the subproblem of Problem (10) for the opti-
mization of F is

max
F

G∑

g=1

min
k∈Kg

{
constk + 2Re

{
Tr

[
CH

k F
]}−Tr [FHBkF

]}

s.t. F ∈ SF . (12)

We then tackle the pointwise minimum expressions in the objec-
tive function of Problem (12) by introducing auxiliary variables
γ = [γ1, . . ., γG]T, as follows

max
F,γ

G∑

g=1

γg

s.t. F ∈ SF ,

constk + 2Re
{
Tr

[
CH

k F
]}− Tr

[
FHBkF

] ≥ γg,

∀k ∈ Kg, ∀g ∈ G. (13)

Problem (13) is an SOCP problem and the globally solution can
be obtained by the CVX [25] solver, such as MOSEK [26].

B. Optimizing the Reflection Coefficient Vector e

In this subsection, we focus on optimizing the reflection
coefficient vectorewith givenF, then R̃k(e|en) can be rewritten
as

R̃k (e|en) = constk + 2Re
{
aHk e

}− eHAke, (14)

where Ak = bkHk

∑G
i=1 fif

H
i HH

k and ak = akHkfg .
Upon replacing the objective function of Problem (10) by

(14), the subproblem for the optimization of e is given by

max
e

G∑

g=1

min
k∈Kg

{
constk + 2Re

{
aHk e

}− eHAke
}

s.t. e ∈ Se. (15)
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Algorithm 1: SOCP-Based MM Algorithm.

Initialize: Initialize F0 and e0, and n = 0.
1: repeat
2: Calculate Fn+1 by solving Problem (13) with given

en;
3: Calculate en+1 by solving Problem (17) with given

Fn+1;
4: n← n+ 1;
5: until The value of function F (F, e) in (8) converges.

Also introducing auxiliary variables κ = [κ1, . . ., κG]
T,

Problem (15) is equivalent to

max
e,κ

G∑

g=1

κg

s.t. e ∈ Se,

constk + 2Re
{
aHk e

}− eHAke ≥ κg,

∀k ∈ Kg, ∀g ∈ G. (16)

The above problem is still non-convex due to the non-convex
unit-modulus set Se. To address this issue, we replace it with a
relaxed convex one as

Se−relax = {eHdiag(im)e ≤ 1, ∀m = 1, . . . ,M, eM+1 = 1},
where im ∈ R(M+1)×1 is a selection vector whose mth element
is equal to one and all the other elements are equal to zero. Let
us denote by ê1 the optimal solution of the following relaxed
version of the SOCP problem, i.e.,

ê1 = argmax
e

G∑

g=1

γg

s.t. e ∈ Se−relax,

constk + 2Re
{
aHk e

}− eHAke ≥ κg,

∀k ∈ Kg, ∀g ∈ G. (17)

Then, the locally optimal solution e in the nth iteration is

en+1

=

{
ê2, if F

(
Fn+1, ê2|Fn, en

) ≥ F
(
Fn+1, en|Fn, en

)
,

en, otherwise,

(18)

where

ê2 = exp

{
j∠

(
ê1

[ê1]M+1

)}
, (19)

and symbol [ê1]m denotes the mth element of the vector ê1.
Here the exp{·} and the ∠(·) are both element-wise operations.

C. Algorithm Development

Based on the above analysis, Algorithm 1 summarizes the
alternating update process between precoding matrix F and
reflection coefficient vector e to maximize the sum rate of the
whole system.

1) Complexity Analysis: Now we analyze the computational
complexity of Algorithm 1, which mainly comes from
optimizing F in the SOCP problem in (13) and optimizing e in
the SOCP problem in (17).

According to [27], the complexity of solving an SOCP prob-
lem, with Msocp second order cone constraints where the di-
mension of each is Nsocp, is O(NsocpM

3.5
socp +N3

socpM
2.5
socp).

Problem (13) contains one power constraint with dimension
NG and K rate constraints with dimension NK. There-
fore, the complexity of solving Problem (13) per iteration
is O(NG+N3G3 +NGK3.5 +N3G3K2.5). Problem (17)
has M constant modulus constraints with dimension one for
sparse vector im and K rate constraints with dimension M + 1.
Therefore, the complexity of solving Problem (17) per iteration
is O(M3.5 +M2.5 + (M + 1)K3.5 + (M + 1)3K2.5). There-
fore, the approximate complexity of Algorithm 1 per iteration is
O(N3G3K2.5 +M3.5 +MK3.5).

2) Convergence Analysis: The following theorem shows the
convergence and solution properties of Algorithm 1.

Theorem 1: The objective function value sequence
{F (Fn, en)} generated by Algorithm 1 is guaranteed
to converge, and the optimal solution converges to a
Karush-Kuhn-Tucker (KKT) point.

Proof: Please refer to Appendix B. �

IV. LOW-COMPLEXITY MM METHOD

As seen in Algorithm 1, we need to solve two SOCP problems
in each iteration, which incurs a high computational complexity.
In this section, we aim to derive a low-complexity algorithm
containing closed-form solutions.

Since mink∈Kg
{R̃k(F, e|Fn, en)} in Problem (10) is non-

differentiable, we approximate it as a smooth function by using
the following smooth log–sum–exp lower-bound [28]

min
k∈Kg

{
R̃k (F, e|Fn, en)

}
≈ fg (F, e)

= − 1

μg
log

(
∑

k∈Kg

exp
{
−μgR̃k (F, e|Fn, en)

})
, (20)

where μg > 0 is a smoothing parameter which satisfies

fg (F, e) ≤ min
k∈Kg

{
R̃k (F, e|Fn, en)

}

≤ fg (F, e) +
1

μg
log (|Kg|) . (21)

Theorem 2: fg(F, e) is biconcave of F and e.
Proof: According to [29], if the Hessian matrix of a function

is semi-negative definite, that function is concave. In particu-
lar, we derive the Hessian matrix of the exp-sum-log function

f(x) = − log
(∑

k∈Kg
exp{−x}

)
as

∇2f(x) = − 1

(1zT)2
((
1Tz

)
diag(z)− zzT

)
, (22)

where z = (ex1 , . . . , exN ). Then for all v, we have

vT∇2f(x)v

= − 1

(1zT)2

⎛

⎝
(

N∑

n=1

zn

)(
N∑

n=1

v2nzn

)
−
(

N∑

n=1

vnzn

)2
⎞

⎠

= −
(
bTbaTa− (

aTb
)2) ≤ 0, (23)

where the components of vectors a and b are an =
vn
√
zn and bn =

√
zn, respectively. The inequality follows

from the Cauchy-Schwarz inequality. Then ∇2f(x) � 0,
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and the log-sum-exp function f(x) is concave. Therefore,
− 1

μg
log(

∑
k∈Kg

exp{−μgR̃k}) is an increasing and concave

function w.r.t. R̃k. Recall that R̃k(F, e|Fn, en) is biconcave of
F and e. Finally, according to the composition principle [29],
fg(F, e) is biconcave of F and e. The proof is complete. �

Large μg leads to high accuracy of the approximation, but it
also causes the problem to be nearly ill-conditioned. When μg

is chosen appropriately, Problem (10) is approximated as

max
F,e

G∑

g=1

fg (F, e)

s.t. F ∈ SF , e ∈ Se. (24)

This problem is still a biconvex problem ofF and e, which en-
ables us to alternately updateF and e by adopting the alternating
optimization method.

A. Optimizing the Precoding Matrix F

Given e, the subproblem of Problem (24) for the optimization
of F is

max
F

G∑

g=1

fg (F)

s.t. F ∈ SF . (25)

Even fg(F) is a concave and continuous function of precoding
matrix F, it is still very complex and difficult to be optimized
directly. In this subsection, the surrogate function of fg(F) in
the MM algorithm framework is given in the following theorem.

Theorem 3: Since fg(F) is twice differentiable and concave,
we minorize fg(F) at any fixed Fn with a quadratic function
f̃g(F|Fn) satisfying conditions (A1)–(A4), as follows

f̃g(F|Fn) = 2Re
{
Tr

[
UH

g F
]}

+ αgTr
[
FHF

]
+ consFg,

(26)

where

Ug =
∑

k∈Kg

gk(F
n)(Ck −BH

k F
n)− αgF

n, (27)

gk(F
n) =

exp
{
−μgR̃k (F

n)
}

∑
k∈Kg

exp
{
−μgR̃k (Fn)

} , k ∈ Kg, (28)

αg = −max
k∈Kg

{
bke

HHkH
H
k e

}− 2μgmax
k∈Kg

{tpk} , (29)

tpk = PTb
2
k|eHHkH

H
k e|2 + ||Ck||2F + 2

√
PT||BkCk||F ,

(30)

consFg = fg(F
n) + αgTr

[
(Fn)HFn

]− 2Re
{
Tr

[
DH

g F
n
]}

.

(31)

Proof: Please refer to Appendix C. �
Upon replacing the objective function of Problem (25) with

(26), we obtain the following surrogate problem

max
F

G∑

g=1

(
2Re

{
Tr

[
UH

g F
]}

+ αgTr
[
FHF

]
+ consFg

)

s.t. F ∈ SF . (32)

The optimal Fn+1 could be obtained by introducing a La-
grange multiplier τ ≥ 0 associated with the power constraint,
yielding the Lagrange function

L(F,τ ) = 2Re

{
Tr

[
G∑

g=1

UH
g F

]}
+

G∑

g=1

αgTr
[
FHF

]

+
G∑

g=1

consFg − τ
(
Tr

[
FHF

]− PT

)
. (33)

By setting the first-order derivative ofL(F,τ ) w.r.t.F∗ to zero,
we have

∂L(F)
∂F∗

= 0.

Then the globally optimal solution of F in iteration n can be
derived as

Fn+1 =
1

τ −∑G
g=1 αg

G∑

g=1

Ug. (34)

By substituting (34) into the power constraint, one has

Tr

[(∑G
g=1 Ug

)H (∑G
g=1 Ug

)]

(τ −∑G
g=1 αg)2

≤ PT. (35)

It is obvious that the left hand side of (35) is a decreasing function
of τ .
� If the power constraint inequality (35) holds when τ = 0,

then

Fn+1 =
−1

∑G
g=1 αg

G∑

g=1

Ug. (36)

� Otherwise, there must exist a τ > 0 that (35) holds with
equality, then

Fn+1 =

√√√√√
PT

Tr

[(∑G
g=1 Ug

)H (∑G
g=1 Ug

)]
G∑

g=1

Ug. (37)

B. Optimizing the Reflection Coefficient Vector e

GivenF, the subproblem of Problem (24) for the optimization
of e is

max
e

G∑

g=1

fg (e)

s.t. e ∈ Se. (38)

Upon adopting the MM algorithm framework, we first need to
find a minorizing function of fg(e) and denote it as f̂g(e|en).
Since Se is a non-convex set, we should modify (A3) so as to
claim stationarity convergence [30], [31]:

f̂
′
g(e|en;d)|e=en = f

′
g(e

n;d), ∀d ∈ TSe(e
n),

where TSe(e
n) is the Boulingand tangent cone of Se at en.

Therefore f̂g(e|en) is given in the following theorem.
Theorem 4: Since fg(e) is twice differentiable and concave,

we minorize fg(e) at any fixed en with a function f̂g(e|en)
satisfying conditions (A1)–(A4), as follows

f̃g(e|en) = 2Re
{
uH
g e

}
+ consEg, (39)
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where

ug =
∑

k∈Kg

gk(e
n)(ak −AH

k e
n)− βge

n, (40)

gk(e
n) =

exp
{
−μgR̃k (e

n)
}

∑
k∈Kg

exp
{
−μgR̃k (en)

} , k ∈ Kg, (41)

βg = −maxk∈Kg
{λmax(Ak)} − 2μgmaxk∈Kg

{tp2k} , (42)

tp2k = ||ak||22 + (M + 1)λmax(AkA
H
k ) + 2||Akak||1, (43)

consEg = fg(e
n) + 2(M + 1)βg − 2Re

{
dH
g e

n
}
. (44)

Proof: Please refer to Appendix D. �
Upon replacing the objective function of Problem (38) by

(39), we obtain the following surrogate problem as

max
e

G∑

g=1

(
2Re

{
uH
g e

}
+ consEg

)

s.t. e ∈ Se. (45)

Then, the globally optimal solution of e at the nth iteration is

en+1 = exp

⎧
⎨

⎩j∠

⎛

⎝
(

G∑

g=1

ug

)
/

[
G∑

g=1

ug

]

M+1

⎞

⎠

⎫
⎬

⎭ , (46)

where exp{j∠(·)} is an element-wise operation.

C. Low-Complexity Algorithm Design

In this section, we adopt alternating optimization algorithm
to alternately optimize precoding matrix F and reflection coeffi-
cient vector e. Note that the tightness of the lower bounds αg in
(29) and βg in (42) affects the performance of the convergence
speed. Here, we adopt SQUAREM [32] to accelerate the conver-
gence speed of our proposed algorithm, which is summarized in
Algorithm 2.

Let MF (·) denote the nonlinear fixed-point iteration map
of the MM algorithm of F in (34), i.e., Fn+1 = MF (F

n),
and Me(·) of e in (46), i.e., en+1 = Me(e

n). PS(·) is project
operation to force wayward points to satisfy their nonlinear con-
straints. For the power constraint in Problem (32), the projection
can be done by using the function (·)

||·||F ||F2||F to the solution

matrix, e.g., PS(X) = (X)
||X||F ||F2||F . For the unit-modulus con-

straints in Problem (45), it can be obtained by using function
exp{j∠(·)} element-wise to the solution vector. Steps 10 to 13
and steps 21 to 24 are to maintain the ascent property of the
proposed algorithm.

D. Complexity Analysis

The computational complexity of Algorithm 2 is composed
of the nonlinear fixed-point iteration maps MF (·) and Me(·).
In MF (·), the computational complexity of Ug in (30) mainly
comes from gk(F

n) in (28) and αg in (29). Firstly, the com-
putational complexity of gk(Fn) is of order O(|Kg|(2MNG+

3NG)) since there are |Kg| R̃k(F
n) in (9) of orderO(2MNG+

3NG). Then each tpk in (30) is of complexity O(4N3 +
2N2K −NK + 4MN) neglecting the lower-order terms, thus
αg is of order O(|Kg|(4N3 + 2N2K + 4MN)). Therefore, the

Algorithm 2: Low-Complexity MM Algorithm.

Initialize: Initialize F0 and e0, and n = 0.
1: repeat
2: Set e = en;
3: F1 = MF (F

n);
4: F2 = MF (F1);
5: J1 = F1 − Fn;
6: J2 = F2 − F1 − J1;
7: ω = −||J1||F

||J2||F ;

8: Fn+1 = −PS(F
n − 2ωJ1 + ω2J2);

9: while F (Fn+1) < F (Fn) do
10: ω = (ω − 1)/2;
11: Fn+1 = −PS(F

n − 2ωJ1 + ω2J2);
12: end while
13: Set F = Fn+1;
14: e1 = Me(e

n);
15: e2 = Me(e1);
16: j1 = e1 − en;
17: j2 = e2 − e1 − j1;
18: ω = −||j1||F||j2||F ;

19: en+1 = −PS(e
n − 2ωj1 + ω2j2);

20: while F (en+1) < F (en) do
21: ω = (ω − 1)/2;
22: en+1 = −PS(e

n − 2ωj1 + ω2j2);
23: end while
24: n← n+ 1;
25: until The value of function F (F, e) in (8) converges.

approximate complexity of MF (·) is O(4N3K + 2N2K2 +
2MNGK) neglecting the lower-order terms. InMe(·), the com-
putational complexity of gk(en) in (41) is the same as gk(Fn),
which is of complexity O(|Kg|(2MNG+ 3NG)). Further-
more, the eigenvalue operations λmax(Ak) and λmax(AkA

H
k )

of order O((M + 1)3) contribute to the main complexity of
calculating βg in (42), which is of order O(|Kg|(M + 1)3). Ne-
glecting the lower-order terms, the approximate complexity of
Me(·) is O(2MNGK +K(M + 1)3). Eventually, the approx-
imate complexity of Algorithm 2 per iteration is O(4N3K +
2N2K2 + 3MNGK +K(M + 1)3), neglecting the lower-
order terms.

The computational complexity of the proposed two algo-
rithms are summarized and compared in Table I. Comparing
with Algorithm 1 based on SOCP, Algorithm 2 has a lower
computational complexity and requires less CPU time, which
will be shown in the following section.

E. Convergence Analysis

In each iteration, we adopt the MM algorithm to update each
set of variables. The monotonicity of the MM algorithm has
been proved in [23] and [33]. In the following, we claim the
monotonicity of Algorithm 2. At the nth iteration, with given
en, we have

fg(F
n, en) = f̃g(F

n,Fn) ≤ f̃g(F
n+1,Fn) ≤ fg(F

n+1, en),

where the first equality follows from (A1), the first inequality
follows from (32), and the second one follows from (A2).
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TABLE I
COMPLEXITY ANALYSIS OF THE PROPOSED MM ALGORITHMS

Fig. 2. The simulated system setup.

Subsequently, with given Fn+1, it is straightforward to have

fg(F
n+1, en)= f̂g(e

n, en)≤ f̂g(e
n+1, en)≤ fg(F

n+1, en+1).

Therefore, the objective function values {fg(Fn+1, en+1)} gen-
erated during the procedure of the AO algorithm are monotoni-
cally increasing.

Let {Fn} be the sequence generated by the proposed algo-
rithm. Since SF is a convex set, every limit point of {Fn} is a
d-stationary point of Problem (8), and the limit pointF∞ satisfies

f
′
g(F

∞;d) ≤ 0, ∀d with F∞ + d ∈ SF .

The proof of converging to a d-stationary point can be found
in [34].

Let {en} be the sequence generated by the proposed algo-
rithm. Since Se is a non-convex set, every limit point of {en}
is a B-stationary point of Problem (8), and the limit point e∞
satisfies

f
′
g(e
∞;d) ≤ 0, ∀d ∈ TSe(e

∞).
The proof of converging to a B-stationary point can be found
in [30] and [31].

The property of the converged solution of Algorithm 2 is
shown in the following Theorem.

Theorem 5: The optimal solution converges to a KKT point
of Problem (24).

Proof: Please refer to Appendix E. �

V. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Setup

In this section, extensive simulation results are provided to
evaluate the performance of our proposed algorithms for an
IRS-aided multigroup multicast MISO communication system.
All experiments are performed on a PC with a 1.99 GHz i7-
8550 U CPU and 16 GB RAM. Each point in the following
figures is obtained by averaging over 100 independent trials.
The simulated model in Fig. 2 is as follows: The BS locating
at (0 m, 0 m) employs a uniform linear array (ULA) with N
antennas and the IRS locating at (100 m, 0 m) is equipped with
a uniform planar array (UPA) withM reflecting elements, where
the width of the UPA is fixed at 4 and the length is M/4. All
users are randomly distributed in a circle centered at (120 m, 20
m) with radius 10 m.

The large-scale path loss isPL = −30− 10α log10(d) dB, in
which d is the link length in meters and the path loss exponents
for the BS-IRS link, the IRS-user link, and the BS-user link

are set as αBI = αIU = 2 and αBU = 4, respectively [35]. The
small-scale fading in [Hdr, {hd,k}∀k∈K] is assumed to follow
Rayleigh distribution with zero-mean and unit variance due to
the fact of the large lengths of the BS-IRS link and the BS-user
link, while the small-scale fading in {hr,k}∀k∈K is assumed to
be Rican fading with Ricean factor κIU = 10. The line-of-sight
(LoS) components are modeled as the product of the steering
vectors of the transceivers and the non-LoS components are
drawn from a Rayleigh distribution. Unless otherwise stated, the
other parameters are set as: Transmission bandwidth of 10 MHz,
noise power density of −174 dBm/Hz, convergence accuracy
of ε = 10−6, smoothing parameter of μg = 100 [28], N = 4,
N = 16, G = |Kg| = 2.

We use IRS-Alg. 1 to represent Algorithm 1 and IRS-Alg. 2
to represent Algorithm 2. For comparison purposes, we show the
performance of the scheme without IRS, in which the precoding
matrix is also obtained by our proposed two algorithms, denoted
as NIRS-Alg. 1 and NIRS-Alg. 2, respectively.

B. Baseline Schemes

Due to the hardware limitation, it is practically difficult to
realize the continuous phase shifts at each reflection element
considered in this work. Hence, two baseline schemes with 2 bit
resolution are considered in the simulations to investigate the
performance loss of using finite resolution reflection elements.
Specifically, with optimal eo generated by Algorithm 1 or Al-
gorithm 2, the mth discrete phase shift can be obtained by

θom = arg min
θ∈Fθ

| exp {j∠θ} − eom|,
whereFθ = {0, 2π/B, . . ., 2π(B − 1)/B} andB = 22. There-
fore, we call the two baseline schemes as IRS-Alg. 1, 2 bit and
IRS-Alg. 2, 2 bit.

Besides, IRS is advocated as an energy-efficient device for
assisting wireless communication. Hence, it is necessary to
compare the performance of the IRS-based and the full-duplex
amplify-and-forward (AF) relay-based multigroup multicast
systems. To ensure a fair comparison with our proposed IRS-
aided system, the Relay benchmark scheme, in which the relay
is located at the same place of the IRS, has considered the same
users’ locations and channel realizations. Then, the sum rate
maximization problem for the joint design of the precoder F
and the relay beamforming W is given by

max
F,W

G∑

g=1

min
k∈Kg

Rrelay
k

s.t. ||F||2F ≤ PT

||WHdrF||2F + ||W||2Fσ2
r ≤ Prelay, (47)

where Rrelay
k is given by

log2
(
1+

|(hH
d,k+hH

r,kWHdr)fg|2
∑G

i�=g |(hH
d,k+hH

r,kWHdr)fi|2+||hH
r,kW||22σ2

r+σ2
k

)
.
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Fig. 3. The performance comparison of different initialization, when N = 4,
N = 16, G = |Kg | = 2 and PT = 15 dBm.

Fig. 4. The convergence behaviour of different algorithms, whenN = 4,N =
16, G = |Kg | = 2 and PT = 20 dBm.

Here, Prelay is the maximum available transmit power at the
relay, σ2

r is the noise power received by the relay, and the digital
relay beamforming W is assumed to be a diagonal matrix.

The AO method is adopted to solve the above problem.
Basically, we extend the SCA method in [36] to alternately
update each variable in Problem (47).

C. Convergence of the Proposed Algorithms

Consider the fact of the nonconvexity of Problem (8), different
initial points may result in different locally optimal solutions
obtained by the our proposed algorithms. By testing 30 ran-
domly channel realizations, Fig. 3 illustrates the impact of the
initializations on the performance of the proposed algorithms.
The initializations of IRS-Alg. 1 and IRS-Alg. 2 are: F is
initialized by uniformly allocating maximum transmit power,
e is initialized by setting each entry to 1. IRS-Alg. 1-EXH
(IRS-Alg. 2-EXH) refers to the best initial point of 1000 random
initial points for each channel realization. It can be seen that the
sum rate of IRS-Alg. 1 (IRS-Alg. 2) is almost the same as that of
IRS-Alg. 1-EXH (IRS-Alg. 2-EXH), implying that the simple
uniform power allocation of F and all-one e is a good option for
the initialization.

In Fig. 4 investigates the convergence behaviour of various
algorithms in terms of the iteration number and the CPU time
when PT = 20 dBm. Fig. 4(a) compares convergence speed

in terms of the number of iterations. Only a small number of
iterations are sufficient for Algorithm 1 to converge for both
IRS and NIRS schemes. The reason is that the lower bound
of the original objective function in (9) used in Algorithm 1 is
tighter than those in (26) and (39) used in Algorithm 2. Although
Algorithm 2 needs more iterations to converge, it has a fast
convergence speed in terms of CPU time shown in Fig. 4(b). This
is because in each iteration of Algorithm 2, there always exists
closed-form solutions when designing precoding matrix and
reflection coefficient vector. In addition, the optimal objective
function values generated by both algorithms for IRS case and
NIRS case are the same. Therefore, Algorithm 2 outperforms
Algorithm 1 due to the fact that the former can generate the
same gain with the latter while costing much less CPU running
time

D. IRS vs AF Relay Performance Comparison

Fig. 5 shows the sum rate, the energy efficiency, and the
corresponding CPU running time under different maximum
transmit power. The energy efficiency (bit/Hz/J) is defined as
the ratio of the sum rate to the power consumption, i.e.,

EE =
Sum Rate

Power
.

In the relay-aided system, we set PT = Prelay. The lin-
ear power consumption model is Power = η(pT + prelay) +
NPt + 2MPr, where pT and prelay are the practical transmit
power of the BS and the relay, respectively. Following [37], we
set the reciprocal of the power amplifier efficiency as η = 1.2
and the circuit power consumption of the active antennas at
the BS and the relay as Pt = Pr = 200 mW. In the IRS-aided
system, we adopt Power = η(pT + prelay) +NPt +MPIRS ,
where the circuit power consumption of the passive reflection
elements is set as PIRS = 5 mW [38].

It can be seen in Fig. 5(a) that the IRS structure can obvi-
ously enhance the sum rate performance of the system without
consuming additional transmit power, comparing with the sys-
tem without the IRS structure. The performance loss of the ‘2
bit’ phase shifter generated by the proposed two algorithms is
much small compared with the continuous phase shifter cases.
However, the relay-aided system outperforms the IRS-aided one,
which is reasonable due the fact that the relay can amplify and
forward the received signals by using the relay transmit power
Prelay. The EE of the IRS-aided system shown in Fig. 5(b) is
higher than the relay-aided one at high transmit power. The
reason behind this is twofold. On the one hand, as PT increases,
the contribution of the relay transmit power Prelay to the system
sum rate gain becomes less. On the other hand, the circuit power
consumption of the relay is relatively high. Another observation
from Fig. 5(b) is that the EE of the relay system decreases with
the number of the active antennas deployed at the relay. From
Fig. 5(c), we observe that Algorithm 1 is time-consuming and the
time required is unacceptable when PT increases. In addition,
the computational complexity of the joint optimization of the
precoder and the relay beamforming is much higher than the IRS
case whenPT is less than 20 dBm due to the fact that relay power
constraint is complex. Finally, all the results obtained from Fig. 5
verify the performance gains of the IRS-aided system in terms
of the EE and complexity.
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Fig. 5. The sum rate, energy efficiency, and CPU time versus the transmit
power, when N = 4, N = 16 and G = |Kg | = 2.

E. IRS Performance Analysis

It is of practical significance to compare the communica-
tion performance of conventional large-scale antenna arrays
deployed at the BS and large-scale passive elements deployed
at the IRS, since IRS is regarded as an extension of massive
MIMO antenna array. Fig. 6 illustrates the sum rate and the EE

Fig. 6. The sum rate versus the numbers of reflection elements at the IRS M
or transmit antennas at the BS N , when G = |Kg | = 2 and PT = 20 dBm.

performance versus the numbers of antenna elements at the BS
and reflection elements at the IRS when PT = 20 dBm. It is
observed from Fig. 6(a) that significant gains can be achieved
by the IRS scheme over that without an IRS even when M is
as small as 4, and also that the spectral efficiency performance
gains achieved by increasing the number of reflection elements
are much higher than those achieved by increasing the num-
ber of transmit antennas. In addition, in Fig. 6(b), it is more
energy-efficient to deploy an IRS with passive elements than in-
stalling active large-scale antenna array with energy-consuming
radio frequency chains and power amplifiers. The trend of EE
decreasing with the number of transmit antennas comes from
the fact that the circut energy consumption of more antennas
outweighs the system sum rate gain introduced by deploying
more antennas. These simulation results demonstrate that IRS
technology is superior to traditional massive MIMO in terms of
spectral efficiency and energy efficiency.

The above simulation results show that Algorithm 2 requires
less CPU time than Algorithm 1. Hence, we adopt Algorithm
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Fig. 7. The sum rate versus the number of users per group, when N = 4,
N = 16, and PT = 20 dBm.

Fig. 8. The sum rate versus the number of groups, when PT = 20 dBm.

2 to investigate the effect of an IRS on the performance of a
multicast communication system. Fig. 7 illustrates the sum rate
versus the number of users per group for various numbers of
groups. It can be observed from this figure that the sum rate for
all values of G decreases with the increase of the number of
users per group. The reason is that the data rate for each group
is limited by the user with the worst channel condition. With the
increase of the number of users per group, the channel gain for
the worst user becomes smaller.

Fig. 7 compares the effects of two improvements on the perfor-
mance limit, namely, increasing the number of antennas at the BS
and the number of reflection elements at the IRS, respectively.
When |Kg| = 1, the multicasting system reduces to a unitcasting
system, in which the transmit antennas outperform the reflection
elements in the aspect of suppressing multi-user interference.
While when |Kg| = 3, the sum rate of the system increases
slowly and tends to be stable with the increase of the number
of multicasting groups for a given number of antenna/reflection
elements.

VI. CONCLUSION

In this work, we have shown the performance benefits of
introducing an IRS to the multigroup multicast systems. By

carefully adjusting the reflection coefficients at the IRS, the
signal reflected by the IRS can enhance the strength of the signal
received by the user. We investigate the sum rate maximization
problem by joint optimization of the precoding matrix at the BS
and reflection coefficient vector at the IRS, while guaranteeing
the transmit power constraint and the associated non-convex
unit-modulus constraint at the IRS. Under the MM algorithm
framework, we derive the concave lower bound of the original
non-concave objective function, and then adopt alternating op-
timization method to update variables in an alternating manner.
Furthermore, we proposed a low-complexity algorithm under
the MM algorithm framework in which there exists closed-form
solutions at each iteration. Our simulation results have demon-
strated the significant spectral and energy efficiency enhance-
ment of the IRS in multigroup multicast systems and that the
proposed algorithm converges rapidly in terms of CPU time.

APPENDIX A
THE PROOF OF THEOREM 1

We perform some equivalent transformations of the rate ex-
pression (6) to show its hidden convexity, as follows

Rk (F, e) = log2

(
1 +

|eHHkfg|2∑G
i�=g |eHHkfi|2 + σ2

k

)

= log2

(
1 + r−1k,−g|eHHkfg|2

)

= − log2

(
1− (

rk,−g + |eHHkfg|2
)−1 |eHHkfg|2

)

= − log2
(
1− r−1k |tk|2

)
, (48)

where tk = eHHkfg , rk = rk,−g + |tk|2, and rk,−g =∑G
i�=g |eHHkfi|2 + σ2

k.
Denoting Rk(tk, rk) as the last equation expression of

Rk(F, e) in (48), Rk(tk, rk) is jointly convex in {tk, rk} [39],
thus its lower bound surrogate function could be obtained by the
first-order approximation, e.g.,

Rk (tk, rk)

≥ Rk (t
n
k , r

n
k ) +

∂Rk

∂tk
|tk=tnk

(tk − tnk )

+
∂Rk

∂t∗k
|t∗k=tn,∗

g

(
t∗k − tn,∗k

)
+

∂Rk

∂rk
|rk=rnk

(rk − rnk )

= Rk (t
n
k , r

n
k ) + 2Re

{
tn,∗k (tk − tnk )

rnk − |tnk |2
}
− |t

n
k |2(rk − rnk )

rnk (r
n
k − |tnk |2)

= Rk (t
n
k , r

n
k ) + 2Re

{
tn,∗k

rnk − |tnk |2
tk

}

− |tnk |2
rnk (r

n
k − |tnk |2)

rk − |tnk |2
rnk − |tnk |2

. (49)

Undo tk = eHHkfg , tnk = (en)HHkf
n
g , rk =

∑G
i=1 |

eHHkfi|2 + σ2
k, and rnk =

∑G
i=1 |(en)HHkf

n
i |2 + σ2

k, and
substitute them into the right hand side of the last equation in
(49), we have

Rk (F, e) ≥ Rk (F
n, en) + 2Re

{
ake

HHkfg
}− |tnk |2

rnk − |tnk |2
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− bk

G∑

i=1

|eHHkfi|2 − bkσ
2
k

= constk + 2Re
{
ake

HHkfg
}− bk

G∑

i=1

|eHHkfi|2

= R̃k (F, e) . (50)

Hence, the proof is complete.

APPENDIX B
THE PROOF OF THEOREM 1

The monotonic property of the objective function value se-
quence {F (Fn, en)} of Algorithm 1 can be guaranteed by (18).
In addition, the sequence {Fn, en} generated at each iteration
of Algorithm 1 converges to a stable point as n→∞ because
Fn and en are bounded in their feasible sets SF and Se, respec-
tively [40]. Denote by {Fo, eo} the converged solution. In the
following, we prove that {Fo, eo} is the KKT point based on the
fact that all the locally optimal solutions (including the globally
optimal solution) of a nonconvex optimization problem should
satisfy the KKT optimality conditions [29].

Firstly, the Lagrangian of Problem (13) is given by

L(F,γ,λ(1),λ(2))

=

G∑

g=1

γg −
G∑

g=1

∑

k∈Kg

λ
(1)
k (γg − R̃k (F, e

o|Fo, eo))

− λ(2)(Tr
[
FHF

]− PT)

where λ(1) = [λ
(1)
1 , . . ., λ

(1)
K ] and λ(2) are the dual variables.

Since Fo is the globally optimal solution of Problem (13), there
must exist a λ(1),o and λ(2),o satisfying the following partial
KKT conditions:

G∑

g=1

∑

k∈Kg

λ
(1),o
k ∇F∗R̃k (F, e

o|Fo, eo) |F=Fo − λ(2),oFo = 0,

(51)

λ
(1),o
k (γg − R̃k (F

o, eo|Fo, eo)) = 0, ∀k ∈ Kg, ∀g ∈ G, (52)

λ(2),o(Tr
[
FH,oFo

]− PT) = 0. (53)

According to the conditions (A1) and (A3), we have

R̃k (F
o, eo|Fo, eo) = Rk (F

o, eo) , (54)

∇F∗R̃k (F, e
o|Fo, eo) |F=Fo = ∇F∗Rk (F, e

o) |F=Fo . (55)

By substituting (55) and (54) into (51) and (52) respectively, we
arrive at

G∑

g=1

∑

k∈Kg

λ
(1),o
k ∇F∗Rk (F, e

o) |F=Fo − λ(2),oFo = 0, (56)

λ
(1),o
k (γg −Rk (F

o, eo)) = 0, ∀k ∈ Kg, ∀g ∈ G. (57)

Then, eo is the locally optimal solution of Problem (16) and
satisfies the following KKT conditions:

G∑

g=1

∑

k∈Kg

ξ
(1),o
k ∇e∗R̃k (F

o, e|Fo, eo) |e=eo

−
M∑

m=1

ξ(2),om (∇e∗ |em|)|e=eo − ξ
(2),o
M+1(∇e∗eM+1)|e=eo = 0,

(58)

ξ
(1),o
k (κg − R̃k (F

o, eo|Fo, eo)) = 0, ∀k ∈ Kg, ∀g ∈ G, (59)

ξ(2),om (|eom| − 1) = 0, 1 ≤ m ≤M, ξ
(2),o
M+1(e

o
M+1 − 1) = 0,

(60)

where ξ(1),o = [ξ
(1),o
1 , . . ., ξ

(1),o
K ] and ξ(2),o are the optimal La-

grange multipliers.
Furthermore, it can be readily checked that

∇e∗R̃k (F
o, e|Fo, eo) |e=eo = ∇e∗Rk (F

o, e) |e=eo . (61)

By substituting (61) into (58), we arrive at

G∑

g=1

∑

k∈Kg

ξ
(1),o
k ∇e∗Rk (F

o, e) |e=eo − ξ
(2),o
M+1(∇e∗eM+1)|e=eo

−
M∑

m=1

ξ(2),om (∇e∗ |em|)|e=eo = 0, (62)

Now, we move to Problem (8). The general equivalent prob-
lem of the max-min Problem (8) is given by

max
F,e,r

G∑

g=1

rg

s.t. F ∈ SF , e ∈ Se

Rk (F, e) ≥ rg, ∀k ∈ Kg, ∀g ∈ G. (63)

where r = [r1, . . ., rG]
T are auxiliary variables. It can be readily

verified that the set of equations (56), (62), (57), (53), and (60)
constitute exactly the KKT conditions of Problem (63).

Hence, the proof is complete.

APPENDIX C
THE PROOF OF THEOREM 3

Since fg(F) is twice differentiable and concave, we propose
a quadratic surrogate function to minorize fg(F), as follows

fg(F) ≥ fg(F
n) + 2Re

{
Tr

[
DH

g (F− Fn)
]}

+Tr
[
(F− Fn)HMg(F− Fn)

]
(64)

where matrices Dg ∈ CN×N and Mg ∈ CN×N are determined
to satisfy conditions (A1)–(A4).

Note that (A1) and (A4) are already satisfied. Then we prove
that condition (A3) also holds. Let F̃ be a matrix belonging to
SF . The directional derivative of the right hand side of (64) at
Fn with direction F̃− Fn is given by:

2Re
{
Tr

[
DH

g (F̃− Fn)
]}

. (65)
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The directional derivative of fg(F) is

2Re

⎧
⎨

⎩Tr

⎡

⎣
∑

k∈Kg

gk(F
n)(CH

k − (Fn)HBk)(F̃− Fn)

⎤

⎦

⎫
⎬

⎭ ,

(66)
where gk(F

n) is defined in (28).
In order to satisfy condition (A3), the two directional deriva-

tives (65) and (66) must be equal, which means

Dg =
∑

k∈Kg

gk(F
n)(Ck −BH

k F
n). (67)

Now we proceed to prove that condition (A2) also holds. If
surrogate function f̃g(F|Fn) is a lower bound for each linear
cut in any direction, condition (A2) could be satisfied. Let F =
Fn + γ(F̃− Fn), ∀γ ∈ [0, 1]. Then, it suffices to show

fg(F
n+γ(F̃−Fn)) ≥ fg(F

n)+2γRe
{
Tr

[
DH

g (F̃−Fn)
]}

+ γ2Tr
[
(F̃− Fn)HMg(F̃− Fn)

]
, (68)

Let us define Lg(γ) = fg(F
n + γ(F̃− Fn)),and lk(γ) =

R̃k(F
n + γ(F̃− Fn)). Now, a sufficient condition for (68) to

hold is that the second derivative of the right hand side of (68) is
lower than or equal to the second derivative of the left hand side
of (68) for ∀γ ∈ [0, 1] and ∀F̃, ∀Fn ∈ SF , which is formulated
as follows

∂2Lg(γ)

∂γ2
≥ 2Tr

[
(F̃− Fn)HMg(F̃− Fn)

]
. (69)

In order to calculate the left hand side of (69), we first calculate
the first-order derivative, as follows

∂Lg(γ)

∂γ
=

∑

k∈Kg

gk(γ)∇γ lk(γ), (70)

where

gk(γ) =
exp {−μglk(γ)}∑

k∈Kg
exp {−μglk(γ)} , k ∈ Kg,

∇γ lk(γ) = 2Re
{
Tr

[
CH

k (F̃− Fn)
]

− Tr
[
(Fn + γ(F̃− Fn))HBk(F̃− Fn)

]}

= 2Re
{
Tr

[
QH

k (F̃− Fn)
]}

= 2Re
{
qH
k f

}
,

QH
k = CH

k − (Fn + γ(F̃− Fn))HBk,

qk = vec(Qk),

f = vec(F̃− Fn),

Then, the second-order derivative is derived as

∂2Lg(γ)

∂γ2

=
∑

k∈Kg

(
gk(γ)∇2

γ lk(γ)− μggk(γ)∇γ lk(γ) (∇γ lk(γ))
T
)

+ μg

⎛

⎝
∑

k∈Kg

gk(γ)∇γ lk(γ)

⎞

⎠

⎛

⎝
∑

k∈Kg

gk(γ)∇γ lk(γ)

⎞

⎠
T

,

(71)

where

∇2
γ lk(γ) = −2Tr

[
(F̃− Fn)HBk(F̃− Fn)

]

= −2fH(I⊗Bk)f .

We reformulate ∂2Lg(γ)
∂γ2 in (71) into a quadratic form of f , as

follows

∂2Lg(γ)

∂γ2
=

[
fH fT

]
Φ

[
f
f ∗

]
,

where Φ is given in (72) shown at the bottom of this page.
We also manipulate the right hand side of (69) into a quadratic

form of f by using vectorization operation Tr[ATBC] =
vecT(A)(I⊗B)vec(C) [41], as follows

2Tr
[
(F̃− Fn)HMg(F̃− Fn)

]

=
[
fH fT

] [I⊗Mg 0

0 I⊗MT
g

] [
f
f ∗

]
.

Then, (69) is equivalent to
[
fH fT

]
Φg

[
f
f ∗

]

≥
[
fH fT

] [I⊗Mg 0

0 I⊗MT
g

] [
f
f ∗

]
,

where we need to find an Mg that satisfies

Φg �
[
I⊗Mg 0

0 I⊗MT
g

]
.

For convenience, we choose Mg = αgI = λmin(Φg)I. Finally,
(64) is equivalent to

fg(F) ≥ fg(F
n) + 2Re

{
Tr

[
DH

g (F− Fn)
]}

+ αgTr
[
(F− Fn)H(F− Fn)

]

= 2Re
{
Tr

[
UH

g F
]}

+ αgTr
[
FHF

]
+ consFg (73)

where Ug and consFg are given in (27) and (31), respectively.
αg in (29) is difficult to obtain for the complex expression of
Φg . In the following, we proceed to obtain the value of αg .

The following inequalities and equalities will be used later:
(B1): [41] A and B are Hermitian matrices: λmin(A) +

λmin(B) ≤ λmin(A+B).
(B2): [41] A is rank one: λmax(A) = Tr[A], λmin(A) = 0.
(B3): (Theorem 30 in [42]) ak and bk are positive:∑K
k=1 akbk ≤ maxKk=1{bk}, if

∑K
k=1 ak = 1.

Φg =
∑

k∈Kg

(
gk(γ)

[
−I⊗Bk 0

0 −I⊗BT
k

]
− μggk(γ)

[
qk

q∗k

] [
qk

q∗k

]H)
+ μg

[∑
k∈Kg

gk(γ)qk∑
k∈Kg

gk(γ)q
∗
k

] [∑
k∈Kg

gk(γ)qk∑
k∈Kg

gk(γ)q
∗
k

]H
. (72)
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(B4): [41] A is positive semidifinite with maximum eigen-
value λmax(A) and B is positive semidifinite: Tr[AB] ≤
λmax(A)Tr[B].

Φg is complex and cannot be determined by a constant, thus
we use (A1)–(A4) to find its lower bound shown in (74) shown
at the bottom of this page.

Recall that F = Fn + γ(F̃− Fn), ∀γ ∈ [0, 1], therefore
||Fn + γ(F̃− Fn)||2F ≤ PT. By using (A4), the last term in the
right hand side of the last equation of (74) satisfies inequality
(75) as

||Qk||2F = ||Ck −BH
k (F

n + γ(F̃− Fn))||2F
= ||(Fn + γ(F̃− Fn))HBk||2F + ||Ck||2F
− 2Re

{
Tr

[
CH

k B
H
k (F

n + γ(F̃− Fn))
]}

(B4)

≤ λmax(BkB
H
k )||Fn + γ(F̃− Fn)||2F + ||Ck||2F

− 2Re
{
Tr

[
CH

k B
H
k (F

n + γ(F̃− Fn))
]}

≤ PTλmax(BkB
H
k ) + ||Ck||2F + 2

√
PT||BkCk||F

= PTb
2
k|eHHkH

H
k e|2 + ||Ck||2F + 2

√
PT||BkCk||F .

(75)

The third term in the right hand side of the last inequality of (75)
is the optimal objective value of the following Problem (76)
which has a closed-form solution.

min
X

2Re
{
Tr

[
CH

k B
H
k X

]}

s.t. Tr
[
XHX

] ≤ PT. (76)

Finally, combining (74) with (75), we arrive at (29). Hence,
the proof is complete.

APPENDIX D
THE PROOF OF THEOREM 4

Since fg(e) is twice differentiable and concave, we minorize
fg(e) at en with a quadratic function, as follows

fg(e) ≥ fg(e
n) + 2Re

{
dH
g (e− en)

}

+ (e− en)HNg(e− en), (77)

where vectors dg ∈ CM×1 and matrices Ng ∈ CM×M are de-
termined to satisfy conditions (A1)–(A4).

Obviously, (A1) and (A4) are already satisfied. In order to
satisfy condition (A3), the directional derivatives of fg(e) and
the right hand side of (77) must be equal, yielding

dg =
∑

k∈Kg

gk(e
n)(ak −AH

k e
n), (78)

where gk(e
n) is defined in (41).

Let e = en + γ(ẽ− en), ∀γ ∈ [0, 1]. In order to satisfy con-
dition (A2), it suffices to show

fg(e
n + γ(ẽ− en)) ≥ fg(e

n) + 2γRe
{
dH
g (ẽ− en)

}

+ γ2(ẽ− en)HNg(ẽ− en). (79)

Then, we need to calculate the second-order derivatives of the
left hand side and the right hand side of (79), and make the
latter one lower than or equal to the former for ∀γ ∈ [0, 1] and
∀ẽ, ∀en ∈ Se.

The second-order derivative of the left hand side of (79) is
given by

∂2Lg(γ)

∂γ2
=

[
tH tT

]
Ψg

[
t
t∗

]
, (80)

with t = ẽ− en. Ψg is shown in (81) shown at the bottom of

λmin (Φg)
(B1)

≥ −
∑

k∈Kg

gk(γ)λmax

([
I⊗Bk 0

0 I⊗BT
k

])
− μg

∑

k∈Kg

gk(γ)λmax

([
qk

q∗k

] [
qk

q∗k

]H)

+ λmin

(
μg

[∑
k∈Kg

gk(γ)qk∑
k∈Kg

gk(γ)q
∗
k

] [∑
k∈Kg

gk(γ)qk∑
k∈Kg

gk(γ)q
∗
k

]H)

(B2)
= −

∑

k∈Kg

gk(γ)λmax(Bk)− 2μg

∑

k∈Kg

gk(γ)q
H
k qk

(B2)
= −

∑

k∈Kg

bkgk(γ)e
HHkH

H
k e− 2μg

∑

k∈Kg

gk(γ)q
H
k qk

(B3)

≥ −maxk∈Kg

{
bke

HHkH
H
k e

}− 2μgmaxk∈Kg

{||qk||22
}

= −maxk∈Kg

{
bke

HHkH
H
k e

}− 2μgmaxk∈Kg

{||Qk||2F
}
. (74)

Ψg =
∑

k∈Kg

(
gk(γ)

[
−Ak 0

0 −AT
k

]
− μggk(γ)

[
qk

q∗k

] [
qk

q∗k

]H)
+ μg

[∑
k∈Kg

gk(γ)qk∑
k∈Kg

gk(γ)q
∗
k

] [∑
k∈Kg

gk(γ)qk∑
k∈Kg

gk(γ)q
∗
k

]H
, (81)
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this page, where

qk = ak −AH
k (e

n + γ(ẽ− en)) (82)

gk(γ) =
exp {−μglk(γ)}∑

k∈Kg
exp {−μglk(γ)} , k ∈ Kg (83)

The second-order derivative of the right hand side of (79) is

2(ẽ− en)HNg(ẽ− en)

=
[
tH tT

] [I⊗Ng 0

0 I⊗NT
g

] [
t
t∗

]
. (84)

Combining (80) with (84), Ng must satisfy

Ψg �
[
I⊗Ng 0

0 I⊗NT
g

]
.

For simplicity, we chooseNg = βgI = λmin(Ψg)I. Eventually,
(77) is equivalent to

fg(e) ≥ fg(e
n)+2Re

{
dH
g (e−en)

}
+βg(e−en)H(e− en)

= 2Re
{
uH
g e

}
+ consEg, (85)

where ug , βg , and consEg are given in (40), (42), and (44),
respectively. The last equation of (85) is from the unit-modulus
constraints, i.e., eHe = (en)Hen = M + 1. The method to get
the value of βg is similar as αg , so we omit it here. Hence, the
proof is complete.

APPENDIX E
THE PROOF OF THEOREM 5

Let us denote the converged solution of Problem (24) by
{Fo, eo}. In the following, we prove that {Fo, eo} satisfies the
KKT conditions of Problem (24).

Firstly, since Fo is the globally optimal solution of Problem
(32), the KKT conditions of the Lagrangian in (33) of Problem
(32) is given by

G∑

g=1

∇F∗ f̃g(F|Fn)|F=Fo − τoFo = 0, (86)

τo(Tr
[
FH,oFo

]− PT) = 0, (87)

where τo is the optimal Lagrange multiplier. According to the
condition (A3), we have

∇F∗ f̃g(F|Fn)|F=Fo = ∇F∗fg (F, e
o) |F=Fo . (88)

By substituting (88) into (86), we arrive at
G∑

g=1

∇F∗fg (F, e
o) |F=Fo − τoFo = 0, (89)

Then, since eo is the locally optimal solution of Problem (45),
it is readily to obtain the following KKT conditions:

G∑

g=1

∇e∗fg (F
o, e) |e=eo −

M∑

m=1

τ (2),om (∇e∗ |em|)|e=eo

− τ
(2),o
M+1(∇e∗eM+1)|e=eo = 0, (90)

τ (2),om (|eom| − 1) = 0, 1 ≤ m ≤M, τ
(2),o
M+1(e

o
M+1 − 1) = 0,

(91)

where τ (2),o = [τ
(2),o
1 , . . ., τ

(2),o
M+1] are the optimal Lagrange

multipliers.
Then, the set of equations (89), (87), (90), and (91) constitute

exactly the KKT conditions of Problem (24).
Hence, the proof is complete.
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