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Generalized Sampling on Graphs With Subspace and
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Abstract—We propose a framework for generalized sampling
of graph signals that parallels sampling in shift invariant (SI) sub-
spaces. This framework allows for arbitrary input signals which are
not constrained to be bandlimited. Furthermore, the sampling and
reconstruction filters may be different. We present design methods
of the correction filter that compensate for these differences and
lead to closed form expressions in the graph frequency domain. In
this study, we consider two priors on graph signals: The first is
a subspace prior, where the signal is assumed to lie in a periodic
graph spectrum (PGS) subspace. The PGS subspace is proposed
as a counterpart of the SI subspace used in standard sampling
theory. The second is a smoothness prior that imposes a smoothness
requirement on the graph signal. We suggest the use of recovery
techniques when the recovery filter can be optimized and under
a setting in which a predefined filter must be used. Sampling is
performed in the graph frequency domain, which is a counterpart
of “sampling by modulation” used in SI subspaces. We compare
our approach with existing sampling techniques on graph signal
processing. The effectiveness of the proposed generalized sampling
approach is validated numerically through several experiments.

Index Terms—Graph signal processing, generalized sampling,
graph sampling.

I. INTRODUCTION

SAMPLING theory for graph signals has been recently stud-
ied with the goal of building parallels of sampling results

in standard signal processing [1]–[11]. Since the pioneering
Shannon–Nyquist sampling theorem [12], [13], sampling the-
ories that encompass more general signal spaces beyond that
of bandlimited signals in shift invariant (SI) spaces have been
widely studied with many promising applications [14]–[20].
More relaxed priors have also been considered such as smooth-
ness priors. These theories allow for sampling and recovery of
signals in arbitrary subspaces using almost arbitrary sampling
and recovery kernels. These results are particularly useful in
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the SI setting in which sampling and recovery reduce to simple
filtering operations.

Graph signal processing (GSP) [21], [22] is a relatively new
field of signal processing that studies discrete signals defined
on a graph. Recent work on GSP ranges from theory to practi-
cal applications including wavelet/filter bank design [23]–[26],
learning graphs from observed data [27]–[32], restoration of
graph signals [33], [34], image/point cloud processing [35], and
deep learning on graphs [36].

One of the topics of interest in GSP is graph sampling the-
ory [1]–[11], which is aimed at recovering a graph signal from
its sampled version. Current approaches generally rely on vertex
domain sampling. The graph can be highly irregular, namely,
the number of edges connected to a vertex may vary signifi-
cantly. Hence, the “best” sampling set depends on the graph
and assumed signal model; sampling set selection with different
models of signals or features has been studied extensively in
sensor networks and machine learning [37]–[40]. Graph sam-
pling theory typically assumes that the signal is smooth on the
graph, where the smoothness is often measured by the number
of nonzero coefficients in the graph Fourier spectrum [2], [9].

Vertex domain sampling parallels sampling of (discrete) time
domain signals in standard signal processing. However, whereas
time domain sampling has a corresponding frequency (i.e., DFT)
domain representation that preserves the shape of the spectrum
(up to possible aliasing) [20], [41], [42], vertex domain sampling
does not have such a simple relationship. Therefore, we propose
to build an analog of standard sampling in the graph frequency
domain. Graph frequency domain sampling has been proposed
in [43]. In certain cases, vertex and graph frequency domain
sampling approaches coincide as we discuss in Section IV-C.

Here, we expand on [43] by building a generalized graph
sampling framework that allows for (perfect) recovery of graph
signals beyond bandlimited signals, and parallels SI sampling
for time domain signals. In SI sampling, the input subspace has
a particular SI structure. Sampling is modeled by uniformly
sampling the output of the signal convolved with an arbitrary
sampling filter. Under a mild condition on the sampling filter,
recovery is obtained using a correction filter having an explicit
closed-form frequency response. Herein, we demonstrate how
one can extend these ideas to graphs by defining an appropriate
input space of graph signals and sampling in the graph frequency
domain [43]. In addition, our generalized sampling framework
enables recovery of non-bandlimited graph signals from vertex
domain sampling for bipartite graphs by applying a relation-
ship between vertex and graph frequency domain sampling. In
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contrast to graph filter bank approaches [24], [25], [44]–[48],
our proposed generalized framework only requires one branch
(i.e., channel) to recover full-band graph signals.

Our framework relies on graph sampling performed in the
graph frequency domain [43] as a counterpart to “sampling
by modulation” under the SI setting [20], [42]. This sampling
method maintains the shape of the graph spectrum. Graph fre-
quency domain sampling enables a generalized graph sampling
framework that is analogous to SI sampling, exhibiting a sym-
metric structure in which the sampling and reconstruction steps
contain similar building blocks as those in SI sampling. Our
approach reduces to the standard SI results in the case of a graph
representing the conventional time axis whose graph Fourier
basis is the discrete Fourier transform (DFT).

We consider two priors on graph signals:
1) Subspace prior, where the signal lies in a known subspace

characterized by a given generator; and
2) Smoothness prior, where the signal is smooth on a given

graph.
Both priors parallel those considered in SI sampling [14], [20].
For the subspace prior, we define the periodic graph spectrum

(PGS) subspace that serves as a counterpart of SI subspaces. In
particular, this subspace maintains the repeated graph frequency
spectra of SI signals. In fact, the proposed PGS model has a
physical meaning beyond the mathematical analogy. Most GSP
methods implicitly assume the range of the original signal is
discrete. However, many graph signals are continuous in time.
The PGS model allows to connect the generation model of graph
signals to that of (continuous-time) SI signals.

In the smoothness prior, we assume that the quadratic form of
the graph signal is small for a given smoothness function. Under
this setting, perfect recovery is no longer possible. Nonetheless,
following the work on general Hilbert space sampling, we show
how to design graph filters that allow to best approximate the
input signal under several different criteria [20], [49]–[51].

Generalized sampling for standard and graph sampling
paradigms allows for the use of arbitrary sampling and recon-
struction filters that are not necessarily ideal low-pass filters. It
also allows for fixed recovery filters that may have advantages in
terms of implementation. For all settings, and under all recovery
criteria considered, we show that reconstruction is given by
spectral graph filters, the responses of which have closed form
solutions that depend on the generator function, smoothness, and
sampling/reconstruction filters.

In the context of subspace sampling with a PGS prior, our
results allow for perfect recovery of graph signals beyond those
that are bandlimited for almost all signal and sampling spaces. In
particular, we require such subspaces to satisfy a direct-sum (DS)
condition, as found in standard generalized sampling. When the
DS condition does not hold, we design a correction filter that
best approximates the input under both the least-squares (LS)
and minimax (MX) criteria. These criteria have been studied in
the context of standard sampling. We then introduce LS and MX
strategies for recovery under a smoothness prior. In all cases, the
graph filters have explicit graph frequency responses that parallel
those in the SI setting.

Earlier work focusing on generalized sampling of graph sig-
nals can be found in [5]. This approach is based on generalized
Hilbert space sampling [14], [20] and demonstrates the possibil-
ity of perfect recovery of graph signals that are not necessarily
bandlimited. However, this framework does not parallel SI sam-
pling in general, i.e., the reconstruction matrix does not have
a simple diagonal graph frequency response. Likewise, most
previous studies have considered vertex domain subsampling,
including many graph sampling studies [2]–[8], [11], resulting
in different building blocks in the sampling and reconstruction
steps. Our framework, by contrast, leads to simple closed form
recovery methods based on graph filters for both sampling and
recovery. We expand on the similarities and differences between
our approach and previous techniques in Section VII.

In our preliminary study [52], we considered generalized
graph sampling with a subspace prior. Here, the results are
significantly expanded by introducing an integrated framework,
applying different design criteria, and further considering a
smoothness prior.

The remainder of this paper is organized as follows. The nota-
tions and basics of GSP are introduced in Section II. Section III
reviews generalized sampling in Hilbert spaces and in the SI set-
ting. A framework for generalized graph sampling is presented
in Section IV. Section V proposes signal recovery methods
assuming a PGS subspace prior. We describe smoothness priors
in Section VI. Section VII elaborates on the relationship between
our work and existing methods. Numerical experiments are pre-
sented in Section VIII. Finally, Section IX provides concluding
remarks.

II. SPECTRAL GRAPH THEORY AND BASICS OF GSP

We begin by reviewing graphs and their spectrum. We also
introduce some basic GSP operators, like the graph Fourier
transform (GFT) and filtering on graphs.

A graphG is represented asG = (V, E), whereV and E denote
sets of vertices and edges, respectively. The number of vertices
is given by N = |V| unless otherwise specified. We define an
adjacency matrix A with elements amn that represents the
weight of the edge between the mth and nth vertices; amn = 0
for unconnected vertices. The degree matrix D is a diagonal
matrix, with mth diagonal element [D]mm =

∑
n amn.

GSP uses different variation operators [21], [22] depending
on the application and assumed signal and/or network models.
Here, for concreteness, we use the graph LaplacianL := D−A
or its symmetrically normalized version L := D−1/2LD−1/2.
The extension to other variation operators (e.g., adjacency
matrix) is possible with a slight modification for properly
ordering its eigenvalues as long as the graph is undirected
without self-loops. Because L is a real symmetric matrix, it
always possesses an eigendecomposition L = UΛU∗, where
U = [u0, . . . ,uN−1] is a unitary matrix containing the eigen-
vectors ui, and Λ = diag(λ0, λ1, . . . , λN−1) consists of the
eigenvalues λi. We refer to λi as the graph frequency.

A graph signal x : V → C is a function that assigns a value
to each vertex. It can be written as a vector x in which the nth
element x[n] represents the signal value at the nth vertex. The
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TABLE I
CORRECTION AND RECONSTRUCTION FILTERS FOR SHIFT-INVARIANT AND GRAPH SPECTRAL FILTERS WHERE CF AND RF ARE ABBREVIATIONS OF CORRECTION

FILTER AND RECONSTRUCTION FILTER, RESPECTIVELY. DS, LS, AND MX REFER TO DIRECT-SUM, LEAST SQUARES, AND MINIMAX SOLUTIONS, RESPECTIVELY.
SPECTRA RXY (ω) AND R̃XY (λi) ARE DEFINED IN (8) AND (53)

GFT is defined as

x̂[i] = 〈ui,x〉 =
N−1∑

n=0

u∗
i [n]x[n]. (1)

Our generalized sampling can also use other GFT definitions,
e.g., [53]–[56], without changing the framework.

A (linear) graph filter is defined as G ∈ C
N×N . The filtered

signal is represented as

xout = Gx. (2)

Graph filtering may be defined in the vertex and frequency do-
mains. Vertex domain filtering is defined as a linear combination
of the neighborhood samples

xout[n] :=
∑

i∈Nn

[G]ni x[i], (3)

where Nn represents neighborhood vertex indices around the
nth vertex. In graph frequency domain filtering, the output is
defined as a generalized convolution [57]:

xout[n] :=

N−1∑

i=0

x̂[i]G(λi)ui[n] (4)

where the filter response in the graph frequency domain is given
by G(λi) ∈ R. This filtering is equivalently written as

xout = UG(λ)U∗x, (5)

where G(Λ) := diag(G(λ0), G(λ1), . . . ). Here, G = UG(Λ)
U∗. IfG(λi) is aP th order polynomial, (4) coincides with vertex
domain filtering (3) with a P -hop local neighborhood [21].

III. GENERALIZED SAMPLING IN HILBERT SPACE

This section introduces prior results on generalized sampling
in Hilbert spaces [15], [16], [20] and corresponding results
in the SI setting, which are fundamental for our generalized
graph sampling approach. Detailed derivations, including error
analysis which can be easily applied to graph sampling, may be
found in [20]. Table I summarizes the main results of this section
in the SI setting.

Fig. 1. Generalized sampling frameworks for sampling in Hilbert and SI
spaces. The same sampling-correction-reconstruction system can be used for
both the subspace and smoothness priors. In Hilbert space sampling, the orig-
inal and reconstructed signals are represented as x and x̃, respectively. The
sequence of samples is {c[n]} and its corrected counterpart is {d[n]}. The
set transformations of sampling and reconstruction are given by S : H → �2
and W : �2 → H, respectively. The corrected sequence is d = Hc for some
linear correction transformation H : �2 → �2. For SI sampling, the original
and reconstructed continuous-time signals are represented as x(t) and x̃(t),
respectively. The set transformations reduce to filtering, as indicated in the figure.

A. Sampling and Recovery Framework

Fig. 1(a) illustrates the generalized sampling framework in
Hilbert space. Its SI counterpart is shown in Fig. 1(b). Let x be a
vector in a Hilbert space H and c[n] be its nth sample given by
c[n] = 〈sn, x〉, where {sn} is a Riesz basis and 〈·, ·〉 is an inner
product. Denoting by S the set transformation corresponding to
{sn} we can write the samples as c = S∗x, where ·∗ represents
the adjoint. The subspace generated by {sn} is denoted by S .

In the SI setting, sn = s(t− nT ) for a real function s(t) and
a given period T . The samples can then be expressed as

c[n] = 〈s(t− nT ), x(t)〉 = x(t) ∗ s(−t)|t=nT , (6)

where ∗ represents convolution. The continuous-time Fourier
transform (CTFT) of the samples c[n], denoted C(ω), can be
written as

C(ω) = RSX(ω), (7)
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where

RSX(ω) :=
1

T

∞∑

k=−∞
S∗

(
ω − 2πk

T

)

X

(
ω − 2πk

T

)

(8)

is the sampled cross correlation. Thus, we may view sampling
in the Fourier domain as multiplying the input spectrum by
the filter’s frequency response and subsequently aliasing the
result with uniform intervals that depend on the sampling period.
In bandlimited sampling, s(−t) = sinc(t/T ), where sinc(t) =
sin(πt)/(πt). However, s(t) can be chosen arbitrarily in the
generalized sampling framework.

The recovery of the sampled signal c is represented as

x̃ = WHc = WH(S∗x), (9)

where W is a set transformation corresponding to a basis {wn}
for the reconstruction space, which spans a closed subspace W
of H. The transform H is called the correction transformation
and operates on the samples c prior to recovery.

In the SI setting, the recovery corresponding to (9) is given
by

x̃(t) =
∑

n∈Z
(h[n] ∗ c[n])w(t− nT ), (10)

where a discrete-time correction filterh[n] is first applied to c[n]:
The output d[n] = h[n] ∗ c[n] is interpolated by w(t− nT ), to
produce the recovery x̃(t).

Next, we describe known results on generalized sampling with
subspace and smoothness priors.

B. Subspace Prior

Suppose that x lies in an arbitrary subspace A of H and
assume that A is known. Hence, x can be represented as
x =

∑
d[n]an = Ad, where {an} is an orthonormal basis for

A and d[n] are the expansion coefficients of x. In the SI setting,
x(t) is expressed as

x(t) =
∑

n∈Z
d[n]a(t− nT ), (11)

for some sequence d[n] where a(t) is a real generator satisfying
the Riesz condition. In the Fourier domain, (11) becomes

X(ω) = D(ejωT )A(ω), (12)

whereA(ω) is the CTFT ofa(t) andD(ejωT ) is the discrete-time
Fourier transform (DTFT) of the sequence d[n], and is 2π/T
periodic.

1) Unconstrained Case: We first consider the case in which
the recovery is unconstrained, so that W can be any transforma-
tion. In this setting, we may recover a signal in A by choosing
W = A in (9). If S∗A is invertible, then perfect recovery of any
x ∈ A is possible by using H = (S∗A)−1. Invertibility can be
ensured by the DS condition: A and S⊥ intersect only at the
origin and span H jointly. This requirement is formally written
as

H = A⊕ S⊥. (13)

Under the DS condition, a unique recovery is obtained by an
oblique projection operator onto A along S⊥ given by

x̃ = A(S∗A)−1S∗x = x. (14)

In the SI setting, the frequency response of the correction filter
is

H(ω) =
1

RSA(ω)
. (15)

If A and S⊥ intersect, then there is more than one signal in
A that matches the sampled signal c. We may then consider
several selection criteria to obtain an appropriate signal out of
(infinitely) many candidates. Widely accepted strategies are the
LS and MX approaches.

The LS recovery is the minimum energy solution obtained as

x̃ = argmin
x∈A, S∗x=c

‖x‖2, (16)

and is given by

x̃ = A(S∗A)†S∗x. (17)

Here, H = (S∗A)† and ·† represents the Moore-Penrose pseudo
inverse. Its corresponding form in the SI setting is

H(ω) =

{
1

RSA(ω) RSA(ω) �= 0

0 RSA(ω) = 0.
(18)

The MX criterion minimizes the worst-case error from the
original signal:

x̃ = argmin
x̃

max
x∈A, S∗x=c

‖x̃− x‖2. (19)

The solution with a subspace prior is the same as that in (17).
2) Predefined Case: When the reconstruction transformation

W is predefined, perfect recovery is not possible in general.
However, we can still design a correction transformationH such
that the solution is close to x in some sense.

With the DS condition in (13), a minimal-error recovery can
be obtained by the correction filter

H = (W ∗W )−1W ∗A(S∗A)−1. (20)

The recovered signal is x̃ = W (W ∗W )−1W ∗A(S∗A)−1S∗x,
which is the orthogonal projection of the unconstrained solution
onto W . In the SI setting,

H(ω) =
RWA(ω)

RSA(ω)RWW (ω)
. (21)

When the DS condition does not hold, the LS and MX
strategies can be considered as in the unconstrained case. The
LS solution is H = (S∗W )†, which results in the following
reconstruction:

x̃ = W (S∗W )†S∗x. (22)

This solution is the same as that in (17) by replacing A with W .
The MX solution is given by

x̃ = W (W ∗W )−1W ∗A(S∗A)†S∗x, (23)



2276 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

with H = (W ∗W )−1W ∗A(S∗A)†. The corresponding SI so-
lution is the same as that in (21) with H(ω) = 0 when the
denominator is zero.

C. Smoothness Prior

The smoothness prior is a less restrictive assumption than
the subspace prior because the actual signal subspace A is not
necessarily known. Instead, we assume the signal is smooth,
which is formulated as ‖V x‖ ≤ ρ for some invertible operator
V : In the SI setting V = V (ω) is nonzero for all ω. Smoothness
is often measured by low energy in high frequency components:

∫ ∞

−∞
|V (ω)X(ω)|2dω ≤ ρ2. (24)

In general, with a smoothness prior, there are infinitely many
solutions. Two approaches to select a solution are the LS and
MX methods, which can be applied in both the unconstrained
and constrained settings.

1) Unconstrained Case: Suppose that V ∗V is a bounded
operator. In the LS method, the objective function is formulated
by choosing the smoothest signal among all the possibilities:

x̃ = argmin
x∈{x|S∗x=c}

‖V x‖2. (25)

The solution to (25) is given by

x̃ = W̃ (S∗W̃ )−1S∗x (26)

where W̃ = (V ∗V )−1S. In the SI setting, the correction filter in
(26) reduces to

H(ω) =
1

R
S˜W

(ω)
(27)

with

W̃ (ω) =
S(ω)

|V 2(ω)| . (28)

The MX solution coincides with (26).
2) Predefined Case: When the recovery space is predefined,

the constraint on the feasible set is slightly different from that in
(25). The LS objective for the predefined case may be formulated
as

x̃ = argmin
x∈{x|x∈W, S∗x=Pc}

‖V x‖2, (29)

where P is the orthogonal projection onto the range space of
S∗W . The solution can be shown to be given by

x̃ = Ŵ (S∗Ŵ )†S∗x (30)

where Ŵ = W (W ∗V ∗VW )−1W ∗S. In the SI setting, (29) re-
duces to the use of H(ω) = 1/RSW (ω) prior to reconstruction
with W (ω) [20, Section 7.2.1]. Therefore, constrained recovery
under the LS objective is the same in the subspace and smooth-
ness priors and the smoothness constraint is not included in the
solution.

The MX criterion with a smoothness prior can be formulated
as

x̃ = argmin
x̃∈W

max
x∈{x|S∗x=c, ‖V x‖≤ρ}

‖x̃−W (W ∗W )−1Wx‖2.
(31)

This solution is given by

x̃ = W (W ∗W )−1WW̃ (S∗W̃ )−1S∗x. (32)

This is the orthogonal projection onto W of the uncon-
strained solution in (26): The correction transformation is H =
(W ∗W )−1WW̃ (S∗W̃ )−1. In the SI setting, it reduces to

H(ω) =
R

W˜W
(ω)

R
S˜W

(ω)RWW (ω)
. (33)

IV. SAMPLING AND RECOVERY OF GRAPH SIGNALS

A. Sampling of Graph Signals

Two methods of sampling over graphs have been proposed in
the literature: 1) sampling in the vertex domain [2], [3] and 2)
sampling in the graph frequency domain [43].

1) Sampling in the Vertex Domain: For sampling in the ver-
tex domain, samples on a predetermined vertex set T are se-
lected. This corresponds to nonuniform subsampling in the time
domain. In contrast to the SI setting, vertex domain sampling is
conducted nonuniformly because vertex indices do not reflect the
structure of the signal. Many approaches have been proposed to
select the “best” sampling set from a given graph under different
criteria [2], [6], [7], [11].

Let us define IT ∈ {0, 1}K×N as a submatrix of the identity
matrix IN , whose rows are determined by the sampling setT that
identifies the vertices that remain after sampling, i.e., row indices
in IN . Sampling in the vertex domain is defined as follows:

Definition 1 (Sampling of graph signals in the vertex do-
main [2], [3]): Let x ∈ C

N be the original graph signal and
G ∈ C

N×N be an arbitrary graph filter in (2). In addition, let
IT be a submatrix of the identity matrix IN extracting K = |T |
rows corresponding to the sampling set T . The sampled graph
signal c ∈ C

K is given as follows:

c = IT Gx. (34)

The sampling matrix is therefore given by S∗ = IT G.
Aggregation sampling [4], [8] is a variant of vertex sampling

that uses a specifically designed G. For example, [4] defines

G = Ψdiag(u∗
0(λi), u

∗
1(λi), . . . )U

∗ (35)

where [Ψ]k� = λk
� , and [8] utilizes a random matrix to filter the

signal, i.e.,

G = (I+A) ◦Ξ, (36)

where Ξ is a random matrix and ◦ represents an element-wise
product. In general, G in (35) and (36) cannot be decomposed
using U and therefore it does not have a diagonal graph fre-
quency response.

The definitions above based on vertex domain operations
result in nonuniform sampling in general. When the signal is
bandlimited (in a graph frequency sense), perfect recovery is
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guaranteed if T is a uniqueness set [2], [9]. However, sampling
and reconstruction are not symmetric in general: Recovery is
not given through filtering and upsampling. This is a significant
difference from SI sampling. Instead, we use frequency domain
sampling to build a parallel of generalized SI sampling applied to
the graph setting and enable recovery through frequency domain
filtering.

2) Sampling in the Graph Frequency Domain: To define
sampling over a graph, we extend sampling in SI subspaces ex-
pressed by (7) to the graph frequency domain [43]. In particular,
the graph Fourier transformed input x̂ is first multiplied by a
graph frequency filter S(Λ); the product is subsequently aliased
with period K. This results in the following definition:

Definition 2 (Sampling of graph signals within the graph
frequency domain): Let x̂ ∈ C

N be the original signal in the
graph frequency domain, i.e., x̂ = U∗x, and let S(Λ) be an
arbitrary sampling filter in the graph frequency domain. For any
sampling ratio M ∈ Z, the sampled graph signal in the graph
frequency domain1 is given by ĉ ∈ C

K , where K = N/M , and

ĉ(λi) =

M−1∑

�=0

S (λi+K�) x̂ (λi+K�) . (37)

In matrix form, the sampled graph signal can be represented as
ĉ = DsampS(Λ)x̂ where Dsamp = [IK IK . . .].

Hereafter, we denote the sampling matrix S∗ as

S∗ = DsampS(Λ)U∗. (38)

This graph frequency domain sampling “mixes” different fre-
quency components obtained by the GFT. Different eigenvectors
represent different variations on the graph [21], [57], [58].
The GFT coefficients of a graph signal provide a notion of a
frequency content similar to the DFT; however, the GFT basis
varies according to the underlying graph and variation operator
used. The (weighted) sum of the two GFT coefficients in (37)
can be seen as a counterpart of sampling in the Fourier domain
in classical signal processing.

Suppose thatU∗ is the DFT matrix: For example, the DFT ma-
trix diagonalizes the graph Laplacian L of a circular graph [59].
In this case, the GFT domain sampling in (37) coincides with
that in the DFT domain [43], i.e., the sampled spectrum of (7)
C[i] = C(2πi/N) (i = 0, . . . , N − 1) yields the same output as
in (37).

B. Recovery Framework for Generalized Graph Sampling

Our framework for generalized graph sampling is shown in
Fig. 2. It parallels sampling in Hilbert and SI spaces, as illustrated
in Fig. 1 [14], [16]. In this paper, we assume that sampling, filter-
ing, and reconstruction are all performed in the graph frequency
domain. This results in graph filters that can be interpreted as
an analog of SI sampling. As in standard sampling theory, three
filters are critical in the recovery problem: sampling, correction,
and reconstruction filters.

To sample x, we transform the input into the GFT domain,
resulting in x̂ = U∗x. The output is subsequently filtered using

1M is assumed to be a divisor of N for simplicity.

Fig. 2. Generalized sampling framework for PGS subspaces. Here, x and x̃
are the original and reconstructed graph signals, respectively, ĉ is the sampled
signal in the graph frequency domain, and d̃ is the corrected graph signal.

the sampling filter S(Λ). The filtered signal is downsampled
to yield a sampled signal ĉ = S∗x = DsampS(Λ)x̂. In the re-
construction step, ĉ is filtered by the correction filter H =
H(Λ) := diag(H(λ0), . . . , H(λN−1)). Finally, d̃ = H(Λ)ĉ is
upsampled to the original dimension by D�

samp, and the recon-
struction filter W (Λ) := diag(W (λ0), . . . ,W (λN−1)) is ap-
plied to the upsampled signal. After performing an inverse
GFT, we obtain the recovered signal x̃. This can be written
as x̃ = UW (Λ)D�

sampHĉ, where the reconstruction matrix is
given by W := UW (Λ)D�

samp.
The primary objective in this framework is to consider the

design method of the correction and reconstruction filters, H
and W, that recover the original signal as accurately as possible
with a given prior and constraint. We follow the same strategies
as that of generalized sampling in Hilbert spaces introduced
in Section III: DS, LS, and MX. The solutions with subspace
and smoothness priors are presented in Sections III-B and III-C,
respectively.

C. Sampling and Recovery on Bipartite Graphs

Before describing the filter design methods in the following
sections, we introduce an interesting and special case, namely,
sampling on bipartite graphs. In this scenario, vertex and spectral
domain sampling coincide.

Studies on sampling for bipartite graphs are not only inter-
esting as an interconnection between two sampling paradigms,
but also of practical importance. Bipartite graph sampling has
been well studied in the context of perfect reconstruction graph
filter banks [24], [25], [44]–[47], where the original signal is
decomposed through low- and high-pass channels. Maximally
decimated coefficients are obtained by applying sampling for
each channel where the two disjoint vertex sets correspond to
the transformed coefficients in each channel. To realize perfect
recovery for an arbitrary graph, one needs to decompose the
original (non-bipartite) graph into several bipartite graphs with
disjoint edge subsets.2 Multiband decompositions are then recur-
sively conducted on these bipartite graphs. Such a filter bank has
multiple channels to recover full-band graph signals. In contrast,
our graph sampling framework only has one branch, as shown in
Fig. 2, while still allowing for perfect recovery under appropriate
conditions.

2An arbitrary X -colorable graph can always be decomposed into �log2 X�
bipartite subgraphs with disjoint edge subsets [44], [60].
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Fig. 3. Generalized sampling framework for graph signals using frequency
domain sampling; the sampled signal is transformed back into the vertex domain.
The red boxes are building blocks from Fig. 2. The sampled signal is located
on the vertices of Greduced. The gray regions correspond to the graph frequency
domain.

Suppose that a graph is bipartite having two equal-sized vertex
sets. Formally, let B = (V1,V2, E) be a bipartite graph that
contains two disjoint vertex setsV1 andV2, where |V1| = |V2| =
N/2, i.e., edges only exist between V1 and V2. Without loss
of generality, we assume that its first N/2 vertices correspond
to V1 and its last vertices correspond to V2. We also assume
that the GFT matrix is the eigenvector matrix of the symmetric
normalized graph Laplacian.

Fig. 3 illustrates the vertex domain representation of our
generalized sampling framework of Fig. 2, where the sampled
signal is transformed back into the vertex domain. Suppose
that the reduced-size graph Greduced of size N/2 is obtained by
reconnecting edges within V1 with Kron reduction [61], [62].
The symmetric normalized graph Laplacian of Greduced can be
obtained from L of B through the following:

Lreduced = LV1V1
− LV1V2

L−1
V2V2

LV2V1
, (39)

where LXY is a submatrix of L, whose extracted rows and
columns from L are specified by X and Y , respectively.

Consider the simplest direct sampling, i.e., there is no sam-
pling filter. The relationship between sampling in the vertex
domain (34) and the vertex domain representation of sampling
in the graph frequency domain (37) is given in the following
theorem, taken from [26]:

Theorem 1: Suppose that the GFT matrix UB is the eigen-
vector matrix of the symmetric normalized graph Laplacian of
B, and Ureduced is the eigenvector matrix of Lreduced in (39). The
following relationship then holds:

UreducedDsampU
∗
B = [I 0] = IV1

. (40)

This relationship indicates that vertex domain sampling (RHS
in (40)) coincides with graph frequency domain sampling (LHS
in (40)) under the special case in which the graph is bipartite
and the graph filter is the identity operator, i.e., G = I.

Theorem 1 can be extended to allow sampling with more
general sampling filters G:

Corollary 1: Consider the same setup as in Theorem 1 where
a sampling filter G is applied before subsampling, as in (34). If
the sampling filter G is diagonalizable by UB, then UreducedS

∗,
i.e., the vertex domain representation of graph frequency domain
sampling, is identical to IV1

G.

Proof: By assumption, G can be represented as follows:

G = UBS(Λ)U∗
B. (41)

Therefore, the sampling matrix S∗ in (38) is equal to

S∗ = DsampS(Λ)U∗
B

= DsampU
∗
BUBS(Λ)U∗

B

= DsampU
∗
BG. (42)

Using (40),

UreducedS
∗ = UreducedDsampU

∗
BG = IV1

G, (43)

completing the proof. �
Corollary 1 addresses the sampling phase. Similarly, during

reconstruction, the correction-then-reconstruction steps in the
graph frequency domain, WHU∗

reduced, can be jointly repre-
sented using vertex domain upsampling:

WHUreduced = UBW (Λ)D�
sampH(Λ)U∗

reduced

= UBW (Λ)diag(H(Λ), H(Λ))D�
sampU

∗
reduced

= UBW
′(Λ)U∗

BUBD
�
sampU

∗
reduced

= UBW
′(Λ)U∗

B[I 0]�

= W′I�V1
(44)

where W ′(λi) := W (λi)H(λimodN/2).
Interestingly, from (43) and (44), the sampling-then-

reconstruction step is represented as follows:

x̃ = W′I�V1
IV1

Gx. (45)

This is the same as vertex domain sampling and reconstruction
because W′ and G are both graph filters with diagonal graph
frequency responses, as in (41) and (44), which is illustrated
in Fig. 4. The sampling-then-reconstruction (45) is regarded as
one branch in a two-channel graph filter bank for a bipartite
graph [24], [44], [46]. The filter bank approach requires at least
two such branches to guarantee perfect recovery. In contrast, our
generalized graph sampling realizes perfect reconstruction with
one branch as long as the DS condition holds (presented in the
next section). This may lead to an implementation advantage in
practical applications.

V. GRAPH SIGNAL RECOVERY WITH SUBSPACE PRIOR

In this section, we assume that the signal lies in a known PGS
subspace that depends on the given graph. Subsequently, we
present two possible correction filters. One is an unconstrained
solution that guarantees perfect recovery of the graph signal
with an arbitrary choice of the sampling filter. The other is a
predefined solution in which a given filter must be used for
reconstruction.

A. PGS Subspace

We first consider a graph signal subspace that parallels the
generation process in SI subspaces shown in (11) and (12). As
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Fig. 4. Generalized graph sampling framework for a bipartite graph. A non-bandlimited graph signal x is generated from the expansion coefficients d by
performing vertex domain upsampling and filtering by A(λ). Subsequently, x is filtered with the sampling filter S(λ), followed by vertex domain subsampling.
The signal is reconstructed by applying vertex domain upsampling followed by W (λ) in (44).

discussed in the previous section, vertex domain sampling is
in general a nonuniform sampling operator in contrast to the
uniform SI sampling of (11). Hence, we utilize graph frequency
domain sampling that mimics “sampling by modulation” in (7).

In (12), the 2π/T -periodic spectrum of the expansion coef-
ficients D(ejωT ) is multiplied by the (non-periodic) generator
A(ω) to obtain the signal spectrum X(ω). We reflect this char-
acteristic in the signal subspace for the graph setting.

The spectrum of the graph considered herein is finite and
discrete. Suppose that we have a length K spectrum d̂(λi) (i =
0, . . . ,K − 1, K ≤ N ) as the expansion coefficients. Although
its original length is finite, we assume that d̂ is periodic beyond
i ≥ K, as in (12), i.e.,

d̂(λi) = d̂(λimodK). (46)

Under this assumption, we define the following signal subspace
for graph signals as a counterpart of the SI subspace:

Definition 3: A PGS subspace of a given graph G is a space
of graph signals that can be expressed as a GFT spectrum filtered
by a given generator:

XPGS =

{

x[n]

∣
∣
∣
∣
∣
x[n] =

N−1∑

i=0

d̂(λimodK)A(λi)ui[n]

}

, (47)

where A(λi) is the graph frequency domain response of the
generator and d̂(λi) is an expansion coefficient.

This signal can be represented in the following matrix form:

x := Ad̂ = UA(Λ)D�
sampd̂ (48)

where d̂ := [d̂(λ0), . . . , d̂(λK−1)]
�.

Bandlimited graph signals are a special case of signals in a
PGS subspace. Suppose that A(λi) is a bandlimiting low-pass
filter GBL,K(λi), i.e.,

GBL,K(λi) =

{
1 i ∈ [0,K − 1],

0 otherwise.
(49)

The graph signal x generated by (49) completely maintains d̂,
i.e., is K-bandlimited under the GFT basis U. Moreover, PGS
graph signals are not necessarily bandlimited: The PGS model
covers a broader class of graph signals.

A similar assumption as (48) without periodicity is given
in [27], [31], where d̂ is assumed to be a random variable. Our
PGS assumption includes this definition: In particular, ifK = N
and d̂ is a random variable following a zero-mean multivariate
Gaussian distribution, then the subspace defined by Definition 3
coincides with that used in [27], [31]. However, note that we

Fig. 5. Relationship between PGS and SI signals for T = 2. Left: Signal
generation model for SI space. Right: Sampled spectrum of (12) with the inverval
2π/N , which corresponds to the DFT spectrum.

impose no constraint on the generator function or the expansion
coefficients. Thus, Definition 3 treats a broader class of graph
signals than the above.

Suppose that T in (12) is a positive integer, i.e., the spectra
D(ejωT ) are repeated T times within ω ∈ [0, 2π], and A(ω) in
(12) has support ω ∈ [0, 2π]. In this case, a sequence X[i] =
D(ejωT )A(ω)|ω=2πi/N (i = 0, . . . , N − 1) corresponds to the
DFT spectrum of length N . Therefore, this X[i] can be regarded
as a graph signal spectrum in a PGS subspace when U∗ is
the DFT matrix, e.g., the graph G is a circular graph. This
relationship is illustrated in Fig. 5. Note that our proposed PGS
model is the first approach to formally connect a generation
model of graph signals to that of continuous-time SI signals, to
the best of our knowledge.

B. Unconstrained Case

Our solutions for generalized graph sampling can be obtained
from the general Hilbert space results of Section III. Owing to
the definition of the PGS subspace and sampling in the graph
frequency domain, the sampling, correction, and reconstruction
filters can all be implemented in the graph frequency domain.

1) Recovery Filters: For the unconstrained solution, we use
a reconstruction filter W (λi) = A(λi) in (47). Suppose that
the DS condition (13) is satisfied for the signal and sampling
subspaces. Following the expression in (14), the signal recovery
is given as follows:

x̃ = A(S∗A)−1S∗x

= A(S∗A)−1S∗Ad̂

= Ad̂ = x, (50)

where the correction filter is

H = (S∗A)−1. (51)
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Its graph frequency response is

H(λi) =
1

R̃SA(λi)
(52)

where

R̃SA(λi) :=
∑

�

S(λi+K�)A(λi+K�). (53)

The inverse of R̃SA(λi) is well defined under the DS condition.
Note the similarity with (15).

The solution for the LS and MX strategies when A and S
intersect can be derived from (17) as follows:

x̃ = A(S∗A)†S∗x. (54)

The correction filter in this case is H = (S∗A)†, and it has the
same graph frequency response as (52) but with H(λi) = 0 for
λi with R̃SA(λi) = 0.

2) Special Cases: Suppose that both the generator and sam-
pling filters are A(Λ) = S(Λ) = GBL,K(Λ) in (49). Subse-
quently, H(λi) = 1 and no correction filter is required. This
is equivalent to the perfect recovery condition for bandlimited
graph signals using graph frequency domain sampling [43].

Another interesting case is the bipartite graph introduced
in Section IV-C. For example, suppose that S(λi) in (41) is
GBL,N/2(λi) and the generator is A(λi) = GIR(λi) with

GIR(λi) =

{
1 λ0 ≤ λi ≤ 2/λmax,

− 2λi

λmax
λi > 2/λmax,

(55)

where the correction filter again becomes H(λi) = 1; there-
fore, W (λi) = A(λi) = GIR(λi). This implies that a non-
bandlimited graph signal can be perfectly reconstructed from
bandlimited measurements by applying the same filtering as in
the generation process without an explicit correction filter.

In addition, as mentioned in (45), our sampling and recov-
ery can be represented by using vertex domain sampling for
bipartite graphs. Existing graph filter banks for bipartite graphs,
e.g., [24], [44], [46], may require length-N coefficients (for max-
imally decimated transforms) for reconstruction on the synthesis
side. Instead, our framework only needs one channel which
requires a length-K spectrum for recovery, as demonstrated in
Section VIII-B. If the generator function A(λi) of a given signal
is losslessly encoded and sent along with the spectrum, we
can reconstruct the original signal. This may be regarded as
a one-branch compression of graph signals.

C. Predefined Case

Suppose that the reconstruction filter W (λi) is predefined.
The reconstructed signal x̃ will in general be different from
x in this case. As in the unconstrained setting introduced in the
previous subsection, the correction transforms in our framework
are given through graph spectral filters.

If A and S satisfy the DS condition in (13), the solution in
(20) reduces to the following:

H = (W∗W)−1W∗A(S∗A)−1. (56)

The corresponding graph filter is

H(λi) =
R̃WA(λi)

R̃SA(λi)R̃WW (λi)
. (57)

If W (λi) = A(λi), the response above is identical to that of the
unconstrained case shown in (52).

Without the DS condition, we can apply the LS and MX
strategies. The LS solution is

x̃ = W(S∗W)†S∗x, (58)

where the correction filter H = (S∗W)† has spectral response

H(λi) =

{
1

R̃SW (λi)
R̃SW (λi) �= 0,

0 otherwise.
(59)

The MX solution becomes

x̃ = W(W∗W)−1W∗A(S∗A)†S∗x, (60)

with

H = (W∗W)−1W∗A(S∗A)†. (61)

The spectral response of the filter now is the same as that in (57)
but H(λi) = 0 if the denominator is zero.

The graph correction filters are summarized in Table I. The
table demonstrates nicely the similarities with SI sampling.

VI. GRAPH SIGNAL RECOVERY WITH SMOOTHNESS PRIOR

The subspace prior introduced in the previous section enables
the input graph signal to be recovered perfectly; however, it
requires full knowledge of the given graph and generator. In
this section, we consider a less restrictive assumption. We still
assume that the GFT basis U is given; however, the generator
function A(λi) is unknown.

We assume that the graph signal is smooth on the given graph
where smoothness is measured by the signal energy in the high
graph-frequency components as in the SI setting (24). Although
several possible operators exist for measuring signal smoothness
on a graph [21], we consider a simple quadratic form of x:

‖Vx‖22 = x∗V2x =

N−1∑

i=0

V 2(λi)|x̂(λi)|2 (62)

where V := UV (Λ)U∗ is an arbitrary graph filter with spec-
tral response V (λi). The smoothness condition is given by
‖Vx‖22 ≤ ρ2 for some constant ρ. This can be seen as a general-
ization of the bandlimitedness of graph signals, which has been
widely studied [2], [3], [6], [7], [9], [10], because a bandlimited
graph signal corresponds to ρ = 0 for a high-pass filter V =
U(I−GK,BL(Λ))U∗. In addition, if we assume V = L1/2,
then ‖Vx‖22 = x∗Lx, which is a Laplacian quadratic form also
used extensively in the literature. Hereinafter, for simplicity, we
assume V (λi) �= 0 for all i.

For the unconstrained case, the LS recovery is given from (26)
as follows:

x̃ = W̃(S∗W̃)−1S∗x, (63)
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where W̃ = (V∗V)−1S = UV 2(Λ)U∗ and S∗V−2S =
DsampS

2(Λ)V −2(Λ)D�
samp is invertible if R̃SS(λi) �= 0 for all

i. This results in H = (S∗W̃)−1, where the spectral response is

H(λi) =
1

R̃
S˜W

(λi)
. (64)

The MX solution coincides with (64) as in the SI solution.
We next consider the predefined case. For the LS criterion,

the solution in Hilbert space (29) reduces to the constrained LS
solution with a subspace prior (59): This does not depend on
V (λi), i.e., the smoothness prior does not affect the solution.

The MX solution can be obtained from (32):

x̃ = W(W∗W)−1W∗W̃(S∗W̃)−1S∗x. (65)

This leads to

H = (W∗W)−1W∗W̃(S∗W̃)−1, (66)

wtih spectral response

H(λi) =
R̃

W˜W
(λi)

R̃
S˜W

(λi)R̃WW (λi)
. (67)

The smoothness prior V (λi) is incorporated appropriately in the
correction filter, in contrast to the LS solution.

These correction filters are summarized in Table I.

VII. COMPARISON WITH EXISTING STUDIES

A. Computational Complexity

Here, we compare the computational complexities of vertex
and graph frequency domain sampling required for sampling,
recovery, and preprocessing.

1) Sampling: The complexity of spectral domain sampling is
in generalO(NK) because the sampling matrixS∗ has sizeK ×
N . However, the complexity is reduced to O(N) if we already
have GFT coefficients x̂ because the sampling filter response
S(Λ) is diagonal. Typically, it is necessary to perform a GFT
only once even when the sampling ratio or filter is changed.

For vertex domain sampling, the subsampling in (34) chooses
elements specified by the sampling set T : Its computation
cost is negligible. In contrast, a sampling filter in the vertex
domain requires O(N2) complexity in general. This can be re-
duced using a localized filter: P -hop filtering requires O(P |E|)
complexity [23].

2) Recovery: As mentioned in the above two sections, all
correction and reconstruction filters in our generalized sam-
pling framework have diagonal graph frequency responses, the
computational complexity of which is O(K). When we change
the sampling filter, the response of the correction filter can be
immediately calculated because it is diagonal. An additional
complexity is required for the inverse GFT (whose complexity
depends on the GFT used) if reconstructed vertex domain signals
are required.

For signal recovery using vertex domain sampling, a matrix
of size N ×K is multiplied by the sampled coefficients, the
complexity of which is O(NK). Note that the reconstruction
matrix depends on T : If the sampling set T or sampling rate

|T | is changed, we have to re-calculate the entire reconstruction
matrix even if the graph is the same. This calculation typically
requires the inversion of a K ×K matrix, e.g., [2], [3], [11],
and may lead to O(K3) complexity.

3) Preprocessing: Graph frequency domain sampling con-
sidered in this paper requires the GFT matrix, and hence we
need to compute an eigendecomposition of the variation opera-
tor. This typically requires O(N3) complexity (in practice, we
can use several fast computation methods of GFT or spectral
decomposition of the graph variation operator such as in [55],
[56], [63]–[65]). It is important to note that the same graph is
often used numerous times. In such a case, we only need to
calculate the GFT basis once, and can reuse it even when we
change the sampling rate M = N/K or the sampling filter.

Vertex domain sampling always requires computing the best
T from a given graph. The computation complexity highly
depends on the sampling set selection methods. Leading ap-
proaches are compared in [1], [11]. Typically, the complexity
depends on N , the (assumed) cutoff graph frequency, and the
edge density.

B. Existing Techniques

In [5], a generalized sampling method for graph signal pro-
cessing was studied. As the results did not assume any particular
structure on the input signals and sampling filters, the recovery
procedures were in general given by matrix inversions. Here,
we focus on a special case of [5] that extends SI sampling to the
graph setting and enables explicit expressions for the recovery
filter in the graph Fourier domain.

Our solution represented in (54) allows for a broad choice of
S(λi) and A(λi). In particular, A(λi) is not restricted to a ban-
dlimiting operator. If we have S(Λ) = A(Λ) = GBL,K(Λ), our
solution reduces to that of [5], which is equivalent to sampling
theory with graph frequency domain sampling studied in [43].

For the smoothness prior, if the smoothness is measured by
V2 = L+GBL,K(Λ), i.e.,

V (λi) =

{√
λi + 1 i ≤ K − 1√
λi i ≥ K

(68)

and S(Λ) = GBL,K(Λ), our solution also reduces to that intro-
duced in [5]: The reconstruction and correction filters as shown
in (63) exhibit the following form:

W (λi) =
1

λi + 1
, H(λi) = λi + 1 (69)

for λi ∈ [λ0, λK−1], and W (λi) = H(λi) = 0 otherwise. This
is a special case of [5] where the correction and reconstruction
operators can be represented as spectral filters.

As mentioned in Section V-A, many studies on graph sam-
pling theory such as [2]–[4] implicitly assume that the graph
signal lies in the PGS subspace with a typical generator function
A(λi) = GBL,K(λi). While their subspace is a special case of
the PGS assumption, the sampling matrices are different from
that in (38). As described in Definition 1, the simple subsampling
S∗ = IT has been used in many studies on graph sampling [2],



2282 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

[3]. In [4], aggregation sampling was used. However, its sam-
pling matrix in (35) does not in general have a corresponding
sampling expression in the graph frequency domain as that in
(37). This results in the requirement of matrix inversion even for
recovering the bandlimited graph signal although the signal lies
in a PGS subspace.

In summary, most studies on graph sampling theory require in-
version of the sampling operator for their reconstruction frame-
work. Moreover, they focused on the design problem for the
nonuniform sampling matrix IT that, for example, maximizes
the bandwidth with perfect recovery. In contrast, frequency
domain sampling is utilized in this study as a counterpart of
“sampling by modulation” in SI spaces, thus resulting in a sym-
metric structure, i.e., both the sampling and reconstruction steps
can be represented as similar sampling and filtering operations.
We also allow for a broader set of input signals and design
criteria.

VIII. GRAPH SIGNAL RECOVERY EXPERIMENTS

In this section, we validate the proposed generalized sampling
through signal recovery experiments. First, we demonstrate that
the correction and recovery filters described in Sections V and VI
reduce the reconstruction error of non-bandlimited graph signals
compared to bandlimited sampling in the graph frequency do-
main [43] and FastGSSS [11], which is a state-of-the-art vertex
domain sampling method. This demonstrates the MSE improve-
ments of our generalized sampling for non-bandlimited graph
signals over bandlimited or smoothness-based reconstruction.
Sampling under the bipartite case presented in Section IV-C is
then conducted in which full-band graph signals are almost per-
fectly recovered with one branch of sampling and reconstruction,
even without calculating the GFT matrix.

A. Recovery Experiments for Bandlimited and
Non-Bandlimited Sampling

We first conduct signal recovery experiments following our
generalized sampling framework shown in Fig. 2. We compare
two choices of priors, i.e., subspace and smoothness priors; three
strategies, i.e., DS, LS, and MX; and two possible reconstruction
filters, i.e., unconstrained or predefined. In addition, two sam-
pling filters are considered: bandlimited and non-bandlimited.
Bandlimited sampling corresponds to graph sampling theory
described in [43], whereas our generalized sampling recovers the
original full-band graph signals after bandlimited sampling. As
mentioned previously, we allow for non-bandlimited sampling
filters to obtain the sampled signal ĉ while still guaranteeing
perfect recovery under certain conditions.

The graph used is a random sensor graph with N = 256. We
downsampled the input signal by a factor of two such that K =
32. We used the following functions:
� Generator function:

A(λi) =

{
1− λi/(λmax + ε) Function #1 (70)

exp(−1.5λi/λmax) Function #2. (71)

Fig. 6. Spectral responses of several functions used for the experiments.

� Sampling functions:

S(λi) =

{
GBL,K(λi) for bandlimited sampling

GIR(λi) for non-bandlimited sampling.
(72)

� Reconstruction function (used only for the predefined
solutions):

W (λi) = cos

(
π

2
· λi

λmax + ε

)

. (73)

� Smoothness function (used only for the smoothness prior):

V (λi) = λi/λmax + 1. (74)

We set ε = 0.1. All functions are visualized in Fig. 6. It is
worth noting that both A(λi) are not bandlimited; therefore, the
original signal retains its full band. The generator function in
(71) is smoother than (70): Here, (71) decays more rapidly than
(70) when λ increases. Each element in the expansion coeffi-
cients d̂ is a random variable drawn from N (1, 1). Examples of
x generated byA(λi) in (70) are shown in Fig. 7(a). We perform
two samplings to highlight the difference between the proposed
sampling and the bandlimited sampling, as in (72).

For comparison, we applied bandlimited signal recovery with
GFT domain sampling [43]:S(λi) = W (λi) = GBL,K(λi)with
no correction filterH(λi) = 1. In addition, signal recovery using
FastGSSS [11] is also conducted. FastGSSS assumes that x is
smooth on a graph. It determines the sampling set T and applies
a recovery based on a graph filter with a given kernel. FastGSSS
perfectly recovers the original signal when the polynomial order
approaches infinity if the signal is bandlimited.

We applied 1,000 independent runs and calculated the aver-
age MSEs. We then repeated the experiments using zero-mean
Gaussian noise with variance σ2 = 0.1 added to x.

Table II summarizes the average MSEs for various sampling
approaches. The visualization of the reconstructed signals are
shown in Fig. 7. Their corresponding spectra are also shown in
Fig. 8.

Noiseless Signals: The unconstrained solution for the sub-
space prior perfectly recovers the original signal with machine
precision. The predefined solutions for both the subspace and
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Fig. 7. Signal recovery experiments for a random sensor graph. The generator function #1 in (70) is used. For visualization, we choose N = 128 and K = 16.
Top row: The original signal and reconstructed signals with existing approaches. Middle row: Reconstructed signals with the proposed approach using bandlimited
sampling. Bottom row: Reconstructed signals with the proposed approach using non-bandlimited sampling. SS and SM refer to the subspace and smoothness
priors, UNC and PD refer to the unconstrained and predefined solutions.

TABLE II
AVERAGE MSES OF RECONSTRUCTED SIGNALS AFTER 1000 INDEPENDENT RUNS (IN DECIBELS). COLUMNS WITH BL REFER TO BANDLIMITED SAMPLING, AND

THOSE WITH NON-BL REFER TO NON-BANDLIMITED SAMPLING

∗Same as the predefined solution for smoothness prior with LS strategy.

smoothness priors contain some reconstruction errors; however,
in most cases, they are much smaller than those in the ban-
dlimited reconstruction, especially for generator function #1 in
(70). Because the signals generated by (71) are smoother than
those of (70), recovery with the smoothness prior is compara-
ble to the bandlimited reconstruction if bandlimited sampling
is applied. By contrast, using the non-bandlimited sampling
function, all predefined solutions are superior to bandlimited
sampling/reconstruction. The unconstrained solution with a
smoothness prior (63) yields the same results as those in ban-
dlimited sampling and reconstruction when using GBL,K(λi) as
the sampling filter.

FastGSSS uses vertex domain sampling and assumes
smoothness (or bandlimitedness) of the signals. Its MSE is
slightly worse than the predefined solutions and comparable to
the bandlimited sampling/reconstruction using spectral domain
sampling. This is because the signals used in the experiment are
not fully bandlimited. As shown in Fig. 7(c), its reconstructed
signal is over-smoothed compared to the original signal in

Fig. 7(a). In fact, the sampling set selection strategy of FastGSSS
(and any other reconstruction method utilizing vertex domain-
based sampling) is based on the assumption that the signal is
sufficiently smooth, i.e., a special case of the smoothness prior
described in Section VI. This leads to existing recovery methods
based on graph sampling theory interpolating missing values
with a smooth graph filter, which thus have difficulty in recovery
of non-bandlimited signals even when M is increased. As
mentioned in Section VII-A, recovery based on vertex domain
sampling generally requires a matrix inversion whose
computational complexity is typically O(K3), and the entire
reconstruction matrix needs to be re-calculated even when the
sampling set T is slightly changed. In contrast, our reconstruc-
tion matrix only differs in a diagonal matrix H even when the
sampling rate or sampling filter is changed. Therefore, H can
be easily re-calculated, as long as sampling is applied to the
same graph.

Noisy Signals: All methods contain increased errors for noisy
cases, as expected. The unconstrained solution for the subspace
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Fig. 8. Original, sampled, and corrected spectra of Fig. 7.

prior demonstrated significantly worse performance than that of
the noiseless case because it did not assume any smoothness of
the reconstructed graph signals. The predefined filters, both with
subspace and smoothness priors, demonstrate performance close
to those of unconstrained solutions because their reconstruction
filters yield a smooth signal.

Bandlimited reconstruction occasionally outperforms gener-
alized sampling because it removes the noise in the high-graph-
frequency band. Therefore, bandlimited reconstruction for the
smoother signals in (71) is comparable to generalized sampling
with non-bandlimited sampling. However, for wider-band sig-
nals, as in (70), generalized sampling is much better than a
bandlimited method even for noisy cases.

FastGSSS is inferior to spectral domain sampling-based ap-
proaches in most cases as in the experiment for noiseless signals.
Because such a smoothing filter is naturally robust to noise,
MSEs of FastGSSS are stabilized for noisy cases (but are still
inferior to GFT domain sampling).

B. Recovery Experiment on Bipartite Graphs With Vertex
Domain Sampling

We next demonstrate the recovery of non-bandlimited
graph signals from vertex domain sampling, as described in
Sections IV-C and V-B. To the best of our knowledge, this
example is the first attempt to recover full-band graph signals
from vertex domain operations without utilizing a multi-band
decomposition.

In the signal recovery of this experiment, we set S(Λ) =
GBL,N/2(Λ) and A(λi) = W (λi) = GIR(λi), as described in
Section V-B2. That is, the original signal is full-band, whereas
the sampled signal is low-pass filtered, i.e., the high-graph-
frequency components are discarded after sampling. We assume
that the generator information is available for recovery. The
sampling and recovery of this situation is formulated in (45).
If graph filters G and W′ can be represented as vertex domain
filters, all operations will be performed in the vertex domain,

Fig. 9. MSE in recovery of signals on a bipartite graph. Here, N = 256 and
the results are averaged over 100 independent runs.

Fig. 10. Original and reconstructed signals on a bipartite graph withN = 256.
The right and left vertex sets correspond to V1 (retained) and V2 (discarded),
respectively. The expansion coefficients d are drawn from N (0.25× 10−2, 1)
for clear visualization. Chebyshev polynomial approximation of order 16 is used
both for W̃ (Λ) and S̃(Λ).

i.e., without applying GFT (or an eigendecomposition of the
variation operator). The filters, i.e., S(Λ) and W ′(Λ) in (45),
cannot be represented as vertex domain filters in general. Fortu-
nately, they can be approximated as vertex domain operators
by utilizing polynomial approximations of the spectral filter
responses. In this experiment, we use a Chebyshev polynomial
approximation (CPA) [23], [66]. As described in Section II, the
P th order CPA of an arbitrary graph spectral filter corresponds
to a vertex domain filter with P -hop localization.

The original signal x is obtained as follows:3

x = W′I�V1
d, (75)

where each element in d is a random variable drawn from a nor-
mal distribution N (1, 1). Fig. 9 shows the average MSEs of the
reconstructed signals after 100 independent runs according to the
polynomial order. For comparison, we also plot the MSE of ban-
dlimited reconstruction in which we use S̃(λi) = G̃BL,N/2(λi)
as the reconstruction filter where ·̃ denotes the polynomial
approximated filter. As shown in Fig. 9, the reconstruction
error decreases monotonically asP increases. The reconstructed
signals are also shown in Fig. 10. Bandlimited reconstruction
yields large errors, whereas the proposed reconstruction exhibits
extremely similar signal values as the original values.

IX. CONCLUSION

We proposed a framework for generalized sampling of graph
signals. We assumed that graph signals lie in a PGS subspace,
which extends the SI subspace in standard signal processing
to the graph setting. Sampling is defined in the graph fre-
quency domain. We considered two priors for the graph signals,

3Note that the generation process in (75) uses the non-polynomial W′.
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subspace and smoothness priors, which are parallel to those
studied for signals in SI subspaces. All filters used in our
framework can be represented as graph spectral filters. Numer-
ical experiments demonstrated that our proposed sampling can
recover a class of sampled signals broader than that obtained
through existing graph sampling theories. We also presented
perfect recovery of non-bandlimited graph signals on bipartite
graphs without explicit operations in the GFT domain.
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[42] M. Vetterli, J. Kovačević, and V. K. Goyal, Foundations of Signal Process-
ing. Cambridge, U.K.: Cambridge Univ. Press, 2014.

[43] Y. Tanaka, “Spectral domain sampling of graph signals,” IEEE Trans.
Signal Process., vol. 66, no. 14, pp. 3752–3767, Jul. 2018.

[44] S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet
filter banks for graph structured data,” IEEE Trans. Signal Process., vol. 60,
no. 6, pp. 2786–2799, Jun. 2012.

[45] A. Sakiyama and Y. Tanaka, “Oversampled graph Laplacian matrix for
graph filter banks,” IEEE Trans. Signal Process., vol. 62, no. 24, pp. 6425–
6437, Dec. 2014.

[46] A. Sakiyama, K. Watanabe, and Y. Tanaka, “Spectral graph wavelets and
filter banks with low approximation error,” IEEE Trans. Signal Inf. Process.
Netw., vol. 2, no. 3, pp. 230–245, Sep. 2016.

[47] Y. Tanaka and A. Sakiyama, “Oversampled transforms for graph sig-
nals,” in Vertex-Frequency Analysis of Graph Signals, L. Stanković, and
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