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Reconstructing Classes of Non-Bandlimited Signals
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Abstract—We investigate time encoding as an alternative method
to classical sampling, and address the problem of reconstructing
classes of non-bandlimited signals from time-based samples. We
consider a sampling mechanism based on first filtering the input,
before obtaining the timing information using a time encoding
machine. Within this framework, we show that sampling by timing
is equivalent to a non-uniform sampling problem, where the recon-
struction of the input depends on the characteristics of the filter
and on its non-uniform shifts. The classes of filters we focus on
are exponential and polynomial splines, and we show that their
fundamental properties are locally preserved in the context of
non-uniform sampling. Leveraging these properties, we then derive
sufficient conditions and propose novel algorithms for perfect re-
construction of classes of non-bandlimited signals such as: streams
of Diracs, sequences of pulses and piecewise constant signals. Next,
we extend these methods to operate with arbitrary filters, and also
present simulation results on synthetic noisy data.

Index Terms—Analog-to-digital conversion, non-uniform
sampling, sub-Nyquist sampling, finite rate of innovation, time
encoding, integrate-and-fire, crossing detector, cardinal splines.

I. INTRODUCTION

SAMPLING plays a fundamental role in signal processing
and communications, achieving the conversion of contin-

uous time phenomena into discrete sequences [1]. From the
Whittaker-Shannon theorem [2], to recent theories in com-
pressed sensing [3], [4], super-resolution [5] and finite rate
of innovation [6]–[10], sampling theory has provided precise
answers on when a faithful conversion of a continuous waveform
into a discrete sequence is possible. These methods are generally
based on recording the signal amplitude at specified times, which
lead to uniform sampling if the samples are evenly spaced, and
non-uniform sampling otherwise.

In this paper, we concentrate on an alternative method to
classical sampling, which encodes the input into a sequence of
non-uniformly spaced time events or spikes. In other words,
rather than recording the value of the signal at preset times,
one records the instants when the signal crosses a pre-defined
threshold or triggers a pre-defined event. Acquisition models
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inspired by this mechanism include zero-crossing detectors [13],
delta-modulation schemes [14], as well as the time encoding
machine (TEM) introduced in [15]. This latter model is of
particular interest, as it mimics the integrate-and-fire mecha-
nism of neurons in the human brain. Biological neurons use
time encoding to represent sensory information as action po-
tentials [16]–[18], which allows them to process information
very efficiently. In the same manner, sampling inspired by the
brain could lead to very simple and highly efficient devices,
ranging from analog to digital converters [15], to neuromorphic
computing or event-based vision sensors, which record only
changes in the input intensity, leading to low power consumption
and fewer storage requirements [19].

At the same time, time-encoding methods extend theories of
traditional sampling, and this makes this topic intriguing also
from a research perspective. Within the study of time encoding,
the key problem that arises is to find methods to retrieve the input
signal from its timing information, and hence the key questions
to pursue are the following. 1) Is time encoding invertible,
and which classes of signals can be uniquely represented using
timing information? 2) What algorithms allow perfect retrieval
of these signals from their time-encoded samples?

To address these questions, several authors have provided
ways to sample and reconstruct bandlimited signals [20]–[25].
These initial results on time-encoding machines have also been
extended to functions that belong to shift-invariant spaces [26],
[27], typically by connecting time encoding with the problem of
non-uniform sampling [28]–[30]. Time encoding theory has also
been generalized to the case of non-bandlimited signals in [31],
however in the context of studying the dynamics of populations
of neurons, by leveraging stochastic assumptions on the firing
parameters.

In this paper, we show that it is possible to perfectly recon-
struct particular classes of continuous-time signals which are
neither bandlimited nor belong to shift-invariant subspaces, from
samples obtained using a time encoding mechanism. The signals
we focus on are infinite streams of Diracs, sequences of pulses, as
well as piecewise constant signals. Sampling and reconstructing
pulses is of significant relevance to many real-world applica-
tions. For example, time-of-flight cameras probe the 3D scene
with pulses of light and reconstruct the scene by measuring their
round trip time. In applications which require reduced computa-
tional power and speed, e.g. robots mapping their surroundings,
time-of-flight technology may benefit from a time encoding
framework which would significantly lower the sampling rate.
Signals consisting of a stream of pulses appear in many other
applications, including: ultrawideband communications [32],
ECG acquisition and compression [33], radio-astronomy [34],
image processing [35], ultrasound imaging [8] and processing
of neuronal signals [36].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0527-5508
https://orcid.org/0000-0002-6073-2807
mailto:ria12@imperial.ac.uk
mailto:p.dragotti@imperial.ac.uk


748 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

At the same time, time encoding principles have already been
integrated in bio-inspired technologies such as dynamic vision
sensors (DVS) [19], which have many real-world applications,
ranging from robotics to autonomous driving as well as low-
power surveillance. In a DVS camera, each pixel only records
changes in the input at the time instants they occur, by taking
a time derivative of the signal. Hence, at the local pixel-level,
this is equivalent to time encoding of piecewise constant signals,
which is studied in this paper.

Motivated by these real-world applications, the time encod-
ing strategy we propose is based on filtering the input signal
before extracting the timing information using a crossing or
an integrate-and-fire TEM. The filter may be used to reduce
noise, or may model the distortion introduced by the acquisition
device, for example the optics in a time-of-flight scanner or the
photoreceptors in a DVS camera. In order to develop a frame-
work for exact reconstruction, we initially focus on two classes
of compact-support filters (sampling kernels): exponential and
polynomials splines. Please note that exponential splines are
very useful since they can be used to model any convolution
operator with rational transfer function as for example, simple
RC circuits [6], [37]. Our first main contribution is to prove
that exponential (polynomial) splines locally preserve their ex-
ponential (polynomial) reproducing properties in the context of
time-based sampling. Specifically, we show that within intervals
where there are no knots of at least N non-uniformly shifted
kernels, we can locally reproduce exponentials (polynomials) of
degree N . The second aspect of our contribution is to leverage
these properties to address the problem of reconstructing some
classes of non-bandlimited signals from timing information. We
initially develop our reconstruction framework for the case of
one Dirac, where we show how a linear combination of its
non-uniform samples leads to a sequence of signal moments,
which can then be annihilated using Prony’s method [38], in
order to retrieve the free parameters of the input. Furthermore,
we extend this method to reconstruct infinite streams and bursts
of Diracs, sequences of pulses as well as piecewise constant
signals, for which we can achieve local reconstruction given
the compact support of the filter. Finally, we depart from
the ideal case, and present a universal reconstruction strat-
egy that works with timing-based samples taken by arbitrary
kernels.

This paper is organized as follows. In Section II-A, we de-
scribe the principles of time encoding, with two exemplary cases.
Then, in Section II-B we show that sampling kernels which
reproduce exponentials or polynomials preserve this property
locally, when sampling is based on timing information. Further-
more, in Section III we present methods for the reconstruction of
non-bandlimited signals from their timing information obtained
using a crossing TEM. We first propose a method for estimation
of a single Dirac, and extend this to retrieve streams of Diracs
and bursts of Diracs. Then, in Section IV we demonstrate the
perfect retrieval of classes of non-bandlimited signals from
timing information, obtained using an integrate-and-fire TEM.
These estimation methods are then extended in Section V to
the case of arbitrary sampling kernels. Here we also present
results for the case of noisy signals. Finally, we highlight the
high efficiency of sampling based on timing information in
Section VI, and present concluding remarks in Section VII.
Please note that the code to reproduce our simulations is avail-
able online [39].

Fig. 1. Crossing Time Encoding Machine.

Fig. 2. Time encoding based on the Crossing TEM.

Fig. 3. Time Encoding Machine based on Integrate-and-fire.

II. TIME ENCODING MECHANISMS

A. Acquisition Models

In this section, we introduce the time encoding machines con-
sidered in this paper: the crossing TEM and the integrate-and-fire
TEM. Specifically, we show how these TEMs map a real signal
x(t) to a strictly increasing sequence of times {tn} [27]. We also
show that although no measure of the amplitude of the signal is
recorded, time encoding is equivalent to a non-uniform sampling
problem.

1) Crossing Time Encoding Machine: The crossing time en-
coding strategy is inspired by the A/D conversion scheme in
e.g. [27], [40], and is depicted in Fig. 1. It consists of a compact-
support filter ϕ(−t), and a comparator with a sinusoidal refer-
ence g(t). The output of the acquisition device is the sequence
{tn}, corresponding to the time instants when the filtered in-
put signal crosses the reference, i.e. when y(tn)− g(tn) = 0.
Moreover, since the shape of the test function g(t) is known,
we can retrieve the amplitudes of the output samples, given
by yn = y(tn) = g(tn). Hence, decoding the input signal is
equivalent to a non-uniform sampling problem, where we aim
to reconstruct x(t) from the non-uniform samples given by:

yn = y(tn) =

∫
x(τ)ϕ(τ − tn)dτ = 〈x(t), ϕ(t− tn)〉. (1)

In Fig. 2 we depict the time encoded information of an input
signal of 3 Diracs, obtained using the TEM in Fig. 1.

2) Time Encoding Based on an Integrate-and-Fire System:
The operating principle of this time encoding strategy is similar
to the one in [20], and is depicted in Fig. 3. The signal is first
filtered with a compact-support filter with impulse response
ϕ(−t), before being passed to an integrator. When the output
of the integrator reaches the positive trigger mark CT , the time
encoding machine outputs a spike and the integrated signal y(t)
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Fig. 4. Time Encoding based on the Integrate-and-fire TEM.

is reset to zero. Similarly, a spike is generated and y(t) resets to
zero, when the integrator reaches the negative trigger mark−CT .
The time instants when the integrator reaches the threshold±CT

are recorded in the sequence {tn}. Then, we can compute the
output sample y(tn) at each spike tn as:

yn = y(tn) = ±CT =

∫ tn

tn−1

f(τ)dτ, (2)

where n ≥ 2 and f(t) is defined as:

f(t) =

∫
x(α)ϕ(α− t)dα, for t ∈ [tn−1, tn]. (3)

Similarly, assuming that the input signal x(t) = 0, for t < τ1,
and that the filter ϕ(−t) is causal, then the first output sample is
given by:

y1 = y(t1) = ±CT =

∫ t1

τ1

f(τ)dτ. (4)

Hence, time encoding with an integrate-and-fire model is
equivalent to a non-uniform sampling problem, where we aim to
estimate the input x(t) from the non-uniform samples y(tn). In
Fig. 4 we depict the time encoding of an input signal, obtained
using the device in Fig. 3, for CT = 0.15.

Furthermore, leveraging the results in [41], we can show that
the non-uniform output samples we obtain using the acquisition
model in Fig. 3 are the same as those obtained by filtering the
input with the modified kernel (ϕ ∗ qθn)(t):

y(tn) = 〈x(t), (ϕ ∗ qθn)(t− tn−1)〉, (5)

where θn = tn − tn−1 and qθn(t) is defined as:

qθn(t) =

{
1, 0 ≤ t ≤ θn,

0, otherwise.
(6)

We can prove Eq. (5) by re-writing Eq. (2) as follows:

y(tn) =

∫ tn

tn−1

f(τ)dτ =

∫ tn

tn−1

∫ ∞

−∞
x(t)ϕ(t− τ)dtdτ

(a)
=

∫ ∞

−∞
x(t)

∫ tn

tn−1

ϕ(t− τ)dτdt

(b)
=

∫ ∞

−∞
x(t)

∫ t−tn−1

t−tn

ϕ(τ)dτdt

(c)
=

∫ ∞

−∞
x(t)

∫ t−tn−1

t−tn

ϕ(τ)qθn(t− tn−1 − τ)dτdt

(d)
=

∫ ∞

−∞
x(t)(ϕ ∗ qθn)(t− tn−1)dt

= 〈x(t), (ϕ ∗ qθn)(t− tn−1)〉. (7)

In the derivations above, (a) holds since we assume both the
input x(t) and the filter ϕ(t) have compact support, and (b)
follows from a change of variable. Moreover, (c) follows from
the fact that qθn(t− tn−1 − τ) = 1 for τ ∈ [t− tn, t− tn−1]
and (d) holds since qθn(t− tn−1 − τ) = 0 for τ /∈ [t− tn, t−
tn−1], as defined in Eq. (6).

Finally, the first output sample can be computed as:

y(t1)
(a)
=

∫ t1

τ1

f(τ)dτ = 〈x(t), (ϕ ∗ qθ1)(t− τ1)〉, (8)

where θ1 = t1 − τ1, and (a) follows from Eq. (4).
We conclude this subsection by making the following remark.

We observe that from the timing sequence {tn}, we can either
recover y(tn) = 〈x(t), ϕ(t− tn)〉 for the case of the crossing
TEM or y(tn) = 〈x(t), (ϕ ∗ qθn)(t− tn−1)〉 for the integrate-
and-fire model. This means that in both cases, the reconstruction
of x(t) will depend on the proper choice of the sampling kernel
ϕ(t) and on its non-uniform shifts ϕ(t− tn).

In what follows we focus on two families of kernels, poly-
nomial and exponential splines [6], [42], [43], and show that
some of their fundamental properties are preserved in the case
of non-uniform shifts.

B. Sampling Kernels

The sampling kernels ϕ(t), that we consider in this paper are
all anti-causal since they are the time reversed versions of causal
filters.

1) Polynomial Splines: A B-spline βP (t) of order P is com-
puted as the (P + 1)-fold convolution of the box function β0(t)
[42]:

βP (t) = β0(t) ∗ β0(t). . .. ∗ β0(t)︸ ︷︷ ︸
P+1 times

,

where the anti-causal version of β0(t) is defined as:

β0(t) =

{
1, −1 ≤ t ≤ 0,

0, otherwise.

The B-spline of order P satisfies the Strang-Fix conditions [44]
and hence, together with its uniform shifts, it can reproduce
polynomials of maximum degree P :∑

n∈Z

cm,nβP (t− n) = tm, (9)

where m ∈ {0, 1, . . ., P}, and for a proper choice of the coeffi-
cients cm,n.

For instance, the first-order B-spline satisfies Eq. (9) for
P = 1, which means it can reproduce constant and linear poly-
nomials, and is defined as:

β1(t) =

⎧⎨
⎩
−t, −1 ≤ t ≤ 0,

2 + t, −2 ≤ t < −1,

0, otherwise.

The first order B-spline has two continuous regions, each
of which is a linear polynomial: βA

1 (t) = −t, for t ∈ (−1, 0)
and βB

1 (t) = 2 + t, for t ∈ (−2,−1). Using this observation,
it is possible to show that the first-order B-spline, together
with its non-uniformly shifted versions can locally reproduce
polynomials of maximum degree 1. In other words, it is possible
to prove that within a time interval I where the shifted kernels



750 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 5. Reproduction of constant and linear polynomials in two different time
intervals, I1 = (0.625, 1)s in (a) and (b), and I2 = (1, 1.625)s in (c) and (d).
In this case, two knot-free regions of two non-uniformly shifted first-order B-
splines overlap I1 and I2.

β1(t− tn) have no knots, the following equation holds:

N−1∑
n=0

cIm,nβ1(t− tn) = tm, (10)

where N ≥ 2, m ∈ {0, 1}, t ∈ I and {tn} are non-uniform.
The proof can be outlined by setting N = 2 for simplic-

ity. Then, let I be an interval where there are no knots of
β1(t− t0) and β1(t− t1), with I ⊂ (t1 − 1, t0). Furthermore,
let v0(t) = β1(t− t0) = −t+ t0 for t ∈ I and v1(t) = β1(t−
t1) = −t+ t1 for t ∈ I . In the vector space of linear polynomi-
als in I which is a two-dimensional space, the elements v0(t)
and v1(t) are linearly independent and so form a basis of the
space, provided t0 
= t1. Therefore, using a linear combination
of the two functions, we can uniquely represent any vector
in this space, including the vector t. In other words, we can
determine the unique coefficients cI1,0 = t1

t0−t1
and cI1,1 = t0

t1−t0

that ensure cI1,0v0(t) + cI1,1v1(t) = t, for t ∈ I . Similarly, we
find the unique coefficients cI0,0 = 1

t0−t1
and cI0,1 = 1

t1−t0
such

that cI0,0v0(t) + cI0,1v1(t) = 1, for t ∈ I . Hence, Eq. (10) is
satisfied in the knot-free interval I for N = 2.

In the same manner, one can show that reproduction of con-
stant and linear polynomials is achieved on any interval spanned
by knot-free regions of at least two non-uniformly shifted B-
splines. Lastly but importantly, for different knot-free intervals,
the solution to Eq. (10) differs, and this fact is highlighted in
Fig. 5. Here, we depict two non-uniform shifts of the first-
order B-spline, namelyβ1(t− 2) andβ1(t− 2.625). The shifted
kernel β1(t− 2) has knots at t = 0, t = 1 and t = 2, whilst
β1(t− 2.625) has knots at t = 0.625, t = 1.625 and t = 2.625.
As a result, reproduction of polynomials is possible within the
knot-free regions I1 = (0.625, 1) and I2 = (1, 1.625), however
with a different linear combination of the B-splines overlapping
these regions, i.e. with cI1m,n 
= cI2m,n.

One can extend this result to the case of higher order poly-
nomials by using B-splines of order P > 1. This is due to the
fact that polynomial splines are piecewise polynomial functions
of degree P . Hence, in any interval I that contains P + 1
knot-free shifted versions of splines, it is possible to reproduce
polynomials up to degree P .

2) Exponential Splines: The anti-causal version of the E-
spline of first-order is defined as:

ϕ1(t) =

{
e−α0t, −1 ≤ t ≤ 0,

0, otherwise.

where α0 can be either real or complex.
As with polynomial splines, E-splines of orderP are obtained

from the convolution of first-order E-splines [43]:

ϕP (t) = ϕα0
(t) ∗ ϕα1

(t). . .. ∗ ϕαP−1
(t). (11)

An E-spline of order P has compact support and can repro-
duce P different exponentials of the form e−αmt [43]:∑

n∈Z

cm,nϕ(t− n) = e−αmt,

where m = 0, 1, . . ., P , and for a suitable choice of the coeffi-
cients cm,n.

For example, the E-spline of order P = 2 of support of
arbitrary length L is defined as:

ϕ2(t) =

⎧⎪⎨
⎪⎩

ec1−c0

c1−c0
e−α0t + e−c1+c0

c0−c1
e−α1t, −L ≤ t < −L

2 ,
1

c0−c1
e−α0t + 1

c1−c0
e−α1t, −L

2 ≤ t ≤ 0,

0, otherwise,
(12)

where αi ∈ C (if �{αi} = 0 then ϕ2(t) ∈ R), and where ci =
αi

L
2 for i = 0, 1 in order to ensure continuity ofϕ2(t). Through-

out the remainder of the paper, we assume for simplicity that
L = 2.

The second-order E-spline can reproduce the exponentials
e−α0t and e−α1t. In fact, we notice that within each of its
knot-free regions, the function ϕ2(t) can be expressed as a
linear combination of the exponentials e−α0t and e−α1t. This
observation helps us prove that within any time interval I which
contains knot-free regions of non-uniformly shifted first-order
E-splines, we can reproduce two exponentials:

N−1∑
n=0

cIm,nϕ2(t− tn) = e−αmt, (13)

where N ≥ 2, m ∈ {0, 1}, t ∈ I and {tn} are non-uniform.
For example, let I be an interval which contains knot-free

regions of ϕ2(t− t0) and ϕ2(t− t1), with I ⊂ (t1 − L, t0 −
L
2 ). Moreover, let v0(t) = ϕ2(t− t0) for t ∈ I and v1(t) =
ϕ2(t− t1) for t ∈ I . The elements v0(t) and v1(t) are linear
combinations of e−α0t and e−α1t, and therefore belong to the
vector space spanned by these two exponentials. Moreover, v0(t)
and v1(t) are linearly independent and so, form a basis of that
vector space, since t1 
= t0. Hence, using a linear combination
of v0 and v1, we can uniquely represent any vector in this space,
including e−α0t and e−α1t. Therefore, in the interval I where
there are no knots, we can find unique coefficients cIm,0 and
cIm,1 such that Eq. (13) holds for m ∈ {0, 1}.

Similarly, reproduction of two different exponentials is pos-
sible on any time interval spanned by knot-free regions of at
least two shifted E-splines. Note that for different intervals I1
and I2, the solution to Eq. (13) differs, i.e. cI1m,n 
= cI2m,n. This is
highlighted in Fig. 6, where exponential reproduction is possible
in the regions I1 and I2, but using a different linear combination
of the E-splines that overlap these regions.

By using the same argument we can prove similar results
for the general case of an E-spline of order P and support
of length L which can reproduce P different exponentials.
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Fig. 6. Reproduction of �{ej 2π
5 t} in two different intervals, I1 =

(0.625, 1)s and I2 = (1, 1.625)s, overlapped by continuous regions of two
non-uniformly shifted second-order E-splines.

Specifically, within an interval I containing knot-free regions
of at least P non-uniformly shifted E-splines, we can reproduce
P different exponentials, such that Eq. (13) holds forN ≥ P and
m ∈ {0, 1, . . ., P − 1}. This is due to the fact that any knot-free
interval of an E-spline of order P is a linear combination of P
different exponentials.

Finally, let us consider the kernel (ϕP ∗ g)(t), where ϕP (t) is
a P -order E-spline which can reproduce the exponentials eαmt,
for m = 0, 1, . . ., P − 1. Furthermore, let us assume that g(t)
has compact support [−ε, ε]. The support ofϕP (t) is [−L, 0] and
its knots are located at instants (−L+ nL

P ) with n ∈ N. Then,
in the knot-free interval (−L

P , 0) we can compactly represent

ϕP (t) =
∑P−1

m=0 ameαmt, for some coefficients am.
If the length of the support of g(t) satisfies 2ε ≤ L

P and∫
g(t)e−αmtdt exists, then (ϕP ∗ g)(t) is given by:

(ϕP ∗ g)(t) =
P−1∑
m=0

amGmeαmt, (14)

where t ∈ (ε− L
P ,−ε) and Gm =

∫ ε

−ε g(t)e
−αmtdt.

Therefore, in the interval (ε− L
P ,−ε), (ϕP ∗ g)(t) is a lin-

ear combination of P exponentials. As a result, within I =
(tN−1 + ε− L

P , t1 − ε), (ϕP ∗ g)(t) and its non-uniform shifts
can reproduce P exponentials, as follows:

N−1∑
n=0

cIm,n(ϕP ∗ g)(t− tn) = e−αmt, (15)

where N ≥ P , and m ∈ {0, 1, . . ., P − 1}.

III. PERFECT RECOVERY OF SIGNALS FROM TIMING

INFORMATION OBTAINED WITH A CROSSING TEM

In the previous section, we showed how time encoding maps
the input signal to a sequence of non-uniform samples, which
depend on the signal and non-uniform shifts of the sampling
kernel. In what follows we assume that the sampling kernel
ϕ(t) is a second-order exponential reproducing spline, such
that a linear combination of its non-uniformly shifted ver-
sions can reproduce two different exponentials, as described in
Section II-B2. Moreover, ϕ(t) has compact support of length
L, with ϕ(t) = 0 for t /∈ [−L, 0] and the two frequencies that
this kernel can reproduce are α0 = jω0 and α1 = −α0, which
ensures that ϕ(t) is a real-valued function.

Under these assumptions, we study the problem of recon-
structing different classes of non-bandlimited signals, from tim-
ing information obtained using the crossing TEM in Fig. 1.
Specifically we present a method for estimation of an input

Dirac. Here we show that two output spikes are sufficient to
retrieve the input, provided they are located suitably close to the
Dirac, which is guaranteed by imposing conditions on the fre-
quency and amplitude of the comparator’s sinusoidal reference
signal. We then extend this to retrieval of streams of Diracs and
bursts of Diracs. While the reconstruction method proposed to
retrieve one Dirac might not be unique, it has the advantage that
it naturally generalizes to multiple Diracs. We note that similar
results could be proved using polynomial splines, but we omit
these proofs to keep the focus of the paper on E-splines.

A. Estimation of an Input Dirac

Let us consider a single input Dirac of the form:

x(t) = x1δ(t− τ1). (16)

Proposition 1: Let the sampling kernel ϕ(t) be a second-
order E-spline of support of length L, defined as in Eq. (12),
with ω1 = −ω0 and 0 < ω0 ≤ π

L . The filter ϕ(t) and its non-
uniform shifts can reproduce the exponentials ejω0t and ejω1t

as in Eq. (13). In addition, suppose that the reference signal
g(t) = A cos(wst) of the comparator in Fig. 1 has amplitude
A > |x1| and period Ts <

2L
5 . Then, the timing information

{t1, t2, . . ., tN} provided by the comparator TEM is a sufficient
representation of an input Dirac as in Eq. (16).

Proof: From the timing information {t1, t2}, we can re-
trieve the non-uniform output samples y(t1) and y(t2), as de-
scribed in Eq. (1). In what follows we show that we can find
a linear combination of the samples y(t1) and y(t2) to get
cm,1y(t1) + cm,2y(t2) = x1e

jωmτ1 , for m = 0, 1, from which
we can retrieve the input parameters x1 and τ1.

For simplicity, suppose that the amplitude of the input Dirac
satisfies x1 > 0. In addition, the hypothesis thatϕ(t) reproduces
e±jω0t with 0 < ω0 ≤ π

L means that 0 ≤ ϕ(t) < 1, for t ∈
[−L

2 , 0]. Then, since 0 < x1 < A, the output y(t) = x1ϕ(τ1 −
t) of the crossing TEM satisfies 0 ≤ y(t) < A = max(g(t)),
for t ∈ [τ1, τ1 +

L
2 ]. Since we assume 5Ts

4 < L
2 , this means that

0 ≤ y(t) < A = max(g(t)), for t ∈ [τ1, τ1 +
5Ts

4 ].
Let us then define the continuous functionh(t) = g(t)− y(t).

Using Bolzano’s intermediate value theorem [45] and the fact
that 0 ≤ y(t) < max(g(t)), we show that within the interval
(τ1, τ1 +

5Ts

4 ], the signal h(t) crosses zero at least twice. In
other words, ∃t1, t2 ∈ (τ1, τ1 +

5Ts

4 ] such that h(t1) = h(t2) =
0. For example, if we assume h(τ1) = g(τ1) > 0, then g(τ1 +
Ts

2 ) < 0 and sincey(t) ≥ 0, we geth(τ1 +
Ts

2 ) = g(τ1 +
Ts

2 )−
y(τ1 +

Ts

2 ) < 0. Then, Bolzano’s intermediate value theorem
states that ∃t1 ∈ (τ1, τ1 +

Ts

2 ] such that h(t1) = 0.
Using the same argument one can then show that ∃t2 ∈

(τ1 +
Ts

2 , τ1 +
5Ts

4 ] such that h(t2) = 0. This follows from the
assumption that g(τ1) > 0, which implies that ∃ε ∈ [0, Ts

2 ] such
that g(τ1 +

3Ts

4 + ε) = cos(τ1 +
3Ts

4 + ε) = max(g(t)) = A,
as highlighted in Fig. 7. At the same time, we showed that 0 ≤
y(t) < A for t ∈ [τ1, τ1 +

5Ts

4 ] and hence, we get h(τ1 +
3Ts

4 +

ε) = g(τ1 +
3Ts

4 + ε)− y(τ1 +
3Ts

4 + ε) > 0. Since h(τ1 +
Ts

2 ) < 0 and h(τ1 +
3Ts

4 + ε) > 0, Bolzano’s intermediate
value theorem guarantees that ∃t2 ∈ (τ1 +

Ts

2 , τ1 +
3Ts

4 + ε]

such that h(t2) = 0, for ε ∈ [0, Ts

2 ]. Therefore, at the maximum
value of ε, we have proved that the second output spike satisfies
t2 ∈ [τ1 +

Ts

2 , τ1 +
5Ts

4 ].
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Fig. 7. Input Dirac located at τ1, filtered input and sinusoidal reference signal.

Fig. 8. Time encoding of an input Dirac located at τ1 ∈ I , when L
2 > 5Ts

4 .
In the interval I , ϕ(t− t1) and ϕ(t− t2) have no knots.

Hence, since we assume L
2 > 5Ts

4 , we obtain the inequal-
ity t2 ≤ τ1 +

5Ts

4 < τ1 +
L
2 . This guarantees that in a region

(τ1, τ1 +
L
2 ) following a Dirac at τ1, there are at least 2 output

samples, namely y(t1) and y(t2), as depicted in Fig. 8.
Then, in the interval I = (t2 − L

2 , t1), which does not contain
knots of either ϕ(t− t1) or ϕ(t− t2), we can reproduce two
exponentials as described in Section II-B2. Specifically, we can
find coefficients cIm,n such that:

2∑
n=1

cIm,nϕ(t− tn) = ejωmt, for m ∈ {0, 1}. (17)

We then define the signal moments sm as follows:

sm =
2∑

n=1

cIm,ny(tn)
(a)
=

2∑
n=1

cIm,n〈x(t), ϕ(t− tn)〉

(b)
=

∫ ∞

−∞
x(t)

2∑
n=1

cIm,nϕ(t− tn)dt

(c)
=

∫ ∞

−∞
x1δ(t− τ1)

2∑
n=1

cIm,nϕ(t− tn)dt

(d)
=

∫
I

x1δ(t− τ1)e
jωmtdt = x1e

jωmτ1 = b1u
m
1 , (18)

where b1 := x1e
jω0τ1 , u1 := ejλτ1 , the frequenciesωm = ω0 +

λm, for m ∈ {0, 1}, and λ = −2ω0.
In these derivations, (a) follows from Eq. (1), (b) from the

linearity of the inner product, and (c) from Eq. (16). Moreover,
(d) holds since t1, t2 ∈ (τ1, τ1 +

L
2 ), which means τ1 ∈ I , and

from the local exponential reproduction property of ϕ(t) in the
region I , as given in Eq. (17).

The unknowns {b1, u1} can be uniquely retrieved from the
signal moments, as follows: b1 = s0 and u1 = s1

s0
. More gener-

ally, the parameters {b1, u1} can also be found using the annihi-
lating filter method [46], also known as Prony’s method [38] (see
Appendix A). Then, we get the Dirac’s amplitude and location,
using b1 = x1e

jω0τ1 and u1 = ejλτ1 . �

Fig. 9. Sampling of a stream of Diracs using the crossing TEM. The input
signal, filtered input and sinusoidal reference signal are depicted in the top plot,
and the output non-uniform samples in the bottom plot. The output samples used
to retrieve each Dirac in the input stream are highlighted in red.

B. Estimation of a Stream of Diracs

Let us now consider the case of a stream of Diracs:

x(t) =
∑
k

xkδ(t− τk). (19)

Proposition 2: Let the sampling kernel ϕ(t) be a second-
order E-spline of support of length L, defined as in Eq. (12),
with ω1 = −ω0 and 0 < ω0 ≤ π

L . The filter ϕ(t) and its non-
uniform shifts can reproduce the exponentials ejω0t and ejω1t

as in Eq. (13). In addition, suppose that the reference signal
g(t) = A cos(wst) of the comparator has amplitude A > |xk|,
∀k and period Ts <

2L
5 , and that the minimum spacing between

consecutive Diracs is larger thanL. Then, the timing information
{t1, t2, . . ., tN} provided by the device shown in Fig. 1 is a
sufficient representation of a stream of Diracs as in Eq. (19).

Proof: The input stream of Diracs can be sequentially esti-
mated as follows. The first Dirac x1δ(t− τ1) can be uniquely
estimated using the first two non-zero samples y(t1) and y(t2),
as presented in Section III-A. Once we know τ1, we retrieve
the first two non-zero samples y(tn) and y(tn+1) located after
τ1 + L, and use these to estimate the second Dirac x2δ(t− τ2).
We then sequentially retrieve the next Dirac using the first two
non-zero samples located after τ2 + L, as illustrated in Fig. 9. In
what follows we show that once x1δ(t− τ1) has been estimated,
we can use y(tn) and y(tn+1) to estimate the second Dirac
in the stream. Since we assume that the separation between
input Diracs is larger than the length L of the kernel’s support,
then the location τ2 of the second Dirac satisfies τ1 + L < τ2 <
tn. Moreover, provided the period of the comparator’s signal
satisfies Ts <

2L
5 , Bolzano’s intermediate value theorem [45]

guarantees that y(tn), y(tn+1) ∈ (τ2, τ2 +
L
2 ), as previously

outlined in Section III-A. Then, the interval I = (tn+1 − L
2 , tn)

contains no knots of either ϕ(t− tn) or ϕ(t− tn+1), and per-
fect exponential reproduction can be achieved. Hence we can
compute the signal moments using similar derivations as in
Eq. (18):

sm = cIm,ny(tn) + cIm,n+1y(tn+1) = x2e
jωmτ2 .

Finally, we can estimate x2 and τ2 from sm, using Prony’s
method. Once the second Dirac has been estimated, we use
subsequent non-uniform output samples after τ2 + L in order
to sequentially retrieve the next Diracs. �
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TABLE I
CHOICE OF HYPERPARAMETERS OF THE CROSSING TEM FOR

RECONSTRUCTING BURSTS OF K DIRACS

The time encoding of the stream of Diracs is depicted in
Fig. 9. Here, the filter is a second-order E-spline, of support
length L = 2, which can reproduce the exponentials e±j π

3 t. The
frequency of the comparator’s test signal is fs = 1.26 > 5

2L and
the separation between Diracs is at least L = 2. The amplitudes
and locations of the estimated Diracs are exact to numerical
precision.

C. Multi-Channel Estimation of Bursts of Diracs

Let us now consider a sequence of bursts of K Diracs:

x(t) =
∑
b

K∑
k=1

xb,kδ(t− τb,k), (20)

where the amplitudes xb,k in the same burst b have the same sign
and satisfy |xb,k| < Amax.

Proposition 3: Let us consider a system of M ≥ K TEM
devices as in Fig. 1.The filter ϕ(t) of the mth TEM is a second-
order E-spline whose support has length L, and which can
reproduce two different exponentials, ejωm0

t and ejωm1
t, with

ωm0
= ω0 + λm, λ = −2ω0

2M−1 , 0 < ω0 ≤ π
L , ωm1

= −ωm0
, and

m = 0, 1, . . .,M − 1. Furthermore, suppose the reference sig-
nal g(t) = A cos(wst) has amplitude A > KAmax and period
Ts <

2L
7 . In addition, let us assume the spacing between con-

secutive bursts is larger than L, and the maximum separation
between the last and first Dirac in any burst b satisfies τb,K −
τb,1 < Ts

2 . Then, the timing information t1,m, t2,m, . . ., tN,m for
m = 0, 1, . . .,M − 1 provided by M devices as in Fig. 1 is a
sufficient representation of bursts of K Diracs as in Eq. (20).

Proof: See Appendix B. �
We summarize the results in this section by showing possible

choices of the hyperparameters of the crossing TEM, and how
they influence the density of output samples. This relationship
is presented in Table I, for the case of a sequence of bursts
of K Diracs. Here, M is the minimum number of channels,
P is the order of the sampling kernel for each channel, L is
the length of the support of the sampling kernel and fmin

s the
minimum frequency of the comparator’s sinusoidal reference.
The table shows both the average sample density, as well as the
ideal sample density1 required for perfect estimation of each of
the bursts of K Diracs.

We conclude this section by making the observation that the
number of redundant samples of the crossing TEM is large,
since samples are recorded even when the input is zero. In this
case, output samples are recorded at the time instants when the
sinusoidal reference signal crosses zero. In what follows, we

1The ideal sample density is computed under the assumption that two samples
are necessary to reconstruct one Dirac and that on average there are K Diracs
in an interval L+ ε with ε > 0.

aim to use the same decoding framework, however with a more
efficient acquisition device, the integrate-and-fire TEM.

IV. PERFECT RECOVERY FROM TIMING INFORMATION

OBTAINED WITH AN INTEGRATE-AND-FIRE TEM

We now shift our focus on the integrate-and-fire TEM in Fig. 3.
In particular, we show how to perfectly estimate an input Dirac,
and extend this method to streams and bursts of Diracs, streams
of pulses as well as piecewise constant signals. The retrieval of
these signals from their timing information is perfect, provided
the threshold of the trigger comparator is small enough to ensure
a sufficient density of output samples. As it will become evident
in Section VI, an important feature of the integrate-and-fire
model is that it can be more efficient than the comparator or
a system based on uniform sampling, in the case of input signals
with a small number of Diracs, because it leads to a smaller
number of samples.

A. Estimation of an Input Dirac

Proposition 4: Let the sampling kernel ϕ(t) be a second-
order E-spline of support of lengthL, defined as in Eq. (12), with
ω1 = −ω0 and 0 < ω0 ≤ π

L . The filter ϕ(t) and its non-uniform
shifts can reproduce the exponentials ejω0t and ejω1t as in Eq.
(13). In addition, suppose that the trigger mark of the comparator
satisfies:

0 < CT <
Amin

3

∫ L
2

0

ϕ(−t)dt,

where Amin is the absolute minimum amplitude of the Dirac.
Then, the timing information {t1, t2, . . ., tN} provided by the
integrate-and-fire TEM in Fig. 3 is a sufficient representation of
an input Dirac as in Eq. (16).

Proof: We will prove that the upper bound on CT guarantees
that the integrated filtered input y(t) = x1ϕ(τ1 − t) reaches the
trigger mark at least three times in the interval (τ1, τ1 + L

2 ).
We will then show how we can use the second and third output
samples y(t2) and y(t3) to perfectly estimate the input Dirac,
given that the integrated filtered input has no discontinuities in
the interval (τ1, τ1 + L

2 ).
First, we note that:

∫ L
2

0

ϕ(−t)dt =

∫ τ1+
L
2

τ1

ϕ(τ1 − t)dt
(a)
=

1

ω2
0

[
1− cos

(
ω0

L

2

)]
,

(21)
where (a) follows from Eq. (12), givenα0 = −jω0,α1 = −jω1

and ω1 = −ω0.
Then, we assume for simplicity that the Dirac’s amplitude

satisfies x1 > 0 and re-write the upper bound on CT as:

3CT < Amin

∫ L
2

0

ϕ(−t)
(b)
<

∫ τ1+
L
2

τ1

x1ϕ(τ1 − t)dt, (22)

where (b) follows from Eq. (21).
Furthermore, from Eq. (2) and (4), we know that:

3CT =

∫ t3

τ1

f(t)dt
(c)
=

∫ t3

τ1

x1ϕ(τ1 − t)dt, (23)

where (c) follows from Eq. (3) and given the input signal is
x(t) = x1δ(t− τ1).



754 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Then, from Eq. (22) and Eq. (23), we obtain the inequality:∫ t3

τ1

x1ϕ(τ1 − t)dt <

∫ τ1+
L
2

τ1

x1ϕ(τ1 − t)dt. (24)

Using the hypothesis ω1 = −ω0, together with Eq. (12), we
obtain ϕ(τ1 − t) = sin(ω0(t−τ1))

ω0
, for t ∈ (τ1, τ1 +

L
2 ). Given

the assumption 0 < ω0 ≤ π
L , we get 0 ≤ ω0(t− τ1) ≤ π

2 and
therefore, sin(ω0(t− τ1)) > 0 for t ∈ (τ1, τ1 +

L
2 ). Hence,

since ϕ(τ1 − t) is positive in the range (τ1, τ1 +
L
2 ) and using

Eq. (24), we get that t3 < τ1 +
L
2 .

As a result, the locations of the first non-uniform output
samples satisfy t1, t2, t3 ∈ (τ1, τ1 +

L
2 ), and can be computed

using Eq. (8) and Eq. (7) as follows:

y(t1) =

∫ t1

τ1

f(t)dt = 〈x(t), (ϕ ∗ qθ1)(t− τ1)〉,

y(t2) = 〈x(t), (ϕ ∗ qθ2)(t− t1)〉, (25)

y(t3) = 〈x(t), (ϕ ∗ qθ3)(t− t2)〉, (26)

for θ1 = t1 − τ1, θ2 = t2 − t1 and θ3 = t3 − t2.
Furthermore, since ϕ(t) is a second-order E-spline which can

reproduce the exponentials ejω0t and ejω1t as in Eq. (12), and
given the definition of qθn(t) in Eq. (6), we have that:

(ϕ ∗ qθ1)(t− τ1) =
1

ω0(ω0 − ω1)
[(e−jω0t1 − e−jω0τ1)ejω0t

+ (e−jω1t1 − e−jω1τ1)ejω1t],

for t ∈ (t1 − L
2 , t1).

Similarly:

(ϕ ∗ qθ2)(t− t1) =
1

ω0(ω0 − ω1)
[(e−jω0t2 − e−jω0t1)ejω0t

+ (e−jω1t2 − e−jω1t1)ejω1t],

for t ∈ (t2 − L
2 , t2), and

(ϕ ∗ qθ3)(t− t2) =
1

ω0(ω0 − ω1)
[(e−jω0t3 − e−jω0t2)ejω0t

+ (e−jω1t3 − e−jω1t2)ejω1t],

for t ∈ (t3 − L
2 , t3).

The shifted kernel (ϕ ∗ qθ1)(t− τ1) depends on the Dirac’s
location τ1, and hence its shape cannot be determined a-priori.
On the other hand, the shifted kernels (ϕ ∗ qθ2)(t− t1) and (ϕ ∗
qθ3)(t− t2) are independent of τ1 and can be written as a linear
combination of the exponentials ejω0t and ejω1t, for t ∈ (t3 −
L
2 , t1). Therefore, in the interval I = (t3 − L

2 , t1), where there
are no knots of either the shifted kernel (ϕ ∗ qθ2)(t− t1) or
(ϕ ∗ qθ3)(t− t2), we can use the proof in Section II-B2 to find
the unique coefficients cIm,2 and cIm,3 such that:

3∑
n=2

cIm,n(ϕ ∗ qθn)(t− tn−1) = ejωmt, (27)

for m ∈ {0, 1} and t ∈ (t3 − L
2 , t1).

Then, we can define the signal moments as:

sm =

3∑
n=2

cIm,ny(tn)
(d)
= x1

3∑
n=2

cIm,n(ϕ ∗ qθn)(τ1 − tn−1)

(e)
= x1e

jωmτ1 , for m ∈ {0, 1}. (28)

In the derivations above, (d) follows from Eq. (16), (25) and
(26), and (e) follows from τ1 ∈ (t3 − L

2 , t1) which is true given
Eq. (24), and since the property in Eq. (27) holds within (t3 −
L
2 , t1). Finally, using Prony’s method we can uniquely estimate
parameters x1 and τ1, from the two signal moments sm given
by Eq. (28), for m ∈ {0, 1} and ω1 = −ω0. �

B. Estimation of a Stream of Diracs

Proposition 5: Let the sampling kernel ϕ(t) be a second-
order E-spline of support of lengthL, defined as in Eq. (12), with
ω1 = −ω0 and 0 < ω0 ≤ π

L . The filter ϕ(t) and its non-uniform
shifts can reproduce the exponentials ejω0t and ejω1t as in Eq.
(13). In addition, assume that the minimum separation between
consecutive Diracs is L and the trigger mark of the comparator
satisfies:

0 < CT <
Amin

4ω2
0

[
1− cos

(
ω0

L

2

)]
, (29)

where Amin is the absolute minimum amplitude of any Dirac in
the input signal.

Then, the timing information {t1, t2, . . ., tN} provided by the
integrate-and-fire TEM in Fig. 3 is a sufficient representation of
a stream of Diracs as in Eq. (19).

Proof: The first Dirac δ1 = x1δ(t− τ1) can be correctly
estimated using the method in Section IV-A, since Eq. (29)
satisfies the requirements of Proposition 4. Then, suppose we
aim to estimate the second Dirac in the input signal, and let
us assume for simplicity that its amplitude satisfies x2 > 0.
Moreover, let us denote the output spike locations in the interval
(τ1, τ1 + L) with t1, t2, . . ., tn−1, and the time information after
τ1 + L with tn, tn+1, . . ., tN . Then, given the hypothesis that
the minimum separation between consecutive Diracs is L, the
location of the second Dirac must satisfy τ2 ∈ (τ1 + L, tn). We
also have that:∫ τ2+

L
2

τ2

f(τ)dτ =

∫ τ2+
L
2

τ2

x2ϕ(τ2 − τ)dτ

(a)
=

x2

ω2
0

[
1− cos

(
ω0

L

2

)]
,

where (a) follows from Eq. (12), for ω1 = −ω0.
This shows the upper bound in Eq. (29) is equivalent to:

4CT <

∫ τ2+
L
2

τ2

f(τ)dτ. (30)

Furthermore, we have that:∫ tn+2

τ2

f(τ)dτ =

∫ tn+2

tn−1

f(τ)dτ −
∫ τ2

tn−1

f(τ)dτ

(b)
= 3CT −

∫ τ2

tn−1

f(τ)dτ
(c)
< 4CT , (31)

where (b) follows from Eq. (2), and (c) holds since tn−1 and tn
are consecutive output spikes, and tn > τ2 > tn−1.

As a result, Eq. (30) and (31) give the following inequality:∫ tn+2

τ2

f(τ)dτ <

∫ τ2+
L
2

τ2

f(τ)dτ. (32)

As shown in Section IV-A, the sampling kernel satisfies
ϕ(t) > 0 for x2 > 0, within the interval (τ2, τ2 +

L
2 ). This

means that the inequality in Eq. (32) is equivalent to tn+2 <
τ2 +

L
2 , which guarantees that the output samples yn, yn+1 and
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Fig. 10. Sampling of a stream of Diracs using the integrate-and-fire TEM. The
input is shown in (a), the filtered input in (b), the output non-uniform samples
in (c), and the reconstructed signal in (d).

yn+2 occur in the time interval (τ2, τ2 + L
2 ). Using the model

of Fig. 3, we compute these non-uniform output samples as:

y(tn) = yn =

∫ τ1+L

tn−1

x1ϕ(τ1 − τ)dτ

+

∫ tn

τ2

x2ϕ(τ2 − τ)dτ,

y(tn+1) = yn+1 =

∫ tn+1

tn

x2ϕ(τ2 − τ)dτ,

y(tn+2) = yn+2 =

∫ tn+2

tn+1

x2ϕ(τ2 − τ)dτ.

The sample y(tn) contains information of both δ1 and δ2, and
hence cannot be used for estimation of the latter Dirac. On
the other hand, since tn+1, tn+2 ∈ (τ2, τ2 +

L
2 ), we can use the

samples yn+1 sand yn+2 to compute the signal moments as in
Section IV-A:

sm = cm,1yn+1 + cm,2yn+2 = x2e
jωmτ2 , for m ∈ {0, 1}.

Once δ2 is estimated from sm using Prony’s method, we use the
non-uniform output samples after τ2 + L, in order to sequen-
tially retrieve the next Diracs in the input signal. �

The sampling and reconstruction of a stream of K = 3
Diracs of minimum absolute amplitude Amin = 1 are depicted
in Fig. 10. Here, the filter is a second-order E-spline, of support
of length L = 2, which can reproduce the exponentials e±j π

3 t,
and the comparator’s trigger mark is CT = 0.11, which satisfies
Eq. (29). Fig. 10(b) shows the filtered input and the output of
the integrator. The amplitudes and locations of the estimated
Diracs are exact to numerical precision. Finally, in Fig. 10(c)
we observe that there are no output spikes in a region where
the input signal is constant (zero), which leads to small average
density of samples.

C. Estimation of a Stream of Pulses

Let us now consider a stream of pulses of the form x(t) ∗ g(t),
where x(t) is defined in Eq. (19) and the support of g(t) is
[−ε, ε]. Filtering this signal with the second-order E-spline ϕ(t)
is equivalent to filtering the stream of Diracs x(t)with the kernel
(ϕ ∗ g)(t). As a case in point, let us consider the cosine-squared
pulse g(t) = cos2(t), and assume that 2ε < L

2 , where L is the
length of the filter’s support. In addition, suppose we want to
estimate the first pulse (x1 ∗ g)(t) in the stream x(t) ∗ g(t) and
denote its timing information with t1, t2, . . ., tN . The first three

Fig. 11. Sampling of a stream of pulses using the integrate-and-fire TEM. The
input is shown in (a), the non-uniform samples used for retrieval of the first pulse
in (b), and the reconstructed signal in (c).

output samples can be computed as follows:

y(t1) =

∫ t1

τ1

f(t)dt = 〈x1(t), (ϕ ∗ g ∗ qθ1)(t− τ1)〉,

y(t2) = 〈x1(t), (ϕ ∗ g ∗ qθ2)(t− t1)〉, (33)

y(t3) = 〈x1(t), (ϕ ∗ g ∗ qθ3)(t− t2)〉, (34)

where x1(t) = x1δ(t− τ1) is the first Dirac in the stream x(t)
with x1 > 0, θ1 = t1 − τ1, θ2 = t2 − t1 and θ3 = t3 − t2.

Assuming 2ε < L
2 we can leverage the results in Eq. (14)

to show that in the interval (ε− L
2 ,−ε), we get (ϕ ∗ g)(t) =

Aeα0t +Beα1t, for some constants A and B. Then, in the
interval (t2 − L

2 + ε, t1 − ε), the function (ϕ ∗ g ∗ qθ2)(t− t1)
can also be expressed as a linear combination of the exponentials
eα0t and eα1t. Similarly, (ϕ ∗ g ∗ qθ3)(t− t2) is a linear combi-
nation of the same exponentials in the interval (t3 − L

2 + ε, t2 −
ε). As a result, in the knot-free interval I = (t3 − L

2 + ε, t1 − ε),
we can perfectly reproduce two exponentials as in Eq. (15), using
the shifted kernels (ϕ ∗ g ∗ qθn+1

)(t− tn), for n = 1, 2. We can
then compute two signal moments as in Eq. (28), and retrieve
the amplitude and location of the first Dirac x1δ(t− τ1) in the
stream x(t) using Prony’s method.

In order for these derivations to hold we need to ensure that
τ1 ∈ I , or in other words that t1 > τ1 + ε and t3 < τ1 +

L
2 − ε.

Since the filtered input corresponding to the first pulse sat-
isfies x1(ϕ ∗ g)(τ1 − t) > 0, for t ∈ (τ1 − ε, τ1 + L+ ε) and
x1(ϕ ∗ g)(−t+ τ1) = 0 otherwise, the condition t1 > τ1 + ε
holds provided the trigger mark of the comparator satisfies:

CT >

∫ τ1+ε

τ1−ε

(ϕ ∗ g)(τ1 − t)dt =

∫ ε

−ε

(ϕ ∗ g)(−t)dt. (35)

Using the same reasoning as in Section IV-B, the condition
t3 < τ1 +

L
2 − ε holds provided:

CT <
Amin

4

∫ L
2 −ε

−ε

(ϕ ∗ g)(−t)dt, (36)

where Amin is the minimum amplitude of the Diracs in x(t).
We also note that in order for Eq. (35) and (36) to be simul-

taneously satisfied, we need to impose additional constraints on
ε, such that:∫ ε

−ε

(ϕ ∗ g)(−t)dt <
1

4

∫ L
2 −ε

−ε

(ϕ ∗ g)(−t)dt.

Finally, once the first pulse centered around τ1 has been esti-
mated, and assuming a minimum separation between consecu-
tive pulses of at least L+ 2ε (which is the length of the support
of (ϕ ∗ g)(t)), we can use subsequent samples after τ1 + L+ 2ε
to retrieve the next pulse (x2 ∗ g)(t) in the input.

The sampling and perfect retrieval of a stream of cosine-
squared pulses are depicted in Fig. 11, for CT = 0.8.
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D. Multi-Channel Estimation of Bursts of Diracs

Let us now consider the estimation of a sequence of bursts of
Diracs as in Eq. (20). This problem is equivalent to the estimation
of a stream of Diracs, however, this time, the K Diracs can be
arbitrarily close to each other. Therefore, the estimation of a burst
of K Diracs involves retrieving a larger number of moments (at
least 2K) to accurately retrieve the Diracs. We employ a multi-
channel scheme of M ≥ K different acquisition devices, each
of which will help us compute 2 different signal moments. We
will show that it is sufficient to record 2 output samples for each
channel in order to perfectly reconstruct each burst in the input
signal, and that the trigger mark of the threshold detector can
be adjusted to ensure these output samples are located suitably
close to the input burst of Diracs. Specifically, we need to ensure
that the 2 samples we use for estimation have contributions from
all theK Diracs, and hence, occur after the last Dirac in the burst.

Proposition 6: Let us consider a system of M ≥ K TEM
devices as in Fig. 3. The filter ϕ(t) of the mth TEM is a second-
order E-spline whose support has length L, and which can
reproduce two different exponentials, ejωm0

t and ejωm1
t, with

ωm0
= ω0 + λm, λ = −2ω0

2M−1 , 0 < ω0 ≤ π
L , ωm1

= −ωm0
, and

m = 0, 1, . . .,M − 1. Moreover, let us assume the spacing be-
tween consecutive bursts is larger than L, and the maximum
separation between the last and first Dirac in any burst b satisfies
τb,K − τb,1 < L

2 . In addition, suppose that the comparator’s
trigger mark CT satisfies the following conditions for each
device m and burst b:

CT >
(K − 1)Amax

ω2
m0

[1− cos (ωm0
(τb,K − τb,1))] , (37)

CT <
KAmin

5ω2
m0

[
1− cos

(
ωm0

(
L

2
− (τb,K − τb,1)

))]
,

(38)

where Amax and Amin are the absolute maximum and minimum
amplitudes of the input, respectively.

Then, the timing information t1,m, t2,m, . . ., tN,m for m =
0, 1, . . .,M − 1 provided byM devices as in Fig. 3 is a sufficient
representation of bursts of K Diracs as in Eq. (20).

Proof: See Appendix C. �
Even though we considered the sampling of bursts of Diracs

using a multi-channel system, it is possible under slightly more
restrictive conditions, to achieve the same using a single TEM
device. Therefore, for the sake of completeness, we state the
following result without proof:

Proposition 7: Let us consider the integrate-and-fire TEM
in Fig. 3. Let the sampling kernel ϕP (t) be an E-spline of
order P ≥ 2K and support of length L, which can reproduce
P different exponentials ejωmt, with ωm = ω0 +mλ, m =
0, 1, . . ., P − 1, and0 < ω0 ≤ π

L . In addition, settingP even and
λ = −π

P ensuresϕ(t) is a real-valued function. In this setting, let
us assume the spacing between bursts is larger than L, and the
separation between the last and first Diracs within any burst b
satisfies τb,K − τb,1 < L

P . In addition, suppose the trigger mark
of the comparator CT satisfies:

CT > (K − 1)Amax

∫ Δb

0

ϕ(−τ)dτ, (39)

CT <
KAmin

P + 3

∫ L
P

0

ϕ(−τ)dτ, (40)

where Δb = max(τb,K − τb,1).

Then, the timing information {t1, t2, . . ., tN} provided by the
integrate-and-fire TEM in Fig. 3 is a sufficient representation of
a sequence of bursts of K Diracs as in Eq. (20).

E. Estimation of Piecewise Constant Signals

Let us now consider a piecewise constant signal x(t), and
assume that we filter this with the derivative of an E-spline ϕ(t)
of order P ≥ 2, obtained using Eq. (11). Filtering x(t) with
dϕ(t)
dt ensures that in a region where the input is constant, there

are no output spikes, since dϕ(t)
dt has average value equal to zero.

This leads to energy-efficient sampling of the piecewise constant
signal, resulting in a small average number of output spikes. In
this setting, the filtered input is given by:

f(t) = x(t) ∗ dϕ(t)

dt
=

dx(t)

dt
∗ ϕ(t).

This shows that filtering a piecewise constant signal x(t) with
dϕ(t)
dt is equivalent to filtering the stream of Diracs corresponding

to the discontinuities of the piecewise constant signal with the
E-splineϕ(t). The discontinuities of dx(t)

dt can be estimated from
the output spikes, by extending the results of Proposition 5 to the
case of a P -order E-spline ϕP (t), with P ≥ 2. In this case, the
E-spline ϕP (t) of support of length L can reproduce P ≥ 2
different complex exponentials ejωmt, with ωm = ω0 + λm.
and m = 0, 1, . . ., P − 1. Moreover, choosing λ = −2ω0

P−1 and
P even ensures the kernel ϕP (t) is a real-valued function. As
before, the separation between consecutive Diracs must be larger
than L and the trigger mark of the comparator satisfies:

0 < CT <
Amin

P + 2

∫ L
P

0

ϕP (−τ)dτ. (41)

Suppose we want to estimate the kth discontinuity in dx(t)
dt ,

of amplitude zk and located at τk, and let us denote the locations
of the first output spikes after τk with tn, tn+1, . . ., tN . Then,
using a similar proof as in Section IV-B, we can show that the
constraint in Eq. (41) guarantees that τk ∈ I = (tn+P − L

P , tn).
Then, we can compute the following signal moments:

sm =

P∑
i=1

cIm,ny(tn+i)
(a)
= zk

P∑
i=1

cIm,n

× (ϕP ∗ qθn+i
)(τk − tn+i−1)

(b)
= zke

jωmτk , for m = 0, 1, . . ., P − 1.

In these derivations, (a) follows from Eq. (7), and (b) holds
given τk ∈ (tn+P − L

P , tn), and the fact that none of the kernels
(ϕP ∗ qθn+i

)(τk − tn+i−1) have any discontinuities in (tn+P −
L
P , tn), for i = 1, 2, . . ., P . As before, we can use Prony’s
method to estimate zk and τk from the signal moments sm.
Finally, we can retrieve the piecewise constant signal x(t) once
we have estimated its discontinuities dx(t)

dt .
The sampling and reconstruction of a piecewise constant

signal are depicted in Fig. 12. The filter is the derivative of
the fourth-order E-spline, with support length L = 4, as seen
in Fig. 12(b), the separation between input discontinuities is
larger than the length of the kernel’s support as depicted in
Fig. 12(a), and the comparator’s trigger mark is CT = 0.001.
The estimation of the input is exact to numerical precision.

Similarly, the results of Propositions 6 and 7 can be extended
to the case of a piecewise constant signal x(t), where the
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Fig. 12. Sampling of a piecewise constant signal with sufficiently separated
discontinuities, using the integrate-and-fire TEM. The input is shown in (a), the
sampling kernel in (b), the non-uniform samples used for estimation of the first
two input discontinuities in (c), and the reconstructed signal in (d).

Fig. 13. Sampling of a piecewise constant signal, with arbitrarily close dis-
continuities, using the integrate-and-fire TEM. The input is shown in (a), the
non-uniform samples used for estimation of the first burst of two discontinuities
in (b), and the reconstructed signal in (c).

discontinuities dx(t)
dt are bursts of arbitrarily close Diracs, as

in Eq. (20). For example, in Fig. 13, we show the time encoding
and perfect decoding of a piecewise constant signal, with two
arbitrarily close discontinuities.

We conclude this section by summarizing possible choices
of hyperparameters in our sampling framework based on an
integrate-and-fire system. Specifically, let us consider the case
of streams of bursts of K Diracs, and discuss the relation-
ship between the sampling kernel and the trigger mark of the
comparator, and how these parameters determine the density
of output samples. The sampling kernel is assumed to be the
E-spline given in Eq. (11) of order P , and support length
L = P . Furthermore, the conditions of the trigger mark CT

ensure that the output samples used for reconstruction are located
sufficiently close to the burst of Diracs, and in a region where
the filtered input is continuous. As a result, these conditions
depend on the separation Δb between the Diracs, as well as on
the location of the knots of the sampling kernel, which in turn
depends on the length of the support of this kernel. Setting CT

to its maximum theoretical value ensures that the number of
samples is minimised.

The choice of the hyperparameters of the integrate-and-fire
TEM is summarised in Table II. Here, a burst of K = 2 Diracs
was time encoded using an M -channel system. The ampli-
tudes of each of the Diracs was chosen uniformly at random
in the interval [1, 2] and the trigger mark CT computed us-
ing Eq. (38). The results were averaged over 100 different
experiments.

Finally, we make the remark that only some of the output sam-
ples are used for input reconstruction. For online reconstruction
applications, these are the only samples that need to be stored.
This is depicted in Fig. 14, where we highlight in red the samples
used for reconstruction of each burst of Diracs, of one of the two
channels. Only the second and third output samples, located at

TABLE II
CHOICE OF HYPERPARAMETERS FOR ESTIMATING A BURST OF 2 DIRACS,

USING AN M -CHANNEL INTEGRATE-AND-FIRE SYSTEM

Fig. 14. Time encoding of a sequence of bursts of 2 Diracs, using an integrate-
and-fire system. The input is shown in the top plot, and the output samples in
the bottom plot.

t
(1)
2 and t

(1)
3 need to be recorded and used to retrieve the first

burst of 2 Diracs. Once the first burst has been estimated, we
record the second and third output samples after τ2 + L, located
at t(2)2 and t

(2)
3 in order to retrieve the next burst.

V. GENERALIZED TIME-BASED SAMPLING

To highlight the potential practical implications of the meth-
ods developed in the previous sections, we present here exten-
sions of our framework to deal with arbitrary kernels and the
noisy scenario, and show that reliable input reconstruction can
be achieved also in these scenarios.

A. Sampling With Arbitrary Kernels

In the previous sections we have presented methods for perfect
retrieval of certain classes of non-bandlimited signals from
timing information. We have seen that these methods require
the sampling kernel ϕ(t) to locally reproduce exponentials, in
order to be able to map this problem to Prony’s method. In
reality, however, the sampling kernel may not have the expo-
nential reproducing property as in Eq. (13). Let us now consider
an arbitrary kernel ϕ̃(t), and find a linear combination of its
non-uniform shifted versions that gives the best approxima-
tion of P exponentials f(t) = ejωmt within an interval I , for
ωm = ω0 + λm, m = 0, 1, . . ., P − 1, and λ = −2ω0

P−1 . In other
words, we want to find the optimal coefficients cIm,n such that:

N∑
n=1

cIm,nϕ̃(t− tn) ≈ ejωmt, (42)

for t ∈ I and n = 1, 2, . . ., N , with N being the number of
kernels ϕ̃(t− tn) overlapping I .
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Fig. 15. Approximate exponential reproduction using non-uniform shifts of
the kernel (β3 ∗ qθn )(t). The kernels are shown in (a), and the exponential
reproduction using these shifted kernels in (b).

Fig. 16. Universal sampling of a sequence of bursts of Diracs using the
integrate-and-fire TEM. The input signal is shown in (a), the output non-uniform
samples of one channel used for estimation in (b), and the reconstructed signal
in (c).

We find the coefficients cm,n using the least-squares approxi-
mation method described in [47]. The coefficients are computed
using the orthogonal projection of f(t) onto the space spanned
by the non-uniform shifts ϕ̃(t− tn), such that:〈

f(t)−
N∑

k=1

cIm,kϕ̃(t− tk), ϕ̃(t− tn)

〉
= 0, (43)

for t ∈ I and n = 1, 2, ..N .
Furthermore, Eq. (43) is equivalent to:

〈f(t), ϕ̃(t− tn)〉 =
N∑

k=1

cIm,k〈ϕ̃(t− tk), ϕ̃(t− tn)〉,

which represents a system of N equations from which we
can determine the N coefficients cIm,k, for each m = 0, 1, . . .,
P − 1.

We then use the calculated coefficients cIm,k to compute the
signal moments as in Section IV. Finally, the estimation of the
input can be further refined using the Cadzow iterative algorithm
in order to increase the accuracy of the signal moments, before
applying Prony’s method [48], [49].

The sampling and reconstruction of bursts of 2 Diracs are
depicted in Fig. 16. We use the multi-channel estimation method
presented in Section IV-D, where the filter of each channel
is a third order B-spline β3(t), such that the modified kernel
(β3 ∗ qθn)(t) in Eq. (5) cannot reproduce exponentials. More-
over, we aim to approximately reproduce 4 different exponen-
tials for each channel, and hence we require a number of 4
non-uniform samples, as discussed in Section II-B. In Fig. 15,
we depict the approximate exponential reproduction in Eq. (42),
within the interval I = (0.82, 1.4) overlapping the first burst of
Diracs. The mean-squared error of the exponential reproduction
within this interval is 9.47× 10−13. Finally, the estimation of the
input is close to exact, as depicted in Fig. 16(c). In particular,
the mean-squared error in the time locations of the Diracs is
2.44× 10−4, and the mean-squared error in the amplitudes of
the Diracs is 2.04× 10−10.

Fig. 17. Estimation of a piecewise constant signal from noisy samples, ob-
tained using the integrate-and-fire TEM. The noisy input is shown in (a), and
the reconstruction in (b).

TABLE III
EFFECT OF NOISE ON THE ESTIMATION OF A PIECEWISE CONSTANT SIGNAL,

FROM SPIKES OBTAINED USING THE INTEGRATE-AND-FIRE TEM. THE ERROR

εt IS THE AVERAGE ABSOLUTE DIFFERENCE BETWEEN THE TRUE AND

ESTIMATED LOCATIONS, εA IS THE RELATIVE ERROR OF THE ESTIMATED

AMPLITUDES OF THE INPUT DISCONTINUITIES AND SER IS THE

SIGNAL-TO-ERROR-RATIO, FOR AMPLITUDE ESTIMATION

Fig. 18. Left: Average mean-squared errors in estimated time locations and
amplitudes of a stream of Diracs corrupted by white, additive Gaussian noise;
Right: Average signal-to-error ratio (SER) along signal-to-noise ratio, for am-
plitude estimation.

B. Robustness of the Integrate-and-Fire TEM to Noise

In many practical circumstances, the input signal is corrupted
by noise, which is typically assumed to be white, additive
Gaussian noise. When this happens, the non-uniform times {tn}
change which means that the sequence of moments sm is also
corrupted, and perfect reconstruction may no longer be possible.
Nevertheless, if the noise has average value equal to 0, it is in
part removed by the integrator in the TEM, as a result of the
averaging effect of the integral.

In Fig. 17 we show the reconstruction of a piecewise con-
stant signal corrupted by white, additive Gaussian noise, using
the method in Section IV-E. The filter is the derivative of a
fourth-order E-spline with support length L = 4 which can
reproduce the exponentials e±j π

3 t and e±j π
6 t, the trigger mark

of the comparator is CT = 0.001, the standard deviation of the
noise is σ = 0.1 (SNR= 21.56 dB), and the separation between
consecutive discontinuities of the input is larger than L. The
reconstruction of the input from noisy samples is very accurate.
A quantitative analysis of the effect of noise on the retrieval of
this piecewise constant signal is presented in Table III. The table
shows the error of the estimated locations and the relative error
of the estimated amplitudes of the discontinuities in the input
signal, averaged over 10000 experiments.

In Fig. 18 we show the reconstruction errors, for the case
of a stream of Diracs, for different SNR values, averaged over
1000 experiments. Here, the input signal is corrupted by white,
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Fig. 19. Estimation of a stream of Diracs from noisy samples, obtained using
the integrate-and-fire TEM. For SNR= 10 dB, the noisy input is shown in (a),
the filtered input and output of integrator in (b), and the reconstruction in (c).

additive Gaussian noise, and the sampling kernel is a second-
order E-spline whose support has lengthL = 2, defined as in Eq.
(12), for α0 = −α1 = j π

3 . When SNR= 20 dB, the amplitude
mean-squared error is 1.17× 10−3 and the mean-squared error
in time locations is 2.5× 10−3. Finally, in Fig. 19 we depict the
estimation of an input stream of Diracs corrupted by noise, from
its timing information, when SNR= 10 dB.

C. Time Encoding and Decoding of Bursts of Diracs of
Arbitrary Signs

In Section IV-D we presented sufficient conditions for perfect
retrieval of bursts of Diracs defined as in Eq. (20). These condi-
tions rely on various assumptions, including that the amplitudes
xb,k of the Diracs xb,kδ(t− τb,k) in the same burst b, have the
same sign. In reality, this assumption may not always hold, and in
this section we empirically show that the reconstruction frame-
work presented in this paper usually performs well also when
the amplitudes of the Diracs in the same burst have opposite
signs. We consider the estimation of a burst of 2 Diracs from
its time encoded information using a 2-channel approach. We
assume that the filter of each channel is a second-order E-spline
defined as in Eq. (12) with support length L = 2. We denote
the output information of channel 1 with t1,1, t2,1, . . ., tN,1, and
that of channel 2 with t1,2, t2,2, . . ., tN,2. We assume that the
amplitudes of these Diracs are distributed as Gaussian variables,
of mean μ = 0 and variance σ = 1.

The decoding scheme presented in Section IV-D showed that
we can reliably use the samples y(t3,1), y(t4,1) of the first
channel and y(t3,2), y(t4,2) of the second channel, in order to
perfectly retrieve an input burst of 2 Diracs of same sign. The
sufficient conditions on the trigger mark of the integrator given
in Eq. (37) and (38) ensure that these samples are located after
the second Dirac at τ2. Here, we choose CT below its minimum
theoretical value given in Eq. (37), in order to ensure a sufficient
number of output samples is obtained, even when the two Diracs
in the input have opposite signs and are located closely to each
other. However, when lowering CT , the samples y(t3,1), y(t4,1)
and y(t3,2), y(t4,2) are not guaranteed to occur after τ2, and
hence, may not be reliably used for reconstruction of both Diracs.
Therefore, we adjust the reconstruction scheme as follows. Us-
ing y(t2,1), y(t3,1) of the first channel and y(t2,2), y(t3,2) of the
second channel we compute the signal moments sm as described
in Appendix C and then build matrix S as in Appendix A. If the
rank of the matrixS is 1, then t3,1 < τ2 and t3,2 < τ2. Hence, we
can use y(t2,1), y(t3,1) to estimate the first Dirac x1δ(t− τ1).
Once the first Dirac has been estimated, we remove its contribu-
tion from the output spikes, and use the next non-zero samples in
order to estimate the second Dirac x2δ(t− τ2). Otherwise, if the

TABLE IV
PROBABILITY OF PERFECT RECONSTRUCTION OF A BURST OF 2 DIRACS, WITH

RANDOM GAUSSIAN AMPLITUDES

rank of matrix S is 2, then at least for one of the channels i, we
get ti,3 > τ2. As a result of the similarity between the sampling
kernels of the two channels, it is likely that ti,3 > τ2 for both
i = 1 and i = 2. In other words, the samples y(t4,1), y(t5,1)
and y(t4,2), y(t5,2) are likely to have contributions from both
Diracs and hence, we can use the method in Section IV-D to
estimate the burst. In Table IV we show the probability of correct
estimation of the 2 Diracs, against different values of Δb and
trigger mark CT , averaged over 1000 experiments. The results
show that we still achieve perfect reconstruction in most cases.
The reconstruction typically fails when the number of samples
required for estimation is not achieved (for example, when the
amplitudes of the Diracs are very small or when they have similar
magnitudes, but opposite signs).

VI. DENSITY OF NON-UNIFORM SAMPLES OBTAINED WITH

AN INTEGRATE-AND-FIRE TEM

In the previous sections, we have presented techniques for
estimation of non-bandlimited signals from timing information.
We have seen that perfect estimation can be achieved using
simple algorithms, and physically realisable kernels. In this
section we outline the fact that in many settings sampling based
on timing using our integrate-and-fire system is an efficient way
to acquire signals, resulting in a smaller density of samples,
compared to classical sampling.

As a case in point we consider the retrieval of bursts of K
Diracs, described in Section IV-D. We have seen that perfect re-
construction from timing information can be achieved, provided
the separation between consecutive bursts is at least L, and that
the Diracs within any burst are sufficiently close. In particular,
let us denote the maximum separation between the last and first
Dirac within a burst with Δ = max(τK − τ1) <

L
2 , which can

be determined according to Eq. (37) and (38). Moreover, let us
assume the input is sufficiently sparse, such that the average
separation between consecutive bursts is L+ S, with S > 0.
Under these assumptions, the results in [6] show that in order to
retrieve theK Diracs from uniform samples, we need at least 2K
samples within the intervalL−Δ following the burst of Diracs.
As a result, the uniform sampling period must satisfy T ≤ L−Δ

2K .
Then, the number of uniform samples we record within an
interval of length L+ S is L+S

T = 2K(L+S)
L−Δ . On the other hand,

in the case of time encoding using the integrate-and-fire TEM in
Fig. 3, the results in Section IV-D show that we need to record
4 output samples for each of the K channels (or equivalently,
4K samples for the case of single-channel sampling), for each
burst of K Diracs. We note that Eq. (38) shows that in many
situations, the TEM outputs more than 4 spikes per channel.
Nevertheless, these samples can be discarded since they are
not used in estimation. For example, one way to stop recording
spikes once we have obtained 4 non-zero samples, is to increase
the trigger mark CT of the comparator in Fig. 3, for a duration
of L−Δ.
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Moreover, when the input is constant (zero), the integrate-and-
fire TEM does not fire, and hence there are no output samples.
Therefore, in an interval of size L+ S, the number of stored
samples from a K-Dirac burst is 4K, ∀S.

Furthermore, 2K(L+S)
L−Δ > 4K for S ≥ L− 2Δ > 0 and ∀K,

which shows that the average number of non-uniform spikes
required for the retrieval of K Diracs is lower than the number
of uniform samples required to estimate the same number of free
input parameters, when the input is sufficiently sparse.

VII. CONCLUSION

In this work we established time encoding as an alternative
sampling method for some classes of signals that are neither
bandlimited, nor belong to shift-invariant subspaces. The pro-
posed sampling scheme is based on first filtering the input signal,
before retrieving the timing information using a crossing or
integrate-and-fire TEM. We demonstrated sufficient conditions
for the exact recovery of streams of Diracs, streams of pulses
and piecewise constant signals, from their time-based samples.
Central to our reconstruction methods is the use of specific filters
that we proved can locally reproduce polynomials or exponen-
tials. We further highlighted the potential of this new framework
by showing that it is resilient to noise and that it can handle
non-ideal filters. Finally, the diverse applications of previous
results of finite rate of innovation theory [8], [32]–[34] also
serve as evidence for the potential for real-world applications
of the theoretical framework developed in this paper.

APPENDIX A
PRONY’S METHOD

One way to solve the problem of estimating the parameters
{bk, uk}Kk=1 from the sequence sm =

∑K
k=1 bku

m
k is given

by the annihilating filter method, also referred to as Prony’s
method [38]. The name of this approach comes from the observa-
tion that if we filter sm with a filter which has zeros at {uk}Kk=1,
the output is zero, or in other words, this filter annihilates the
sequence sm.

The z-transform of the annihilating filter satisfies:

H(z) =

K∑
m=0

hmz−m =

K∏
k=1

(1− ukz
−1), (44)

which evaluates to zero when z = uk.
Filtering the sequence sm with hm corresponds to the convo-

lution of these sequences:

hm ∗ sm =

K∑
l=0

hlsm−l =

K∑
k=1

bku
m
k

K∑
l=0

hlu
−l
k

(a)
= 0, (45)

where (a) holds since z = uk gives H(z) = 0 in Eq. (44).
Eq. (45) can be written in matricial form as follows:⎡
⎢⎢⎢⎢⎣

sK sK−1 · · · s0

sK+1 sK · · · s1
...

...
. . .

...

s2K−1 s2K−2 · · · sK−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1

h1

...

hK

⎤
⎥⎥⎥⎥⎦ = Sh = 0. (46)

It can be shown that provided {bk}Kk=1 are non-zero and
{uk}Kk=1 are distinct, matrix S has full row rankK, which means
the solution h given by Eq. (46) is unique. Moreover, the solution

h can be obtained by performing a singular value decomposition
of S, where h is the singular vector corresponding to the zero
singular value.

Then, once the coefficients hm of the polynomial H(z) are
known, the parameters {uk}Kk=1 are obtained from the roots
of this filter. Finally, once {uk}Kk=1 are found, the parameters
{bk}Kk=1 can be computed from the linear system ofK equations
given by sm =

∑K
k=1 bku

m
k , with m = 0, 1, . . .,K − 1.

APPENDIX B

A. Proof of Proposition 3

For simplicity, let us assume the number of devices equals the
number of Diracs in a burst, i.e. M = K. Suppose we want to
estimate the Diracs in the first burst, located at τ1,1, . . .., τ1,K .
Moreover, assume for simplicity that their amplitudes satisfy
x1,1, . . ., x1,K > 0. In addition, let us consider the output of
the mth TEM device, and denote its timing information with
{t1, t2, . . ., tN}.

Since we assume all the amplitudes in the first burst satisfy
0 < x1,k < Amax, and since 0 ≤ ϕ(t) < 1, we get 0 ≤ y(t) and
y(t) =

∑K
k=1 xkϕ(τk − t) < KAmax < A = max(g(t)).

Then, Bolzano’s intermediate value theorem [45] guarantees
that the mth TEM outputs at most one sample in the interval
(τ1,1, τ1,K), given the assumption τ1,K − τ1,1 < Ts

2 , and the
fact that 0 ≤ y(t) < max(g(t)). At the same time, this the-
orem also guarantees that the filtered input y(t) crosses the
sinusoidal reference signal in at least 3 points, within the win-
dow (τ1,1, τ1,1 +

7Ts

4 ), such that t3 − τ1,1 ≤ 7Ts

4 . Moreover,
the assumption Ts ≤ 2L

7 ensures that t3 − τ1,1 ≤ L
2 . Hence,

whilst the spike at t1 may occur before τ1,K , the second and
third spikes satisfy t2, t3 ∈ (τ1,K , τ1,1 +

L
2 ), which means that

τ1,1, τ1,2, . . .τ1,K ∈ (t3 − L
2 , t2).

Since in the interval I = (t3 − L
2 , t2) there are no knots of

either ϕ(t− t2) or ϕ(t− t3), we can compute the following
signal moments for the mth channel:

smi
=

3∑
n=2

cImi,n
y(tn)

(a)
=

3∑
n=2

cImi,n
〈x(t), ϕ(t− tn)〉

(b)
=

∫ ∞

−∞
x(t)

3∑
n=2

cImi,n
ϕ(t− tn)dt

(c)
=

∫ ∞

−∞
x(t)ejωmi

tdt

(d)
=

∫
I

K∑
k=1

x1,kδ(t− τ1,k)e
jωmi

tdt =
K∑

k=1

x1,ke
jωmi

τ1,k .

where i ∈ {0, 1}, and ωm0
= ω0 + λm and ωm1

= −ωm0
.

In the derivations above, (a) follows from Eq. (1), (b) from the
linearity of the inner product, and (c) from the local exponential
reproduction property of the sampling kernel described in Eq.
(13), for N = 2. Moreover, (d) follows from Eq. (20), and given
that τ1,1, τ1,2, . . ., τ1,K ∈ (t3 − L

2 , t1).
By using the same approach on each of theK channels, we can

retrieve 2K different moments and, due to the specific choice
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Fig. 20. Sampling of bursts of Diracs using the crossing TEM. The input
signal is shown in (a), the reconstructed signal in (b), the sampling kernels of
both channels in (c) and (d) respectively, and the corresponding non-uniform
samples in (e) and (f).

of exponents, the 2K moments can be expressed as:

sp =

K∑
k=1

x1,ke
jω0τ1,kejλpτ1,k =

K∑
k=1

bku
p
k,

where bk=x1,ke
jω0τ1,k , uk=ejλτ1,k , and p=0, 1, . . ., 2M−1.

We can then apply Prony’s method on sp to retrieve the K
amplitudes and the K locations of the Diracs. Finally, we use
subsequent output samples, located after τ1,K + L to retrieve
the free parameters of the Diracs in the second burst, and we
reiterate the process for the following bursts.

The sampling and reconstruction of a sequence of bursts of
2 Diracs are depicted in Fig. 20. Here, the sampling kernel is
a second-order E-spline for each channel, of support of length
L = 2, shown in Fig. 20(c) and 20(d). The first channel’s kernel
reproduces the exponentials e±j π

3 t, whereas the second kernel
reproduces e±j π

9 t. Moreover, the comparator’s reference signal
has frequency fs = 1.76 > 7

2L , and the separation between
consecutive bursts of Diracs is at least L. The amplitudes and
locations of the estimated Diracs are exact.

APPENDIX C

A. Proof of Proposition 6

The input stream of bursts of Diracs can be sequentially esti-
mated as follows. We estimate the first burst using the first four
non-zero samples of each channel and the methods presented
below. We then retrieve the second burst using the first four
non-zero samples of each channel located after τ1,K + L, where
τ1,K denotes the estimated location of the last Dirac in the first
burst, and L is the length of the kernel’s support. We then use
the first non-zero samples located after τ2,K + L to estimate the
third burst, and repeat this procedure to estimate the subsequent
bursts of Diracs.

Let us assume we want to retrieve burst b and denote with
tn, tn+1, tn+2, tn+3 the first four output spikes located after
τb−1,K + L. Then we have that tn > τb,1 > tn−1, where τb,1
is the location of the first Dirac in the bth burst. Furthermore, let
us assume for simplicity that the Diracs in the bth burst satisfy
xb,1, . . ., xb,K > 0, as depicted in Fig. 21.

In what follows, we show that the samples y(tn+2) and
y(tn+3) can be reliably used to estimate the bth burst.

We first prove that the following conditions hold:

tn+1 > τb,K , (47)

Fig. 21. Time encoding of a sequence of 2 bursts of 2 Diracs, when the
amplitudes of the Diracs in a burst have the same sign.

and:

tn+3 < τb,1 +
L

2
. (48)

We note that since we assume xb,1, . . ., xb,K > 0, the filtered
input defined in Eq. (3) satisfies f(τ) > 0, and hence the con-
dition in Eq. (47) is equivalent to:∫ tn+1

τb,1

f(τ)dτ >

∫ τb,K

τb,1

f(τ)dτ. (49)

The left-hand side of this inequality can be expressed as:∫ tn+1

τb,1

f(τ)dτ =

∫ tn+1

tn−1

f(τ)dτ −
∫ τb,1

tn−1

f(τ)dτ

(a)
= 2CT −

∫ τb,1

tn−1

f(τ)dτ
(b)
> CT , (50)

where (a) holds given Eq. (2) and (b) since tn > τb,1 > tn−1.
The right-hand side of Eq. (49) can be re-written as:

∫ τb,K

τb,1

f(τ)dτ
(c)
<

K−1∑
k=1

Amax

∫ τb,K

τb,k

ϕ(τb,k − τ)dτ

(d)
<

(K − 1)Amax

ω2
m0

[1− cos(ωm0
(τb,K − τb,1))]

(e)
< CT

(f)
<

∫ tn+1

τb,1

f(τ)dτ,

which proves the inequality in Eq. (47).
In the derivations above, (c) follows from the definition in

Eq. (3) and since we assume Amax > xb,1, . . ., xb,K > 0. In
addition, (e) follows from Eq. (37) and (f) from Eq. (50).
Finally, condition (d) follows from:∫ τb,K

τb,k

ϕ(τb,k − τ)dτ
(h)
=

1

ω2
m0

[1− cos(ωm0
(τb,K − τb,k))]

(i)
<

1

ω2
m0

[1− cos(ωm0
(τb,K − τb,1))].

where (h) follows from the definition of ϕ(τb,k − τ) in
Eq. (12) for τ ∈ [τb,k, τb,K ] with τb,K < τb,k + L

2 , and
from the hypothesis that ϕ(τ) reproduces the exponentials
e±jωm0

τ . Moreover, (i) follows from the hypothesis that
0 < ωm0

≤ π
L which is equivalent to 0 <

ωm0
L

2 ≤ π
2 , and

from the assumption that τb,K − τb,k < L
2 , which means that

0 < ωm0
(τb,K − τb,k) <

π
2 , and hence 1− cos(ωm0

(τb,K −
τb,1)) > 1− cos(ωm0

(τb,K − τb,k)) ∀k = 2, . . .,K.
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In Fig. 21 we notice that in some cases (third burst of 2 Diracs),
the spike tn may occur in the interval (τb,1, τb,K). Nevertheless,
the condition in Eq. (49) ensures that the sample at tn+1 happens
after τb,K .

Similarly, since f(τ) > 0, Eq. (48) is equivalent to:∫ τb,1+
L
2

τb,1

f(τ)dτ >

∫ tn+3

τb,1

f(τ)dτ, (51)

where the left-hand side can be expressed as:
∫ τb,1+

L
2

τb,1

f(τ)dτ
(a)
=

K∑
k=1

∫ τb,1+
L
2

τb,k

xkϕ(τb,k − τ)dτ

(b)
=

1

ω2
m0

K∑
k=1

xb,k

[
1− cos

(
ωm0

(
L

2
− (τb,k − τb,1)

))]

(c)
>

1

ω2
m0

K∑
k=1

xb,k

[
1− cos

(
ωm0

(
L

2
− (τb,K − τb,1)

))]

(d)
>

KAmin

ω2
m0

[
1− cos

(
ωm0

(
L

2
− (τb,K − τb,1)

))]
(e)
> 5CT ,

(52)

where (a) follows from Eq. (3), (b) follows from the definition of
ϕ(τb,k − τ) in Eq. (12) for τ ∈ (τb,k, τb,1 +

L
2 ), and (c) follows

from the hypothesis that 0 < ωm0
≤ π

L which is equivalent

to 0 <
ωm0

L

2 ≤ π
2 , and since τb,k − τb,1 < L

2 ∀k = 2, . . .,K.
Moreover, (d) holds since we assume xb,1, . . ., xb,K > 0, and
(e) follows from Eq. (38).

Finally, the right-hand side of Eq. (51) is equivalent to:∫ tn+3

τb,1

f(τ)dτ
(f)
= 4CT −

∫ τb,1

tn−1

f(τ)dτ
(g)
< 5CT

(h)
<

∫ τb,1+
L
2

τb,1

f(τ)dτ,

hence proving the result in Eq. (48).
In these derivations, (f) follows from Eq. (2), (g) holds since

tn > τb,1 > tn−1 and (h) follows from Eq. (52).
The conditions in Eq. (47) and (48) ensure that the output

samples y(tn+2) and y(tn+3) have contributions only from all
the Diracs in the bth burst. These samples can be computed using
Eq. (5) and (20) for each channel m, as follows:

y(tn+2) =

K∑
k=1

xb,k(ϕ ∗ qθn+2
)(τb,k − tn+1). (53)

Similarly, we can write y(tn+3) as:

y(tn+3) =
K∑

k=1

xb,k(ϕ ∗ qθn+3
)(τb,k − tn+2). (54)

For each channel m, the signal (ϕ ∗ qθn+2
)(t− tn+1) is a

linear combination of the exponentials ejωm0
t and ejωm1

t, for
t ∈ (tn+2 − L

2 , tn+1), given Eq. (12) and Eq. (6). Similarly,
(ϕ ∗ qθn+3

)(t− tn+2) is a linear combination of the exponen-
tials ejωm0

t and ejωm1
t, for t ∈ (tn+3 − L

2 , tn+1). Therefore,
in the interval (tn+3 − L

2 , tn+1), where there are no knots of
either (ϕ ∗ qθn+2

)(t− tn+1) or (ϕ ∗ qθn+3
)(t− tn+2), we use

the proof in Section II-B2 to find unique cmi,2 and cmi,3 such
that:

cmi,2(ϕ ∗ qθn+2
)(t− tn+1) + cmi,3(ϕ ∗ qθn+3

)

× (t− tn+2) = ejωmi
t, (55)

for i ∈ {0, 1}, t ∈ [tn+3 − L
2 , tn+1], m0 = m and m1 = 2K −

1−m (which ensures ωm1
= −ωm0

).
Then, for each channelmwe can compute the signal moments

as before:

smi
= cmi,2y(tn+2) + cmi,3y(tn+3)

(a)
=

K∑
k=1

xb,k

3∑
l=2

cmi,l(ϕ ∗ qθl)(τb,k − tl+n−1)

(b)
=

K∑
k=1

xb,ke
jωmi

τb,k ,

where i ∈ {0, 1}, m0 = m and m1 = 2K − 1−m.
In the derivations above, (a) follows from Eq. (53) and (54),

and (b) from τb,1, . . ., τb,K ∈ (tn+3 − L
2 , tn+1) and the fact that

Eq. (55) holds within this interval. We can then uniquely retrieve
the 2K input parameters of the bth burst from the 2K signal
moments smi

of all channels, using Prony’s method.
Finally, we make the observation that the inequalities in Eq.

(37) and Eq. (38) impose additional constraints on the maximum
separation between the Diracs in a burst b, namely on τb,K −
τb,1. Specifically, we need to impose:

5

∫ τb,K

τb,1

f(τ)dτ <

∫ τb,1+
L
2

τb,1

f(τ)dτ,

which may give different constraints on the Dirac separation
according to the filter characteristics, Amax and Amin.
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