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Abstract—In a variety of fields, in particular those involving
imaging and optics, we often measure signals whose phase is missing
or has been irremediably distorted. Phase retrieval attempts to
recover the phase information of a signal from the magnitude of its
Fourier transform to enable the reconstruction of the original sig-
nal. Solving the phase retrieval problem is equivalent to recovering
a signal from its auto-correlation function. In this paper, we assume
the original signal to be sparse; this is a natural assumption in many
applications, such as X-ray crystallography, speckle imaging and
blind channel estimation. We propose an algorithm that resolves
the phase retrieval problem in three stages, first, we leverage the
finite rate of innovation sampling theory to super-resolve the auto-
correlation function from a limited number of samples, second, we
design a greedy algorithm that identifies the locations of a sparse
solution given the super-resolved auto-correlation function, finally,
we recover the amplitudes of the atoms given their locations and the
measured auto-correlation function. Unlike traditional approaches
that recover a discrete approximation of the underlying signal,
our algorithm estimates the signal on a continuous domain, which
makes it the first of its kind. Along with the algorithm, we derive
its performance bound with a theoretical analysis and propose
a set of enhancements to improve its computational complexity
and noise resilience. Finally, we demonstrate the benefits of the
proposed method via a comparison against Charge Flipping, a
notable algorithm in crystallography.

Index Terms—Phase retrieval, turnpike problem, sparse signals,
crystallography, finite rate of innovation, super resolution.

I. INTRODUCTION

IMAGINE that instead of hearing a song you can only see
the absolute value of its Fourier transform (FT) on a graphic

equalizer. Can you recover the song from just this visual informa-
tion? The general answer is “No” as there exist infinitely many
signals that fit the curve displayed by the equalizer. However,
if we have additional information (or priors) about the song,
we may be able to recover it successfully. The reconstruction
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process is the subject of this paper and is generally known as
phase retrieval (PR).

Beside this day-to-day example, PR is of great interest for
many real-world scenarios, where it is easier to measure the FT
of a signal instead of the signal itself. During the measurement
process, it may happen that the phase of the FT is lost or distorted.
Phase loss occurs in many scientific disciplines, particularly
those involving optics and communications; a few examples
follow.
� X-ray crystallography: we measure the diffraction pattern

of a crystallized molecule—that is the magnitude of its
FT—and we would like to recover the structure of the
molecule itself [1].

� Speckle imaging in astronomy: we measure many images
of an astronomic subject and the phase of the images is
compromised by the atmospheric distortion. We would like
to recover the subject without the resolution downgrade
imposed by the atmosphere [2].

� Blind channel estimation of multi-path communication
channels: we measure samples of the channel output with-
out knowing the input. We would like to estimate the
impulse response of the channel to optimize its capacity [3].

A. Previous Work

The field of phase retrieval was born along with X-ray
crystallography, when the first structures were solved with
trial-and-error methods leveraging crystal symmetries. These
initial attempts prepared the ground for more systematic ap-
proaches, a first example of which was proposed by Patterson
in 1935 [4]. This method is based on locating the peaks of
the Patterson function—the auto-correlation function of the
electron density—to determine pairwise differences between the
locations of the atoms constituting a molecule.

In the 1950s, a rich family of approaches exploiting the
unique relationships between intensities and phases of measured
diffraction patterns was developed, e.g. Cochran [5], Sayre [6],
Karle [7]. These methods operate in the Fourier space and are
known as direct methods because they seek to solve the phase
problem directly based on the observed intensities.

We would also like to emphasize the relevance of dual-space
algorithms, where both spatial and Fourier domains play a
fundamental role in reconstructing the signal. While the origin of
these methods dates back to 1972 with the work of Gerchberg
and Saxton [8], a lot of interest was recently sparked by the
introduction of Charge Flipping [9], [10].

This short literature review of phase retrieval algorithms in
X-ray crystallography is focused on ab initio methods, that
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attempt to solve the phase problem with zero or very little prior
information about the structure we are trying to infer. Hence,
ab initio methods are considered very challenging, given the
minimal amount of information they have access to. Successful
methods hinge on the design of an abstract data structure that
reduces the degrees of freedom of the desired signal and sim-
plifies its reconstruction. For example, direct methods exploit
statistical relationships between the phases to reduce the number
of unknowns, while Charge Flipping considers a discretization
of the electron density.

In this paper, we focus on the PR problem on sparse signals.
The sparsity assumption is legitimate and encountered in many
applications; for example atoms in crystallography form a sparse
structure. We consider the most compact structure one can
imagine for a sparse signal: a set of K atoms defined by their
locations xk and their amplitudes ck,

f(x) =

K∑

k=1

ckφ(x− xk) = fs(x) ∗ φ(x), (1)

where fs(x) =
∑K

k=1 ckδ(x− xk) represents the structure, x
is a spatial variable defined over RD (with D being the dimen-
sionality of the signal), φ(x) is the scattering function induced
by one atom and ∗ is the convolution operator. While we assume
that both the parameters ck and the range of φ(x)1 belong to R
to avoid a heavier notation, our results can be easily extended
to C.

Even if the advantage of the compact model defined in (1)
looks appealing, the associated algorithmic challenges are often
overwhelming. Computer scientists attempted to design a scal-
able (i.e. with a computational complexity that is polynomial
in the number of atoms K) and stable to noise algorithm that
could solve all possible instances of this problem without much
success; to date, it is not even clear that such an algorithm would
exist [11]. In other words, we encounter a nontrivial trade-off
between the compactness of such data structures (i.e. the number
of unknown variables) and the ease of solving the PR problem
using them. For example, Charge Flipping easily solves many PR
problems in X-ray crystallography, but it is based on a discrete
spatial structure, which is definitely less compact than (1).

Recently, several sparse PR algorithms have been proposed
assuming a discrete spatial domain, often borrowing inspiration
from the area of compressed sensing. Two notable examples
are GrEedy Sparse PhAse Retrieval (GESPAR) [12], based on
the 2-opt algorithm [13], and Two-stage Sparse Phase Retrieval
(TSPR) [14], where the support is recovered by solving the dis-
crete turnpike problem [15], [16]. As mentioned, both algorithms
differ from our approach in that their models are discrete and the
locations of the spikes are bound to a discrete grid. Even though
it was not designed with continuous setups in mind, TSPR
can theoretically recover locations on a continuous domain.
However, while it handles noise on the measured coefficients, it
does not tolerate noise in the support, which makes it impractical

1Note that we also require some additional assumptions regarding the kernel
φ(x); however, these assumption are introduced later in the paper, where the
context clarifies them.

for continuous setups. Other approaches with discrete support
include[17], where the measurement matrix has random entries,
PhaseLift [18], where the sampling matrix entries are indepen-
dently sampled on the unit sphere, or [19], which is a variation
of GESPAR based on the short-time Fourier transform.

The major benefit of having a continuous parametric model
is that it enables estimation of the locations and amplitudes
avoiding any discretization. In such a case, the achievable res-
olution is theoretically infinite and only limited by the noise
corrupting the measurements. This is what we call super res-
olution phase retrieval. Perhaps surprisingly, the continuous
sparse phase retrieval problem has received little attention in the
literature. During the completion of this manuscript, we became
aware of the work of Beinert et al. [20], [21]. They propose a
super-resolution approach based on the finite rate of innovation
(FRI) framework, which is also one of the building blocks of
the proposed algorithm in this paper. Nonetheless, our work
represents a significant improvement over the state of the art as
it is robust to noise in the measurements.

B. Main Contributions and Outline

As discussed in the previous section, the literature on sparse
phase retrieval is fairly rich. Most of the prior art assumes
a discrete spatial domain and proposes solutions inspired by
various non-convex optimization techniques like compressed
sensing and dual-space methods. In this paper, we consider
the more realistic and challenging scenario of a sparse signal
defined on a continuous domain (1). Current literature offers
only few results in this settings and they are not usable in
practice mostly due to their instability to noise. Our first main
contribution is a three-stage algorithm that precisely determines
a continuous sparse signal from the absolute value of its FT,
even in presence of significant noise. We show that the success
rate of the proposed algorithm exhibits a sharp phase transition,
which is a function of the complexity of the signal, i.e. the
number of sparse elements, and the noise affecting the inputs.
In other words, given a randomly generated input, the algorithm
has either a very high or very low probability of success. To
precisely determine the boundary of such a phase transition, we
propose an approximated theoretical analysis of the algorithm
performance as a function of the aforementioned parameters.

In Section II, we formalize the problem and describe the
typical PR measurement pipeline. In Section III, we give a
high-level overview of our modular approach, discuss the main
challenges and introduce a few relevant properties. Algorithms
to solve these different modules are proposed in Section IV.

We then describe the details of the proposed method to
recover the support, which constitutes the critical element of
the pipeline: its complexity analysis can be found in Section V,
together with a method to reduce its computational cost, while
Section VI identifies an approximated theoretical bound (con-
firmed by numerical simulations) to successfully recover the
signal support in a noisy regime. Then in Section VII, we propose
a few improvements and variations of the algorithm to make it
more robust to noise. In Section VIII, we discuss the influence
of the support configuration on the resulting reconstruction.
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Fig. 1. Typical PR measurement pipeline: the signal of interest fs(x) generates the auto-correlation function as(x), which is first filtered by the scattering
function ψ(x) (here an ideal lowpass filter) to yield a(x) and then sampled, resulting in an. Note that the spatial samples an can be obtained via the inverse
discrete FT of the Fourier samples Am, when the periodicity in the two domains holds. Darker colors represent higher intensities.

Finally, Section IX compares our PR pipeline with the state-
of-the-art.

Throughout this paper, we use bold lower case letters for
vectors and bold upper case letters for matrices. Upper case cal-
ligraphic letters denote sets, e.g. X . Furthermore, X̃ represents
a set with noisy elements and X̂ an estimated set. Subscripts are
reserved for indexing elements in lists and vectors. In the primal
domain, continuous functions are written in lower case letters
and indexed withx, e.g. f(x) and discrete functions are indexed
with n, e.g. fn. In the Fourier domain, we use capital letters,
that is F (ω) and Fm, for continuous and discrete functions,
respectively.

II. PROBLEM STATEMENT

We consider the FT of the signal defined in (1),

F (ω) =

K∑

k=1

ck exp
{−jω�xk

}
Φ(ω), (2)

where ω is the frequency variable and Φ(ω) is the FT of the
known kernel φ(x).

In practice, it is impossible to measure the whole FT (2),
hence we sample it. Furthermore, due to limitations of the
measurement setup, we are usually only able to measure the
absolute values of such samples, that we denote |Fm|, where
Fm = F (mΩ), m = ZD and Ω is the sampling frequency. As
previously mentioned, the PR problem has infinite solutions
without a-priori knowledge of the signal f(x), since we can
assign any phase to the measurements and obtain a plausible
reconstruction. The role of structures, such as (1), is to constrain
the PR problem to a correct and possibly unique solution. Under
the sparsity assumption, retrieving the phase is equivalent to
retrieving the locations and amplitudes of f(x).

The auto-correlation function (ACF) a(x) of f(x) is given
by the inverse FT of |F (ω)|2:

a(x) = f(x) ∗ f(−x) = F−1
[|F (ω)|2] , (3)

where F−1 is the inverse FT operator [22]. Interestingly, the
ACF structure is completely inherited from the signal (1):

a(x) =
K∑

k=1

K∑

�=1

ckc�ψ(x− (xk − x�))

=

[
K∑

k=1

K∑

�=1

ckc�δ(x− (xk − x�))

]
∗ ψ(x)

= as(x) ∗ ψ(x), (4)

where the kernel ψ(x) is the ACF of φ(x) and as(x) is the ACF
of the sparse structure of the train of Diracs fs(x). Equivalently,
in the Fourier domain, we have

A(ω) =
K∑

k=1

K∑

�=1

ckc� exp
{−jω�(xk − x�)

} |Φ(ω)|2. (5)

The PR acquisition pipeline can be summarized as the filtering
of the ACF as(x) followed by sampling, where the filtering
represents the scattering operation, as illustrated in Fig. 1. We
now have all the ingredients to state the core problem of this
paper.

Problem 1: Given Fourier samples Am = A(mΩ) of the
sparse ACF defined in (4), recover the support X = {xk}Kk=1

and amplitudes {ck}Kk=1 determining the signal f(x).
Note that the information we are interested in is hidden behind

two walls: the convolution with the kernel ψ(x) that spatially
blurs the sparse structure of the ACF and the phase loss of the
original sparse signal, fs(x), that usually characterizes any PR
problem.

III. A THREE-STAGE APPROACH

We propose to solve Problem 1 in three distinct stages: i)
reconstruct the continuous ACF a(x) from a set of its discrete
Fourier coefficients, ii) estimate the support X of f(x) given
a(x), and iii) estimate its amplitudes {ck}Kk=1.

The first step is a classical sampling problem where we would
like to fully characterize a continuous sparse signal from a set
of discrete measurements.

Problem 1.A (Sparse ACF super resolution): Given
samples Am of the sparse ACF as defined in (4), recover
its continuous version a(x).

The most well-known sampling result is due to Nyquist-
Shannon-Kotelnikov and guarantees perfect recovery for signals
that lie in the subspace of bandlimited functions, provided that
the sampling rate is high enough.

However, we suggest to leverage the sparsity of the underlying
signal and recovery the ACF a(x) via its parameters ckcl and
xk − xl. Such parameters are then used for the successive steps
of the PR process. Sparsity has two antagonistic effects on PR: it
makes the problem combinatorial and hence hard to solve, but at
the same time enables a divide-and-conquer approach, in which
we first recover the support {xk}Kk=1 and then the amplitudes
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{ck}Kk=1 of f(x). We argue that the support contains more
information than the amplitudes, hence we choose to estimate it
first.

As an example, if all the atoms have the same amplitude, then
only the support is useful to recover the original signal. On the
other hand, if all the atoms have the same location, the problem
is trivially solvable.

Problem 1.B (Support recovery): Assume we are given the
complete set of unlabeled differences D = {dk,�}k,� = {xk −
x�}k,�, recover the support X = {xk}Kk=1 of the sparse signal
f(x).

In most real-world scenarios, the set D is derived from the
noisy samples am of the ACF a(x) by solving Problem 1.A and
hence the unlabeled differences of Problem 1.B are corrupted by
noise. More precisely, noise is first introduced when measuring
the samples of the ACF am. Such a noise is independently
distributed and added to the ACF samples, and not to the
distances D. Next, the algorithm that recovers the distances
from the ACF deforms and amplifies the initial measurement
noise. Hence, we always obtain a noisy and non-symmetrical
set of distances, instead of the noiseless set D. Throughout this
paper, we generically refer to the sampling artifacts and their
propagation due to the reconstruction algorithm as noise.

In our specific case, we propose to solve the super-resolution
of the ACF with an FRI-based algorithm, whose noise analysis
is not trivial. We refer the interested reader to [23]–[26] for more
details about it: theoretical bounds such as the Cramér-Rao [27]
bound and the Barankin bound [28] are derived in [24]–[26].
Moreover, Monte Carlo simulations are provided in [26], show-
ing the reconstruction noise distribution along with the theoret-
ical Cramér-Rao bound.

While the literature clearly defines the noise affecting the
distancesdk,� as neither Gaussian nor independently distributed,
we model such a noise as i.i.d. Gaussian random variables,

d̃k,� = dk,� + νk,�, (6)

where νk,� ∼ N (0, σI).
We further denote the set of measured differences as D̃ =

{d̃k,�}k,�. For simplicity of notation, we convert the pairs of
indices (k, �) ton ∈ {1, . . . , N}, whereN = K2 −K + 1, and
order them such that ‖d̃1‖ ≤ ‖d̃2‖ ≤ · · · ≤ ‖d̃N‖. We do not
assume any ordering on the elements of X . While this noise
model is definitely a simplification and approximation of the
known theoretical models, it enables us to analyze the perfor-
mance of the proposed algorithm in Section VI and such analysis
surprisingly matches what we observe in our experiments.

In what follows, we state a few interesting observations related
to Problem 1.B. First, when we measure a set of differences,
some information is inevitably lost and hence we should not
expected a unique solution but a set of equivalent solutions.

Observation 1: A set of points can be reconstructed from
their pairwise differences, even when labeled, only up to shifts
and reflections.

To show that, we first translate and reflect the set of points X
as X ′ = −X + x̄, where we overload the arithmetic operators
on sets to transform each point as x′

k = −xk + x̄. Then, the

set of differences of the transformed points is equivalent to the
original one,

d′
k,� = x′

k − x′
� = −xk + x̄+ x� − x̄ = x� − xk = −dk,�,

where the natural symmetry of D compensates for the negative
sign.

Second, while excluding shifts and reflections does not lead
to a unique solution in general, we can still prove uniqueness
under certain assumptions.

Observation 2: Assume that the points xk are drawn inde-
pendently at random from a sufficiently smooth distribution,
then the solution is unique [29].

Third, we briefly discuss the occurrence of collisions in the
ACF. We say that there is a collision in the ACF when two dif-
ferent pairs of distinct points from X map to the same difference
in D. Since we consider a continuous domain for the support, it
natively prevents the appearance of collisions.2

Observation 3: If the locations of the points are indepen-
dently drawn uniformly from a finite interval, then collisions in
the ACF occur with probability zero.

Last, we note that the set of differencesD contains many valid
solutions. In particular, we can construct two solutions from ev-
ery element of X ; this is a direct consequence of Observation 1.

Observation 4: The set of differences D is a superset of 2K
valid solutions X̂ to Problem 1.B and such solutions always
contain the point zero, that is 0 ∈ X̂ .

To verify this, we pick an element of the support, e.g. x�, and
build the following tentative solution,

X̂ = {xk − x� | k = 1, . . . ,K}. (7)

Then, we notice that i) X̂ is a valid solution with the shift fixed
as −x�, ii) X̂ ⊂ D and iii) we have a solution for every element
of X . Moreover, due to the symmetry of the ACF, the set

{x� − xk | k = 1, . . . ,K} ⊂ D (8)

is also a valid solution, so we reach the aforementioned 2K
solutions. Such an observation can be generalized to the noisy
scenario: the 2K subsets can still be identified and each subset
represents a solution to the support recovery problem. However,
these solutions are similarly corrupted by the input noise. This
property is essential to the algorithm for support recovery pro-
posed in the next section.

Once the support X̂ of the solution has been retrieved, it
remains to find the amplitudes {ck}Kk=1 of the signal f(x).

Problem 1.C (Amplitude recovery): Given an ACF a(x) as
defined in (4) together with the estimated support X̂ of f(x),
find the amplitudes {ck}Kk=1.

IV. ALGORITHMS

In this section, we lay down our solutions to Problems 1.A, 1.B
and 1.C, effectively providing an end-to-end framework to solve
the sparse PR problem.

2The support recovery algorithm proposed in this paper can in fact handle
collisions and could be used on a discretized space as well. However, assuming
no collisions simplifies the recovery of the amplitudes and enables a few
improvements to make the algorithm more resilient to noise.
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A. ACF Super Resolution

When we look at (4), we notice thata(x) is completely defined
by the locations xk − x� and the amplitudes ckc�. Hence, we
can recast Problem 1.A as a parameter estimation problem
given the measured samples Am of the FT of the ACF. An
effective existing approach is known as finite rate of innovation
(FRI) sampling [30], [31]. FRI-based methods are inspired by
spectral analysis techniques to estimate the locations xk − x�;
in what follows, we review their fundamentals for the sake of
completeness. In this subsection, we restrict ourselves to the
1-dimensional case for clarity, even though our implementation
is generalized to higher dimensions. The higher dimensional
case was first discussed by Maravic [23], who proposed a first
algorithm requiring O(ND) samples, where D is the number
of dimensions. More recently, Pan et al. [32] came up with
a multidimensional reconstruction algorithm using only O(N)
samples.

The essential ingredient in FRI is to represent the signal
of interest as a weighted sum of complex exponentials in the
following form:

bm =

N∑

n=1

αnu
m
n . (9)

This formulation has several similarities with (5); to see this,
we define tn = xk − x�, substitute αn = ckc� and un = exp
(−jΩtn) and rewrite the sampled ACF Am as follows,

Am =
N∑

n=1

αnu
m
n |Φ(mΩ)|2. (10)

We remark that |Φ(mΩ)|2 does not allow us to express (10) as
a sum of complex exponentials yet. However, if we assume that
the kernel function φ(x) is an ideal low-pass filter,3 i.e. a sinc
function, its FT becomes a box function. Thus, we can ignore
such a kernel for some neighborhood of m around zero, since
Φ(mΩ) = 1 for |mΩ| smaller than the bandwidth of the signal.

The locations {dn}Nn=1 are fully determined by the exponen-
tials {un}Nn=1, that is dn = ∠un

Ω , with ∠un being the phase
of un. Recovering un from (9) is a classical spectral estima-
tion technique and a possible solution is provided by Prony’s
method [36], [37]. The idea is to identify a filterHm to annihilate
Am, which is mathematically defined as

(A ∗H)m = 0. (11)

Then, the filterH can be estimated by rewriting and solving (11)
as a Toeplitz system. As shown in [30], ifAm has the form of (9),
then the z-transform of Hm is

H(z) =

N∑

n=0

Anz
−n =

N∏

n=1

(1− unz
−1), (12)

where un are nothing else but the roots of H(z). Our situation
differs from usual FRI applications in the sense that the locations

3The FRI theory has also been generalized to a wide range of kernels such
as combinations of B-splines and E-splines [31], [33], [34] or even arbitrary
sampling kernels [35], where a linear operation enables to obtain the desired
form (9) from (10).

of the ACF describe a symmetric structure. As a consequence,
all roots un come in conjugate pairs (except for the one corre-
sponding to the zero location).4

Once the locations are known, the amplitudes αn are found
by injecting un in (10) and solving a linear system of equations.
In this case, exploiting the symmetry of the ACF helps and
our experiments have shown that it significantly improves the
reconstruction: grouping the symmetric pairs together results in
(K2 −K)/2 + 1 separate values to estimate.

B. Support Recovery

For the recovery of the support, we propose a novel greedy
algorithm that is initialized with a partial solution X̂2, which con-
tains two locations. At a given iteration k, we generate a partial
solution X̂k+1 composed of k + 1 locations, hence the algorithm
has a total of K − 2 iterations indexed from 2 to K − 1.

1) Initialization: From Observation 4, we know that the so-
lution set X̂ is contained in D̃ and 0 ∈ X ; this gives us the
first point of the solution, that is x̂1 = 0. Next, we identify the
element d̃N in D̃ with the largest norm, so that we maximize
the noise resilience of our algorithm. Indeed, assuming that the
locations are corrupted by identically distributed noise, picking
the largest norm ensures the maximal SNR of our initial solution.
Note that the value d̃N is the noisy difference between two
unknown locations of f(x); without loss of generality, we call
themx1 andx2. The elements x̂1 = 0 and x̂2 = d̃N are nothing
but x1 and x2 + ν2,1 translated by −x1. Therefore, we are
always guaranteed that the initialized solution X̂2 = {0, d̃N}
is a (noisy) subset of the set of locations X − x1.

Referring again to Observation 4, we know that the set of dif-
ferences D̃ contains the rest of the points {xk − x1 + νk,1}Kk=3,
that should belong to the final solution X̂ = X̂K . Furthermore,
since we do not want to duplicate points in X̂k, we initialize a set
of possible elements of the solutionP2 = D̃ \ {d̃1, d̃N}. Due to
noise, the vector 0 is not in D̃, so we remove the closest element
d̃1.

2) Main Algorithm: In the noiseless case, we would like
to identify the element x̂k+1 ∈ Pk to be added to the current
solution set X̂k, that is X̂k+1 = X̂k ∪ x̂k+1. This new element of
the solution should be chosen such that the pairwise differences
between the elements of X̂k+1 form a subset of D.

This intuition can be generalized to the noisy case: we would
like to identify the element x̂k+1 ∈ Pk such that the set of
pairwise differences of the points in X̂k+1 = X̂k ∪ x̂k+1 is the
closest to be a subset of the measured D̃. To that end, we propose
to generalize the concept of subset to a noisy environment by
searching for the differences in D̃ that are closest in �2-norm to
the pairwise differences of the elements in X̂k+1.

At each step k, we identify the element inPk that, when added
to the partial solution X̂k, minimizes the error with respect to the
measured set of differences D̃. More precisely, at every iteration

4Note we tried to exploit this fact by enforcing the symmetry of the roots
given as conjugate pairs. However, our experiments did not show a significant
impact.



4844 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 18, SEPTEMBER 15, 2019

Fig. 2. 2D Instance of Algorithm 1 on the ACF as(x) from Fig. 1. We start by
setting x̂1 = 0 and identifying x̂2, the point with the largest norm. Points x̂3 to
x̂5 are then selected in a greedy way according to (13). The solution coincides
with the initial signal fs(x) displayed in Fig. 1.

Algorithm 1: Support Recovery.

Input: A set of N = K2 −K + 1 differences D̃ =
{d̃n}Nn=1 ordered by their norms

Output: A set of K points X̂ such that their pairwise
differences generate D̃
X̂2 = {0, d̃N}
P2 = D̃ \ {d̃1, d̃N}
for k = 2, . . . ,K − 1 do

x̂k+1 = argmin
p∈Pk

∑
x̂∈ ̂Xk

min
˜d∈˜D
∥∥∥p− x̂− d̃

∥∥∥
2

X̂k+1 = X̂k ∪ x̂k+1

Pk+1 = Pk \ x̂k+1

end for
return X̂K

k we solve the following optimization problem,

x̂k+1 = argmin
p∈Pk

∑

x̂∈ ̂Xk

min
˜d∈˜D

∥∥∥p− x̂− d̃
∥∥∥
2

. (13)

This procedure is summarized in Algorithm 1 and its appli-
cation on the ACF as(x) from Fig. 1 is illustrated in Fig. 2.

C. Amplitude Recovery

If we assume that collisions can occur, recovering the am-
plitudes with a given ACF and support is equivalent to solving
a system of quadratic equations. However, if there are no col-
lisions, we suggest a simple but efficient algebraic solution to
Problem 1.C, inspired from [29]. While the method of [29] relies
on a matrix inversion step to solve the problem, we propose here
to work in the logarithmic domain. Numerical simulations have
shown that it is both faster and more robust to noise.

Let c = [c1, c2, . . . , cK ]� be a vector made of the amplitudes
to be recovered. If we define a matrix C = cc�, all the elements
outside of the diagonal of such a matrix are the amplitudes of
the measured ACF, that is Ci,j = cicj . Notice that we cannot

observe the diagonal entries Ci,i = c2i,i as we just have access
to their sum as0 =

∑
i c

2
i,i, which is the value of the ACF at 0.

This is unfortunate since they are precisely the values we are
interested in, up to a squaring operator.

We recast Problem 1.C as a matrix completion problem, where
we would like to estimate the diagonal entries Ci,i under the
constraint of C being a rank-one matrix. The first step of our
proposed method is to introduce a matrix L such that

Li,j =

{
log(Ci,j) = �i + �j for i �= j

0 otherwise,
(14)

where �i = log(ci). The sum of the ith row of L is given by

K∑

j=1

Li,j = (K − 1)�i +

K∑

j=1

�j − �i = (K − 2)�i +

K∑

j=1

�j ,

(15)

where the term
∑

j �j does not vary between rows. Hence, its
value can be obtained from summing all the entries in L,

s =

K∑

i=1

K∑

j=1

Li,j = (K − 2)

K∑

i=1

�i +K

K∑

j=1

�j

= 2(K − 1)
K∑

j=1

�j . (16)

Then, we recover the vector � = [�1, �2, . . . , �K ]� forK > 2 as

� =
1

K − 2

(
L�1 − s

2(K − 1)
1

)
, (17)

where 1 is the all-ones vector.5 Finally, it suffices to compute
ci = exp(�i) to retrieve the amplitudes.

Note that this solution assumes thatC is symmetric; this might
not be the case in a noisy setup, but we enforce it by replacing
C with 1

2 (C +C�). In case of collisions, the problem does not
have an algebraic solution and a possible convex relaxation is
provided in [14]. In practice, this is often not a concern due to
Observation 3.

Putting all pieces together, these three stages combines to
enable the recovery of a continuous signal from its noisy sampled
ACF; Figure 3 illustrates a few examples of recoveries of trains
of Diracs based on the combination of these three steps.

In what follows, we study and propose improvements to
the performance of our PR algorithm, focusing our attention
on the support recovery step, i.e. Algorithm 1. In fact, the
first step—the super-resolution with FRI—is well represented
in literature, where theoretical analyses, extensive simulations
in noisy scenarios and efficient denoising schemes have been
proposed [23], [24], [38]. On the other hand, the amplitude
recovery, while being novel, only consists of simple algebraic
manipulations that are not computationally costly.

5WhenK = 2, the entries �1, �2 can be recovered by solving a system of two
equations.
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Fig. 3. Examples of our algorithm in 1 dimension for different values of K and different noise regimes: (a) original points; (b) corresponding continuous ACF;
(c) discrete noisy ACF with 100 samples (sinc sampling kernel used); (d) output of the FRI-based super-resolution algorithm; (e) result of the support recovery
algorithm.

V. COMPLEXITY ANALYSIS

Algorithm 1 has K rounds. In each of these rounds, we
go through all points in the existing solution set X̂k, and for
each point we compute the difference with all the values in D̃.
Since there are O(K) points in X̂k and O(K2) elements in
D̃, this is done in O(K3) operations. Furthermore, for each of
these computed differences, we need to find the closest element
in D̃, which requires additional O(K2) comparisons. In total,
the complexity of our algorithm is O(K6). Even though this
is high and limits the field of application to reasonable sizes,
it compares favorably to an exhaustive search strategy, which
grows exponentially with K.

It is possible to trade time complexity for storage complexity.
Indeed, we observe that we compute at each round the following
values

d̃i,j = argmin
˜d∈˜D

‖pj − x̂i − d̃‖2, (18)

for every point x̂i ∈ X̂k and candidate pj ∈ Pk. However, since

we are just moving one element from Pk to X̂k+1 at each
iteration, we propose to cache the values (18) in a lookup table
to reduce the total computational cost. By doing so, we only
need to update each d̃i,j when the corresponding candidate pj

is removed from Pk to be added to X̂k+1.
The theoretical complexity when caching d̃i,j is not trivial to

analyze, but in practice we notice a significant improvement, as
illustrated in Fig. 4.

Fig. 4. Comparison of the average run time of the original algorithm and its
cached version. The times reported are the average of 100 runs of the algorithm.
The dashed lines represent curves of the form CKα that are fitted to the data.
For the method without caching, we haveC = 4.25 · 10−6 andα = 5.06, while
for the method with caching we have C = 3.88 · 10−6 and α = 4.37. Remark
how the caching is reducing the polynomial degree of the computational cost by
approximately one.

VI. PERFORMANCE ANALYSIS

In what follows, we study the expected performance of Algo-
rithm 1 in the presence of noise.

More precisely, we model the probability that Algorithm 1
finds the correct solution as a function of the noise variance σ2

and the number of elements K to characterize its performance.
We consider a one-dimensional problem, that is D = 1, to
lighten notation and simplify the discussion. However, all the
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results can be easily generalized to the multidimensional setup
introduced in Problem 1.B. Note that our analysis requires sev-
eral approximations for the sake of tractability. Nonetheless, we
consider this analysis to be of interest. First, our approximated
analysis matches incredibly closely the empirical performance
of the algorithm, see Section VI-A. Second, other researchers
may find our results interesting as a starting point for a more
rigorous approach.

We start our analysis by observing that the probability of
success can be factored along the K − 2 iterations

P (σ,K) =

K−1∏

k=2

Pk(σ,K), (19)

where P (σ,K) is the probability of success of the support
recovery algorithm and Pk(σ,K) is the conditional probability
of success at iteration k, given that the algorithm was correct
until iteration k − 1.

We focus our attention on what happens at iteration k, i.e.
we study the probability Pk(σ,K). First, we split the set of
possible elements of the solutions Pk as the union of two
disjoint sets: Ck containing the elements that when picked by
the algorithm generate a correct partial solution at iteration k,
and W containing the elements that when picked corrupt the
partial solution. Second, we generalize the cost function used
in the main optimization problem (13) to a generic set of 1D
elements A as,

g(A, X̂k) = min
p∈A

∑

x̂∈ ̂Xk

min
˜d∈˜D

(
p− x̂− d̃

)2
. (20)

Below, we use g(A, X̂k) with both sets and single elements as
arguments: in other words, the expression g(a, X̂k) is interpreted
as g({a}, X̂k).

Then, we compute the probability that the support recovery
algorithm picks an element from Ck instead of an element from
W , when searching for the solution of (13). This happens if the
cost of Ck is smaller than the one of W measured via (20),

Pk(σ,K) = P(g(Ck, X̂k) < g(W, X̂k))

= P(∃c ∈ Ck|g(c, X̂k) < g(W, X̂k))

= 1− P(�c ∈ Ck | g(c, X̂k) < g(W, X̂k))

= 1− P(∀c ∈ Ck | g(c, X̂k) ≥ g(W, X̂k)). (21)

We assume that the events g(c, X̂k) ≥ g(W, X̂k) are indepen-
dent for all c ∈ Ck and obtain

Pk(σ,K) = 1−
∏

c∈Ck
P

(
g(c, X̂k)

g(W, X̂k)
≥ 1

)
. (22)

This is a crude simplification, but it enables us to compute
an approximation of Pk(σ,K) that will not impair the quality
of the end result, as we will demonstrate later. With a similar
development as (21), we can write

P

(
g(c, X̂k)

g(W, X̂k)
≥ 1

)
= 1− P

(
∀w ∈ W ∣∣ g(c, X̂k)

g(w, X̂k)
< 1

)
.

Again, we approximate Pk(σ,K) assuming the independence
of the events g(w, X̂k) as

Pk(σ,K) = 1−
∏

c∈Ck

(
1−

∏

w∈W
P

(
g(c, X̂k)

g(w, X̂k)
< 1

))
.

(23)

Then, we focus our attention on the term P( g(c, ̂Xk)

g(w, ̂Xk)
< 1).

First, we compute the cost of adding an element c from Ck to
X̂k+1,

g(c, X̂k) =
∑

x̂∈ ̂Xk

min
˜d∈˜D

(
c− x̂− d̃

)2

=

k∑

�=1

min
˜d∈˜D

(
c− (x� − x1 + ν�,1)− d̃

)2
, (24)

where each x̂ ∈ X̂k is a shifted noisy version of an element of
X . Following a similar reasoning, the newly added element c
can be expressed as c = xk+1 − x1 + νk+1,1. By substituting
this expression into (24), we further obtain

g(c, X̂k) =
k∑

�=1

min
˜d∈˜D

(
xk+1 + νk+1,1 − x� − ν�,1 − d̃

)2

(a)≈
k∑

�=1

(νk+1,1 − ν�,1 − νk+1,�)
2

= 3σ2Q
(1)
k , (25)

where Q(1)
k ∼ χ2

k, and in (a) we approximate g(c, X̂k) by se-
lecting the difference d̃ = xk+1 − x� + νk+1,�. We select this
specific d̃ as it is likely to be picked, provided that the noise
variance σ2 is small compared to the values xi. This also
significantly simplifies (25) by dropping the random variables
x1, xk+1, and x�.

Second, we analyze the cost of making an error g(w, X̂k) at
iteration k—that is selecting any element w ∈ W given X̂k:

g(w, X̂k) =
∑

x̂∈ ̂Xk

min
˜d∈˜D

(
w − x̂− d̃

)2
. (26)

We express the minimum in (26) as an exhaustive check of all
the possible selections of k differences from D̃. To do so, we
defineMk as the set containing all the k-permutations of D̃, and
rewrite the probability of selecting a correct location c instead
of a wrong one w for any given c and w from (23) as follows,

P

(
g(c, X̂k)

g(w, X̂k)
< 1

)
= P

(
g(c, X̂k)

e(w,π, X̂k)
< 1, ∀π ∈ Mk

)
.

Here, we introduced e(w,π, X̂k) as the cost for a given permu-
tation π,

e(w,π, X̂k) =
k∑

i=1

(w − x̂i − πi)
2 , (27)

where the elements in π and X̂k are indexed with i.
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Once more, we assume that all these selections are indepen-
dent to obtain

P

(
g(c, X̂k)

g(w, X̂k)
< 1

)
=
∏

π∈Mk

P

(
g(c, X̂k)

e(w,π, X̂k)
< 1

)
. (28)

Finally, we discuss the probabilistic aspects of (27). The terms
ω, x̂i and πi are each made of the difference between two points
plus a noise value. Indeed, they have the form

p = xi − xj + νi,j ,

for some specific indices i and j. Assuming that the points in
X are uniformly distributed between −0.5 and 0.5, and the
noise elements νi,j are independent and identically distributed
as Gaussian random variables with zero mean and variance σ2

(as previously discussed in Section III), we can approximate (27)
as

e(w,π, X̂k)
(a)≈

k∑

�=1

⎛

⎝
6∑

i=1

Yi +
3∑

j=1

Zj

⎞

⎠
2

(b)≈
k∑

�=1

⎛

⎝W +
3∑

j=1

Zj

⎞

⎠
2

=

(
3σ2 +

1

2

)
Q

(2)
k , (29)

whereQ(2)
k ∼ χ2

k,Yi ∼ U [−0.5, 0.5],Zj ∼ N (0, σ2) andW ∼
N (0, 12 ). In (a), we approximate the sum by assuming indepen-
dence between all the random variables and in (b) we approxi-
mate the sum of six random variables uniformly distributed on
[−0.5, 0.5]with a normal random variable with varianceσ2 = 1

2 .
We now have all the ingredients to compute the probability

of success at iteration k (23), as

Pk(σ,K) = 1−
∏

c∈Ck

(
1−

∏

w∈W
P

(
g(c, X̂k)

g(w, X̂k)
< 1

))

≈ 1−
∏

c∈Ck

(
1−

∏

w∈W

∏

S∈Mk

P

(
Q

(1)
k

Q
(2)
k

<
3σ2 + 1

2

3σ2

))

= 1−
⎛

⎝1− P

(
Q

(1)
k

Q
(2)
k

<
3σ2 + 1

2

3σ2

)|Mk ||W|⎞

⎠
|Ck |

= 1−
(
1− F

(
3σ2 + 1

2

3σ2
, k, k

)|Mk||W|)|Ck |

, (30)

where F(x, k1, k2) is the cumulative distribution function of an
F-distribution with parameters k1 and k2; it can be calculated
using regularized incomplete beta functions. Last, we determine
the size of the sets as

|Ck| = K − k,

|W| = N −K = K2 − 2K + 1,

|Mk| = Nk. (31)

Fig. 5. Comparison of the (a) theoretical and (b) empirical probability of
success for Algorithm 1 in 2 dimensions with respect to the size of the problem
K and the noise σ affecting the set of differences. In both plots, the white line
represents P (σ,K) = 0.5.

Note that as the number of points K increases, these exponents
grow faster and push any probability that is not 1 to 0; hence,
we expect a steep phase transition.

Along the path of our analysis, we made a few rough as-
sumptions that we cannot theoretically justify regarding the
independence of events, e.g. in (22), (23) and (28). While we
would like to be more rigorous, we provide below numerical ev-
idence that such assumptions hold in practice as the algorithm’s
performance exhibits a phase transition matching closely the
derived theoretical bound (30). Swiss A

A. Numerical Simulations

We define the index-based error as a binary metric that is equal
to 0 if the solution set X̂ is of the form (7), and 1 otherwise.
This error can be used to empirically measure the probability of
success of Algorithm 1: we approximate it by running several
experiments with different levels of noise σ and numbers of
points K. In Fig. 5, we report the results of such an experiment
and compare it with our theoretical result obtained in (30). We
confirm that P (σ,K) exhibits a sharp phase transition—we can
identify pairs (K,σ) for which the algorithm always succeeds
and pairs for which it always fails. However, the empirical
phase transition is less sharp than the theoretical one and this is
probably due to our approximations regarding the independence
of events. Nonetheless, the two phase transitions are closely
aligned for each value of K.

In the following, we develop some intuition that may explain
why these approximations appear to be so tight. We claim that,
even though not all events are pairwise independent, most of
them are. As an example, when we look at

g(p, X̂k) =
∑

x̂∈ ̂Xk

min
˜d∈˜D

(
p− x̂− d̃

)2
, (32)

for two different values p1 and p2 of p, the respective cost
functions g(p1, X̂k) and g(p2, X̂k)probably share a few common
differences d̃. However, we observe that at round k, only k
out of K2 − 2K + 1 differences are selected, one for every
x̂ ∈ X̂k. Then, assuming that most pairs (g(p1, X̂k), g(p2, X̂k))
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are independent is practically equivalent to assume that we select
the differences d̃ uniformly at random within the minimization.
Moreover, we believe that the few dependent events ignored
by such assumptions are one of the likely causes of the differ-
ent steepness exhibited by the theoretical and observed phase
transition.

VII. IMPROVING NOISE RESILIENCE

We now discuss strategies and variations of our support re-
covery algorithm aiming at improving the quality of the solution
in noisy settings. We chose not to include them in the analysis
as they make it more intricate.

A. Deleting Solutions From the Set of Differences

When a new point x̂k+1 is added to X̂k, Algorithm 1 ignores
some useful information. Assuming that there are no collisions
and no noise, we know that the values X̂k − x̂k+1 and x̂k+1 −
X̂k in D cannot belong to the solution X̂ as they are part of
W . Thus, as soon as x̂k+1 is added to the solution set, we can
remove all values of the form X̂k − x̂k+1 and x̂k+1 − X̂k from
D.

The same reasoning applies to the noisy case, but we pick the
closest values in D̃ as we do not have exact differences. More
formally, when we add a new point x̂k+1 to the solution X̂k, we
dispose of the following 2k elements of D̃,

d̃
∗
= argmin

˜d∈˜D
‖ ± x̂∓ x̂k+1 − d̃‖2, ∀x̂ ∈ X̂k.

This approach results in two opposing effects. On one hand,
we introduce the risk of erroneously discarding a point d̃

∗
that

belongs to the solution. On the other hand, we are pruning many
elements out of D̃ and naturally reduce the risk of picking an
erroneous candidate later on in the recovery process. As we will
show in Section VII-D, the benefits out-weight the risks.

B. Symmetric Cost Function

Next, we replace the cost function (13) with a symmetric one
to leverage the natural symmetry of the ACF.

In Algorithm 1, we search for the vectors in D̃ closest to
the computed differences p− X̂k for each candidate p. We
strengthen its noise resilience by jointly searching for the vectors
closest to ∓X̂k ± p and choosing the candidate p that mini-
mizes the sum of both errors. Specifically, we rewrite the cost
function (13) as

x̂k+1 = argmin
p∈Pk

∑

x̂∈ ̂Xk

min
˜d,˜d

′∈˜D

∥∥∥p− x̂− d̃
∥∥∥
2

+
∥∥∥x̂− p− d̃

′∥∥∥
2

.

(33)
We stress that this improvement is compatible with the idea

of caching introduced in Section V. We can in fact cache the
following pairs

(d̃, d̃
′
)i,j = argmin

˜d,˜d
′∈˜D

‖pj − x̂i − d̃‖2 + ‖x̂i − pj − d̃
′‖2,

(34)

for each x̂i ∈ X̂k and pj ∈ Pk and recompute them when pj

gets added to the solution X̂k+1.

C. Denoising of Partial Solutions

At each iteration k of Algorithm 1, we have a partial solution
X̂k+1 and, from (13), we identify for each pair x̂i, x̂j ∈ X̂k+1 a
difference d̂i,j that is the closest to x̂i − x̂j . In other words, we
are simultaneously labeling the differences d̂i,j using our current
partial solution; such a labeling is completed as k reaches the
final iteration K − 1.

This partial labeling can be exploited to denoise the set X̂k+1

as it provides unused additional constraints and mitigates the
error propagation between the iterations. More precisely, we
propose to find a set of points {x̂i}k+1

i=1 that minimizes the
following cost function

J
({x̂i}k+1

i=1

)
=
∑

i,j

‖d̂i,j − (x̂i − x̂j)‖2. (35)

The solution to (35) is derived in closed-form by setting its first
derivative to 0. As it is based on a least-square-error criterion, it
is then optimal when the differences are corrupted by additive
Gaussian noise.

This leads to a simple and effective strategy: refine the esti-
mate of the solution set at each step by taking the average of the
differences related to each point x̂i ∈ X̂k+1 as

x̂i =
1

k + 1

k+1∑

j=1

d̂i,j , (36)

where we recompute all x̂i as they are used in the k + 1 iteration.
To see why this works, we separate the sum as

1

k + 1

k+1∑

j=1

d̂i,j = xi − 1

k + 1

k+1∑

j=1

xj +
1

k + 1

k+1∑

j=1

νi,j .

We observe that − 1
k+1

∑k+1
j=1 xj is the same translation for all

points x̂i. The consequence of this approach is that the total
noise is reduced as we average its different realizations over
k + 1 values. Note that since Algorithm 1 assumes that x̂1 = 0
in X̂k, we also translate back all the points by −x̂1 after each
update.

Unfortunately, the idea of caching the differences introduced
in Section V is not compatible with the denoising of the partial
solutions. As at each step we modify the partial solution set X̂k,
the differences between X̂k and D̃ change accordingly, which
makes it impossible to cache them. Hence, there exists a hard
trade-off between quality and complexity, and we should pick
the right strategy depending on the requirements of each specific
practical scenario.

D. Comparison of Improvement Strategies

Last, we evaluate the significance of our proposed improve-
ments on Algorithm 1. We quantify the results using the index-
based error introduced in Section VI, as well as the �2 error,
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Fig. 6. Average error for the different combinations of improvements of the
algorithm. We create X from K = 6 1D points chosen uniformly at random
from the interval [0,1], create D accordingly and add Gaussian noise N (0, σ2)
to its elements. The �2 and the index-based errors are computed for different
levels of noise σ and different improvements of the original algorithm.

TABLE I
THE AVERAGE DECREASE IN �2 ERROR FOR DIFFERENT IMPROVEMENT

STRATEGIES OF THE ORIGINAL ALGORITHM 1

which we define as the �2-norm of the difference between the
underlying points X and their estimation X̂ .6

The comparison of the different improvement strategies is
illustrated in Fig. 6. In this experiment, we draw K = 6 one-
dimensional points uniformly at random from the interval [0, 1]
and add Gaussian noise N (0, σ2) on their pairwise differences.
We run Algorithm 1 and the proposed improvements for different
noise levels σ. It is clear that all the proposed strategies enhance
the original algorithm, with respect to both the index-based error
and the �2 error.

Moreover, we also observe that different strategies combine
constructively: for example, the symmetric cost function de-
creases the �2 error by 5% on average, while deleting solutions
from the set of differences improves the results by 27% on
average. When combined together, the average error decreases
by 59%. Including the denoising further enhances the algorithm,
as the average error decreases by 62%. Similarly, for the index-
based error there is an evident shift between the phase transitions
of the original algorithm with and without improvements.

In addition to the described experiment, we illustrate the
different improvement strategies forK = 101D points in Fig. 10
in Appendix. We quantify the performance of each of these
enhancing methods for K = 6 and K = 10 in Table I. We can
conclude that different strategies combine constructively and
improve the performance of the original algorithm in both cases.

6This requires to first align the two sets of points X and X̂ by minimizing the
�2-norm between their elements, subject to any shift and/or reflection.

Fig. 7. Influence of the points’ locations on the estimation errors. We solve
a 1D instance of the problem with K = 4, x1 = 0, and x2 = 1. The locations
x3 and x4 vary along the x- and y-axis.

VIII. INFLUENCE OF THE POINTS LOCATIONS

The algorithm performance around the phase transition in
Fig. 5 also seems to indicate that some configurations of points
are easier to recover than others. In this section, we run a
small experiment to visualize the challenges posed by certain
configurations.

We consider a low-complexity setup (K = 4, D = 1), fix
the support boundaries, that is x1 = 0 and x2 = 1, and study
the reconstruction error for various pairs (x3, x4) ∈ [0, 1]2. We
generate several instances of this problem and perturb the dif-
ferences in D with additive Gaussian noise with zero mean and
σ = 0.01. We measure the performance of Algorithm 1 (with
all the improvements introduced in Section VII) using both the
index-based and the �2 error. The average errors are then shown
in Fig. 7, where we observe that there exist some combinations
of points that lead to a significantly higher error.

We now develop intuition about a few interesting cases that
emerged from the previous experiment. For the sake of sim-
plicity, we consider a noiseless setting where collisions in the
ACF or non-uniqueness of the solution are the only causes of
challenging configurations.

1) Collision between a difference and a point: When a differ-
ence and a point collide, it can happen that the difference
is mistaken for the point. This does not influence the �2

error, but causes an index-based error. An example of such
a case is when x3 = x4 (the main diagonal in Fig. 7): both
the difference x4 − x3 and x1 have value 0. As a conse-
quence, the sets X ′ = {x1, x2, x3, x4} and X ′′ = {x4 −
x3, x2, x3, x4} are both equal to X = {0, 1, x3, x3}, but
the latter is not of the form (7).

2) Constant difference 0.5: When x4 = x3 ± 0.5, we can ac-
tually find more than one set of 4 points that map to a subset
of the given differences. In the case x4 = x3 + 0.5, the
differences are D = ±{0, 1, x3, x3 + 0.5, 1− x3, 0.5−
x3, 0.5}; thus, D contains all pairwise difference from
both X ′ = {0, 1, x3, x3 + 0.5} and X ′′ = {0, 1, 0.5, x3}.
However, X ′′ does not lead to a zero �2 error.

3) Collision of differences when adding a new point to
the solution set: This is for example the case of x4 =
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1− 2x3 with D = ±{0, 1, x3, 1− 2x3, 1− x3, 2x3,
1− 3x3}. The differences 0 and 1 are always selected
in the first and the second step. In the third step, we
could potentially add 2x3 to X2 = {0, 1} and reduce
the set of differences to D = ±{x3, 1− x3, 1− 3x3}.
Next, we select x3 as a new point. We can verify that
the differences of x3 and the values in X3 = {0, 1, 2x3}
exist in D. However, in this verification we use the value
x3 in D twice: once as the difference between x3 and 0,
and once as the difference between x3 and 2x3. The set
of pairwise differences of X4 = {0, 1, 2x3, x3} is indeed
contained in the original D, but neither its �2 error nor its
index-based error is zero. Notice that if we swap the third
and the fourth step, this confusion would be avoided as
x3 would be removed from the set of differences in the
third step.

These three cases explain all the segments visible in Fig. 7.
Such an analysis also applies to noisy regimes; the main dif-
ference is that we move from very localized configurations
to blurrier areas where the solution is ambiguous. In fact, we
introduced some noise into the experiment in Fig. 7 to enable
the visualization of the lines identifying challenging patterns—a
noiseless setting would have just led to infinitesimally thin lines.
Such patterns become blurrier and wider as noise increases.
These areas where reconstruction is harder also explain the
not-so-sharp phase transition in Fig. 5: when drawing supports of
K elements at random, the probability of hitting a challenging
pattern significantly grows with the noise. To the limit, these
blurred lines cover the entire domain and the probability of
success is null.

IX. COMPARISON WITH CHARGE FLIPPING

In this section, we evaluate the performance of the proposed
PR algorithm in comparison with other state-of-the-art methods.
Recall that our algorithm is, to the best of our knowledge, the first
to operate in a noisy continuous-support setup, whereas other
algorithms either assume sparse discrete signals or do not take
noise into consideration. Indeed, the vast majority of PR methods
are simply not designed to work with continuous supports;
examples are PhaseLift [39], which recasts the PR problem as a
semi-definite program, and GESPAR [12], which linearizes the
PR problem with the damped Gauss-Newton method. In general,
these approaches assume that the signals of interest are sparse
vectors. As seen in Fig. 1, when the locations are not aligned with
the sampling grid, the discretized signal contains very few—if
any—nonzero entries as the scattering function spreads the sharp
continuous locations.

A few algorithms are designed [20] or can be adapted [14]
to work with continuous supports, but they fall short when the
measured support D̃ is noisy. For example, TSPR [14] relies on
the triangle equality between locations to recover the support; as
soon as the locations are corrupted with noise, these equalities
do not hold anymore.

The difference in setup and assumptions between our pro-
posed algorithm and the state of the art makes a direct compari-
son basically impossible. In fact, it is not possible to adapt all the

aforementioned algorithms to our generalized setup while main-
taining their performance to a point that makes the comparison
interesting and relevant.

One of the few algorithms that exhibited reasonable per-
formance in this setup is the Charge Flipping algorithm [9],
[10]: even though it was originally implemented to operate in a
discrete domain, our experiments have shown that it is resilient
to some noise on the ACF support.

A. Charge Flipping

Charge Flipping is one of the reference algorithms in crystal-
lography. It belongs to the class of dual-space algorithms as it
alternatively acts on the spatial and Fourier domains, designated
real and reciprocal space in crystallography. After randomly
assigning a phase to the observed magnitudes of the discrete
Fourier transform (DFT) coefficients, it iteratively performs the
following two operations:

1) In the real space, it flips the sign of the values that are
below some fixed threshold δ.

2) In the reciprocal space, it enforces that the magnitude of
the signal corresponds to the measured magnitude.

Charge Flipping directly takes as input the DFT coefficients
of the ACF, while our support recovery algorithm operates on a
continuous version of the ACF. This is a significant advantage of
our algorithm over Charge Flipping as we do not assume that the
support of the points is aligned with a grid. To have an adequate
comparison between the two, we need to consider the entire
pipeline, combining the three algorithms exposed in Section IV;
this is illustrated in Fig. 8.

B. Experimental Setup and Results

We generate DFT coefficients corresponding to a sparse sig-
nal as described in (1), discard their phase information, and
corrupt them with zero-mean Gaussian noise. Notice that in
Sections VI and VII, we assume noise on the support of the
points; here, since we are evaluating the entire estimation
pipeline, we are dealing with noise that is applied to the DFT
coefficients instead. Obviously, these noisy DFT coefficients
also lead to a noisy support of the super-resolved ACF, but it
is neither Gaussian nor independent anymore. In fact, as FRI
algorithms rely on nonlinear methods, the noise of its output is
difficult to characterize.

The discretization of the Fourier domain is equivalent to
a periodization of the spatial domain. As a consequence, the
squared magnitude of the DFT coefficients corresponds to a
circular ACF. While it is certainly possible to adapt Algorithm 1
to handle circular ACFs by testing all the possible 2D quadrants
for every observed d̃ ∈ D̃, we chose to zero-pad the support of
f(x) until its ACF is not circular anymore.

Regarding Charge Flipping, we notice that its performance
highly depends on the initial solution as well as the choice of
δ. To avoid giving an unfair advantage to our algorithm, we run
Charge Flipping 10 times for each experiment and pick the best
solution; practical experiments show that the performance gain
is marginal when going above such a number of repetitions.
Furthermore, best practice [10] suggests to pick δ = bθ, where b
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Fig. 8. PR pipeline for Charge Flipping and our algorithm. First the signal a(x) is sampled and we observe the magnitude of its DFT,Am, which also corresponds
to a discrete version of its ACF. These DFT coefficients are directly used by Charge Flipping to recover a discretized support of f(x). Our approach proceeds in
two stages: first, using FRI we compute a super-resolved version of the ACF, and then by applying the proposed algorithm, we recover the continuous version of
f(x).

Fig. 9. Comparison of our algorithm with Charge Flipping. The performance
is evaluated for K = 5 1D points chosen uniformly at random from [0, 1]. The
number of DFT coefficients is 200. Figure (a) shows the �2 reconstruction error
on the locations for different values of the input SNR. Figure (b) reports the
percentage of success: we consider that the algorithms fail when the resulting
�2 error is larger than some threshold 0.04.

is a constant around 1-1.2 and θ is the standard deviation of the
measured signal. Our experiments showed that progressively
decreasing the value of δ also improves the performance of
Charge Flipping. This mimics the behavior of the simulated
annealing algorithm, where the temperature is steadily decreased
until convergence.

Then, given noisy DFT coefficients as input, we compare the
�2 error on the support of the points for both algorithms, as
well as a probability of successfully recovering the support.
To define the latter, we say that an algorithm fails when the

�2 error is higher than a specific threshold. Fig. 9 shows that
our FRI super-resolution algorithm surpasses Charge Flipping
in terms of both metrics. It is not surprising that our algorithm
exhibits a superior performance in a low noise regime—it even
achieves exact reconstruction in the absence of noise—since
it is not bound to a grid. On the other hand, Charge Flipping
always suffers from approximation errors due to the implicit
discretization: in the noiseless case and for a grid of size 200,
we calculate that the expected �2 error on the support of K = 5
points is about 0.0056, which is in adequacy with the baseline
observed in Fig. 9a. Simulations also indicate that our algorithm
outperforms Charge Flipping in high noise environments. In-
deed, the reconstruction error is consistently lower and its phase
transition compares favorably as well.

X. CONCLUSION

We presented a novel approach to solve the phase retrieval
problem for sparse signals. While conventional algorithms op-
erate in discretized space and recover the support of the points
on a grid, the power of FRI sampling combined with the sparsity
assumption on the signal model enables to recover the support
of the points in continuous space. We provided a mathematical
expression that approximates the probability of success of our
support recovery algorithm and confirmed our result via numer-
ical experiments. We observed that while our algorithm runs
in polynomial time with respect to the sparsity number of the
signal, it remains relatively costly. To alleviate the computational
costs without impacting the quality of the reconstruction, we
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Fig. 10. Average error for the different combinations of improvements of the
support recovery algorithm. We draw K = 10 1D points chosen uniformly at
random from the interval [0,1] and add Gaussian noiseN (0, σ2) to their pairwise
differences. The �2 and the index-based errors are computed for different levels
of noise σ and different improvements on the original algorithm.

TABLE II
THE DECREASE IN �2 ERROR OF OUR ALGORITHM WITH RESPECT TO CHARGE

FLIPPING AVERAGED OVER DIFFERENT INTERVALS OF THE INPUT SNR

proposed a caching layer to avoid repeating calculations. Fur-
thermore, we introduced several improvements that contribute
to enhance the quality of estimation in the presence of noise.
Finally, we showed that our super resolution PR algorithm out-
performs Charge Flipping, one of the state-of-the-art algorithms,
both in terms of average reconstruction error and success rate.

APPENDIX

To provide additional confidence in our results, we repeat the
experiment from Section VII-D for a larger number of points.
We draw K = 10 one-dimensional points uniformly at random
from the interval [0,1] and add Gaussian noise N (0, σ2) on
their pairwise differences. We run Algorithm 1 and the pro-
posed improvements from Section VII for different noise levels
σ. The comparison of the different improvement strategies is
illustrated in Fig. 10 and numerically confirmed in Table I. As in
Section VII-D, we conclude that the combinations of the pro-
posed strategies significantly enhance the original algorithm,
with respect to both the index-based error and the �2 error.

Furthermore, we present additional numerical results that
confirm the superior performance of our proposed PR algorithm
over the Charge Flipping algorithm. We reproduce the experi-
mental setup from Section IX-B forN = 7 points and 100 DFT
coefficients, and compare the �2 error on the support of the points
for both algorithms, as well as the probability of successfully
recovering the support: Fig. 11 and Table II show that our FRI

Fig. 11. Comparison of our algorithm with Charge Flipping. There areK = 7
1D points chosen uniformly at random from [0, 1]. The number of DFT coeffi-
cients is 100. (a) The �2 reconstruction error on the locations for different values
of the input SNR. (b) The percentage of success (�2 error being smaller than
some threshold 0.04).

super-resolution algorithm surpasses Charge Flipping in terms
of both metrics.
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[9] G. Oszlányi and A. Sütő, “Ab initio structure solution by charge flip-
ping,” Acta Crystallographica Sect. A: Found. Crystallogr., vol. 60, no. 2,
pp. 134–141, Mar. 2004.
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[15] T. Dakić, On the Turnpike Problem. Burnaby, BC, Canada: Simon Fraser
Univ., 2000.

[16] S. S. Skiena, W. D. Smith, and P. Lemke, “Reconstructing sets from
interpoint distances,” in Proc. 6th Annu. Symp. Comput. Geom., 1990,
pp. 332–339.

[17] X. Li and V. Voroninski, “Sparse signal recovery from quadratic mea-
surements via convex programming,” SIAM J. Math. Anal., vol. 45, no. 5,
pp. 3019–3033, 2013.

[18] E. J. Candes, T. Strohmer, and V. Voroninski, “Phaselift: Exact and stable
signal recovery from magnitude measurements via convex programming,”
Commun. Pure Appl. Math., vol. 66, no. 8, pp. 1241–1274, 2013.

[19] Y. C. Eldar, P. Sidorenko, D. G. Mixon, S. Barel, and O. Cohen, “Sparse
phase retrieval from short-time Fourier measurements,” IEEE Signal Pro-
cess. Lett., vol. 22, no. 5, pp. 638–642, May 2015.

[20] R. Beinert and G. Plonka, “Sparse phase retrieval of one-dimensional
signals by Prony’s method,” Frontiers Appl. Math. Statist., vol. 3, 2017,
Art. no. 5.

[21] R. Beinert and G. Plonka, “Ambiguities in one-dimensional phase retrieval
of structured functions,” Proc. Appl. Math. Mech., vol. 15, no. 1, pp. 653–
654, 2015.
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