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Trainable ISTA for Sparse Signal Recovery

Daisuke Ito, Satoshi Takabe

Abstract—In this paper, we propose a novel sparse signal recov-
ery algorithm called the trainable iterative soft thresholding algo-
rithm (TISTA). The proposed algorithm consists of two estimation
units: a linear estimation unit and a minimum mean squared er-
ror (MMSE) estimator based shrinkage unit. The error variance
required in the MMSE shrinkage unit is precisely estimated from
a tentative estimate of the original signal. The remarkable feature
of the proposed scheme is that TISTA includes adjustable vari-
ables that control step size and the error variance for the MMSE
shrinkage function. The variables are adjusted by standard deep
learning techniques. The number of trainable variables of TISTA is
nearly equal to the number of iteration rounds and is much smaller
than that of known learnable sparse signal recovery algorithms.
This feature leads to highly stable and fast training processes of
TISTA. Computer experiments show that TISTA is applicable to
various classes of sensing matrices, such as Gaussian matrices, bi-
nary matrices, and matrices with large condition numbers. Numer-
ical results also demonstrate that, in many cases, TISTA provides
significantly faster convergence than approximate message passing
(AMP) and the learned iterative shrinkage thresholding algorithm
and also outperforms orthogonal AMP in the NMSE performance.

Index Terms—Compressed sensing, machine learning, super-
vised learning.

I. INTRODUCTION

HE basic problem setup for compressed sensing [1], [2]
T is as follows. A real vector € R represents a sparse
source signal. It is assumed that we cannot directly observe x,
but we observe y = Az + w, where A € RM*N(N > M) is
a sensing matrix and w € RM is a Gaussian noise vector. The
goal is to estimate « from y as correctly as possible.

For a number of sparse reconstruction algorithms [3], the
Lasso formulation [4] is fairly common for solving sparse sig-
nal recovery problems. In the Lasso formulation, the original
problem is recast as a convex optimization problem for mini-
mizing |1y — Az||3 + A|| (/1. The regularization term A x|,
promotes the sparseness of a reconstruction vector, where A is
the regularization constant. A number of algorithms have been
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developed in order to solve Lasso problems efficiently [S]-[7].
The Iterative Shrinkage Thresholding Algorithm (ISTA) [8], [9]
is one of the best-known algorithms for solving the Lasso prob-
lem. ISTA is an iterative algorithm comprising two processes:
a linear estimation process and a shrinkage process based on a
soft thresholding function. ISTA can be seen as a proximal gra-
dient descent algorithm [10] and can be directly derived from
the Lasso formulation.

Approximate Message Passing (AMP) [11], [12], which is
a variant of approximate belief propagation, generally exhibits
much faster convergence than the ISTA. The remarkable feature
of AMP is that its asymptotic behavior is completely described
by the state evolution equations [13], [14]. AMP is derived based
on the assumption that the sensing matrices consist of i.i.d.
Gaussian distributed components. Recently, Ma and Ping pro-
posed Orthogonal AMP (OAMP) [15], which can handle various
classes of sensing matrices, including unitary invariant matrices.
Rangan et al. proposed Vector AMP [16] for right-rotationally
invariant matrices and provided a theoretical justification for its
state evolution. Independently, Takeuchi [17] also gave a rigor-
ous analysis for a sparse recovery algorithm for unitary invariant
measurements based on the expectation propagation framework.

The recent advent of powerful neural networks (NNs) trig-
gered the remarkable spread of research activities and applica-
tions on deep neural networks (DNNs) [18], [19]. DNNs have
found a number of practical applications such as image recog-
nition [20], [21], speech recognition [22], [23], and robotics
because of their outstanding performance compared with tra-
ditional methods. The advancement of DNNs has also had an
impact on the design of algorithms for communications and sig-
nal processing [24]-[26]. By unfolding an iterative process of
a sparse signal recovery algorithm, we can obtain a signal-flow
graph. The signal-flow graph includes trainable variables that
can be tuned with a supervised learning method, i.e., standard
deep learning techniques such as stochastic gradient descent al-
gorithms [27] based on back propagation [28] and mini-batches
can be used to adjust the trainable variables. Gregor and LeCun
presented the Learned ISTA (LISTA) [29], which uses learnable
threshold variables for a shrinkage function. LISTA provides
a recovery performance that is superior to that of the original
ISTA. Borgerding et al. also presented variants of AMP and
VAMP with learnable capability [30], [31].

The goal of the present study is to propose a simple sparse
recovery algorithm based on deep learning techniques. The pro-
posed algorithm, called the Trainable ISTA (TISTA), borrows
the basic structure of ISTA, and adopts the estimator of the
squared error between true signals and tentative estimations, i.e.,
the error variance estimator, from OAMP [15]. Thus, TISTA
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consists of the three parts: a linear estimator, a minimum mean
squared error (MMSE) estimator-based shrinkage function, and
the above-mentioned error variance estimator. The linear esti-
mator of TISTA includes trainable variables that can be adjusted
via deep learning techniques. Zhang and Ghanem [32] proposed
ISTA-Net, which is also an ISTA-based algorithm with learn-
able capability. The notable difference between ISTA-Net and
TISTA is that TISTA uses an error variance estimator, which
significantly improves the speed of convergence.

II. BRIEF REVIEW OF KNOWN RECOVERY ALGORITHMS

As preparation for describing the details of the proposed al-
gorithm, several known sparse recovery algorithms are briefly
reviewed in this section. In the following, the observation vector
is assumed to be y = Az + w, where A € RM*N(N > M)
and = € R . Each entry of the additive noise vector w € RM
follows a zero-mean Gaussian distribution with variance o2.

A. ISTA

The ISTA is a well-known sparse recovery algorithm [8] de-
fined by the following simple recursion:

re = s+ BAT (y — Asy) (0

2

where 8 € R represents the step size, and 7(-;-) : R” — R™ is
the soft thresholding function defined by

St41 = (T 7),

n(r;m) = @rs7), . 01 7)),

where 77(+;+) : R — R is given by
(3)

The parameter 7 € R(7 > 0) indicates the threshold value. Af-
ter T-iterations, the estimate & = sy of the original sparse sig-
nal x is obtained. The initial value is assumed to be sy = O.
In order to have convergence, the step size 8 should be care-
fully determined [8]. Several accelerated methods for ISTA us-
ing a momentum term, such as the Fast ISTA (FISTA), have
been proposed [33], [34]. Since the proximal operator of the ;-
regularization term ||| is the soft thresholding function, the
ISTA can be seen as a proximal gradient descent algorithm [3].

7(r; 7) = sign(r) max{|r| — 7, 0}.

B. AMP
AMP [12] is defined by the following recursion:

=Y — Asy + b, 4

St+1 = T](St =+ ATTt; Tt), (5)
1 0

b, = — = 6

t M”st”()’ Tt \/M”rtHQ (6)

and provides the final estimate & = sp. Each entry of the sensing
matrix A is assumed to be generated according to the Gaussian
distribution (0, 1/M), i.e., a Gaussian distribution with mean
zero and variance 1/M. At a glance, the recursive formula of
AMP appears similar to that of ISTA, but there are several crit-
ical differences. Due to the Onsager correction term byr;_1 in
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(4), the output of the linear estimator becomes statistically de-
coupled, and an error between each output signal from the linear
estimator and the true signal behaves as a white Gaussian ran-
dom variable in the large system limit. This enables us to use a
scalar recursion called the state evolution to track the evolution
of the error variances.

Another difference between ISTA and AMP is the estima-
tor of 7 in (6), which is used as the threshold value for the
shrinkage function (5). In [12], it was reported that AMP ex-
hibits much faster convergence than ISTA if the sensing matrix
satisfies the above condition. On the other hand, AMP cannot
provide excellent recovery performance for sensing matrices vi-
olating the above condition such as non-Gaussian sensing matri-
ces, Gaussian matrices with large variance, Gaussian matrices
with nonzero means, and matrices with large condition num-
bers [35].

C. OAMP
OAMP [15] is defined by the following recursive formula:

ry =8+ W(y — Asy), (N
St+1 = 77df(7°t;7't)7 (8
—_ A 2 _ M 2
v? = max{ ly 3t||2T g 76} , 9
trace(A" A)

1 1
T2 = Ntrace(BBT)vf + Ntrace(WWT)az, (10)

fort =0,1,2,...,7 — 1. The matrix B is given by B = I —
W A. To be precise, the estimator equations on v7 (9) and 77
(10) (also presented in [36]) are not part of OAMP (for example,
we can use the state evolution to provide v7 and 77), but these
estimators are used for numerical evaluation in [15]. The matrix
W in linear estimator (7) is given by W = NW /trace(W A)
where W can be chosen from the transpose of A, the pseudo
inverse of A, and the LMMSE matrix. The nonlinear estimation
unit (8) consists of a divergence-free functionngs that replaces
the Onsager correction term. It is proved in [15] that the estima-
tion errors of linear estimator (7) and non-linear estimator (8)
are statistically orthogonal if a sensing matrix is i.i.d. Gaussian
or unitary invariant. This provides a justification for the state
evolution of OAMP.

III. DETAILS OF TISTA

This section describes the details of TISTA and its training
process.

A. MMSE Estimator for an Additive Gaussian Noise Channel

Let X be a real-valued random variable with probability den-
sity function (PDF) Px(-). We assume an additive Gaussian
noise channel defined by Y = X + N, where Y represents a
real-valued random variable as well. The random variable [V is
a Gaussian random variable with mean 0 and variance 2. Con-
sider the situation in which a receiver can observe Y and we
wish to estimate the value of X.
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Fig. 1. Plots of nasarsE as a function of a received signal y (o =1, 02 =

0.2,0.8, p = 0.1).

The MMSE estimator 1y 3755 (y) is defined by
numse(y) = E[X|y], (11)

where E[X|y] is the conditional expectation given by

B(XJy) = [ aP(alyds (12)
The posterior PDF P(z|y) is given by Bayes” Theorem:
Px (x)Py|x (y|r)
Pxy(zly) = ———F~—, (13)
v (#]y) Pr(y)
where the conditional PDF is Gaussian:
_ 1 —(y—=)?
Py x (y|lz) = 5o exp (W . (14)

In the case of the Bernoulli-Gaussian prior, Px () is given
by

Px(z) = (1 -p)é(x) +

22
where p represents the probability such that a nonzero element
occurs. The function d(+) is Dirac’s delta function. In this case,
a nonzero element follows the Gaussian PDF with mean 0 and
variance «?. The MMSE estimator for the Bernoulli-Gaussian
prior can be easily derived [37]-[39] using Stein’s formula:

d
numse(y; o) =y+02@1nPY(y) (16)

and we have

7 (o) - <W2> pF(y; §)
IMMSE\Y; ¢ (1—p)F(y;02) + pF(y; f)(’”)

where ¢ = a2 + 02 and

F(z;v) = (18)

1 ( —22 )
exp| — | .
V2m P2
For example, Fig. 1 shows the shapes of a5 (y; 02) as a
function of a received signal 3y for 02 = 0.2, 0.8. The shapes can
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be observed to resemble those of the soft thresholding function
but the function is differentiable everywhere with respect to y.
Let us consider another setting. If each sparse component
takes a value in a finite discrete set S = {s1,...,sm }(s; € R)
uniformly at random, then the corresponding prior becomes

Px(a) = (1 - p)0(a) +0 Y 770 — ),

seSs

(19)

and we have the MMSE estimator

pY.,sF(s;0%)
(1—=p)MF(0;02)+p>  F(s;0%)
(20)
These MMSE estimators are going to be used as a building
block of the TISTA to be presented in the next subsection.

nvmse(y;o®) =

B. Recursive Formula for TISTA
We assume that the sensing matrix A € RM* is a full-rank
matrix. The recursive formula of TISTA is summarized as fol-

lows:

T :St+’YtW(y—ASt), (21)
St41 = Numse(r T2, (22)
2 ly — Asq||3 — Mo?
= 23
v maX{ trace(ATA) °f° 3)
2 UtQ 2
Tt = N(N+ (Vi — 27¢) M)
’7t202 T
+ 5 trace(WW"), (24)

where the matrix W = AT (A AT) "1 is the pseudo inverse ma-
trix of the sensing matrix A. The initial condition is sy = 0,
and the final estimate is given by & = sp. The scalar variables
w€R (t=0,1,...,T — 1) are learnable variables that are
tuned in a training process. The number of learnable variables
is thus 7', which is much smaller than those of LISTA [29] and
LAMP [30]. In addition to the step size parameters {~y; }th’Ol ,one
can also optimize parameters p and . in the MMSE estimator
(17) especially for nonsynthetic signals or real data. We assume
that they are constant among iterations in TISTA for simplic-
ity. The number of the trainable parameters in this case is thus
T+ 2.

An appropriate MMSE shrinkage (22) is chosen according
to the prior distribution of the original signal . Note that the
MMSE shrinkage is also used in [30]. The real constant € is a
sufficiently small value, e.g., ¢ = 10~". The max operator in (23)
is used to prevent the estimate of the variance from being non-
positive. The learnable variables 7, in (21) provide appropriate
step sizes and control for the variance of the MMSE shrinkage.

The true error variances 77 and 7 are defined by

2 _ Elllre—zl3] o _ Ellls: — 23]
t N ) t N .
These error variances should be estimated as correctly as possi-

ble in a sparse recovery process because the MMSE shrinkage
unit (22) requires knowing 77. As in the case of OAMP [15], we

(25)
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make the following assumptions on the residual errors in order
to derive an error variance estimator.

The first assumption is that r, — @ consists of i.i.d. zero-mean
Gaussian entries. Based on this assumption, each entry of the
output from the linear estimator (21) can be seen as an obser-
vation obtained from a virtual additive Gaussian noise channel
with the noise variance 72. This justifies the use of the shrinkage
function based on the MMSE estimator (22) with 72. Another
assumption is that s; — x consists of zero-mean i.i.d. entries
and satisfies E[(s; — )T ATw] = E[(s; — )T Ww)] = 0 for
any ¢.

The error variance estimator for ¥2 (23) is the same as that
of OAMP [15], and its justification comes from the following
proposition.

Proposition 1: If eachentry of s; — x isi.i.d. with mean zero
and E[(s; — )T ATw] = 0 is satisfied, then

o Elly - As|}3) - Mo?

= 2
¢ trace(AT A) (26)
holds.
(Proof) From the right-hand side of (26), we have
Ellly — As3] — Mo®

trace(AT A)
_ E[[|Az +w — As,[|3] — Mo?
N trace(AT A)
_ EfJlA(z — s¢) + w]|3] — E[w"w]

trace(AT A)
_E[(A(@ — s))"A(x — s¢) + (A(m — 54)) " w]
trace(AT A)

~ E[(w—s)TAT A(x — s;)]
N trace( AT A)

1 1
= —t ATAE — |} ———

Firace(AT AJElls, — @l

1
= N]E[Hst —|l3] =}

[ |

The justification of the error variance estimator (24) for 7‘}2 is
also provided by the following proposition.
Proposition 2: If each entry of s; — x isi.i.d. with mean zero
and E[(s; — )T Ww] = 0 is satisfied, then
=2
=2 _ Yt

72 = 1])V(N — 2ytrace(Z) + ~itrace(ZZ™))
,.}/20.2
+ tN trace(WWT) 27

holds, where Z = W A.
(Proof) The residual error r; — @ can be rewritten as

ri—x=8+7uW(y—As;) —x
=s+wW(Axz +w) -y WAs, —x
=T —nZ)(s —x) + nWw.
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From the definition ﬁ?, we have

B 1
77 = SEIT ~712)(s — @) + Wl

%E[(st - w)T(I —nZ)(I - ’YtZ)T(St — )]

2
+ %E[wTWTWw]

+ 28 (50— )T (1 20 2) Wl

1
Ntrace((I —wZ) I —%2Z)")v}

2(y —7)

I E[(s; — ) Ww].

2
+7Nttrace(WWT)az+

The last term vanishes due to the assumption E[(s; — z)T

Ww] = 0, and the first term can be rewritten as
trace((I — v Z)(I — v Z)")
= Z (1:Zi)? +Z(1 —1Zi:)*

ijei]
= Z Z7; + Z(l —2%Z;i + Vi Z7)
i,J1iF] (
= N — 2v,trace(Z) + ~?trace(ZZ7). (28)
The proposition is thus proved. |

The identity trace(Z) = trace(Z Z*) = M holds because
A and Z have full rank. Combining this identity, we have the
estimation formula (24) for 77.

These error variance estimators (23) and (24) play a crucial
role in providing appropriate variance estimates required for the
MMSE shrinkage. Since the validity of these assumptions on
the residual errors cannot be proved, it will be experimentally
confirmed in the next section. Moreover, note that the TISTA
recursive formula does not include either an Onsager correc-
tion term or a divergence-free function. Thus, we cannot expect
stochastic orthogonality guaranteed in OAMP in a process of
TISTA. This means that the state evolution cannot be used to
analyze the asymptotic performance of TISTA.

C. Time Complexity and Number of Trainable Variables

For treating a large-scale problem, a sparse recovery algorithm
should require low computational complexity for each iteration.
The time complexity required for evaluating the recursive for-
mula of TISTA per iteration is O(NN?), which is the same time
complexity as those of ISTA and AMP. This fact means that the
TISTA has sufficient scalability for large problems. The evalu-
ation of the matrix-vector products As, and W (y — As;) re-
quires O(N?) time, which is dominant in an iteration. The eval-
uation of the scalar constants trace(A” A) and trace(WW ')
requires O(N?) time. Although computation of the pseudo in-
verse of A requires O(N?3) time, it can be pre-computed only
once in advance.
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TABLE I r 5
NUMBERS OF TRAINABLE VARIABLES IN THE T-ROUND PROCESS St S, L I ""MMSE (Tt » Ty )l_' St+1
D 2
TISTA LISTA LAMP Vt w T
# of params T+2 | TIN?°+MN+1) | T(INM +2) y y
Fig. 2. Schematic diagram of the ¢-th iteration of TISTA with learnable vari-
Since the ¢'-th round of TISTA contains only trainable vari-  able ;.

ables {, }! =4 (or {7:}¥=¢, ® and p), the total number of train-
able variables is T (or T' + 2) for TISTA with T  iteration rounds.
On the other hand, LISTA and LAMP require N2 + M N + 1
and N M + 2 trainable variables for each round, respectively.
Table I summarizes the required numbers of trainable variables
in T rounds. TISTA requires the least trainable variables among
them, and the number of trainable variables of TISTA is inde-
pendent of the system size, i.e., N and M. This is an advanta-
geous feature for large-scale problems. The number of trainable
variables also affects the stability and speed of convergence in
training processes.

D. Incremental Training for TISTA

In order to achieve reasonable recovery performance, the
trainable variables {fyt}th’Ol (and possibly o and p) should be
appropriately adjusted. By unfolding the recursive formula of
TISTA, we immediately have a signal-flow graph which is sim-
ilar to a multi-layer feedforward neural network. Fig. 2 depicts
a unit of the signal-flow graph corresponding to the ¢-th itera-
tion of TISTA, and we can stack the units to compose a whole
signal-flow graph. Here, we follow a standard recipe of deep
learning techniques; namely, we apply mini-batch training with
a stochastic gradient descent algorithm to the signal-flow graph
of TISTA. Based on several experiments, we found that the fol-
lowing incremental training is considerably effective for learn-
ing appropriate values that provide superior performance. This is
because the vanishing gradient problem makes one-shot train-
ing for the whole network difficult. The incremental training
discussed below can reduce the effect of the vanishing gradient.

The training data consists of a number of randomly generated
pairs (x,vy), where y = Ax + w. The sample x follows the
prior distribution Px () and the observation noise w is an i.i.d.
Gaussian random vector. The entire set of training data is divided
into mini-batches to be used in a stochastic gradient descent
algorithm such as SGD, RMSprop, or Adam.

In the ¢-th round of the incremental training (referred to as
a generation), an optimizer attempts to minimize E[||s; — z||3]
by tuning {4 }%_}, (and possibly a? and p). The number of
mini-batches used in the ¢-th generation is denoted by D. After
processing D mini-batches, the objective function of the opti-
mizer is changed to E[||s; 1 — «||3]. Namely, after training the
first to ¢-th layers, the new (¢ + 1)-th layer is appended to the
network, and the entire network is trained again for D mini-
batches. Although the objective function is changed, the values
of the variables o, . . ., 7¢—1 (and possibly & and p) of the previ-
ous generation are taken as the initial values in the optimization
process for the new generation. In summary, the incremental
training updates the variables {;} in a sequential manner from
the first layer to the last layer.

IV. PERFORMANCE EVALUATION

In this section, the sparse recovery performance of TISTA is
evaluated by computer experiments.

A. Details of Experiments

The basic conditions for the computer experiments shown in
this section are summarized as follows. Each component of the
sparse signal  is assumed to be a realization of an i.i.d. random
variable following the Bernoulli-Gaussian PDF (15) with p =
0.1, = 1. The Bernoulli-Gaussian PDF is often assumed as
a benchmark setting in related researches [30], [31]. We thus
use the MMSE estimator (22) for the Bernoulli-Gaussian prior.
Each component of the noise vector w follows the zero-mean
Gaussian PDF with variance 2. The signal-to-noise ratio (SNR)
of the system is defined as

g EllAlB]

E[flw]3]

The size of the mini-batch is set to 1000, and D = 200 mini-
batches are allocated for each generation. We used the Adam
optimizer [40]. The learning rate of the optimizer is set to
4.0 x 1072 in the first 10 generations and 8.0 x 10~ in the
remaining generations. The experimental system was imple-
mented in TensorFlow [41] and PyTorch [42]. For comparison
purposes, we will include the NMSE performances of AMP and
other algorithms in the following subsections. The hyperparame-
ter f used in AMP is set to = 1.14. We used an implementation
of LISTA [43] by the authors of [30].

(29)

B. IID Gaussian Matrix With Small Variance

Here, we consider the conventional setting for compressed
sensing in which AMP successfully indicates convergence. The
trainable parameters of TISTA in this subsection are {fyt}z:ol,
o2, and p.

1) Comparison With AMP and Other Algorithms: This sub-
section describes the case in which A, ; ~ N(0, 1/M), ie.,
each component of the sensing matrix A obeys a zero-mean
Gaussian distribution with variance 1/M. Note that AMP is de-
signed for this matrix ensemble. The dimensions of the sensing
matrices are set to be N = 500, M = 250.

Figure 3 shows the estimate 72 by (24) and the empirically
estimated values of the true error variance 72. The estimator 72
provides accurate estimations, which justifies the use of (23) and
(24), and our assumptions on the residual errors. We find that
the error variance does not monotonically decrease. Because the
residual error depends on the trainable parameters {7; }7_, , the
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NMSE [dB]

—e— TISTA
-m- AMP Y.,
~¥- OAMP
—40 T —»— LISTA Yoo
-m- ISTA g s
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iteration

Fig. 4. NMSE of TISTA and other algorithms; A; ; ~AN(0,1/M), N =
500, M = 250, SNR = 40 dB. Condition A; j ~ N(0,1/M) is required for
AMP to converge.

zigzag shape of 7;’s (see Fig. 11) may affect the shapes of 72
and 72. In spite of this nontrivial tendency, the residual error
decreases rapidly indicating a successful signal recovery.

Figure 4 presents the average normalized MSE (NMSE) of
TISTA, ISTA, LISTA, AMP, and OAMP as functions of iteration
when SNR = 40 dB. The NMSE is defined by

2
NMSE = 10log,, E [M} . (30)

13
In the experiment, the pseudo inverse matrix is chosen as the
matrix W in OAMP to make the time complexity O(N?) in
each iteration. The divergence-free function of OAMP in (8) is
based on the MMSE estimator (17).

From Fig. 4, we can observe that TISTA provides the steepest
NMSE curve among those algorithms in the first 12 rounds. For
example, OAMP and LISTA require 6 and 10 rounds, respec-
tively, in order to achieve NMSE = —30 dB, whereas TISTA
requires only 5 rounds. The NMSE curve of TISTA saturates
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at around —42 dB, at which TISTA and OAMP converge. This
means that TISTA shows significantly faster convergence than
AMP and LISTA in this setting. TISTA also overwhelms OAMP
in the NMSE performance. TISTA has about 5.8 dB and 4.0 dB
gains at T = 5 and 7 compared with OAMP, respectively.

2) Large-Scale Problem: As discussed in the previous sec-
tion, the number of trainable variables of TISTA is consider-
ably small. This feature enables us to handle large-scale prob-
lems. Fig. 5 shows the NMSEs for the cases of (N, M) =
(5000, 2500). LISTA is omitted from the comparison because it
is computationally intractable to execute in our environment. We
find that the NMSE performance of each algorithm are slightly
better than that in the small system (/N = 500). The gain of
TISTA, however, is still large in this case. In addition, TISTA
saturates about —43 dB, which is 0.6 dB lower than OAMP.
From these observations, we find that TISTA exhibits a good
NMSE performance even in a large system.

3) Running Time: In order to demonstrate the scalability of
TISTA explicitly, we show the CPU time required for training
processes in Fig. 6. The CPU time is measured by a PC with
Intel Xeon(R) CPU (3.6 GHz, 6 cores) and no GPUs. It consists
of the whole incremental training process up to 7' layers and
execution process of TISTA implemented by PyTorch 0.4.1. In
the experiment, we fix the rate M /N to 0.5 and SNR to 40 dB
as the same setting with the previous experiments. The results
show that, in the case of N = 500, TISTA is about 37 times faster
than LISTA in addition to better NMSE performance as shown
in Fig. 4. We also find that TISTA has a notable scalability. The
CPU time of TISTA (T = 7) for N = 10* signals is nearly equal
to thatof LISTA (T" = 7) for N = 500. Simple linear regressions
estimate that the CPU time roughly depends on N2 and 7.
These facts suggest that the small number of trainable parameters
in TISTA enables its fast learning process for large problems.

C. Gaussian Sensing Matrices With Large Variance

In the next experiment, we changed the variance of the sens-
ing matrices to a larger value, i.e., each element in A follows
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500, M = 250, SNR = 40 dB. In this case, AMP cannot converge because
the variance of the matrix components is too large.

N(0,1) instead of N(0,1/M). The trainable parameters of
TISTA are {’yt}th’Ol, a?, and p. Fig. 7 shows the NMSE curves
of TISTA, OAMP, and LISTA. Note that, under this condition,
AMP does not perform well, i.e., AMP actually cannot converge
at all, because the setting does not fit the required condition
(A;; ~ N(0,1/M)) for achieving its guaranteed performance.
As shown in Fig. 7, TISTA behaves soundly and shows faster
convergence than that of OAMP and LISTA. This result sug-
gests that TISTA is appreciably robust against the change of the
variance.

D. Binary Matrix

In this subsection, we will discuss the case in which the sens-
ing matrices are binary, i.e., A € {#1}M*N_Each entry of
A is selected uniformly at random on {=#1}. This situation is
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formly at random. /N = 500, M = 250, SNR = 40 dB. AMP is not applicable
in this case.

closely related to multiuser detection in Coded Division Multiple
Access (CDMA) [11]. Fig. 8 shows the NMSE curves of TISTA,
OAMP, and LISTA as a function of iteration. As the previ-
ous subsections, TISTA trains {fyt};fz’ol, o2, and p. The NMSE
curves of TISTA approximately coincide with those of the Gaus-
sian sensing matrices. This result can be regarded as an evi-
dence for the robustness of TISTA for non-Gaussian sensing
matrices.

E. Sensing Matrices With a Large Condition Number

Regression problems regarding a matrix with a large condi-
tion number are difficult to solve in an accurate manner. The
condition number ~ of a matrix is defined as the ratio of the
largest and smallest singular values, i.e., K = $1/$p, where
§1 > 89 > --- > sy are the singular values of the matrix. In
this subsection, we assess the performance of TISTA for sens-
ing matrices with a large condition number. In this subsection,
the trainable parameters of TISTA are only {'yt}tTgol because it
shows enough performance improvement.

The setting for the experiments is as follows. For a given con-
dition number x, we assume that the ratio s; /s;_1 is constant for
each i in order to fulfill s; /s); = x and trace(AAT) = N. We
first sample amatrix G € RM* where each entry of G follows
an i.i.d. zero-mean Gaussian distribution with variance 1. The
matrix G is then decomposed by singular value decomposition
and we obtain G = UX VT where U € RM*M v ¢ RV*NV,
and ¥ € RM*N_ From the set of singular values si,..., S
satisfying the above conditions, ¥* is defined by ¥* = (A O),
where the matrix A = diag(s1, ..., s ), and O is the zero ma-
trix. A sensing matrix A with the condition number « is obtained
by calculating A = UX*VT.

Figure 9 shows the NMSE of TISTA and AMP without obser-
vation noise, i.e., 02 = 0. As shown in Fig. 9, there is almost no
performance degradation in the NMSE even for a large condition
number such as k = 5000. On the other hand, AMP converges
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up to xk = 4, but the output diverges when x > 5. These results
indicate the robustness of TISTA with respect to sensing matri-
ces with a large condition number in the noiseless case.

Figure 10 shows the NMSE of TISTA and LISTA when there
are observation noises (SNR = 60 dB). Compared with the
NMSE curve of LISTA, TISTA provides a much smaller NMSE
in the cases of k = 1, 15, 100. However, in contrast to the noise-
less case (Fig. 9), the NMSE performance of TISTA severely
degrades as « increases. This phenomenon can be considered as
a consequence of the use of the pseudo inverse linear estimator
W, which tends to cause noise enhancement if the condition
number is large.

F. Trained Parameters

In order to study the behavior of the learned trainable vari-
ables {7}, we conducted the following experiments. For a fixed
sensing matrix ((IV, M) = (500, 250), A; ; ~ N(0,1/M)), we
trained TISTA (7 = 12) three times with distinct random
number seeds. The learned variables {7;} (denoted by matrix
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1-3) are shown in Fig. 11. The three sequences of learned
parameters approximately coincide with each other. Further-
more, the sequences have a zigzag shape, and the values of 7, lie
in the range from 1 to 10. As for other trainable parameters, o
is tuned to 3.68-3.71 and p is tuned to 0.08-0.09. Interestingly,
the trained a? becomes larger than the true value 1.0 though p
does not change largely from the true value 0.1. Note that train-
ing these values improves the NMSE performance of TISTA,
which suggests that the true values of parameters in the MMSE
estimator are not always best for TISTA.

To explain the zig-zag shape of learned parameters {'yt}fgol,
we show a toy example where the shape of trainable parameters
accelerates the convergence speed of an iterative algorithm. Let
us consider a gradient descent (GD) method which minimizes a
quadratic function f(z1, ) = 23 + 1023. The function is sim-
ple but the condition number regarding the problem is relatively
large. This means that a naive GD method is not suitable for
attaining fast convergence to the minimum point. The main step
of the GD method is the update of the search point as

St+1 = 8t — ’ny(st) (31)
fort =0,1,...,7T — 1. The parameter -y is the step size param-
eter that significantly affects the behavior of the search process.
In this section, we assume that each element of the initial point
81 = (81,1, 81,2) is chosen in the closed domain [—10, 10]? uni-
formly at random.

Figure 12 (center, bottom) shows typical minimization pro-
cesses of the GD method. A small step size (center) leads to
considerably slow convergence but a large step size (bottom) in-
duces oscillation behaviors that also slow down the convergence
or lead to divergence.

According to the idea of TISTA, i.e., embedding of trainable
parameters, we can embed trainable parameters in the GD step
as

St41 = St — ’thf(st)a (32)
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f(z1,22) = 22 + 1022: TGD (top), GD with v = 0.01 (center), GD with
~v = 0.09 (bottom). The optimal point is (0,0). The ovals are contour of the
objective function.

where {~; tT;01 is a set of trainable parameters. The incremental
training can be applied to train these parameters in order to
accelerate the convergence. We call this method the trainable
GD (TGD) hereafter.

Figure 13 shows the averaged error of TGD and GD as a func-
tion of the number of iterations. TGD significantly outperforms
GD methods and provides much faster convergence. From the
training process, TGD learns an appropriate strategy to yield
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Fig. 14. Trained values of ~y;: the details of the training is as follows. The
incremental training with the mini-batch size 50 is used. In a generation, 500
mini-batches are processed. The optimizer is Adam with learning rate 0.001.

fast convergence. The trained values of {v: 21:_01 are plotted

in Fig. 14. We can observe a zigzag shape that represents the
learned acceleration strategy for this problem. It is interesting to
see that the behavior of the search point shown in Fig. 12 (top) is
not similar to those of v = 0.01 (center) nor v = 0.09 (bottom).

Our hypothesis of the zigzag shapes is that a similar situ-
ation happens in signal recovery processes of TISTA as well.
The linear estimation step (21) of TISTA is closely related to
the gradient descent step for the quadratic problem to minimize
|Az — y||3, i.e., we have the exact gradient descent step by re-
placing W with AT If the quadratic problem is ill-conditioned
or nearly ill-conditioned, the preferable strategy would be the
zigzag strategy observed in Fig. 14 as well. We still lack enough
evidences to confirm the validity of the hypothesis and it should
be confirmed in a future work.
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V. SPARSE SIGNAL RECOVERY FOR MNIST IMAGES

In Sec. IV, we have seen results of the numerical experiments
based on artificial sparse signals generated according to the i.i.d.
Bernoulli-Gaussian prior model. The feasibility of TISTA for
sparse signals in the real world has not yet been clear because a
real sparse signal may not follow the i.i.d. assumption. In order
to evaluate the performance of TISTA for non-i.i.d. signals, we
made experiments of sparse signal recovery based on the MNIST
dataset. The MNIST dataset is a dataset including monochrome
images of hand-written numerals and the corresponding labels.
Since most of pixels of an MNIST image is zero, the MNIST
dataset can be regarded as a dataset of sparse signals. The goal of
this section is to discuss the sparse signal recovery performance
of TISTA for the MNIST dataset.

The details of the experiment is as follows. An MNIST image
consists 28 x 28 = 784 pixels where a pixel takes an integer
value from 0 to 255. We first normalize the pixel values to [0, 1]
and then rasterize the pixels as 784-dimensional vectors. In the
following, we let N = 784 and M = 392. As a sensing matrix,
we prepare a random matrix A € RM>*Y where each element
in A follows Gaussian distribution with zero mean and variance
1/M. We assume a noisy observation by the matrix A with the
additive Gaussian noise w with zero mean and variance 4 x
1074, i.e., the received signal y is generated by y = Az + w.
As a sparse signal recovery algorithms, we compare TISTA with
OAMP. We choose the MMSE estimator (17) for the Bernoulli-
Gaussian prior as their MMSE functions because we assume
that we have no knowledge on the prior PDF of the images. We
set the parameters of the prior to a? = 1.0, p = 0.5 for OAMP
while these parameters are trained from the dataset in TISTA.

The detail of the training processes is as follows. In the train-
ing process of TISTA, as well as {7;}’_, the parameters o
and p are treated as trainable parameters. The size of mini-batch
is set to 200. For a generation of incremental training, we used
all the images in the MNIST training set (60000 images). Adam
optimizer with learning rate 0.005 was used for training.

Figure 15 shows the recovered images by TISTA (left column)
and OAMP (right column) with ¢ = 1,4, 8 iterations. These im-
ages are recovered from the same noisy observation of the orig-
inal image displayed on the left bottom. It can be observed that
TISTA with ¢t = 8 provides a reconstructed image considerably
close to the original (MSE = 0.0091). The number “0” is not
perfectly recovered because the original image is not so sparse.
The quality of the reconstructed images of TISTA evidently out-
performs that of OAMP. For example, even with ¢ = 100, the
image reconstruction by OAMP (MSE = 0.0148) is worse than
that by TISTA in terms of MSE. In fact, we find that the re-
constructed “2” by OAMP is not so crisp and clear compared
with those of TISTA (right bottom of Fig. 15). It implies that the
training parameters o (trained value 1.59) and p (trained value
0.4) positively affects the image reconstruction quality.

Moreover, comparing the images of £ = 1, 4, 8, it can be con-
firmed that TISTA shows much faster convergence than OAMP.
This tendency exactly coincides with the results reported in
Section IV.

The result of this section strongly suggests that TISTA can
be applied to sparse signal recovery problems based on the real
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OAMP t = 1, MSE=0.0625

Fig. 15. Reconstructed images by TISTA (left column) and OAMP (right col-
umn). Parameters: N = 784, M = 392, A; ; ~ N (0,1/M), noise variance
4 x 10, The “2” images reconstructed by TISTA and OAMP with ¢ = 8 are
shown in the right bottom for comparison.

data with non-i.i.d. sparse signals if we have enough data to train
the trainable parameters.

VI. EXTENSIONS

In this section, we propose a few extensions of TISTA to treat
a sensing matrix with nonzero-mean components or with a large
condition number. The numerical results show that the proposed
extensions outperform the original TISTA in each situation with-
out additional computational costs in the learning process. In this

section, the trainable parameters of TISTA are only {v;}/_.

A. Sensing Matrices With Nonzero-Mean Components

In this subsection, we propose an extension of TISTA for
a sensing matrix with nonzero-mean components. It is known
that, e.g., generalized AMP [44] (GAMP), which is constructed
for zero-mean Gaussian random matrices, fails to converge to
a fixed point when a sensing matrix consists of nonzero-mean
components [35]. To overcome this difficulty, Vila et al. pro-
posed a variant of GAMP with damping of messages and mean
removal from a sensing matrix and signals [45]. Following these
advances in AMP, we apply a mean removal technique to TISTA
to improve its performance for large nonzero-mean sensing
matrices.
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with mean removal; A; j ~ N(1,1/M), N = 500, M = 250. No observation
noise (62 = 0) and SNR = 60 dB cases.

Let us consider TISTA-MR, TISTA with the mean removal
technique. We assume that the sensing matrix A is gener-
ated according to the Gaussian distribution N (14, 0?) with a
nonzero mean [ 4. In fact, without any modifications, TISTA
shows poor performance as 14 increases. The simplest exten-
sion involves the use of a modified sensing matrix A’ = (A ;),
where A} ; = A; j — pa instead of an original sensing matrix
A = (A, ;). The modified recursion formula of TISTA is then
written as follows:

U =Yy — A/Sta (33)
! 1 T
Tt = St =+ ’YtW us — MlMuth (34)
_ L2
St41 = Numse(TH ) (35)
14T 2 2
2 |ue — 371wl |5 — Mo
U= maX{ trace(A'T A’) ' (36)
5 U} 2 2
Ty = N(NJF (vi —27%)M)
V202
+ tTtrace(W’W’T), (37)
where 15, = (1,1,...,1)T is an M-dimensional vector, the

elements of which are s, and matrix W' is the pseudo in-
verse matrix of A’. In the formula, 7, is calculated via u; —
M~11% 4,1, to remove the mean of u,. These modifications
enable the performance of TISTA-MR to be improved because
it attempts to recover a sparse signal with a modified sensing
matrix, the components of which have sufficiently small means.
Note that further performance improvement may be achieved
when we use a modified sensing matrix for which the means of
rows and columns are expected to be zero, as in [45].

Figure 16 shows the NMSE of the original TISTA and TISTA-
MR for noiseless case in the case of noiseless observations
and noisy observations with SNR = 60 dB. Each element
of a sensing matrix A is generated from A (1,1/M), where
the original AMP has difficulty in convergence. TISTA-MR
outperforms the original TISTA for which the NMSE saturates
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(B=5.0x 10’4); condition number x = 1000, SNR = 60 dB.

around —10 dB in both cases. In the case of SNR = 60 dB,
TISTA-MR scores —38 dB in the NMSE with about 28 dB gain
against TISTA when T = 10. These numerical results indicate
that TISTA-MR based on mean removal gives drastically im-
proved signal recovery performance without increasing the time
complexity.

B. Sensing Matrices With a Large Condition Number

As discussed in the previous section, TISTA exhibits a non-
negligible performance degradation (except for the noiseless
case) when the condition number of the sensing matrix is large.
In this subsection, we present a method for improving the sparse
recovery performance of TISTA in such a case by using an
LMMSE-like matrix as a linear estimator. A naive approach
to suppress the noise enhancement in linear estimation is to use
the LMMSE-like matrix

W, =v2AT (v AAT 4 o%1)7! (38)
as a linear estimator in TISTA recursions. Note that the error
variance v? is calculated in a recursive calculation process of
TISTA. Ma and Ping [15] took this approach in their OAMP ex-
periments. A drawback of this approach is that it is necessary to
calculate an M x M matrix inversion in (38) for each iteration,
which requires O(M?) time for an iteration. In order to avoid
the matrix inversion for each iteration, we use a simple ad-hoc
solution, and define the matrix W as

W =AT(AAT + 8171, (39)

where (3 is a real constant. We call TISTA with (39) TISTA-
LMMSE. This is the only difference from the original TISTA
using the pseudo inverse matrix of A as W. The term S1 can de-
crease the condition number of W and prevents noise enhance-
ment. Matrix inversion is necessary only once at the beginning
of a recovery process. Thus, the required time complexity of
TISTA-LMMSE is the same as that of the original TISTA. The
parameter /3 is determined to minimize the value of the NMSE
after training.

Figure 17 shows the NMSE curves for the case of x = 1000,
which includes the NMSE curve of TISTA-LMMSE with (39).
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In TISTA-LMMSE, we used the parameter 5 = 5.0 x 1074,
From Fig. 17, we can confirm that TISTA-LMMSE exhibits
much better NMSE performance as compared with the original
TISTA using the pseudo inverse matrix in the linear estimator.
This example shows that this simple ad-hoc approach is fairly
effective without additional costs.

VII. CONCLUSION

The crucial feature of TISTA is that it includes adjustable
variables which can be tuned by standard deep learning tech-
niques. The number of trainable variables of TISTA is equal to
the number of iterative rounds and is much smaller than those
of the known learnable sparse signal recovery algorithms [29]-
[31]. This feature leads to the highly stable and fast training pro-
cesses of TISTA. Computer experiments indicate that TISTA is
applicable to various classes of sensing matrices such as Gaus-
sian matrices, binary matrices, and matrices with large condi-
tion numbers. Furthermore, numerical results demonstrate that
TISTA shows significantly faster convergence than AMP or
LISTA in many cases and remarkably large gains compared to
OAMP. The experimental results on the MNIST image set im-
ply that TISTA is also applicable for non-i.i.d. sparse signals in
the real world. In summary, TISTA achieves remarkable perfor-
mance improvement for artificial data and promising flexibility
to real data with fast learning process, high stability, and high
scalability using a quite simple architecture.

For a future plan, by replacing the MMSE shrinkage function,
we can expect that TISTA is also applicable to non-sparse signal
recovery problems such as detection of BPSK signals in over-
loaded MIMO systems [46]. Another possibility is to replace the
MMSE shrinkage function with a small neural network that can
learn an appropriate shrinkage function matched to the prior of
the sparse signals. This change could significantly broaden the
target of TISTA.
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