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Abstract—In this paper, we study the problem of recovering a
group sparse vector from a small number of linear measurements.
In the past, the common approach has been to use various “group
sparsity-inducing” norms such as the Group LASSO norm for this
purpose. By using the theory of convex relaxations, we show that it
is also possible to use �1 -norm minimization for group sparse re-
covery. We introduce a new concept called group robust null space
property (GRNSP), and show that, under suitable conditions, a
group version of the restricted isometry property (GRIP) implies
the GRNSP, and thus leads to group sparse recovery. When all
groups are of equal size, our bounds are sometimes less conserva-
tive than known bounds. Moreover, our results apply even to situ-
ations where the groups have different sizes. When specialized to
conventional sparsity, our bounds reduce to one of the well-known
“best possible” conditions for sparse recovery. This relationship
between GRNSP and GRIP is new even for conventional sparsity,
and substantially streamlines the proofs of some known results.
Using this relationship, we derive bounds on the �p-norm of the
residual error vector for all p ∈ [1, 2], and not just when p = 2.
When the measurement matrix consists of random samples of a
sub-Gaussian random variable, we present bounds on the num-
ber of measurements, which are sometimes less conservative than
currently known bounds.

Index Terms—Compressed sensing, convex functions,
optimization.

I. INTRODUCTION

COMPRESSED sensing refers to the recovery of high-
dimensional vectors with very few nonzero components

from a limited number of linear measurements. This is referred
to here as the “conventional” sparsity problem, and it has been
the subject of a great deal of research. In recent years, attention
has also been focused on the “group sparsity” problem, where
there is additional information available about the locations of
the nonzero components of the unknown vector. In this paper,
we advance the status of knowledge in compressed sensing for
both conventional as well as group sparsity. Precise details are
given in subsequent sections, but in brief the contributions of
the paper are the following:
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� In conventional sparsity, the two most widely used tech-
niques are RIP (restricted isometry property) and the RNSP
(robust null space property); very few papers relate the two
approaches.1 One of the currently best available results [2]
on the use of the RIP states that if the measurement matrix
A satisfies the RIP of order tk for some t ≥ 4/3, then it is
possible to achieve robust k-sparse recovery via the basis
pursuit formulation, that is, minimizing an �1-norm ob-
jective function.2 Moreover, this bound is tight, as shown
in [2]. In the present paper, we offer two improvements
to these results. First, we show that the above sufficient
condition continues to be sufficient whenever t > 1, and
not just when t ≥ 4/3. Second, we prove this by showing
that in this case the RIP implies the RNSP. Ours is the
best available relationship between RIP and RNSP. More-
over, the connection between RIP and RNSP allows us to
prove bounds on the �p -norm of the residual error for all
p ∈ [1, 2], and not just the �2-norm. The papers based on
the RIP alone are not able to prove such bounds.

� In group sparsity, until now researchers have replaced the
�1-norm objective function by various “group sparsity-
inducing” norms in order to achieve robust recovery. In
the present paper, we show that the standard �1-norm can
also be interpreted as the convex relaxation of two distinct
group sparsity indices, so that �1-norm minimization also
has the potential to achieve group sparse recovery. Then
we proceed to derive conditions under which �1-norm min-
imization actually achieves group sparse recovery. These
conditions reduce to those for conventional sparsity when
all “groups” consist of one element each. Our method of
proof is based on the group version of the RIP, but also
a new (though very natural) group version of the RNSP.
As with conventional sparsity, we show that GRIP im-
plies the GRNSP. Thus, using our approach, we can de-
rive bounds on the �p -norm of the residual error for all
p ∈ [1, 2], which are generally not available with group
sparsity-inducing norms. We also derive bounds on the
number of samples that suffice to achieve group sparse re-
covery when the measurement matrix consists of random
sub-Gaussian samples. In some situations, these bounds
are smaller than currently available bounds from other pa-
pers. Not surprisingly, it is also shown that group sparse
recovery can be achieved with fewer samples than for

1All terms are defined in subsequent sections.
2Other complementary results from [3] and [4] are also discussed below.

1053-587X © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1057-1942
mailto:ee16resch11020@iith.ac.in
mailto:ee16resch11020@iith.ac.in
mailto:m.vidyasagar@iith.ac.in


RANJAN AND VIDYASAGAR: TIGHT PERFORMANCE BOUNDS FOR COMPRESSED SENSING WITH CONVENTIONAL AND GROUP SPARSITY 2855

conventional sparse recovery. Given that there are now
very efficient methods for �1-norm minimization, our re-
sults suggest that �1-norm minimization is a viable alter-
native to the use of group sparsity-inducing norms, for
problems of group sparse recovery.

II. CONVENTIONAL SPARSITY

A. Summary of Some Compressed Sensing Results

Let Σk ⊆ Rn denote the set of k-sparse vectors in Rn ; that is

Σk := {x ∈ Rn : ‖x‖0 = |supp(x)| ≤ k},
where, as is customary, ‖ · ‖0 denotes the number of nonzero
components of x. Given a norm ‖ · ‖ on Rn , the k-sparsity index
of x with respect to that norm is defined by

σk (x, ‖ · ‖) := min
z∈Σk

‖x− z‖.

Now we can define the conventional compressed sensing prob-
lem precisely.

Definition 1: Suppose A ∈ Rm×n and Δ : Rm → Rn . The
pair (A,Δ) is said to achieve robust sparse recovery of order k
and indices p, q if there exist constants C and D such that, for
all η ∈ Rm with ‖η‖2 ≤ ε, it is the case that

‖Δ(Ax+ η) − x‖p ≤ Cσk (x, ‖ · ‖q ) +Dε, ∀x ∈ Rn . (1)

Among the most popular decoder maps is �1-norm mini-
mization, also known as basis pursuit. When y = Ax+ η with
‖η‖2 ≤ ε, it is defined as follows:

ΔBP(y) := argmin
z∈Rn

‖z‖1 s.t. ‖y −Az‖2 ≤ ε, (2)

There are two widely used sufficient conditions for basis pursuit
to achieve robust sparse recovery, namely the restricted isometry
property (RIP) and the robust null space property (RNSP). We
begin by discussing the RIP.

Definition 2: A matrix A ∈ Rm×n is said to satisfy the
restricted isometry property (RIP) of order k with constant
δ if

(1 − δ)‖u‖2
2 ≤ ‖Au‖2

2 ≤ (1 + δ)‖u‖2
2 , ∀u ∈ Σk . (3)

Starting with [5], it is shown in a series of papers that the RIP
ofA is sufficient for (A,ΔBP) to achieve robust sparse recovery.
In [6] it is shown that δ2k <

√
2 − 1 is sufficient for robust k-

sparse recovery. This bound has been subsequently improved in
several papers, but to save space, we cite only the most recent
“best possible” results relating RIP and robust recovery.

Theorem 1: If A satisfies the RIP of order tk with constant
δtk <

√
(t− 1)/t for some t ≥ 4/3, or with constant δtk <

t/(4 − t) for some t ∈ (0, 4/3),3 then (A,ΔBP) achieves robust
sparse recovery with q = 1 and p = 2. Moreover, both bounds
are tight.

Note that the first bound is proved in [2], while the second
bound is proved in [4]. In [3], it is shown that δk < 0.307 is

3Here and elsewhere. when we write δα and α is not necessarily an integer,
we mean δ
α �.

sufficient, which is slightly worse than the bound δk < 1/3
implied by [4].

An alternative to the RIP approach to compressed sensing
is provided by the robust null space property; see [7] or [8,
Definition 4.21].

Definition 3: A matrix A ∈ Rm×n is said to satisfy the �2-
robust null space property (RNSP) of order k with constants
ρ ∈ (0, 1) and τ > 0 if, for every set S ⊆ [n] with |S| ≤ k, we
have that4

‖hS ‖2 ≤ ρ√
k
‖hSc ‖1 +

τ√
k
‖Ah‖2 , ∀h ∈ Rn . (4)

Schwarz’ inequality implies that if A satisfies the �2-RNSP,
then for every set S ⊆ [n] with |S| ≤ k it also satisfies

‖hS ‖1 ≤ ρ‖hSc ‖1 + τ‖Ah‖2 , ∀h ∈ Rn . (5)

We refer to this property as just RNSP without the prefix “�2 .”
Theorem 2: (See [8, Ths. 4.19 and 4.22].) Suppose A satis-

fies (5) with constants ρ and τ . Then the pair (A,ΔBP) achieves
robust k-sparse recovery for p = q = 1, with

C = 2
1 + ρ

1 − ρ
,D =

4τ
1 − ρ

. (6)

If A satisfies (4), then (A,ΔBP) achieves robust k-sparse re-
covery for p = 1 and all q ∈ [1, 2].

There are relatively few results relating the RIP and the RNSP.
Currently the best available result is [7, Proposition 8], in which
it is shown that if A satisfies the RIP of order 2k with constant
δ2k < 1/9, then it also satisfies the RNSP. Note that 1/9 is far
smaller than

√
1/2 which is the bound on δ2k from Theorem 1.

B. Our Contributions

Against this background, in this paper we show that, if A
satisfies the RIP of order tk with constant δtk <

√
(t− 1)/t for

some t > 1, then A also satisfies the �2-RNSP for appropriate
constants; see Theorem 9.5 This has several consequences. First,
this is by far the best result that relates RIP to RNSP. As men-
tioned in the previous paragraph, the bound on δ2k to satisfy the
RNSP is improved from 1/9 to 1/

√
2. Second, by establishing

that the condition δ <
√

(t− 1)/t implies the �2-RNSP, we can
establish that for such a matrix A, basis pursuit achieves robust
k-sparse recovery for all p ∈ [1, 2] (and q = 1), and are able to
prove bounds on the �p -norm of the residual for all p ∈ [1, 2].
This is in contrast to existing papers papers based on the RIP
including [2], [4] where robust k-sparse recovery is established
using the RIP, and thus error bounds are available only for p = 2.
Moreover, our bounds on the �p -norm of the residual error are
an improvement over those in [8, Th. 4.25].

III. GROUP SPARSITY

A. Literature Review

At about the same time that the problem of robust sparse
recovery was being addressed via �1-norm minimization, the

4Note that, for the sake of consistency, we have introduced a factor of
√
k to

divide τ in (4).
5However, this results in an improvement only when t ≥ 4/3.
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research community began to propose that the number of
nonzero components of a vecor might not be the only reasonable
measure of the sparsity of a vector. Alternate notions under the
broad umbrella of “group sparsity” and “group sparse recovery”
began to appear, starting with [9]. In its simplest form, group
sparsity refers to the case where the index set [n] is partitioned
into g disjoint setsG1 , . . . , Gg . In the early papers such as [10]–
[13], it is assumed that all groups Gi have the same size d, so
that n = gd. However, starting with [14], the groups are not
required to have a common size. In almost all current papers on
group sparse recovery, the �1-norm objective function in (2) is
changed to the so-called Group LASSO norm introduced in [9],
defined as

‖x‖GL :=
∑

j∈[g ]

‖xGj
‖2 , (7)

where xGj
denotes the projection of x onto the set Gj .

For this formulation, a variety of recovery results are proved
by several authors. In [12], a block RIP analogous to the RIP is
introduced, as follows: A vector x ∈ Rn is said to be l-group
sparse if there are no more than l groups Gj such that the
projection xGj

of x ontoGj is nonzero. A matrixA ∈ Rm×n is
said to satisfy the “group RIP” if there exists a constant δl such
that

(1 − δl)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δl)‖x‖2
2 (8)

whenever the vector x is l-group sparse. It is shown that re-
covery of group k-sparse vectors is achieved by minimizing
the GL norm ‖x‖GL if δB ,2k <

√
2 − 1, which is an extension

of the conventional sparsity result in [6]. In [13], a notion of
block-coherence is introduced; it is shown that, just as in con-
ventional sparsity, block-coherence implies block-RIP, which in
turn implies group sparse recovery. The well-known orthogonal
matching pursuit algorithm [15] is modified to a block-OMP
and it is shown that block-OMP recovers a block-sparse signal
under suitable conditions. In [10], [11], and [14], the measure-
ment matrixA is assumed to be a randomly generated Gaussian
or sub-Gaussian matrix, and bounds are derived on the num-
ber of samples that sufficie for the (probabilistic) recovery of a
group-sparse vector x by minimizing the GL norm. In the first
two papers, it is assumed that all groups have the same size
and it is shown that the required number of measurements with
group sparsity is less than with conventional sparsity. In [11],
the behavior of well-known algorithms such as CoSaMP and
IHT (iterative hard thresholding) is analyzed with the Group
LASSO norm. In [14] the authors dispense with the require-
ment of equal group sizes, and derive a sufficient condition (see
[14, Assumption 4.3]) for group sparse recovery. Regarding an-
other assumption, namely [14, Assumption 4.2] the authors state
“Note that this assumption does not show the benefit of group
Lasso over standard Lasso.” However, this statement does not
apply to [14, Assumption 4.3]. In [16], group sizes need not be
equal, and the GL norm is modified by replacing ‖xGj

‖2 with
‖xGj

‖q for any q ≥ 1. Sufficient conditions for group sparse
recovery are established in terms of the group RIP, and block
coherence. This work is extended in [17] to incorporate sub-
space coherence, whose value is in general smaller than block

coherence. In [18] and [19], Theorem 1 is extended to group
sparsity as follows: It is shown in [18] that if the group RIP con-
stant δl satisfies δtl <

√
(t− 1)/t for some t > 1, then robust

sparse recovery results. This is an improvement over [2] in that
the limit t ≥ 4/3 in [2] is reduced to t > 1. In [19] the above
bound is replaced by something completely analogous that in
[4], namely δtl <

√
(t− 1)/twhen t ≥ 4/3, or δtl < t/(4 − t)

if t ∈ (0, 4/3). Moreover, it is shown that both bounds are tight.
The above papers can be thought as representing the first

phase of research into group sparse recovery. Subsequent pa-
pers follow several different and unrelated directions. Several
papers in the statistics community analyze the asymptotic be-
havior of minimizing the Group LASSO norm as n→ ∞, with
k either kept fixed, or increasing more slowly than n. Some of
these papers also study the problem of “simultaneous” estima-
tion of several unknown vectors that share a common sparsity
pattern, using a common measurement matrix. In [20, Corollary
4.1, Th. 7.1], it is shown that in the problem of simultaneous
estimation, the Group LASSO norm offers advantages over the
standard �1-norm. In [21], the authors study the problem of sup-
port recovery, that is, recovering the set of nonzero components
of the unknown vector, under group sparsity. They give a very
tight bound on the rate at which the number of samples must
grow in order to achieve support recovery. These results show
that, when the unknown vector is supported over a union of
unknown subspaces, the Group LASSO formuation is natural.
Support recovery is also the subject of [22]. Unlike other pa-
pers, the results in this paper are not asymptotic. Note that it is
possible to recover the support of an unknown vector while not
recovering the vector itself. On the other hand, if the nondom-
inant components of a (group) sparse vector are much smaller
than the dominant ones, recovering a good approximation to the
unknown vector also leads to support recovery.

In [23] and the references therein, the emphasis is on remov-
ing the assumption that the sets Gj are pairwise disjoint; thus
the focus is on overlapping group decompositions. In [24] and
[25], the authors study the case where there is uncertainty and/or
error in implementing the measurement matrixA. Instead of the
designed matrix A, the measurements equal y = (A+BE)x
for suitable models of B,E. One of the important innovations
of these papers is the notion of “joint” sparsity. To illustrate,
suppose n = 2l. Then for a given k < n, a vector x is said to be
jointly k-sparse if its support is concentrated a set of the form
S ∪ (l + S), where |S| ≤ k, and l + S denotes shifting every
element of S by l. This model is apparently very natural in prob-
lems of detecting the Direction of Arrival (DoA). A joint RIP
is defined for such vectors. It is clear that, for the same number
m of measurements, the joint 2k RIP constant is smaller than
not just the standard 2k RIP constant, but also the group 2k RIP
constant, because of the restrictions on the support set. There-
fore, in order to make the RIP constant smaller than a specified
threshold, group sparse recovery would require fewer samples
than conventional sparse recovery, while joint sparse recovery
would require still fewer samples. Finally, in [26], the authors
relax the requirement from recovering every group sparse vector
to average case recovery. Naturally, the sufficient conditions for
recovery in this case are weaker than for the recovery of every



RANJAN AND VIDYASAGAR: TIGHT PERFORMANCE BOUNDS FOR COMPRESSED SENSING WITH CONVENTIONAL AND GROUP SPARSITY 2857

vector. The main drawback of this approach is that there is no
way to know whether the particular group sparse vector that
one is attempting to recover lies within the set of recoverable
vectors.

The above discussion can be briefly summarized as follows:
The Group LASSO formulation is better than the conventional
LASSO formulation when it comes to simultaneous estimation,
and in support recovery. Under suitable assumptions as spec-
ified in [14], Group LASSO is also superior to conventional
LASSO for vector recovery as well. In the present paper, the
focus is on estimating a single vector (therefore not simulta-
neous recovery, nor support recovery). In the opinion of the
authors, currently available results such as [20] do not establish
conclusively whether Group LASSO offers any unambiguous
advantages in this situation.

B. The �1-Norm as a Group Sparsity-Inducing Norm

The subsection has two objectives. The first is to introduce the
concept of the convex relaxation of a nonconvex function, and
to give explicit formulas for the convex relaxations of group
sparsity measures over product sets. The second objective is
to show that commonly used objective functions such as the
Group LASSO norm of (7), and the weighted �1-norm intro-
duced in [27] can both be interpreted as convex relaxations of
various group sparsity measures over suitably defined product
sets. Rather surprisingly perhaps, it is shown that even the un-
weighted �1-norm is the convex relaxation of two sparsity mea-
sures over suitably defined product sets. The conclusion is that,
in addition to the Group LASSO and the weighted �1-norms, the
unweighted �1-norm can also be used as a “sparsity-inducing”
norm, and can thus be used to recover group sparse vectors.

We begin with a discussion of group sparsity indices. In the
conventional setting, the quantity ‖x‖0 which counts the number
of nonzero components of x is taken as a measure of the sparsity
of x. In the case of group sparsity, it is possible to think of two
distinct-looking definitions.6

‖x‖UG ,0 =
∑

j∈[g ]

1{xG j
�=0}, (9)

‖x‖G ,0 =
∑

j∈[g ]

|Gj |1{xG j
�=0}, (10)

where xGj
denotes the projection of x ∈ Rn onto the indices in

Gj , and 1 denotes the indicator function. Thus ‖x‖UG ,0 counts
the number of groups on which x has a nonzero projection,
whereas ‖x‖G ,0 counts the cardinality of the union of groups
over which x has a nonzero projection. It is obvious that if all
groups have the same size d (as was assumed in many early pa-
pers), then both definitions differ only by a factor of d. However,
when group sizes differ widely, the two quantities can be very
different. While a majority of papers use the definition in (9),
[14] uses a combination of both parameters.

Let us define a vector x ∈ Rn to be l-group sparse if
‖x‖UG ,0 ≤ l, and group k-sparse if ‖x‖G ,0 ≤ k. Further, de-
fine dmax and dmin denote the largest and smallest group sizes.

6We thank one of the reviewers for suggesting this notation.

Then an l-group sparse vector is also ldmax -sparse in the con-
ventional sense, but the converse is not true. Similarly, a group
k-sparse vector is also k-sparse in the conventional sense, but
the converse is not true. In the proofs of Theorems 3 and 4, we
make use of the fact that there is a known prior bound on the
sparsity count of the unknown vector, irrespective of the number
of groups over which it is supported. Thus we prefer to work
with group k-sparse vectors and not l-group sparse vectors. In
principle our proofs could be adapted to l-group sparse vectors
by treating them as group ldmax -sparse vectors. Working with
the latter would lead to more conservative bounds for recovery.

In conventional sparse recovery, one could attempt to recover
a k-sparse vector x from a linear measurement vector y = Ax
by solving

x̂ = argmin
z

‖z‖0 s.t. Az = y.

However, the function ‖ · ‖0 is not convex. In conventional
sparse recovery, replacing the nonconvex objective function
‖x‖0 by ‖x‖1 is justified using the concept of a convex re-
laxation. Therefore, for group sparse recovery it is desirable to
determine the convex relaxations of the group sparsity indices
‖ · ‖UG ,0 and ‖ · ‖G ,0 . Accordingly, we first formally define
the concept of a convex relaxation, then a group decompos-
able norm, and then show that not just the Group LASSO and
the weighted �1-norm, but also the unweighted �1-norm, are all
convex relaxations of both ‖ · ‖UG ,0 and ‖ · ‖G ,0 over suitably
defined convex sets.

Definition 4: Suppose Ω ⊆ Rn is a convex set, and that f :
Ω → R. Then a function g : Ω → R is said to be the convex
relaxation of f over Ω if: (i) g(x) ≤ f(x) ∀x ∈ Ω, and (ii) if
h : Ω → R is convex and satisfies h(x) ≤ f(x) ∀x ∈ Ω, then
h(x) ≤ g(x) ∀x ∈ Ω.

In other words, the convex relaxation of f is the largest convex
function that is dominated by f on the set Ω. Observe that the
same function f but on a different convex set Ω′ could have a
different convex relaxation g′. There is a conceptually simple
way to determine the convex relaxation, namely through the
use of convex duality. Theorem [28, Th. E.1.3.5] states that the
second dual of f is its convex relaxation. Moreover, using the
definition of the dual, it is easy to establish the following fact.

Lemma 1: Let {G1 , . . . , Gj} be a partition of [n]. Write
Rn =

∏g
j=1 R|Gj |, and suppose that Ω ⊆ Rn =

∏g
j=1 Ωj

where each Ωj ⊆ R|Gj |. Further, suppose f : Ω → R is decom-
posable as

f(x) =
g∑

j=1

fj (xGj
), (11)

where xGj
is the projection of x onto R|Gj |. Then the convex

relaxation g of f equals

g(x) =
g∑

j=1

gj (xGj
), (12)

where gj is the convex relaxation of fj over Ωj .
The next lemma is also easy to prove.
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Lemma 2: Suppose c > 0 is some constant, and let c · B de-
note the set of all x ∈ Rl with ‖x‖ ≤ c. Then the convex relax-
ation of φ over c · B is (1/c)‖ · ‖.

Next, let us refer to a norm ‖ · ‖ on Rn as group decomposable
if it is of the form

‖x‖ =
∑

j∈[g ]

‖xGj
‖Gj

, (13)

for suitably defined norms ‖ · ‖Gj
on R|Gj |. The next result

follows as a ready consequence of Lemmas 1 and 2.
Lemma 3: Let ‖ · ‖Gj

, j ∈ [g] be arbitrary norms on R|Gj |.
Let Ωj ⊆ R|Gj | denote the unit ball of ‖ · ‖Gj

, and define Ω =∏
j∈[g ] Ωj . Then the convex relaxation of ‖ · ‖UG ,0 over Ω is the

norm defined in (13). More generally, define Ω′
j = |Gj | · Ωj for

all j ∈ [g], and let Ω′ =
∏

j∈[g ] Ω
′
j . Then the convex relaxation

of ‖ · ‖G ,0 over Ω′ is the norm defined in (13).
In short, every group decomposable norm is the convex re-

laxation of ‖ · ‖UG ,0 over a suitably defined product set Ω. Con-
versely, the convex relaxation of ‖ · ‖UG ,0 over every product
set is a group decomposable norm. Moreover, every convex re-
laxation of ‖ · ‖UG ,0 over a product Ω is also a convex relaxation
of ‖ · ‖G ,0 over the related set Ω′, and vice versa. In particular,
if we were to choose each of the sets Ωj to be the unit balls in
the �2-norm over the corresponding space, then the convex re-
laxation of ‖ · ‖UG ,0 over Ω would be the Group LASSO norm
defined in (7). However, if we were to choose each of the sets
Ωj to be the unit balls in the �∞-norm over the corresponding
space, then the convex relaxation of ‖ · ‖UG ,0 over Ω would be
the �1-norm! If we were to choose the set Ωj to be the ball of
radius rj in the �∞-norm over the corresponding space, then the
convex relaxation of ‖ · ‖UG ,0 over Ω would be the weighted
�1-norm.

To summarize, the point is that even �1-norm minimization
can be used to achieve group sparse recovery, even though it is
not obviously “group-sparsity inducing.”

C. Our Contributions

In the present paper, we use �1-norm minimization, and estab-
lish that this approach can recover group k-sparse vectors under
appropriately defined sufficient conditions. These results stand
in contrast to earlier results of [12], [18], and [19] that pertain to
the recovery of l-group sparse vectors. To reiterate, our results
are for group k-sparse vectors, whereas earlier results are for
l-group sparse vectors. Our results are based on defining group
analogs of the RIP and the RNSP for group k-sparse vectors.7

So far as we are able to determine, this is the first time that a
group version of the RNSP is proposed and used to establish
group sparse recovery. In some situations, the bounds derived
here are less conservative than those proved earlier by others,
based on the group RIP, both for the case where all groups
are of equal size [11]–[13], and are of unequal size [16], [17].
When the measurement matrices consist of random samples of
sub-Gaussian variables, and all groups are of equal size, our
estimates are of the same order as in [11] and are smaller than

7Previous definitions are for l-group sparse vectors.

for conventional sparse recovery. When group sizes are unequal
and the measurement matrix is random, our bounds are less con-
servative than those in [14, Assumption 4.2, Th. 5.1], though not
less conservative than those in [14, Assumption 4.3, Th. 5.1].
It is of course possible results similar to ours could be estab-
lished using the Group LASSO norm instead of the �1-norm.
That would be a topic for future research.

The rest of the paper is organised as follows: The main re-
sults of the paper concerning group sparse recovery and con-
cerning conventional sparse recovery are stated in Sections IV
and V respectively. These results are compared against known
results in Section VI. Numerical examples are given in Sec-
tion VII, and the proofs of the main results are given separately in
Section VIII. Throughout the paper, we use the basis pursuit de-
noising approach. Therefore, given y = Ax+ η with ‖η‖2 ≤ ε,
we define

x̂ = argmin
z

‖z‖1 s.t. ‖y −Az‖2 ≤ ε. (14)

IV. MAIN RESULTS-I: GROUP SPARSE RECOVERY

We say that a vector u is group k-sparse if ‖u‖G ,0 ≤ k, where
‖ · ‖G ,0 is defined in (10). We also require the notion of a group
k-sparse subset of the index set [n]. Recall that {G1 , . . . , Gg}
is a partition of [n]. If L ⊆ [g], let GL denote ∪j∈LGj . Then
a set S ⊆ [n] is said to be a group k-sparse subset of [n] if
S = GL for some subset L ⊆ [g], and moreover, |S| ≤ k. Note
that a vector is a group k-sparse vector if and only if supp(x)
is a group k-sparse set. We denote the set of all group k-sparse
vectors by ΣG,k , and the collection of all group k-sparse sets by
GkS.

We begin by defining group analogs of the RIP and RNSP for
group k-sparse vectors.

Definition 5: A matrixA ∈ Rm×n is said to satisfy the group
restricted isometry property (GRIP) of order k with constant
δG,k ∈ (0, 1) if

(1 − δG,k )‖u‖2 ≤ ‖Au‖2 ≤ (1 + δG,k )‖Au‖2
2 , ∀u ∈ ΣG,k .

(15)
Definition 6: A matrix A ∈ Rm×n is said to satisfy the �2-

group robust null space property (GRNSP) with constants ρG ∈
(0, 1), τG ∈ R+ , if, for all h ∈ Rn and all sets S ∈ GkS, it is
true that

‖hS ‖2 ≤ ρG√
k
‖hSc ‖1 +

τG√
k
‖Ah‖2 . (16)

As with RNSP, Schwarz’ inequality implies that ifA satisfies
the �2-GRNSP, then for all h ∈ Rn and all sets S ∈ GkS, it is
true that

‖hS‖1 ≤ ρG‖hSc ‖1 + τG‖Ah‖2 . (17)

A. Group Robust Null Space Property

Now we present the first of our main results, which allows
us to establish robust group k-sparse recovery. For notational
convenience, define

dmax = max
j∈[g ]

|Gj |, dmin = min
j∈[g ]

|Gj |,
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Given integers k, n and a real number t > 1, define

k̄ := [1 + (t− 1)dmax]k. (18)

Also define

ν :=
√

(t− 1)t− (t− 1). (19)

It is easy to verify via elementary calculus that ν = 0 if t = 1,
ν is an increasing function of t, and ν → 0.5 as t→ ∞.

Theorem 3: Suppose that the matrix A satisfies the GRIP of
order k̄ with constant δG,k̄ < δ̄G , where8

δ̄G = ν(1 − ν)
(

ν2dmax

2(t− 1)dmin
+ 0.5 − ν + ν2

)−1

. (20)

Then A satisfies the �2 GRNSP with constants ρG , τG defined
as follows:

ρG := cG/a < 1, τG := b
√
k/a2 , (21)

where

a := [ν(1 − ν) − δ(0.5 − ν(1 − ν))]1/2

=
[(1 − δ) − (1 + δ)(1 − 2ν)2 ]1/2

2
, (22)

b := ν(1 − ν)
√

1 + δ, (23)

cG :=
[

δν2dmax

2(t− 1)dmin

]1/2

, (24)

and δ is shorthand for δG,k̄ .
A simplification is possible in the case where all groups have

the same size, so that dmax = dmin .
Theorem 4: Suppose n = dg for some integers d, g, and that

all groups have sized. Suppose the matrixA satisfies the GRIP of
order k̄ with constant δG,k̄ < δ̄ =

√
(t− 1)/t. ThenA satisfies

the �2 GRNSP with constants ρ, τ defined as follows:

ρ := c/a < 1, τ := b
√
k/a2 , (25)

where a, b are as in (22) and (23) respectively, and

c :=
[

δν2

2(t− 1)

]1/2

, (26)

and δ is shorthand for δG,k̄ .

B. Error Bounds on the Residual Vector

Suppose x is the unknown vector and x̂ is the recovered
vector, constructed according to (14). In this subsection we
present bounds for ‖x̂− x‖p for p ∈ [1, 2].

Theorem 5: Suppose that the measurement matrixA satisfies
the conditions of Theorem 3. Then the formulation (14) achieves
robust group sparse recovery of order k. Specifically, let x̂ be
defined as in (14), and let h = x̂− x denote the residual error
vector. Then

‖h‖1 ≤ 2
1 − ρG

[(1 + ρG )σG,k (x, ‖ · ‖1) + 2τGε], (27)

8As before, when we write δG ,α and α is not necessarily an integer, we mean
δG ,
α �.

and for all p ∈ [1, 2],

‖h‖p ≤ 2
1 − ρG

(
1 +

ρG
k1−1/p

)
σG,k (x, ‖ · ‖1)

+
[

2
1 − ρG

(
1 +

ρG
k1−1/p

)
+

2
k1−1/p

]
τGε, (28)

where both ρG and τG are defined in (21), and σG,k (x, ‖ · ‖1)
denotes the group k-sparsity index of x defined by

σG,k (x, ‖ · ‖1) = inf
S∈GkS

‖x− xS‖1 .

C. Sample Complexity Estimates

In this subsection we study the case where the measurement
matrix A equals

A = (1/
√
m)Φ, (29)

where Φ consists of mn independent samples of a zero-mean,
unit-variance random variable X that satisfies

E[exp(θX)] ≤ exp(c̄θ2), ∀θ ∈ R. (30)

for some constant c̄. Such a random variable is said to be sub-
Gaussian. In such a case, it can be shown that there exists a
constant c̃ such that

Pr{|‖Au‖2
2 − ‖u‖2

2 | ≥ t‖u‖2
2} ≤ 2 exp(c̃mt2), ∀t ∈ R.

(31)
The relationship between the sub-Gaussian parameter c̄ in (30)
and the constant c̃ can be derived by combining various argu-
ments in [8]. See in particular [8, Lemma 9.8].

Lemma 4: Suppose X is a zero-mean, unit variance random
variable, and satisfies (30) for some constant c̄. Define

γ = 2, ζ = 1/(4c̄), α = γe−ζ + eζ . (32)

Then (31) is satisfied with

c̃ =
ζ2

2(2α+ ζ)
. (33)

By adapting [8, Th. 9.11] via replacing k by tk throughout,
we can give a bound on the number of measurements m that
suffice to ensure thatA defined in (29) satisfies the RIP or order
tk with constant δtk < δ, with probability ≥1 − ξ.

Theorem 6: Given integers n, k < n and a small number ξ ∈
(0, 1), choose any t > 1 and any δ <

√
(t− 1)/t. Let X be a

sub-Gaussian random variable that satisfies (30) for some c̄ > 0,
and define A as in (29). Choose an integer mC such that

mC ≥ 1
c̃δ2

(
4
3
tk ln

en

tk
+

14tk
3

+
4
3

ln
2
ξ

)
. (34)

Then A satisfies the RIP of order tk with constant δtk < δ with
probability ≥ 1 − ξ. Consequently the pair (A,ΔBP) achieves
robust sparse recovery of order k with probability at least 1 − ξ.

Now we present an extension of Theorem 6 to group sparse
recovery.

Theorem 7: Given integers n, k, choose any δ < δ̄G where
δ̄G is defined in (20). Choose any t > 1, define k̄ as in (18), and
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define

φ =
⌈

k̄

dmin

⌉
. (35)

Let X be a sub-Gaussian random variable that satisfies (30) for
some c̄ > 0, and defineA as in (29). Choose an integermG such
that

mG ≥ 1
c̃δ2

(
4
3
φ ln

eg

φ
+

14φ
3

+
4
3

ln
2
ξ

)
. (36)

Then A satisfies the GRIP of order k̄ with constant δk̄ < δ with
probability ≥1 − ξ. Consequently the pair (A,ΔBP) achieves
robust group sparse recovery of order k with probability at least
1 − ξ.

Now let us specialize Theorem 7 to the case where all groups
have the same size d (so that n = gd), and in addition, k = ld
for some integer l. In this case (35) becomes

φ = [1 + (t− 1)d]l,

while the bound for mG in (36) becomes

mG ≥ 1
c̃δ2

(
4
3
φ ln

eg

φ
+

14φ
3

+
4
3

ln
2
ξ

)
. (37)

The above bound mG for the number of samples that suffices
for robust group sparse recovery should be compared against
the number mC for conventional sparsity in (34). In this case
the estimate for mC from (34) becomes

mC ≥ 1
c̃δ2

(
4
3
tld ln

eg

tl
+

14tld
3

+
4
3

ln
2
ξ

)
, (38)

after noting that n/k = g/l.
Theorem 8: If d > 1 and tld = tk < g, then mG < mC ,

where mG is defined in (37), and mC is defined in (38).
Thus, in the case where all groups are of equal size, achieving

robust group k-sparse recovery using Theorem 8 requires fewer
measurements than for conventional sparsity using Theorem 6,
whenever tk is smaller than the number of groups, which is a
very reasonable assumption. On the other hand, if there is a very
large disparity between group sizes, the estimate given by (36)
could be larger than the estimate for conventional sparsity given
in (34); however, it can also be smaller. This is illustrated in the
numerical example in Section VII.

V. MAIN RESULTS–II: CONVENTIONAL SPARSE RECOVERY

In this section we present our results regarding conventional
sparsity. The sufficient condition for sparse recovery is an im-
mediate special case of Theorem 3. However, the bounds for the
�p -norm of the residual error require a separate proof.

In the case of conventional sparsity, all groups have cardinal-
ity one, GRIP becomes RIP, and GRNSP becomes RNSP. Thus
Theorem 3 immediately implies the following.

Theorem 9: Given integers k, n and a real number t > 1,
suppose that the matrixA satisfies the RIP of order tk with con-
stant δtk = δ < δ̄ :=

√
(t− 1)/t. Then A satisfies the RNSP

with constants

ρ = c/a < 1, τ = b
√
k/a2 ,

where a, b, c are as in (22), (23), and (26) respectively.

Because conventional sparsity is a special case of group spar-
sity where each group has cardinality one, it is possible to obtain
bounds from Theorem 5 to generate bounds on the residual error
for conventional sparsity. However, we can do better than this.

Theorem 10: Suppose thatA ∈ Rm×n satisfies the �2-robust
null space property of order k as defined in Definition 3, and let
x̂ denote the solution of (14). Then

‖x̂− x‖1 ≤ 2
1 + ρ

1 − ρ
σk (x, ‖ · ‖1) +

4τ
1 − ρ

ε. (39)

Moreover, for all p ∈ [1, 2], we have that

‖x̂− x‖p ≤ 1
k1−1/p · 2

1 − ρ
[(1 + 2ρ)σk (x, ‖ · ‖1) + 3τε].

(40)

VI. DISCUSSION OF OUR CONTRIBUTIONS

A. Group Sparsity

When all groups have the same size, the GRIP defined here is
essentially the same as the group- or block-RIP defined in earlier
papers. However, the sufficient conditions we derive are weaker.
When all groups have equal size d, the sufficient condition
proved here in Theorem 4 is that, for some t > 1, we have

δG,[1+(t−1)d]k <

√
t− 1
t

.

In particular, if we set t = 2, we get the bound

δG,(1+d)k <
√

1/2 ≈ 0.707.

This can be compared to the bound derived in various papers
including [12, Th. 1] or [16, Definition 2 and Th. 1], namely

δG,2dk <
√

2 − 1 ≈ 0.414.

Obviously δG,(1+d)k ≤ δG,2dk , and
√

2 − 1 <
√

1/2. Thus the
bound derived here is less conservative. Compared to the bound
in [18], the bound is the same, namely

√
(t− 1)/t. However,

in [18], this is a bound on δG,2dk , whereas here it is a bound on
δG,(1+d)k . Finally, because we prove our results by establishing
the �2-GRNSP, we can derive bounds on the �p -norm of the
residual error for all p ∈ [1, 2], as opposed to just the Euclidean
norm in existing papers.

Next we discuss the case where the measurement matrix A
consists of random samples of sub-Gaussian variables. When
all groups have the same size d, and n = gd, k = ld for some
integers g, l, the number of samples becomes O(l log(g/l)) as
opposed toO(k log(n/k)) for conventional sparsity. This is not
a novel observation, and is contained in practically every paper
in the area, e.g. [10], [11], and [14] and others. For the case of
unequal group sizes the condition in [14, Assumption 4.3] is (in
the present notation) a bound on

δG,k+dm a x + δG,2k+2dm a x

1 − δG,k+dm a x

.

See [14, Th. 5.1]. Other papers on the topic cannot han-
dle the case where group sizes are unequal. Thus replac-
ing the “sparsity-inducing” Group LASSO norm with the �1-
norm can sometimes lead to lower bounds for the number of
measurements.
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B. Conventional Sparsity

Note that the bound in Theorem 9 is precisely the bound given
by [2] and stated here as Theorem 1, but with the restriction
that t ≥ 4/3. Here the bound is lowered to t > 1. However,
the bound δtk < t/(4 − t) for some t ∈ (0, 4/3) proved in [4]
is not covered by our approach. Moreover, it is clear that if
t ∈ (1, 4/3], then the bound t/(4 − t) proved in [4] is superior to√

(t− 1)/t. On the other hand, the method of proof given in [2]
and [4] does not establish the robust null space property. Rather,
the proof is based on directly manipulating various inequalities.
As a result, the results in both [2] and [4] lead only to a bound
on the Euclidean norm of the residual error x̂− x when x̂ is
computed via (14). In contrast, by first establishing that the RIP
implies the RNSP, we are able to treat the cases of noise-free
and noisy measurements in a common framework, and also to
obtain bounds on ‖x̂− x‖p for all p ∈ [1, 2], and not just for
p = 2.

The result in Theorem 9 is the best available to date showing
that RIP implies the RNSP. Previously the best available result
was [7, Proposition 8], in which it is shown that ifA satisfies the
RIP of order 2k with constant δ2k < 1/9, then it also satisfies
the �2-RNSP. The bound 1/9 is far smaller than the bound√

1/2 ≈ 0.7071 that results from Theorem 9.
Equation (39) is the same as [8, Th. 4.19]. However, our

method of proof is different, and this leads to an improvement
in the bounds for the �p -norm of the residual error when p >
1, when compared to [8, Th. 4.25]. The bound in (40) is an
improvement over that in [8, Th. 4.25]. If one were to substitute

‖z‖1 − ‖x‖1 ≤ 0

into the bound given in that theorem, the result would be

‖x̂− x‖p ≤ 1
k1−1/p ·

2
1 − ρ

[(1 + ρ)2σk (x, ‖ · ‖1) + (3 +ρ)τε].

The bound in (40) is better in that (1 + ρ)2 is replaced by 1 + 2ρ,
and 3 + ρ is replaced by 3.

VII. NUMERICAL EXAMPLE

In this section we illustrate the application of the bounds in
(36) and (37). Specifically, we compare the number of measure-
ments for group sparse recovery given in (35) and (37) with the
number for conventional sparse recovery using Theorem 6 as
given in (34). As shown in [29], unless n is larger than about
105 , the boundmC in (34) often exceeds n, which makes “com-
pressed” sensing meaningless. We study four different cases
to illustrate the fact that even with small groups of equal size,
robust group sparse recovery can require fewer samples than
conventional sparse recovery. Moreover, as the minimum size
of the groups increases, the advantage is even more on the side
of group sparse recovery. The reason for this phenomenon is
that, as the minimum group size increases, the total number of
groups decreases. Consequently, the cardinality of the number
of group sparse sets decreases fairly rapidly. This is the quantity
referred to as C(g, φ) in the proof of Theorem 7.

Specifically, we choose n = 106 and k = 60. We use a sub-
Gaussian random variable that satisfies the same rate of decay
as a standard normal variable, namely c̄ = 1/2 in (30); see [8,

TABLE I
COMPARISON OF NUMBER OF MEASUREMENTS REQUIRED IN CONVENTIONAL

AND GROUP SPARSITY FOR VARIOUS GROUP SIZES,
WITH n = 106 AND k = 60

Lemma 7.6]. To compute the RIP constant δ, we choose t = 1.5,
which gives 1/

√
3 ≈ 0.577 as the upper limit for conventional

sparse recovery, as given in Theorem 1. We choose δC = 0.5,
or about 85% of the limit, as the RIP constant for conventional
sparsity. In the case of GRIP, we compute the limit δG as 85%
of the limit δ̄G given by (20). Note that for different choices of
group sizes, this threshold would also be different. Finally, for
the failure probability ξ we choose 10−9 for both conventional
and group sparse recovery. Table I shows the number of samples
needed by conventional sparsity and group sparsity for various
values of dmax , dmin , g. The choice of the GRIP constant δG for
each choice of dmax , dmin , g is also shown in the table. Note
that, from Theorem 4, when all groups have the same size d,
and both n and k are multiples of d, then the GRIP bound δG
and RIP bound δC are the same.

It is noteworthy that, even when the GRIP constant δG that the
matrix A is required to satisfy is smaller than the RIP constant
δC , the number of samples can be smaller in the case of group
sparsity, as happens in row 2 of the table. This is because the
number of group sparse sets is substantially smaller than the
number of sparse sets. As a final example, we increased k to
300, and chose the group sizes to be uniform at 50 (thus leading
to 20,000 groups). With this choice, mC = 1, 464, 244, that
is, more than the size of the vector, whereas mG = 393, 153.
Thus group sparse recovery is feasible when conventional sparse
recovery is not feasible.

VIII. PROOFS OF MAIN RESULTS

A. Polytope Decomposition Lemma

The key to the results in [2] is Lemma 1.1 of that paper,
which the authors call the “polytope decomposition lemma.” In
this subsection we generalize this lemma to the case of group
sparsity. Before presenting the lemma, we introduce a couple of
terms. Given a vector v ∈ Rn , we define the group support set
of v, denoted by Gsupp(v), as

Gsupp(v) := {j ∈ [g] : vGj
�= 0}. (41)

Thus Gsupp(v) denotes the subset of the groups on which v
has a nonzero support. Obviously |Gsupp(v)| is the number of
distinct groups on which v is supported.

Lemma 5: Given a vector v ∈ Rn such that,

‖vGj
‖1 ≤ α, ∀j ∈ [g], and ‖v‖1 ≤ sα (42)

for some integer s, there exist an integer N and vectors ui, i ∈
[N ] such that

� supp(ui) ⊆ supp(v), ∀i ∈ [N ].
� ‖ui‖1 = ‖v‖1 , ∀i ∈ [N ].
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� ui is group sdmax -sparse for each i, and finally
� v is a convex combination of ui, i ∈ [N ].
Remarks: In the case of conventional sparsity, each group

Gj consists of the singleton {j}. In this case the condition
‖vGj

‖1 ≤ α, ∀j ∈ [g] reduces to |vj | ≤ α ∀j ∈ [n], or equiva-
lently, ‖v‖∞ ≤ α. Moreover, dmax = 1, in which case all vec-
tors ui are s-sparse. This is precisely [2, Lemma 1.1].

Proof: The proof is by induction. Define a subset of Rn as
follows:

X := {v ∈ Rn : ‖vGj
‖1 ≤ α ∀j ∈ [g], ‖v‖1 ≤ sα}.

To begin the inductive process, suppose |Gsupp(v)| ≤ s. Then
v is itself sdmax -sparse. So we can take N = 1 and u1 = v.
Now suppose that the lemma is true for all v ∈ X such that
|Gsupp(v)| = r − 1 where r − 1 ≥ s. It is shown that the
lemma is also true for all v ∈ X satisfying |Gsupp(v)| = r.

Let Q ⊆ [g] denote the index set {j ∈ [g] : vGj
�= 0}, and

observe that |Q| = |Gsupp(v)| = r by assumption. Then v can
be expressed as v =

∑
j∈Q vGj

. Now arrange the vectors vGj

in decreasing order of their �1-norm. Denote the permuted vec-
tors as p1 through pr . Define ai := ‖pi‖1 , and p̂i = (1/ai)pi .
Then each p̂i has unit �1-norm. Moreover ai ≥ ai+1 for all i,
and v =

∑r
i=1 pi =

∑r
i=1 aip̂i . Also, because the �1-norm is

decomposable and the pi have nonoverlapping support sets, it
follows that ‖v‖1 =

∑r
i=1 ai .

Now define a set

D :=

⎧
⎨

⎩
β ∈ [r − 1] :

r∑

i=β

aβ ≤ (r − β)α

⎫
⎬

⎭
.

Then 1 ∈ D because
r∑

i=1

ai = ‖v‖1 ≤ sα ≤ (r − 1)α.

Therefore D is nonempty. Now, by a slight abuse of notation,
let β again denote the largest element of the set D. This implies
that

r∑

i=β

ai ≤ (r − β)α,
r∑

i=β+1

ai > (r − β − 1)α. (43)

Define the constants

bt :=
1

r − β

r∑

i=β

ai − at, β ≤ t ≤ r.

Since the first term on the right side is independent of t, and
at+1 ≤ at , it follows that bt+1 ≥ bt . Also

bβ =
1

r − β

r∑

i=β

ai − aβ

=
1

r − β

r∑

i=β+1

ai − r − β − 1
r − β

aβ

≥ 1
r − β

⎡

⎣
r∑

i=β+1

ai − (r − β − 1)α

⎤

⎦ > 0,

where the last two steps follow from ai ≤ α for all i, and from
the second inequality in (43). Also, it is easy to verify that

r∑

i=β

ai = (r − β)
r∑

i=β

bi (44)

Next, for t = β, . . . , r, define

wt :=
β−1∑

i=1

aip̂i +

⎛

⎝
r∑

i=β

bi

⎞

⎠
r∑

i=β ,i �=t
p̂i , λt :=

bt∑r
i=β bi

. (45)

Now observe that

0 < λt < 1,
r∑

t=β

λt = 1, and v =
r∑

t=β

λtwt.

Next, supp(wt) ⊆ supp(v) for all t. Moreover, |Gsupp(wt)| ≤
r − 1 for all t, because the corresponding term p̂t is missing
from the summation in (45). Also, note that each p̂i has unit
�1-norm. Therefore, for each t between β and r, we have that

‖wt‖1 =
β−1∑

i=1

ai + (r − β)
r∑

i=β

bi

=
β−1∑

i=1

ai +
r∑

i=β

ai =
r∑

i=1

ai = ‖v‖1 .

Therefore each wt ∈ X . By the inductive assumption, each wt
has a convex decomposition as in the statement of the lemma. It
follows that v is also a convex combination as in the statement
of the lemma. This completes the inductive step. �

Lemma 6: Let ui, i ∈ [N ] be the vectors in the convex com-
bination of Lemma 5. Then

‖ui‖2
2 ≤ sdmax

dmin
α2 , ∀i ∈ [N ]. (46)

Proof: Fix the index i ∈ [N ]. Define the index set

Bi := {j ∈ [g] : (ui)Gj
�= 0}.

Let ci = |Bi |. Because ui is sdmax -sparse, it follows that ci ≤
sdm a x
dm in

. Moreover, for each index j ∈ Bi , we have that

‖(ui)Gj
‖2 ≤ ‖(ui)Gj

‖1 ≤ ‖ui‖1 = α.

Now observe that

ui =
∑

j∈Bi

(ui)Gj
.

Next, note that the various vectors (ui)Gj
are supported on

disjoint sets. Therefore

‖ui‖2
2 =

∑

j∈Bi

‖(ui)Gj
‖2

2 .

Since there are ci terms in the above summation, and each term
is no larger than α2 , it follows that

‖ui‖2
2 ≤ ciα

2 ≤ sdmax

dmin
α2 ,

which is the desired conclusion (46). �
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B. Group Robust Null Space Property

Proof of Theorem 3: Recall the constants ν, a, b, cG , ρG , τG
defined in the statement of Theorem 3. We will make use of these
constants in the proof. Let h ∈ Rn be arbitrary. The objective
is to establish that the inequality (16) is satisfied with ρG , τG
defined as above.

Let hΛ0 , hΛ1 , hΛ2 , . . . , hΛs
be an optimal group-k-sparse de-

composition of h. This means the following: First,

hΛ0 = argmin
supp(z )∈GkS

‖x− z‖.

Next, for i ≥ 1,

hΛ i
= argmin

supp(z )∈GkS

∥∥∥
∥∥∥
x−

i−1∑

j=0

hΛj
− z

∥∥∥
∥∥∥
.

Now denote hΛc
0

= h∗. Define sets S1 and S2 as follows:

S1 =
{
j : ‖h∗Gj

‖1 >
‖hΛc

0
‖1

k(t− 1)
, ∀j ∈ [g]

}
,

S2 =
{
j : ‖h∗Gj

‖1 ≤ ‖hΛc
0
‖1

k(t− 1)
, ∀j ∈ [g]

}
.

Let GS1 = ∪j∈S1Gj and GS2 = ∪j∈S2Gj . Now define

h(0) = hΛ0 , h
(1) = h∗GS1

, h(2) = h∗GS2
.

Then we have

hΛc
0

= h∗ = h∗GS1
+ h∗GS2

= h(1) + h(2) .

Let r = |S1 |, and note that r ≤ k(t− 1). This is because, by
the manner in which we defined the set S1 , it follows that

‖hΛc
0
‖1 ≥ ‖h(1)‖1 > r

‖hΛc
0
‖1

k(t− 1)
.

Next we establish upper bound on ‖h(2)‖1 . Because of the def-
inition of set S1 , it follows that

‖h(1)‖1 ≥ r
‖hΛc

0
‖1

k(t− 1)
. (47)

Therefore

‖h(2)‖1 = ‖hΛc
0
‖1 − ‖h(1)‖1

≤ ‖hΛc
0
‖1 − r

‖hΛc
0
‖1

k(t− 1)

= [k(t− 1) − r]
‖hΛc

0
‖1

k(t− 1)
. (48)

By the definition of set S2

‖h(2)
Gj

‖1 ≤ ‖hΛc
0
‖1

k(t− 1)
, ∀j ∈ [g]. (49)

From (48) and (49), we see that the vector h(2) satisfies the
hypotheses of Lemma 5 with

α =
‖hΛc

0
‖1

k(t− 1)
, s = k(t− 1) − r.

Therefore we can apply Lemma 5 to h(2) . So h(2) can be repre-
sented as

h(2) =
N∑

i=1

λiui , (50)

where each ui is group (k(t− 1) − r)dmax -sparse, h(1) is
group (rdmax)-sparse, and h(0) is group k-sparse. Therefore
ui + h(1) + h(0) has group sparsity no larger than

k + rdmax + (k(t− 1) − r)dmax = k[1 + (t− 1)dmax]

= k̄

for each i ∈ [N ]. Now let, for all i ∈ [N ],

xi =
1
2

(
h(0) + h(1)

)
+
ν

2
ui,

zi =
1 − 2ν

2

(
h(0) + h(1)

)
− ν

2
ui,

γ = xi + zi = (1 − ν)
(
h(0) + h(1)

)
,

βi = xi − zi = ν
(
h(0) + h(1) + ui

)
.

Then
N∑

i=1

λi〈Aγ,Aβi〉 =

〈

Aγ,A

N∑

i=1

λiβi

〉

= ν(1 − ν)〈A(h(0) + h(1)), Ah〉, (51)

where we make use of (50) and the fact that h(0) + h(1) +
h(2) = h. However, for each index set i, we have that

〈Aγ,Aβi〉 = 〈Axi +Azi, Axi −Azi〉
= ‖Axi‖2

2 − ‖Azi‖2
2 .

Therefore it follows that
N∑

i=1

λi(‖Axi‖2
2 − ‖Azi‖2

2) = ν(1 − ν)
〈
A(h(0) + h(1)), Ah

〉
,

N∑

i=1

λi‖Axi‖2
2 =

N∑

i=1

λi‖Azi‖2
2

+ ν(1 − ν)
〈
A(h(0) + h(1)), Ah

〉
.

Since xi, zi , (h(0) + h(1)) are all group k̄-sparse, it follows
from the GRIP and Schwarz’ inequality that

(1 − δ)
N∑

i=1

λi‖xi‖2
2 ≤ (1 + δ)

N∑

i=1

λi‖zi‖2
2

+ ν(1 − ν)‖A(h(0) + h(1))‖2 · ‖Ah‖2 .

Since h(0) , h(1) and ui have disjoint support sets, it follows
that, for all i ∈ [N ], we have

‖xi‖2
2 = 0.25

(
‖(h(0) + h(1))‖2

2 + ν2‖ui‖2
2

)
,

‖zi‖2
2 = 0.25

[
(1 − 2ν)2‖(h(0) + h(1))‖2

2 + ν2‖ui‖2
2

]
,
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Substituting these relationships, multiplying both sides by 4,
and noting that

∑N
i=1 λi = 1, leads to

(1 − δ) ·
[

‖(h(0) + h(1))‖2
2 + ν2

N∑

i=1

λi‖ui‖2
2

]

≤ (1 + δ)

[

(1 − 2ν)2‖(h(0) + h(1))‖2
2

+ ν2
N∑

i=1

λi‖ui‖2
2

]

+ 4ν(1 − ν)‖A(h(0) + h(1))‖2 · ‖Ah‖2 ,

or upon rearranging,

‖(h(0) + h(1))‖2
2 · [(1 − δ) − (1 + δ)(1 − 2ν)2 ]

≤ 2δν2
N∑

i=1

λi‖ui‖2
2

+ 4ν(1 − ν)‖A(h(0) + h(1))‖2 · ‖Ah‖2 .

Recall that

α =
‖hΛc

0
‖1

k(t− 1)
, s = k(t− 1) − r.

Substituting these values into (46), we get that

‖ui‖2
2 ≤ [k(t− 1) − r]

dmax

dmin

‖hΛc
0
‖2

1

k2(t− 1)2

≤ k(t− 1)
dmax

dmin

‖hΛc
0
‖2

1

k2(t− 1)2

=
dmax

dmin

‖hΛc
0
‖2

1

k(t− 1)
.

Substituting this bound, which is independent of i, into the above
inequality, and noting that

∑N
i=1 λi = 1, we get

‖(h(0) + h(1))‖2
2 [(1 − δ) − (1 + δ)(1 − 2ν)2 ]

≤ 2δν2dmax

dmin

‖hΛc
0
‖2

1

k(t− 1)

+ 4ν(1 − ν)
√

1 + δ‖(h(0) + h(1))‖2 · ‖Ah‖2 .

Denote ‖(h(0) + h(1))‖2 by f and invoke the definition of the
constants a, b, c from (22) and (23). This gives

4f 2a2 ≤ 4c2
‖hΛc

0
‖2

1

k
+ 4bf‖Ah‖2 ,

or after dividing both the sides by 4 and rearranging,

f 2a2 − bf‖Ah‖2 ≤ c2
‖hΛc

0
‖2

1

k
.

The next step is to complete the square on left side of the above
inequality. This gives

f 2a2 − bf‖Ah‖2 +
b2

4a2 ‖Ah‖2
2 ≤ b2

4a2 ‖Ah‖2
2 + c2

‖hΛc
0
‖2

1

k
,

or equivalently,
[
af − b

2a
‖Ah‖2

]2

≤ b2

4a2 ‖Ah‖2
2 + c2

‖hΛc
0
‖2

1

k
.

Taking the square root on both sides, and using the obvious
inequality that

√
x2 + y2 ≤ x+ y whenever x, y ≥ 0, leads to

af − (b/2a)‖Ah‖2 ≤ (b/2a)‖Ah‖2 + c
‖hΛc

0
‖1√
k

,

or upon rearranging and replacing f by ‖(h(0) + h(1))‖2 ,

a‖(h(0) + h(1))‖2 ≤ (b/a)‖Ah‖2 + c
‖hΛc

0
‖1√
k

.

Dividing both the sides by a and observing that hΛ0 = h(0) and

‖h(0)‖2 ≤ ‖(h(0) + h(1))‖2 ,

we get

‖hΛ0 ‖2 ≤ ‖(h(0) + h(1))‖2 ≤ b

a2 ‖Ah‖2 +
c

a

‖hΛc
0
‖1√
k

=
b
√
k

a2
√
k
‖Ah‖2 +

c

a

‖hΛc
0
‖1√
k

.

This inequality is of the form (16) with ρG , τG given as in (21).
The proof is therefore complete once it is shown that ρG =

cG/a < 1 if and only if δG,k̄ < δ̄G . Towards this end, define

α =
ν2dmax

2(t− 1)dmin
.

Then c2G = αδ. Next, observe that cG < a if and only if c2G <
a2 . Now we can invoke the definitions of a and cG from (22)
and (24), which leads to

c2G < a2 ⇐⇒ αδ < ν(1 − ν) − δ(0.5 − ν(1 − ν))

⇐⇒ δ[α+ 0.5 − ν(1 − ν)] < ν(1 − ν)

⇐⇒ δ < δ̄G ,

where δ is shorthand for δG,k̄ . �
Proof of Theorem 4: If all groups have the same size, then

dmax = dmin = d, and the bound (20) on the restricted isometry
constant δG,k̄ becomes

δ̄ = ν(1 − ν)
(

ν2

2(t− 1)
+ 0.5 − ν + ν2

)−1

. (52)

The objective is to show that δ̄ =
√

(t− 1)/t =: ψ say. From
(52), the statement that δ̄ = ψ is equivalent to

ν(1 − ν) =
ψ

2

(
ν2

(t− 1)
+ 1
)
− ψν(1 − ν),

which in turn is equivalent to

2(1 + ψ)ν(1 − ν) = ψ

(
ν2

(t− 1)
+ 1
)
. (53)

Now note that, from the definition (19) of the constant ν, it
follows that

ν = t

√
t− 1
t

− (t− 1) = tψ − t+ 1 = 1 − t(1 − ψ),
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and

1 − ν = t(1 − ψ).

Therefore the left side of (53) becomes

2(1 + ψ)ν(1 − ν) = 2t(1 − ψ2)ν.

However

t(1 − ψ2) = t

(
1 − t− 1

t

)
= 1.

Therefore the left side of (53) equals 2ν. The proof is therefore
complete if it can be shown that the right side of (53) also equals
2ν. Towards this end, note that

ν2 = t(t− 1) − 2(t− 1)
√
t(t− 1) + (t− 1)2 ,

ν2

t− 1
= t− 2

√
t(t− 1) + t− 1,

ν2

t− 1
+ 1 = 2(t−

√
t(t− 1)),

and finally

ψ

(
ν2

t− 1
+ 1
)

= 2

√
t− 1
t

(
t−
√
t(t− 1)

)

= 2
[√

t(t− 1) − (t− 1)
]

= 2ν.

Proof of Theorem 9: This consists of the observation that if
dmax = dmin = 1, then k̄ = [1 + (t− 1)dmax]k = tk. �

C. Error Bounds on the Recovered Vector

Proof of Theorem 5: Define x̂ as in (14), and let h = x̂−
x denote the residual error. Then by definition we have that
‖x̂‖1 ≤ ‖x‖1 . Let xS0 , xS1 , . . . , xSb be an optimal group k-
sparse decompostion of x. Then

‖xSc
0

+ hSc
0
‖1 + ‖xS0 + hS0 ‖1 ≤ ‖xSc

0
‖1 + ‖xS0 ‖1 .

Applying triangle inequality twice to the left hand side of the
above inequality, we get

‖xS0 ‖1 − ‖hS0 ‖1 − ‖xSc
0
‖1 + ‖hSc

0
‖1 ≤ ‖xSc

0
‖1 + ‖xS0 ‖1 .

Cancelling the common term ‖xS0 ‖1 and denoting ‖xSc
0
‖ by

σk,G (x, ‖ · ‖1) = σk,G , we get

‖hSc
0
‖1 − ‖hS0 ‖1 ≤ 2σk,G (54)

Now let hΛ0 , hΛ1 , . . . , hΛs
be an optimal group k-sparse de-

composition of h. Then

‖hΛ0 ‖1 ≥ ‖hS0 ‖1 , and ‖hΛc
0
‖1 ≤ ‖hSc

0
‖1 .

Using the above facts in (54), we get

‖hΛc
0
‖1 − ‖hΛ0 ‖1 ≤ 2σk,G . (55)

Next, because both x and x̂ are feasible for the optimization
problem in (14), we get

‖Ah‖2 = ‖(Ax̂− y) − (Ax− y)‖2 ≤ 2ε.

Using the inequality (17) and the above fact, we have that

‖hΛ0 ‖1 ≤ ρG‖hΛc
0
‖1 + 2τGε. (56)

Now the two inequalities (55) and (56) can be neatly expressed
in the form

[
1 −1

−ρG 1

][‖hΛc
0
‖1

‖hΛ0 ‖1

]
≤
[

2σk,G
2τGε

]
. (57)

Let the M denote the coefficient matrix on the left hand side.
Then, because ρG < 1, it follows that all elements of

M−1 =
1

1 − ρG

[
1 1
ρG 1

]

are positive. Therefore we can multiply both the sides of (57)
by M−1 , which gives

[ ‖hΛc
0
‖1

‖hΛ0 ‖1

]
≤ 1

1 − ρG

[
1 1
ρG 1

][
2σk,G
2τGε

]

=
2

1 − ρG

[
(σk,G + τGε)

(ρGσk,G + τGε)

]
(58)

Finally using the triangle inequality, we get

‖h‖1 ≤ ‖hΛc
0
‖1 + ‖hΛ0 ‖1

=
[
1 1

]
[ ‖hΛc

0
‖1

‖hΛ0 ‖1

]

≤ 2
1 − ρG

[(1 + ρG )σk,G + 2τGε]

This is the same as (27).
Next we derive bounds on ‖h‖p for p ∈ [1, 2]. From the tri-

angle inequality,

‖h‖p ≤ ‖hΛ0 ‖p + ‖hΛc
0
‖p . (59)

Now we will obtain the upper bound for both of the terms in
right hand side of (59). It is easy to show that

‖hΛc
0
‖p ≤ ‖hΛc

0
‖1 . (60)

Next, it is a ready consequence of Hölder’s inequality that

‖hΛ0 ‖p ≤ k1/p−1/2 ‖hΛ0 ‖2 .

Using the above fact and the �2-GRNS property (16), together
with ‖Ah‖2 ≤ 2ε, we get

‖hΛ0 ‖2 ≤ ρG√
k
‖hΛc

0
‖1 +

2τGε√
k
. (61)

Therefore

‖hΛ0 ‖p ≤ 1
k1−1/p [ρG‖hΛc

0
‖1 + 2τGε]. (62)

Combining (60) and (62) leads to

‖h‖p ≤
(
1 +

ρG
k1−1/p

)
‖hΛc

0
‖1 +

2τGε
k1−1/p . (63)

Now we can substitute the upper bound for ‖hΛc
0
‖1 obtained

from (58), namely

‖hΛc
0
‖1 ≤ 2

1 − ρG
(σk,G + τGε).
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Substituting this bound into (63) leads finally to the bound

‖h‖p ≤ 2
1 − ρG

(
1 +

ρG
k1−1/p

)
σk,G

+
[

2
1 − ρG

(
1 +

ρG
k1−1/p

)
+

2
k1−1/p

]
τGε.

This is precisely (40). �
Proof of Theorem 10: In this case the optimal groupk-sparse

decomposition becomes just the conventional optimal k-sparse
decomposition. To prove (40), we proceed as above. However,
instead of (60), we use the inequality from [8, Th. 2.5], namely

‖hΛc
0
‖p = σk (h, ‖ · ‖p) ≤ 1

k1−1/p ‖h‖1 . (64)

Note that an analogous inequality does not exist for groupk-
sparse decompositions. Now we merely substitute the bound
from (64) instead of the bound from (58) into (63); this leads to
(40). �

D. Sample Complexity Estimates

Proof of Theorem 7: The proof is a fairly straight-forward
adaptation of that of [8, Th. 9.9, p. 276], and [8, Th. 9.11, p. 278].
By assumption, (31) holds for every fixed u ∈ Rn . By applying
compactness arguments, it is shown in the cited proofs that, for
every fixed subset S of cardinality s in [n], the corresponding
m× s submatrix AS satisfies the bound

σmin(AT
S AS ) ≤ 1 − δ, and σmax(AT

S AS ) ≥ 1 + δ, (65)

with probability ≥ 1 − θ, where

θ = 2
(

1 +
2
ρ

)s
exp(−c̃(1 − 2ρ)2δ2m). (66)

The above bound holds for all constants ρ. See [8, (9.12)]. Now
by enumerating all possible subsets of [n] of cardinality s, we
get that the quantity

ξ =
(
n
s

)
θ =: C(n, s)θ (67)

is an upper bound on the probability that A fails to satisfy the
RIP of order s with constant δ. By choosing ρ = 2/(e7/2 − 1),
we get the bound in the last (unnumbered) equation in the proof
of [8, Th. 9.11, p. 278]. Substituting s = tk gives the bound in
(34).

In the case of group sparsity, define φ as in (35), and observe
that any group k̄-subset of [n] can be the union of no more than
φ sets from the collectionG1 , . . . , Gg . Therefore the number of
group k̄-sparse subsets of [n] is bounded by the combinatorial
parameter C(g, φ). Therefore, replacing C(n, tk) by C(g, φ),
or what is the same, changing n to g and tk to φ in (34), gives
the desired sample complexity estimate (36). �

Proof of Theorem 8: The bound in (37) follows readily from
that in (36) by substituting n = gd, k = ld, and φ = l[1 + (t−
1)d]. The following fact can be easily proved using undergradu-
ate calculus: The function x �→ x ln(eg/x) is strictly increasing

for x < g. With n = gd, k = ld where d > 1, we get

k̄ = [1 + (t− 1)d]k = [1 + (t− 1)d]ld,

φ =
k̄

d
= [1 + (t− 1)d]l < [d+ (t− 1)d]l = tld.

Now compare the right sides of (37) and (38). First, because
φ < tld, we infer that

φ ln
eg

φ
< tld ln

eg

tld
< tld ln

eg

tl

because d > 1. So the first term in (37) is smaller than the
corresponding term in (38) if tld < g. The second term in (37)
is smaller than the corresponding term in (38) because φ < tld,
and the third terms are the same in both equations. Therefore
mG < mC if tld < g.

IX. CONCLUSION

In this paper we have shown that the �1-norm is the con-
vex relaxation of two commonly used group sparsity indices.
Therefore �1-norm minimization can be used for recovering
group sparse vectors, and not just for recovering convention-
ally sparse vectors. We have presented sufficient conditions for
�1-norm minimization to achieve robust group sparse recovery,
which are sometimes less conservative than currently available
results, based on minimizing a group LASSO type of norm.
We achieved this by introducing a group version of the robust
null space property, and showing that GRNSP implies a group
restricted isometry property. This relationship is new even for
conventional sparsity. When specialized to conventional spar-
sity, our conditions for group sparse recovery reduce to some
known “best possible” bounds proved earlier. We have also de-
rived bounds for the �p -norm of the residual error between the
true vector x and its approximation x̂, for all p ∈ [1, 2]. These
bounds are new even for conventional sparsity and of course
also for group sparsity. For the case where the measurement
matrix consists of random sub-Gaussian samples, we have de-
rived bounds for the number of samples that suffice for group
sparse recovery. When all groups have the same size, our bounds
are the same as known bounds, while our bounds are less con-
servative when group sizes are not all equal. We have illustrated
our approach through numerical examples.

There are two interesting avenues of research that are worth
pursuing. First, our results extend those in [2] to conventional
and group sparsity in terms of the RIP (or group RIP) coefficient
of order δtk when t > 1. It appears worthwhile to see whether
the approach presented here can also be applied to the case
t ∈ (0, 4/3) studied in [4]. Second, there is yet another model
of sparsity referred to as “joint” sparsity in [16] and [17]. It
would be worthwhile to study whether the problem of recovering
jointly sparse vector is amenable to the approach presented here.
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