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Successive Localization and Beamforming in 5G
mmWave MIMO Communication Systems

Bingpeng Zhou , Member, IEEE, An Liu , Senior Member, IEEE, and Vincent Lau, Fellow, IEEE

Abstract—Beamforming is an attractive technique to improve
the system performance for multi-input multi-output (MIMO)
communications. Previous works mainly focus on improving the
data transmission quality. However, the potential of beamform-
ing for improving the localization quality is not yet fully studied.
In this paper, we focus on active beamforming to reduce the user
equipment (UE) localization error for millimeter-wave MIMO sys-
tems. Such beamforming for localization is of challenge because
its optimization cost function (e.g., the localization error bound)
also depends on the actual UE location and instantaneous channel
states, which are unknown in advance. To address this challenge, a
novel successive localization and beamforming (SLAB) scheme is
proposed, where the long-term UE location and the instantaneous
channel state will be jointly estimated and then the beamforming
vector will be successively optimized as per the obtained estimation
results. The proposed SLAB scheme will yield a sequence of beam-
forming weights and UE location estimates, which will converge to
the stationary point of the associated optimization problem. Simu-
lation results show that the proposed SLAB scheme achievesa huge
performance gain for UE localization compared with state-of-the-
art baselines.

Index Terms—5G localization, mmWave MIMO, beamforming,
Cramer-Rao lower bound.

I. INTRODUCTION

W IRELESS localization is of increasing importance for
5G communications, particularly for the millimeter-

wave (mmWave) multiple-input-multiple-output (MIMO) sys-
tems, due to the expected rising demands of localization-based
services in the future [1]–[3].

A number of papers regarding the localization of mmWave
systems [4]– [8] have been published. For instance, active beam-
forming (BF) is proposed in [9] to enhance the localization ac-
curacy of distributed antenna systems. However, active BF for
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localization of a mmWave MIMO system has not yet been stud-
ied. Compared with radio resource optimizations for improving
communication qualities (such as maximizing the sum capac-
ity [10] and the error bit probability [11], and minimizing the
outage probability [12], the mean squared error [13] and the
power subject to minimal rate constraint [14]), radio resource
optimization targeting for localization is quite challenging for
the following reasons.

� Parameter Uncertainties: The cost function (i.e., Cramer-
Rao lower bound (CRLB) [8] on localization errors) of
the BF optimization depends on the BF vector, channel
states and the actual user location. However, the actual
user location and channel states are unknown in advance.

� Non-convexity Of the BF Optimization: The localization-
oriented BF optimization is a non-convex problem. Tradi-
tional brute-force solutions may result in a poor solution
or lead to a high computational cost.

In [15]–[18], power and bandwidth optimization for local-
ization (by optimizing the CRLB) was studied, where the user
location is assumed to be known. To overcome the first chal-
lenge, a solution from a robust optimization method is used to
optimize the radio resource for localization [19]–[21]. Specifi-
cally, a worst case CRLB with respect to (w.r.t.) an uncertainty
set of UE location parameters is used as the optimization ob-
jective. However, such a robust optimization method is usually
over-conservative, especially when the uncertainty set is large.
This uncertainty jeopardizes the associated performance gain.
To overcome the con-convexity challenge, the successive con-
vex approximation (SCA) or majorization minimization (MM)
methods are commonly used. Please refer to [22]–[25] for the
details. However, the brute-force application of these algorithms
will result in poor performance.

In this paper, we focus on the active BF optimization for
5G mmWave localization. To overcome the above challenges,
we propose a novel successive localization and beamforming
(SLAB) scheme which does not require a known UE location
or the known uncertainty set of the user location. The proposed
SLAB performs an alternating optimization of base station BF
vectors (namely the beamforming refinement (BFR)), long-term
user equipment (UE) location parameters and instantaneous
channel state (namely the localization and channel estimation
(LCE)). The proposed SLAB solution generates a sequence of
location estimates and BF updates, which is shown to approach
the performance of the genie-aided BF strategy (the optimal BF
with a known UE location). As a result, the proposed solution
achieves significant performance gains in localization accuracy
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Fig. 1. Illustration of the mmWave MIMO system for localization and BF.

over various state-of-the-art baselines. The following summa-
rizes the main contributions.

� Successive Localization and BF Optimization: The pro-
posed SLAB algorithm based on alternating optimization
of two subproblems, namely BFR and LCE, does not re-
quire any prior assumption on the UE location. Moreover,
it can achieve a significant performance gain over existing
robust optimization approaches. Unlike the conventional
UE localization methods, such as [26] and [27], which first
perform the intermediate step of time-of-arrival (ToA) or
angle-of-arrival (AoA) estimation combined with trilatera-
tion or triangulation, the proposed LCE algorithm directly
estimates the UE and scatterer locations, with problem-
specific update rule designs.

� Successive Non-Convex Approximation: To overcome the
challenge of non-convexity, we propose a novel successive
non-convex approximation method to derive an efficient
BFR algorithm for the SLAB problem. In traditional SCA
algorithm designs, a convex surrogate function is used
to derive low complexity iterations. In contrast, in our
BFR algorithm, we exploit a specific problem structure
and propose a non-convex surrogate function with closed-
form iterations, which simultaneously preserves the impor-
tant inherent structure of the BFR subproblem. Thus, the
proposed BFR algorithm has fast convergence and good
performance.

� Convergence Analysis of SLAB: The convergence analysis
of SLAB is non-trivial, since it involves a coupled dynamic
issue between the fast-time-scale channel states and the
varying BF strategies. We have addressed this issue in
associated convergence proof.

The remainder of this paper is organized as follows. Section II
presents system model. Problem formulation and outline of the
proposed SLAB scheme are presented in Section III. The novel
LCE and BRF algorithms of SLAB are elaborated in Section IV
and V, respectively. In Section VI, the associated convergence
is analyzed. Simulations results are presented in Section VII.
Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

We consider a mmWave system with J base stations (BSs),
one UE andN ′

C subcarriers. Each BS hasNB antennas, whereas
the UE has NU antennas, as shown in Fig. 1. In addition, we

Fig. 2. The frame structure and subcarrier allocation of SLAB.

consider the uniform linear antenna array for UE and BS’s.
However, the SLAB scheme proposed in this paper can be
applied to an arbitrary-shaped antenna array. At each time slot
(indexed by k), BSs will transmit downlink pilot signals for the
UE to jointly estimate the UE location (including orientation)
and channel gains based on the received signals. In the follow-
ing, we will elaborate the frame structure of the system, the
channel model, the geometric model for UE localization, and
the received signal model.

A. Frame Structure

The frame structure of the SLAB scheme is illustrated in
Fig. 2. We focus on a coherence time interval of channel statis-
tics within which the ToA, angle-of-departure (AoD) and AoA
of each channel path and the distribution of small-scale fading
coefficients are invariant. The coherence time of channel statis-
tics consists of several time slots, and the small-scale fading
coefficients are constant within each time slot. Moreover, each
time slot consists of a number of symbols, where the first M
symbols are used to transmit training BF vectors for joint local-
ization and channel estimation, and the rest are used to transmit
data, as illustrated in Fig. 2. Let ωj [n,m] ∈ CNB be the mth
training BF vector transmitted from the NB antennas of the jth
BS on the nth subcarrier.1

In order to ensure the effectiveness of SLAB, we assume
the received signals from different BSs can be identified by
UE, via a frequency-division-based coordinated multiple point
transmission technique [29]. To be specific, the N ′

C subcarriers
of each pilot are fairly allocated to those J BSs via some prede-
fined scheduling procedure, and thus each BS hasNC = N ′

C/J
subcarriers to transmit training BF pilots (we assume NC is
an integer). For instance, the subcarriers of the jth BS are
given by {j, j + J, . . . , j + (NC − 1)J}. For brevity, we use
Θj = {j, j + J, . . . , j + (NC − 1)J} to denote the index set of
subcarriers associated with the jth BS. Let ω ∈ CNB JNC M =
vec [ωj [n,m]|∀n ∈ Θj ,∀m = 1 : M,∀j = 1 : J ] be the col-
lection of the training BF vectors.

It should be noted that the realization of BF vector ω will be
determined at each BFR stage, and thus it will be viewed as an
unknown parameter to be optimized in the BFR stage. Once it
is optimized, it will keep invariant (a known signal) at the LCE

1We slightly abuse the use of “BF vector” without any ambiguity, which
incorporates both the BF matrix and the training pilot [28].
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stage. In addition, during the BFR phase at each time slot k,
the channel h[k] is still unknown. Therefore, we can only adapt
the training BF vector ω according to the channel statistics,
instead of the instantaneous channel h[k]. Moreover, we have
no assumption on the structure of training sequence,2 and we
will use a general-form expression of beamformer ω.

B. Channel Model With Limited Scattering

We consider the limited scattering in the mmWave channel.
Specifically, let uj ∈ R2 and ϕj ∈ [−π, π) be the known co-
ordinate and angular position, respectively, of the jth BS. Let
x ∈ R2 and ϑ ∈ [−π, π) be the unknown position and orienta-
tion, respectively, of the UE. We assume there are L+ 1 paths
in the scattering channel (l = 0 for the line-of-sight (LOS) path,
and l > 0 for the non-line-of-sight (NLOS) path), where L is
the maximum number of paths between the UE and any BS.
Let τl,j , θB ,l,j and θU ,l,j denote the ToA, AoD and AoA, re-
spectively, of the lth path associated with the jth BS, which are
unknown scalars. For each NLOS path, there is a scatterer with
an unknown location, as shown in Fig. 1. Let vl,j ∈ R2 be the
unknown location of the scatter associated with the lth path and
the jth BS.

For given large-scale multipath parameters τl,j , θB ,l,j , θU ,l,j ,
∀l, the channel matrix ˜Hj [k, n] ∈ CNB ×NU between the jth BS
and the UE on the nth subcarrier is given by [5]

˜Hj [k, n] = AU ,j [n]Hj [k, n]AH
B ,j [n],

whereAB ,j [n] ∈ CNB ×(L+1) is the steering matrix of the jth BS
antenna array on the nth subcarrier, and AU ,j [n] ∈ CNU ×(L+1)

is the response matrix of UE antenna array on the nth subcarrier,
which depend on the unknown angular parameters such as θB ,l,j
and θU ,l,j , given by

AB ,j [n] = [aB ,n (θB ,0,j ), . . . ,aB ,n (θB ,L,j )], (1)

aB ,n (θB ,l,j ) = vec[e−j d B π

λn
(t−1) sin θB , l , j |∀t = 1 : NB], (2)

AU ,j [n] = [aU ,n (θU ,0,j ), . . . ,aU ,n (θU ,L,j )], (3)

aU ,n (θU ,l,j ) = vec[e−j dA π

λn
(r−1) sin θU , l , j |∀r = 1 : NU], (4)

in which j =
√−1, λn denotes the wavelength associated with

subcarrier n, and dA is the distance between the antenna ele-
ments of each BS, which are known scalars.

In addition, Hj [k, n] ∈ C(L+1)×(L+1) is the frequency-
domain channel matrix on the nth subcarrier:

Hj [k, n] =
√

NBNUdiag
{

hl,j [k]e
−j2π n

N ′
C
T s

τl , j |∀l = 0 : L
}

,

wherehl,j [k] denotes the small-scale fading coefficient of the lth
path associated with the jth BS at time slot k (note that we ab-
sorb the path loss into the small-scale fading coefficient), and Ts
is the sampling period. For convenience, let h[k] ∈ CJ (L+1) =

2In practice, the training sequence structure will affect the receiver-end SNR
and hence the UE localization error, as will be implied in (20).

vec[hl,j [k]|∀l = 0 : L,∀j = 1 : J ] denote the small-scale fad-
ing channel vector, which is an unknown variable. We as-
sume h[k] ∼ CN (h[k]|0,Σ) is independent and identically
distributed over different time slots, where Σ is the variance
matrix of h[k] which is assumed to be known.

C. Geometric Model for UE Localization

Let α ∈ R2JL+3 = [x�, ϑ,v�]� be the set of location pa-
rameters, where v ∈ R2JL = vec[vl,j |∀l = 1 : L, ∀j = 1 : J ]
is the collection of unknown scatter locations. The relationship
between {x,vl,j , ϑ} and {τl,j , θB ,l,j , θU ,l,j} is given by

τ0,j =
‖x − uj‖2

c
, (5)

τl,j =
‖x − vl,j‖2 + ‖uj − vl,j‖2

c
, l > 0, (6)

θB ,0,j = arccos
(

(x − uj )�eX
‖x − uj‖2

)

− ϕj , (7)

θB ,l,j = arccos
(

(vl,j − uj )�eX
‖vl,j − uj‖2

)

− ϕj , l > 0, (8)

θU ,0,j = π + arccos
(

(x − uj )�eX
‖x − uj‖2

)

− ϑ, (9)

θU ,l,j = π + arccos
(

(x − vl,j )�eX
‖x − vl,j‖2

)

− ϑ, l > 0, (10)

where c is the light speed, and eX = [1, 0]T .

D. Received Signal Model

Let zj [k, n,m] ∈ CNU be the observation signal, i.e., themth
received pilot signal vector on subcarrier n from the jth BS at
the kth time slot, which is given by [5]

zj [k, n,m] = ˜Hj [k, n]ωj [n,m] + εj [k, n,m], (11)

where εj [k, n,m] ∈ CNU denotes the measurement noise vec-
tor at the UE side, and we generally assume εj [k, n,m] ∼ CN
(εj [k, n,m]|0NU , σ

2INU ) with the variance σ2 . Let z[k] ∈
CNU NC MJ = vec[zj [k, n,m]|∀n ∈ Θj ,∀m = 1 : M,∀j =
1 : J ] and ε[k] ∈ CNU NC MJ = vec[εj [k, n,m]|∀n ∈ Θj ,∀m
= 1 : M,∀j = 1 : J ] be the collection of received pilot signals
and noise vectors, respectively. Then, given a training BF vector
ω, the measurement signal z[k] can be expressed as a function
of the slow-timescale location parameter α, the fast-timescale
channel h[k] and the noise vector ε[k] as

z[k] = g(α,h[k];ω) + ε[k], (12)

where g(α,h[k];ω) is the measurement function, given by

g(α,h[k];ω) = G(α;ω)h[k], (13)

in which G(α;ω) ∈ CNU NC MJ×J (L+1) is called the coeffi-
cient matrix of channel vector h[k], which is dependent on the
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unknown location parameter α and given by [5]

G(α;ω) = diag[Gj |∀j = 1 : J ], (14)

Gj ∈ CNU NC M×(L+1) = vec[g(r)H
j [n,m]|∀r,∀n,∀m], (15)

g(r)
j [n,m] ∈ CL+1 = vec[g(r)

l,j [n,m]|∀l = 0 : L], (16)

g(r)
l,j [n,m] = ωH

j [n,m]μ(r)
l,j,n , (17)

μ
(r)
l,j,n ∈ CNB = vec[μ(r,t)

l,j,n |∀t = 1 : NB], (18)

μ
(r,t)
l,j,n = a(r)

U ,n (θU ,l,j )e
−j2π n

N ′
C
T s

τl , j
(a(t)

B ,n (θB ,l,j ))∗, (19)

where a(r)
U ,n (θU ,l,j ) and a(t)

B ,n (θB ,l,j ) denote the rth and the tth
elements of aU ,n (θU ,l,j ) and aB ,n (θB ,l,j ) in (4) and (2), respec-

tively. Note that, a(r)
U ,n (θU ,l,j ) and a(t)

B ,n (θB ,l,j ) are functions of
location parameters x, ϑ and vl,j via (5)–(10).

III. THE PROPOSED SLAB SCHEME

We first formulate the localization-oriented beamforming
(LOB) problem and then point out its challenges. After that, we
outline the proposed SLAB scheme and explain how it addresses
the challenges. In the next two sections, we will elaborate the
proposed SLAB scheme.

A. Problem Formulation Of LOB

Let β[k] ∈ C3JL+J+3 = [α;h[k]] be the joint variable of α
and h[k]. At each time slot k, an LCE algorithm is used to
obtain a new estimate of β[k]. The minimum mean squared
error (MSE) of a specific LCE algorithm for β[k] is given by

MSEβ[k ](ω) = Eh[k ],ε[k ]{‖β[k] − β̂[k]‖2
2},

where the expectation is taken w.r.t. ε[k] and h[k]. It should
be noted that MSEβ[k ](ω) depends on the BF vector ω. Yet,
there is no closed-form expression of MSEβ[k ](ω) due to the
nonlinear model G(α;ω) w.r.t. α. To address this challenge,
we first obtain a closed-form lower bound, i.e., CRLB [30], for
the MSE of an arbitrary LCE algorithm, and then we use the
obtained CRLB as a performance metric to optimize the BF
vector, as elaborated later. This is effective since the reduction
of the lower bound usually means the reduction of the actual
MSE, which has been widely adopted, as in [15]–[21].

Lemma 1 (Lower Bound of MSE): For a given training BF
vector ω, the MSE performance of an arbitrary LCE algorithm,
denoted by MSEβ[k ](ω), is bounded from below as

MSEβ[k ](ω) ≥ trace
(

B̄β[k ](α,Σ;ω)
)

,

where B̄β[k ](α,Σ;ω) ∈ S3JL+J+3 is called the long-term
CRLB of β[k] (in terms of the average over small-scale fad-
ing h[k]), given by (20) shown at the bottom of this page,
where K(r)

n,m

(

α;ω
) ∈ C(2JL+3)×J (L+1) and G(r)

n,m

(

α;ω
) ∈

CJ×J (L+1) will be given by (49) and (54), respectively, in
Appendix A.

Proof: The proof is given in Appendix A. �
Given this long-term CRLB, we propose to design the BF

vector ω as the following minimization problem:

PLOB : ω
 = arg min
ω

trace
(

B̄β[k ](α,Σ;ω)
)

, (21)

s.t. ‖ωj [n,m]‖2 ≤ 1, ∀n,m, j, (22)

where the BF vector ω is viewed as an unknown parameter to
be optimized. It should be noted that we consider to adopt the
“long-term” CRLB B̄β[k ](α,Σ;ω) adaptive to the statistics of
h[k] in the cost function of BF optimization, since the “instan-
taneous” CRLB adaptive to the instantaneous h[k] is practically
unavailable because the instantaneous h[k] is still unknown be-
fore BF training at time slot k.3

Challenge. However, there are two technical challenges in the
above BF optimization problem PLOB :

� B̄β[k ](α,Σ;ω) used for LOB is dependent on the true
value of α that is, however, unknown beforehand.

� PLOB is a non-convex problem w.r.t. ω.
For the unknown location parameters in the cost function,

conventional methods [19]–[21] in a power allocation regime
resort to optimizing the worst case CRLB within an uncer-
tain set of UE location parameters. These methods are usually
over-conservative, especially when the uncertainty set of the
UE location is large, thus jeopardizing the associated perfor-
mance gain. Regarding the non-convex problem, conventional
algorithms such as [31] resort to optimizing the BF vector ω via
maximizing the Fisher information matrix (FIM, i.e., inverse
CRLB), where the FIM constraint is formulated as a linear ma-
trix inequality (LMI). However, due to the semidefinite positive
approximation and rank relaxation, there will be a non-ignorable
performance loss in these methods.

3The CRLB B̄β [k ] (α,Σ; ω) in (20) contains two types of CRLB
sub-matrices, i.e., the location-related CRLB (the (2JL + 3) × (2JL +
3) left-top submatrix, denoted by B̄α(α,Σ; ω)) and the channel-related
CRLB (the (JL + J ) × (JL + J ) right-bottom submatrix, denoted by
B̄h [k ] (α,Σ; ω)), which might be in different scales. In practice, we can ad-
just them into the same scale via matrices normalization over the corresponding
sub-matrix traces, as illustrated in (23),

B̃β [k ] (α,Σ; ω) =

⎡

⎢

⎣

B̄α(α,Σ ;ω)

trace
(

B̄α(α,Σ ;w [0 ])
) 0(2J L+3)×J (L+1)

0H
(2J L+3)×J (L+1)

B̄h [k ] (α,Σ ;ω)

trace
(

B̄h [k ] (α,Σ ;w [0 ])
)

⎤

⎥

⎦
.

(23)

where w[0] is the realization of BF vector ω at the initial time slot k = 0.
Then, the normalized CRLB B̃β [k ] (α,Σ; ω) can be adopted as the new cost
function in (21) to take care of the different scaling issue, which will not affect
the structure of the proposed BFR method.

B̄β[k ](α,Σ;ω) = σ2

(

∑

r,n,m

[

K(r)
n,m

(

α;ω
)

Σ
(

K(r)
n,m

(

α;ω
))H 0(2JL+3)×J (L+1)

0H
(2JL+3)×J (L+1)

(

G(r)
n,m (α;ω)

)HG(r)
n,m (α;ω)

])−1

. (20)
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Fig. 3. Illustration of the main SLAB diagram and the associated time line.

B. Outline of the SLAB Scheme

To address the above challenges, we propose a novel SLAB
scheme to find a stationary point of PLOB (the optimized train-
ing BF vector), and simultaneously obtain the estimate of loca-
tion parameters and channel state at each time slot.

Specifically, starting from an initial BF vector w[1] at time
slot k = 1,4 we alternately update the estimate of joint parameter
[

α;h[k]
]

and optimize the BF choice w[k], until the obtained
BF sequence {w[k]} and the location parameter estimate se-
quence {ᾱ[k]} converge. Thus, at each time slot k, the SLAB
scheme is comprised of two stages, i.e., the joint localization and
channel estimation (LCE) stage and the BF refinement (BFR)
stage. At the LCE stage, the estimate of location parameter α is
updated and the channel parameter h[k] is estimated based on
the fresh measurements z[k]. Then, at the BFR stage, the BF vec-
tor ω will be refined based on the updated location parameter
estimate ᾱ[k] from the LCE stage (via minimizing the long-
term CRLB trace

(

B̄β[k ](ᾱ[k],Σ;ω)
)

over ω). Afterwards,
BSs will transmit new pilot signals by using the newly opti-
mized BF vector w[k + 1], and the new measurement z[k + 1]
will be received at the UE. Based on z[k + 1], the UE will fur-
ther update its location parameter estimate ᾱ[k + 1] using the
LCE algorithm (i.e., the new LCE stage again). This alternating
optimization process between LCE and BFR will repeat until
{w[k]} and {ᾱ[k]} converge. The main diagram of SLAB is
illustrated in Fig. 3. The LCE and BFR stages are outlined as
follows.

Outline of the LCE Stage: At the kth time slot, the LCE stage
is to determine the location estimate ᾱ[k] (based on a fusion
criterion) and the channel estimate ĥ[k], as follows.

Firstly, a new estimate β̂[k] =
[

α̂[k]; ĥ[k]
]

is determined by
solving the following optimization problem:

A
(LCE)
SLAB : β̂[k] = arg min

β
‖z[k] − g(β;w[k])‖2

2 , (24)

where it should be noted that the measurement z[k] used for LCE
depends on the training BF vector w[k] obtained in the previous
BFR stage. The details of the LCE algorithm to estimate α̂[k]
and ĥ[k] will be elaborated in Section IV.

4We use w[k] to denote the realization of ω at the kth time slot.

Secondly, once a new estimate α̂[k] is obtained as above, the
UE location parameter ᾱ[k] will be updated by fusing the new
estimate α̂[k] from fresh measurement z[k] and the previous
result ᾱ[k − 1] in the following manner:

ᾱ[k] = (Λ[k])−1(Λ[k − 1]ᾱ[k − 1] + Λ� [k]α̂[k]
)

, (25)

where Λ [k − 1] ∈ S2JL+3 is the overall estimation precision
matrix at the previous time slot, Λ� [k] ∈ S2JL+3 is the esti-
mation precision matrix associated with the fresh measurement
z[k] at the current time slot, and Λ[k] ∈ S2JL+3 is the overall
estimation precision matrix obtained so far, given by5

Λ[k] = Λ[k − 1] + Λ� [k], (26)

Λ� [k] =
(

Bα(α̂[k], ĥ[k];w[k])
)−1

, (27)

where Bα(α̂[k], ĥ[k];w[k]) ∈ S2JL+3 is the CRLB of α, de-
pending on the BF vector w[k] obtained at the previous BFR
stage. The CRLB of α is actually the (2JL+ 3) × (2JL+ 3)
top-left sub-matrix of CRLB matrix Bβ[k ](α̂[k], ĥ[k];w[k])
of joint variable β[k]; that is to say, Bα(α̂[k], ĥ[k];w[k]) =
[Bβ[k ](α̂[k], ĥ[k];w[k])][1:(2JL+3)]×[1:(2JL+3)] , and the joint-

variable CRLB Bβ[k ](α̂[k], ĥ[k];w[k]) ∈ S3JL+J+3 is given
by (47). We set the initial fusion precision Λ[0] = 0.

Outline of the BFR Stage: The BFR stage is to derive a refined
BF vector w [k + 1] for the next LCE stage at time slot (k + 1)
by minimizing an approximate long-term CRLB, i.e.,

A
(BFR)
SLAB : w[k + 1] = arg min

ω
trace

(

B̄β[k ](ᾱ[k],Σ;ω)
)

(28)

s.t. ‖ωj [n,m]‖2 ≤ 1, ∀j, n,m. (29)

A
(BFR)
SLAB is non-convex w.r.t. ω, and the BFR algorithm to

solve A
(BFR)
SLAB will be given later in Section V. As such, the

overall SLAB scheme is summarized in Algorithm 1. By alter-
nately repeating the LCE and BFR stages, the SLAB scheme
will yield a gradually-refined BF vector w[k] and location pa-
rameter estimate ᾱ[k], until w[k] and ᾱ[k] converge.

IV. THE PROPOSED LCE ALGORITHM

In this section we will elaborate the LCE algorithm to solve
A

(LCE)
SLAB and then we will elaborate the BFR algorithm to solve

A
(BFR)
SLAB in the next section.

A. Nature of the LCE Problem

It should be noted that A
(LCE)
SLAB is a non-convex optimization

problem w.r.t. (α,h[k]). A number of optimization methods can
be used to find the globally optimal solution to a non-convex
problem, e.g., the branch-and-band algorithm [32]. However,
such a global search algorithm usually has a high computational

5Note that we have assumed that h[k] is independently and identically dis-
tributed, and thus there is no channel estimate gain from the previous time slots.
Hence, the filtering of β̂[k] will equivalently reduce to the filtering of ᾱ[k]
(given by (25)) in conjunction with the independent estimate of h[k] (will be
given by (30)), without loss of filtering performance.
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Algorithm 1: The Proposed SLAB Scheme.

Input: The initial measurement z[k], k = 1, and
channel variance matrix Σ.

1: Determine the initial BF choice w[1].
2: While not satisfied do (for k = 1 : K)
3: Determine the geometric parameter estimate ᾱ[k]

and channel estimate ĥ[k] from z[k] associated
with BF choice w[k], by using Algorithm 2 (LCE).

4: Determine the BF vector w[k + 1] based on
B̄β[k ](ᾱ[k],Σ;ω), by using Algorithm 3 (BFR).

5: Receive new z[k + 1] dependent on w[k + 1].
6: End

Output: {ᾱ[k], ĥ[k]}, and w[k].

complexity. Hence, we propose a successive linear least square
(SLLS)-based low-cost algorithm to find a stationary solution
to A

(LCE)
SLAB via leveraging the hybrid convexity/non-convexity

structure.
Since the measurement function g(α,h[k];w[k]) in (13) is

linear w.r.t. the channel h[k], there is a hidden convex structure
w.r.t. h[k]. As a result, the LCE problem A

(LCE)
SLAB in (24) is

convex for h[k] (conditioned on ᾱ[k]) but non-convex for α.

B. The SLLS-Based LCE Algorithm

By exploiting such a hidden convex structure, we decompose
the LCE problem A

(LCE)
SLAB into two components, (convex) chan-

nel estimate and (non-convex) UE localization. Then, we solve
A

(LCE)
SLAB by alternately optimizing the convex component h[k]

and the non-convex component α.
1) Channel Estimate: For the convex component h[k], we

derive its least square solution (which is the optimal estimate
due to the linear Gaussian model (12)), depending on a fresh
guess α�

[i] [k] of α (elaborated by (31)). At the ith iteration,

given α�
[i] [k], h

�
[i] [k] is given by

h�[i] [k] =
(

GH(α�
[i] [k])

)†z[k], (30)

where † is the pseudo-inverse, and G(α�
[i] [k]) dependent on

α�
[i] [k] is given by (14). Finally, when the iteration converges, we

have ĥ[k] = h�[i] [k]. The fresh guess α�
[i] [k] at the ith iteration

within the kth time slot is determined as follows.
2) UE Localization: For the non-convex problem associated

with α, we employ the SLLS method to find a stationary solution
to A

(LCE)
SLAB for α, by exploiting a convex approximation to

the cost function in (24). Specifically, we iteratively solve the
convex subproblems A

(LCE)
SLAB ,[i] to first find a candidate update

α◦
[i+1][k], for i = 1 : MI ,

A
(LCE)

SLAB ,[i] : α◦
[i+1][k] = arg min

α
fS
(

α;α�
[i] [k],h

�
[i] [k]

)

, (31)

where fS
(

α;α�
[i] [k],h

�
[i] [k]

)

denotes the surrogate function of
the original cost function in (24), given by (32) shown at
the bottom of this page, where ∇α g

(

α�
[i] [k];h

�
[i] [k],w[k]

) ∈
C(2JL+3)×JMNU NC is given by (56) in Appendix B.

Note that fS(α;α�
[i] [k],h

�
[i] [k]) is different from the standard

gradient-based surrogate function fG
(

α;α�
[i] [k],h

�
[i] [k]

)

given
by (33) shown at the bottom of this page, that is usually adopted
in conventional localization methods, for instance [33] and [34].
In addition, fS(α;α�

[i] [k],h
�
[i] [k]) preserves the second-order

structure of the original cost function in (24). Therefore, it can
lead to a faster convergence speed than conventional gradient-
based methods, which will be elaborated and confirmed later by
theorem 2 and also verified by simulations.

At each iteration, since A
(LCE)

SLAB ,[i] is strictly convex, we can
give the closed-form expression of α◦

[i+1][k] as in (34) shown
at the bottom of this page, where p[i] [k] is its update direction
that is different from the gradient.

Then, given p[i] [k], the new update α�
[i+1][k] is given by

α�
[i+1][k] = α�

[i] [k] + γ[i]p[i] [k], (35)

where γ[i] is the step size subject to the Armijo rule (36) shown

at the bottom of the next page, in which f(α;h�[i] [k]) = ‖z[k] −
g(α;h�[i] [k],w[k])‖2

2 is the cost function depending on h�[i] [k],

and ∇αf(α�
[i] [k];h

�
[i] [k])=∇H

α g(α�
[i] [k];h

�
[i] [k],w[k])(g(α�

[i]

[k];h�[i] [k],w[k]) − z[k]) ∈ R2JL+3 is the gradient vector of

fS
(

α;α�
[i] [k],h

�
[i] [k]

)

=
∥

∥z[k] − g
(

α�
[i] [k];h

�
[i] [k],w[k]

)−∇H
α g
(

α�
[i] [k];h

�
[i] [k],w[k]

)(

α − α�
[i] [k]

)∥

∥

2
2 (32)

fG
(

α;α�
[i] [k],h

�
[i] [k]

)

= ‖z[k] − g
(

α�
[i] [k];h

�
[i] [k],w[k]

)‖2
2 + ‖α − α�

[i] [k]‖2
2

− 2
(

z[k] − g
(

α�
[i] [k];h

�
[i] [k],w[k]

))H∇H
α g
(

α�
[i] [k];h

�
[i] [k],w[k]

)(

α − α�
[i] [k]

)

. (33)

α◦
[i+1][k] = α�

[i] [k] +
(∇H

α g
(

α�
[i] [k];h

�
[i] [k],w[k]

))†(z[k] − g
(

α�
[i] [k];h

�
[i] [k],w[k]

))

︸ ︷︷ ︸

p [ i ] [k ]

. (34)
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the original cost function f(α�
[i] [k];h

�
[i] [k]) w.r.t. α around α =

α�
[i] [k]. A legal γ[i] can be obtained by starting from a certain

γ[i] > 0 and repeatedly trying γ[i] = νγ[i] with ν ∈ (0, 1) until
(36) is satisfied.

The obtained solution in (34) combined with (35) and (25)
will finally result in a closed-form undate of ᾱ[k] for the non-
convex problem A

(LCE)
SLAB , as summarized in Algorithm 2.

C. Analysis of SLLS-Based Location Update

We shall analyze the convergence of SLLS-based localization
and quantify the associated convergence rate.

Theorem 1 (Convergence of SLLS-based Localization): If
the gradient matrix ∇αg(α�

[i] [k];h
�
[i] [k],w[k]) is full-column-

rank, then α�
[i] [k] will converge to a stationary point of the

problem A
(LCE)
SLAB in (24), as the iteration number i→ ∞.

Proof: See Appendix C. �
It should be noted that the update direction of the LCE-based

localization, i.e., p[i] [k], is different from that of the traditional
gradient descent (GD)-based methods [33], [34], and this can
achieve a second-order convergence rate as given in the follow-
ing theorem. Intuitively, this is because the proposed surrogate
function retains part of the second-order structure of the original
objective function.

Theorem 2 (Second-Order Convergence Rate of SLLS): If
the gradient matrix ∇αg(α�

[i] [k];h
�
[i] [k],w[k]) is full-column-

rank and the initial point α�
[0] [k] is sufficiently close to an

arbitrary locally optimal solution α•[k] to A
(LCE)
SLAB , then the

convergence of the SLLS-based location parameter estimate
error is quadratic, i.e.,

∥

∥α•[k] − α�
[i+1][k]

∥

∥

2 = O(∥∥α•[k] − α�
[i] [k]

∥

∥

2
2

)

. (37)

Proof: See Appendix D. �

D. Summary of LCE Algorithm

Given an initial point α�
[0] [k], the inner iterations of LCE stage

can find a stationary solution of (α�
[i] [k],h

�
[i] [k]) to A

(LCE)
SLAB

in (24), as i→ ∞. Once inner iterations converge, the fresh
estimate of α and h[k] is determined by α̂[k] = α�

[i] [k] and

ĥ[k] = h�[i] [k], respectively. Then, based on α̂[k] and the pre-
vious result ᾱ[k − 1], the geometric parameter estimate will be
updated to be ᾱ[k] as per (25). The pseudo-code of the LCE
approach for parameter fusion is summarized in Algorithm 2.

In addition, at the initial time slot, we use multiple parameter
samples to generate a good initial point α�

[0] [1]. Namely, we
randomly generate multiple samples over the parameter space
of α, try all samples and then choose the best sample with the
minimum cost function value (see (24)) as the initial point. In
the following time slot k ≥ 2, the initial point is chosen to be
result of the last time slot, i.e., α�

[0] [k] = ᾱ[k − 1].

Algorithm 2: The Proposed SLLS-based LCE Algorithm.

Input: The measurements z[k] and ᾱ[k − 1].
1: Initialize α�

[i] [k] (for i = 0).
2: While not converge do (for i = 1 : MI)
3: Determine the channel state h�[i] [k] based on (30).

4: Find the best solution α�
[i] [k] to A

(LCE)
SLAB ,[i] based on

the closed-from update equation (35), given the
previous-iteration result α�

[i−1][k] and h�[i−1][k].
5: End
6: Determine the fresh estimate α̂[k] = �{α�

[i] [k]}.
7: Update the location parameter ᾱ[k] by fusing α̂[k] and

ᾱ[k − 1] based on (25).
8: Determine the channel estimate ĥ[k] = h�[i] [k].

Output: The geometric parameter estimate ᾱ[k] and
channel estimate ĥ[k].

V. THE PROPOSED BFR ALGORITHM

In this section, we will elaborate the BFR algorithm to solve
subproblem A

(BFR)
SLAB in the proposed SLAB scheme. Let’s start

to explicate the motivation and then we give an outline of the
proposed BFR algorithm to explain how it addresses the chal-
lenge in subproblem A

(BFR)
SLAB .

A. Outline of the Proposed BFR Method

For the non-convex optimization in power allocation, conven-
tional algorithms, e.g., [31], resort to optimizing the BF vector
ω to maximize the localization FIM, where the FIM constraint
is formulated as an LMI form. However, due to the semidefi-
nite positive approximation and rank relaxation, there will be a
non-ignorable performance loss in these methods.

To address the con-convex problem A
(BFR)
SLAB in (28), in this

section, we propose a novel successive concave optimization
algorithm (named BFR) to iteratively optimize ω, which will
achieve a stationary solution to A

(BFR)
SLAB (as elaborated later).

We will show that at each time slot, the best BF vector for UE
localization is the principal eigenvector (one with the largest
eigenvalue) of the certain BFR feature matrix that is dependent
on the LCE result ᾱ[k].

Specifically, let w[i] [k] be the BF solution at the ith iter-
ation of the BFR algorithm, and let κ(ω) be the cost func-
tion of A

(BFR)
SLAB , i.e., κ(ω) = trace((J̄ β[k ](ᾱ[k],Σ;ω))−1),

where J̄ β[k ](ᾱ[k],Σ;ω) ∈ S3JL+J+3 is the FIM of β[k],
given by (38) shown at the bottom of the next page, where
B̄h[k ](ᾱ[k],Σ;w[0]) and B̄h[k ](ᾱ[k],Σ;w[0]) are given by
(23). The surrogate function at the (i+ 1)th iteration, de-
noted as κS(ω;w[i] [k]), is chosen to be a concave approxi-
mation of cost function κ(ω) around w[i] [k], given by (39)
shown at the bottom of the next page, where the informative

f(α�
[i] [k] + γ[i]p[i] [k];h

�
[i] [k]) ≤ f(α�

[i] [k];h
�
[i] [k]) + aγ[i]�{∇H

αf(α�
[i] [k];h

�
[i] [k])p[i] [k]}, for some a > 0. (36)
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term Gj,n (ᾱ[k];w[i] [k]) ∈ SNB , called the feature matrix of
LCE, is given by (40) shown at the bottom of this page,
where C(ᾱ[k];w[i] [k]) is a constant independent to ω, while
Gj,n (ᾱ[k];w[i] [k])∈ SNB and Hj,n (ᾱ[k];w[i] [k])∈ SNB is
given by (60) and (61), respectively, in Appendix E.

This surrogate κS(ω;w[i] [k]) in (39) is based on the first-
order Taylor expansion of κ(ω) around J̄ β[k ](ᾱ[k],Σ;ω) =
J̄ β[k ](ᾱ[k],Σ;w[i] [k]). Its properties, which are useful for un-
derstanding the structure of the proposed BFR algorithm and its
convergence behavior, are summarized as follows.

Lemma 2: [Properties ofκS(ω;w[i] [k])] The surrogate func-
tion κS(ω;w[i] [k]) is locally tight around ω = w[i] [k], i.e.,
(i) κS(w[i] [k];w[i] [k]) = κ(w[i] [k]), and (ii) its gradient vec-
tor satisfies ∇ωκS(w[i] [k];w[i] [k]) = ∇ωκ(w[i] [k]), where
∇ωj [n,m ]κ(w[i] [k]) ∈ CNB is given by (46), ∀j, n,m.

Proof: These properties can be directly verified based on
(28), (39) and (46), by letting ω = w[i] [k]. �

Note that we have used a concave surrogate function, instead
of a convex one as in conventional SCA methods. This is because
κS(ω;w[i] [k]) preserves some structure of the original problem

A
(BFR)
SLAB . Hence, it is a better approximation of κ(ω) with faster

convergence. Moreover, we can obtain a closed-form BF update
in (44) even if κS(ω;w[i] [k]) is non-convex. Thus, the resulting
algorithm has a low computational cost.

B. Determination of the BF Update Direction

At the (i + 1)th iteration of the BFR algorithm, given the
previous BF vector w[i] [k], the following minimization problem

is first solved to obtain the candidate update w�
[i+1][k]:

A
(BFR)

SLAB ,[i+1] : w�
[i+1][k] = arg min

ω
κS(ω;w[i] [k])

s.t. ‖ωj [n,m]‖2 ≤ 1,∀j, n,m, (41)

and w�
[i+1][k] is used to determine a feasible update direction

vector d[i+1][k] ∈ CNB JNC M for BF as follows,

d[i+1][k] = w�
[i+1][k] − w[i] [k]. (42)

Since the channel coefficients {hl,j [k]|∀l,∀j} are identically

and independently distributed, A
(BFR)

SLAB ,[i+1] in (41) can be de-

composed into a series of subproblems {A (BFR)
j,[i+1] |j = 1 : J}

associated with all BSs, as given in (43) shown at the bottom of
this page. As a result, the BFR problem A

(BFR)
SLAB ,[i+1] associated

with various BSs can be solved in a parallel manner, which will
significantly reduce the calculation time. In addition, although
the subproblem A

(BFR)
j,[i+1] is non-convex w.r.t. ω, we find that it

is identical to Rayleigh quotient maximization [35], and thus
each component w�

j,[i+1][k, n,m] of w�
[i+1][k] in (41) is exactly

the principal eigenvector (the eigenvector associated with the
largest eigenvalue) of Gj,n (ᾱ[k];w[i] [k]).

C. Update of the BF Vector

Once obtaining d[i+1][k] via (42), the BF vector will be up-
dated based on the Armijo rule as follows,

wj,[i+1][k, n,m] = wj,[i] [k, n,m] + γ′[i]dj,[i+1][k, n,m],
(44)

where γ′[i] > 0 is the step length determined by the Armijo
rule [40] in (45) shown at the bottom of the next page, where
∇ωj [n,m ]κ(wj,[i] [k, n,m]) is the derivative of κ(ωj [n,m])
w.r.t. ωj [n,m] at ωj [n,m] = wj,[i] [k, n,m], which is given
by (46) shown at the bottom of the next page, and INB is the
NB ×NB identity matrix. Specifically, starting with a certain
step size γ′[i] > 0, the Armijo rule repeatedly decreases γ′[i] as
γ′[i] = νγ′[i] for some ν ∈ (0, 1) until the condition in (45) is
satisfied.

J̄ β[k ](ᾱ[k],Σ;ω) = σ−2
∑

r,n,m

⎡

⎣

K(r)
n,m

(

ᾱ[k];ω
)

Σ
(

K(r)
n,m

(

ᾱ[k];ω
))H 0(2JL+3)×J (L+1)

0H
(2JL+3)×J (L+1)

(

G(r)
n,m (ᾱ[k];ω)

)HG(r)
n,m (ᾱ[k];ω)

⎤

⎦ . (38)

κS(ω;w[i] [k]) = C(ᾱ[k];w[i] [k]) −
∑

n∈Θ j ,
j=1:J,
m=1:M

ω�
j [n,m]Gj,n (ᾱ[k];w[i] [k])ω∗

j [n,m]. (39)

Gj,n (ᾱ[k];w[i] [k]) = Gj,n (ᾱ[k];w[i] [k])
︸ ︷︷ ︸

UE localization feature matrix

+ Hj,n (ᾱ[k];w[i] [k])
︸ ︷︷ ︸

Channel estimate feature matrix

. (40)

A
(BFR)
j,[i+1] : w�

j,[i+1][k, n,m] = arg max
ωj [n,m ]

ω�
j [n,m]Gj,n (ᾱ[k];w[i] [k])ω∗

j [n,m]
‖ωj [n,m]‖2

2
. (43)
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Algorithm 3: The Proposed BFR Algorithm.

Input: LCE result ᾱ[k] and channel variance matrix Σ.
1: Determine an initial point ŵ[0] [k],
2: While not converge do (for i = 1 : MI )
3: Determine the feature matrix Gj,n (ᾱ[k];w[i] [k])

based on w[i] [k] and ᾱ[k], ∀n, j.
4: Determine w�

j,[i] [k, n,m] based on the spectral
decomposition of Gj,n (ᾱ[k];w[i] [k]), ∀n,m, j.

5: Determine the BF direction dj,[i+1][k, n,m] based
on (42), ∀n,m, j.

6: Determine the step length γ′[i] as per (45).
7: Update the BF solution w[i] [k] based on (44).
8: End
9: Return w[k + 1] = w[i] [k] for the next round of LCE.

Output: The best BF choice w[k + 1].

This will finally result in a closed-form update of w[k] for
the non-convex BFR problem A

(BFR)
SLAB in (28), via combining

with (44), as summarized in Algorithm 3.
If d[i+1][k] is a descent direction, (i.e., the inner product

∇H
ω κ
(

w[i] [k]
)

d[i+1][k] < 0 for any non-stationary w[i] [k]), this
Armijo rule will ensure a sufficient reduction of cost function
value such that the obtained BF solution w[i] [k] converges to a

stationary solution to the overall BFR problem A
(BFR)
SLAB . How-

ever, it is highly non-trivial to prove that d[i+1][k] is a descent
direction when the surrogate function is non-convex. This chal-
lenge will be addressed in Section VI.

D. Summary of the Overall BFR Algorithm

The pseudo-code of the novel BFR algorithm is summa-
rized in Algorithm 3. Start from an initial point wj,[0] [k, n,m],
∀j, n,m. The proposed BFR algorithm will first determine
w�
j,[i+ 1][k, n,m] based on the spectral decomposition of fea-

ture matrix Gj,n (ᾱ[k];w[i] [k]) dependent on the previous BF
solution w[i] [k], and then determine the feasible BF update di-
rection dj,[i+ 1][k, n,m] as per (42), and finally update the BF
vector as per (44). Once obtaining the new BF choice w[k + 1],
each BS will transmit the new symbols based on w[k + 1], and
thus the new measurement z(k+ 1) used for the next LCE stage
is dependent on w[k + 1].

The Characteristics of our BFR Solution: The BFR-related
feature matrix Gj,n (ᾱ[k];w[i] [k]) is the combination of two
individual features Gj,n (ᾱ[k];w[i] [k]) and Hj,n (ᾱ[k];w[i] [k])
w.r.t. the UE localization and channel estimate, respectively, as
given in (40). This structure explicitly shows how the physical
nature of UE localization and channel estimate (characterized

by their respective feature matrices) affect the BFR result. In
addition, we can also see from (40) that the localization-based
BF optimization and the channel-estimate-based BF optimiza-
tion in the BFR problem can be decoupled from each other
due to the problem-specific surrogation function design in (39).
Furthermore, the obtained BF solution is adaptive to the pilot
symbols. In addition, unlike the traditional gradient-descent al-
gorithm where the Taylor expansion is directly applied w.r.t. the
variable (say ω), we apply the first-order expansion w.r.t. the
information matrix J̄ β[k ](ᾱ[k],Σ;ω), rather than ω. Hence,
our surrogate function κS(•) preserves the inherent structure
of J̄ β[k ](ᾱ[k],Σ;ω). This will lead to a more accurate ap-
proximation and thus result in a fast convergence of the BF
optimization.

VI. CONVERGENCE ANALYSIS

By using the proposed SLAB scheme above, we can obtain
two sequences {ᾱ[k]|∀k = 1 : K} and {w[k]|∀k = 1 : K} of
the UE location parameter and the BF vector, respectively. In this
section, we shall establish their convergence behaviors, which
justifies the proposed SLAB scheme.

A. Challenges and Assumptions

Challenges. It is not easy to establish the convergence of the
SLAB scheme, due to the following challenges.

� Uniqueness of the Globally Optimal Solution: The unique-
ness of the globally optimal solution of β[k] to the LCE
problem A

(LCE)
SLAB is not clear, due to the nonlinear system

model. This issue concerns the solvability of the mmWave
MIMO-based localization problem and the stability of the
obtained BF sequence.

� Coupling Dynamics: In the proposed SLAB scheme, the
channel estimate and BF refinement are coupled with each
other. Thus, the coupled dynamics of h[k] and w[k] will
affect the convergence of the SLAB scheme.

Assumptions. To facilitate the SLAB convergence analysis,
we have the following assumptions on the SLAB system.

(A1) NCNUJM ≥ 3JL+ J + 3 is satisfied.
(A2) Gradient matrix ∇β[k ]g(βtrue [k];w[k]) is full-column-

rank, where βtrue [k] denotes the true value of β[k].
(A3) The mean of measurement error ε[k] is zero.

The first assumption means the number of pilots should be
not less than the number of unknown parameters in the SLAB
scheme, which is satisfied by usual mmWave MIMO systems.
The second assumption means the rank of the gradient matrix
should be equal to the number of unknown parameters, which

κ
(

wj,[i] [k, n,m] + γ′[i]dj,[i+1][k, n,m]
) ≤ κ

(

wj,[i] [k, n,m]
)

+ aγ′[i]�{∇H
ωj [n,m ] κ

(

wj,[i] [k, n,m]
)

dj,[i+1][k, n,m]}. (45)

∇ωj [n,m ]κ
(

wj,[i] [k, n,m]
)

= −2

(‖wj,[i] [k, n,m]‖2
2INB − w∗

j,[i] [k, n,m]w�
j,[i] [k, n,m]

)

Gj,n (ᾱ[k];w[i] [k])w∗
j,[i] [k, n,m]

‖wj,[i] [k, n,m]‖4
2

.

(46)
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is usually true for the mmWave system (due to A1) and can be
verified by numerical results.

We also assume a global search method, e.g., a branch-and-
bound algorithm [32], is used for the LCE problem such that a
globally optimal solution to A

(LCE)
SLAB is obtained at each LCE

step. It should be noted that although the convergence is estab-
lished for the case of a high-complexity global LCE algorithm,
simulation results show that the proposed SLAB scheme with
the low-cost SLLS-based LCE algorithm in Section IV still
achieves a large performance gain over baselines.

B. Convergence Behavior

1) Convergence of LCE: We give the following Lemma 3 to
address the first challenge above.

Lemma 3 (Uniqueness of the Globally Optimal Solution):
If A1 is satisfied, there is a unique globally optimal solution
(α
 [k],h
 [k]) to A

(LCE)
SLAB in (24) at each LCE stage.

Proof: The proof is given in Appendix F. �
Lemma 3 ensures the mmWave MIMO-based localization

problem is solvable. We further have the following theorem to
quantify the order of ‖β
 [k] − βtrue [k]‖2 w.r.t. ‖ε[k]‖2 .

Theorem 3 (Bounded LCE Error): Assume A1–A2 are sat-
isfied. At each time slot k, the LCE error is bounded from
above, i.e., ‖β
 [k] − βtrue [k]‖2 ∼ O( ‖ε[k ]‖2

‖∇H
β[k ] g(β[k ],w [k ])‖2

).

Proof: The proof is presented in Appendix G. �
This means, if those conditions are satisfied, the LCE error is

finite and proportional to the noise power.
2) Convergence of BFR: Since the first-order optimality

condition [36] presents the necessary condition of the optimal
solution, we use the mismatch of this condition w.r.t. the ob-
tained BF solution to characterize its optimality and to quantify
the order of this mismatch w.r.t. measurement errors. Prior to
this, we give a theorem to show that the obtained BF solution
at each time slot k is a stationary solution to the BFR problem
A

(BFR)
SLAB , for a given ᾱ[k].
Theorem 4 (Stationary Solution to BFR Problem): Assume

A1–A3 are satisfied. At each time slot k, the BFR algorithm
converges to a stationary solution w[k] to problem A

(BFR)
SLAB , as

the iteration number i→ ∞.
Proof: The proof is presented in Appendix H. �
Due to the inevitable LCE error in ᾱ[k], the optimality of the

BF solution w[i] [k] will be affected, which is quantified by the
first-order optimality condition mismatch as follows.

Theorem 5 (Bounded Optimality Condition Mismatch): If
A1–A3 are satisfied, at time slot k, the obtained stationary BF
solution w[k] approximately satisfies the first-order optimality
condition associated with αtrue , with a deviation Wmis :

�{∇H
ωtrace

(

B̄β[k ]
(

αtrue ,Σ;w[k]
))

(ω − w[k])} ≥Wmis

holds ∀ω such that ‖ωj [n,m]‖2 ≤ 1, ∀j, n,m; and meanwhile
the optimality deviation follows Wmis ∼ O(‖ε[k]‖2), where
∇ωtrace

(

B̄β[k ]
(

ᾱ[k],Σ;w[k]
)) ∈ CNB JNC M is the deriva-

tive of trace
(

B̄β[k ]
(

ᾱ[k],Σ;ω
))

w.r.t. ω at ω = w[k].
Proof: The proof is presented in Appendix I. �
This implies that the UE-location-error-caused beam mis-

alignment will be gradually mitigated, due to the gradually

decreased UE location estimate error via parameter filtering. For
a finite UE location error (or equivalently a finite ‖ε[k]‖2), the
beam misalignment is bounded. Thus, the proposed BFR algo-
rithm will achieve a robust BF solution against the measurement
noise. Therefore, the overall convergence of the SLAB scheme
is established.

VII. NUMERICAL RESULTS

In this section we shall provide numerical results to demon-
strate the performance of the proposed SLLS algorithm for UE
localization and also to verify the performance gain of the pro-
posed BFR algorithm for BF optimization.

A. Simulation Settings

We choose the number of BSs to be J = 3 and the num-
ber of subcarriers to be N ′

C = 30. We set L = 1, M = 20,
SNR = 20 dB, NB = NU = 4, carrier frequency fC = 6 GHz,
sampling period Ts = 10 ns and light speed c = 3 ∗ 108 m/s.
Thus, λn and dA can be determined via λn = c

n
N ′

C
T s

+fC
and

dA = c/fC/2, respectively. We assume the locations of UE and
BSs are at random within a squared area of 103 × 103 m2 , and
their orientation angles are also at random. We assume a sim-

ple path loss model for each channel, i.e., hl,j =
h ′
l , j

℘3
l , j

, where

h′l,j ∼ CN (0, 1) is the small-scale fading and ℘l,j is the path
length, namely, ℘0,j = ‖x − uj‖2 for l = 0 and ℘l,j = ‖uj −
vl,j‖2 + ‖x − vl,j‖2 for l = 1 : L. Based on this model, we
have that Σ = E{h[k]h�[k]} = IJ ⊗ diag

[

η2
l |∀l = 0 : L

]

,

where ηl = ℘−3
l,j , for each realization of BS locations and scat-

terer locations in simulations.6 For LCE, we consider the fol-
lowing algorithms as baselines.

� (GD-based LCE [33]): This directly updates the unknown
parameters by using the gradient of the LCE problem.

� (LS-based LCE [34]): This uses the gradient with an
Armijo-type line search (LS) to update the estimates of
unknown parameters.

For the BFR, we consider the following baseline methods.
� (GD-based BFR [33]): This directly uses the gradient of

the BFR problem to update BF vectors.
� (LMI-based BFR [31]): This optimizes BF vectors to

maximize the localization FIM, (i.e., inverse CRLB) by
formulating the FIM constraint as an LMI form.

B. Simulation Results

1) The Achieved RMSE of LCE: The root mean squared er-
rors (RMSEs), at the first time slot with random BF vector,
achieved by various localization algorithms are presented in
Fig. 4. We can see that the proposed SLLS algorithm can achieve
a localization error of 0.028 [m]. In addition, the SLLS algo-
rithm has a faster convergence than baseline algorithms, due to
our problem-specific parameter estimate rule design.

6We have assumed in this paper that the channel variance matrix Σ is known
and we adopt the value of Σ conditioned on the path loss ℘−3

l ,j
, while the

instantaneous channel vector h[k] and scatterer locations are unknown and
need to be estimated. In practice, the state of Σ can be estiamted by using the
variance matrix estimation method [37], [38] or alternatively using the stochastic
geometry modeling-based analystical analysis [39].
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Fig. 4. The achieved localization RMSEs of various algorithms.

Fig. 5. The achieved localization error with various BFR strategies.

Fig. 6. The achieved BFR gain v.s. the number of antennas (i.e. NB ).

2) Gain of BFR: As shown in Fig. 5, there will be a
localization error reduction owing to BFR. In addition, the
proposed BFR algorithm can achieve a satisfactory perfor-
mance gain in localization accuracy. The achieved BFR gains
v.s. the number of transceiver antennas (assuming NU = NB )
are shown in Fig. 6, where the BFR gain is defined as the
ratio between the initial CRLB (without the BFR process)
and the minimized CRLB (via using a certain BFR algo-
rithm). As expected, the more antennas lead to the larger
BFR gain. In addition, due to the non-convex rank-one con-
straint in the LMI-based BFR baseline method, there will be
some performance loss in their BF results. In addition, due to
our problem-specific surrogate function design, in which the

Fig. 7. The CDF of the achieved localization performance gain from BFR.

inherent structure of localization information matrix is pre-
served, our obtained BF update is more informative than the
gradient descent-based baseline, and hence achieves a larger
localization performance gain. The proposed BFR algorithm
thus outperforms the LMI- and GD-based methods, as shown in
Fig. 6.

In addition, we evaluate the achieved BFR gain of our pro-
posed BFR algorithm and the BFR baseline methods in diverse
scenarios. Specifically, the SNR is set as a random value rang-
ing from −20 dB to 60 dB in simulations. In addition, the
BS locations are uniformly distributed within the localization
area of 103 × 103 m2 , and the BS orientation angles are also
uniformly setup within [0, 2π), while NB and NU are fixed at
6. The settings of other parameters are the same as those in
Section VII-A. The cumulative distribution function (CDF) of
the achieved BFR gains by different BFR methods is presented
in Fig. 7. It is shown that the overall BFR gain of the proposed
BFR method is larger than that of BFR baselines under the di-
verse parameter settings given above, which implies to some
extent that the proposed BFR method can also achieve a better
performance in some worst-case scenarios with extremely poor
SNR conditions or BS deployment.

VIII. CONCLUSIONS

In this paper, localization-oriented BF for mmWave MIMO
systems is studied. A novel SLAB scheme is proposed to deter-
mine the best BF vector for UE localization and to simultane-
ously achieve the joint UE localization and channel estimate. A
closed-form CRLB is obtained to provide a performance bench-
mark for UE localization and is also used for BF optimiza-
tion. The convergence of the proposed SLAB scheme has been
established. It is shown that the proposed SLAB scheme can
achieve a huge performance gain over existing localization/BFR
approaches.

APPENDIX A
PROOF OF LEMMA 1

As per the estimate theory [30], the LCE-based CRLB Bβ[k ]
(α,h[k];ω) will be finally given by

Bβ[k ](α,h[k];ω) =
(J β[k ](α,h[k];ω)

)−1
, (47)
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where J β[k ](α,h[k];ω) is the FIM given by (48) shown

at the bottom of the page, and the derivative K(r)
n,m (α;ω) ∈

C(2JL+3)×J (L+1) is given by

K(r)
n,m (α;ω) = [ς(r)

l,j [n,m]|∀l = 0 : L,∀j = 1 : J ]. (49)

In addition, vector ς
(r)
l,j [n,m] ∈ C2JL+3 is structured as

ς
(r)
l,j [n,m] =

⎡

⎢

⎢

⎢

⎢

⎣

∑

t=1:NB

ω
(t)
j [n,m]μ(r,t)∗

l,j,n �
(r,t)
l,j,n

∑

t=1:NB

ω
(t)
j [n,m]μ(r,t)∗

l,j,n ρ
(r,t)
l,j,n

∑

t=1:NB

ω
(t)
j [n,m]μ(r,t)∗

l,j,n ῠ
(r,t)
l,j ,n

⎤

⎥

⎥

⎥

⎥

⎦

,

where μ(r,t)
l,j,n is given by (19), and ω(t)

j [n,m] is the tth element

of ωj [n,m]. Furthermore, �
(r,t)
l,j,n ∈ R2 and ρ(r,t)

l,j,n ∈ R are given
by (50) and (51) shown at the bottom of the page, respectively,
and ῠ

(r,t)
l,j,n ∈ R2JL is given by
[

ῠ
(r,t)
l,j,n

]

2l ′−1:2l ′
=
{

υ
(r,t)
l,j,n , if (l′ mod J) .= l,

02×1 , otherwise,
, (52)

∀l′ = 1 : JL, where υ
(r,t)
l,j ,n ∈ R2 is given by (53) shown at the

bottom of this page, and G(r)
n,m

(

α;ω
) ∈ CJ×J (L+1) is given by

G(r)
n,m

(

α;ω
)

= diag[g(r)H
j [n,m]|∀j = 1 : J ], (54)

where g(r)
j [n,m] is given by (16).

Based on (48), Eh[k ]{Bβ[k ](α,h[k];ω)} follows (55) shown
at the bottom of the next page, as per Jensen’s inequality for
the inverse function, where we have considered that h[k] is
independent to α and has zero-mean with variance matrix Σ.
Thus, Eε[k ]{‖β[k] − β̂[k]‖2

2} ≥ trace
(

Bβ[k ](α,h[k];ω
)

, and
Lemma 1 is proved.

APPENDIX B
GRADIENT MATRIX

The gradient matrix in (32) is given by

∇α g
(

α�
[i] [k];h

�
[i] [k]

)

=

⎡

⎢

⎢

⎣

√
NBNUDH

x (α)BH(h�[i] [k])√
NBNUdH

ϑ (α)BH(h�[i] [k])√
NBNUDH

v (α)BH
(

h�[i] [k]
)

⎤

⎥

⎥

⎦

(56)

and each term is elaborated as follows.
Firstly, B(h�[i] [k]) ∈ CJMNU NC ×JMNU NC NB (L+1) is given

by B(h�[i] [k]) = diag[b�
j [k, n,m]|∀r, n, j,m], where bj [k, n,

m] = (INB ⊗ H�
j,[i] [k])(wj [k, n,m] ⊗ 1(L+1)) and H�

j,[i] [k]=

diag[h�l,j,[i] [k]|∀l = 0 : L], in which h�l,j,[i] [k] is the (l, j)th ele-

ment of h�[i] [k], and 1(L+1) is the (L+ 1)-dimensional full-one
vector.

J β[k ](α,h[k];ω) = σ−2
∑

r,n,m

[

K(r)
n,m

(

α;ω
)

h∗[k]h�[k]
(

K(r)
n,m

(

α;ω
))H K(r)

n,m

(

α;ω
)

h∗[k]G(r)
n,m

(

α;ω
)

(

G(r)
n,m

(

α;ω
))Hh�[k]

(

K(r)
n,m

(

α;ω
))H (

G(r)
n,m

(

α;ω
))HG(r)

n,m

(

α;ω
)

]

. (48)

�
(r,t)
l,j,n =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j2π n
cN ′

C Ts

x−uj

‖x−uj ‖2
− j dB π

λn
(t− 1) ‖x−uj ‖2

2 eY −(x−uj )(x−uj )H eY
‖x−uj ‖3

2

+ j dU π
λn

(r − 1)
cos

(

arccos

(

(x−u j )H eX
‖x−u j ‖2

)

−ϑ
)

√

1−
(

(x−u j )H eX
‖x−u j ‖2

)2

‖x−uj ‖2
2 eX −(x−uj )(x−uj )H eX

‖x−uj ‖3
2

,
l = 0,

j2π n
cN ′

C Ts

x−v l , j

‖x−v l , j ‖2

+ j dU π
λn

(r − 1)
cos

(

arccos

(

(x−v l , j )H eX
‖x−v l , j ‖2

)

−ϑ

)

√

1−
(

(x−v l , j )H eX
‖x−v l , j ‖2

)2

‖x−v l , j ‖2
2 eX −(x−v l , j )(x−v l , j )H eX

‖x−v l , j ‖3
2

,
l > 0

(50)

ρ
(r,t)
l,j,n =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

j dU π
λn

(r − 1) cos
(

arccos
(

(x−uj )H eX
‖x−uj ‖2

)

− ϑ

))

, l = 0

j dU π
λn

(r − 1) cos
(

arccos
(

(x−v l , j )H eX
‖x−v l , j ‖2

)

− ϑ

))

, l > 0
. (51)

υ
(r,t)
l,j,n = − j2π

n

cN ′
CTs

x − vl,j
‖x − vl,j‖2

− j2π
n

cN ′
CTs

uj − vl,j
‖uj − vl,j‖2

+ j
dBπ

λn
(t− 1)

‖uj − vl,j‖2
2 eY − (uj − vl,j )(uj − vl,j )HeY

‖uj − vl,j‖3
2

− j
dUπ

λn
(r − 1)

cos
(

arccos
(

(x−v l , j )H eX
‖x−v l , j ‖2

)

− ϑ
)

√

1 −
(

(x−v l , j )H eX
‖x−v l , j ‖2

)2

‖x − vl,j‖2
2 eX − (x − vl,j )(x − vl,j )HeX

‖x − vl,j‖3
2

. (53)
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Secondly, Dx(α) ∈ CJMNC NU NB (L+1)×2 = 1(M ) ⊗ vec
[(�̃(r,t)

l,j,n )H |∀l, t, r, n, j], where �̃
(r,t)
l,j,n =μ(r,t)∗

l,j,n �
(r,t)
l,j,n , while μ(r,t)

l,j,n

and �
(r,t)
l,j,n are given by (19) and (50), respectively. Thirdly,

dϑ (α) = vec[μ(r,t)
l,j,nρ

(r,t)∗
l,j,n |∀l, t, r, n, j], where ρ

(r,t)
l,j,n is given

by (51). Fourthly, Dv(α) ∈ CJMNC NU NB (L+1)×2L = 1(M ) ⊗
vec[(υ̃(r,t)

l,j,n )H |∀l, t, r, n, j], where υ̃
(r,t)
l,j,n ∈ C2L = μ

(r,t)∗
l,j,n ῠ

(r,t)
l,j,n ,

and ῠ
(r,t)
l,j,n is given by (52), ∀l = 0 : L,∀j.

APPENDIX C
PROOF OF THEOREM 1

By inner product calculation, it can be verified that p[i] [k] is a

descent direction, i.e., ∇H
α f(α�

[i] [k];h
�
[i] [k])p[i] [k] < 0 for any

non-stationary α�
[i] [k], Thus, the SLLS-based location update

(35) subject to the Armijo rule (36) will converge to a stationary
point to A

(LCE)
SLAB , as per the line search method [40]–[42].

APPENDIX D
PROOF OF THEOREM 2

We first elaborate the convergence rate of α◦
[i+1][k]. Applying

the second-order approximation to g(α,h�[i] [k]), we have

z[k] = g(α�
[i] [k],h

�
[i] [k]) + ∇H

αg(α�
[i] [k],h

�
[i] [k])

(

α• [k]

− α�
[i] [k]

)

+ s(α•[k];α�
[i] [k],h

�
[i] [k]) + ς, (57)

where the second-order term s(α•[k];α�
[i] [k],h

�
[i] [k]) is given

by (58) shown at the bottom of this page, and ς is the higher-
order residual error. In addition, Ψ(r)

n,m,j = ∇αψ
(r)
n,m,j (α

�
[i] [k])

∇H
αψ

(r)
n,m,j (α

�
[i] [k]), where ψ(r)

n,m,j (α
�
[i] [k]) = (g(r)

j,[i] [k, n,m])H

h�[i] [k], and g(r)
j,[i] [k, n,m] is the value of g(r)

j [n,m] (given by

(16)) conditioned on α�
[i] [k]. In (57), we use ∇H

αg(α�
[i] [k],h

�
[i]

[k])∇αg(α�
[i] [k],h

�
[i] [k]) to approximate the Hessian matrix

for computational ease (only gradient is needed). Ignoring
the residual error, we have (59) shown at the bottom of the
next page. If ∇αg(α�

[i] [k],h
�
[i] [k]) is full-column-rank, then

‖α•[k] − α◦
[i+1][k]‖2 = O(‖α•[k] − α�

[i] [k]‖2
2).

Based on (36), α�
[i+1][k] is a more efficient update than

α◦
[i+1][k], since it can lead to a sufficient decrease in cost func-

tion value f(α�
[i+1][k];h

�
[i] [k]). Thus, convergence of α�

[i+1][k]
is at least quadratic. Theorem 2 is proved.

APPENDIX E
EXPRESSION OF FEATURE MATRICES

Gj,n (ᾱ[k];w[i] [k]) and Hj,n (ᾱ[k];w[i] [k]) are given by (60)
and (61) shown at the bottom of next page, where Σ = IJ ⊗
diag

[

η2
l |∀l = 0 : L

]

with η2
l being its elementary variance,

while B̄α

(

w[i] [k]
)

and B̄hj [k ]
(

w[i] [k]
)

are CRLBs (dependent
on w[i] [k]) associated with α and hj [k], respectively, given by
(62) and (63) shown at the bottom of the next page. In addi-
tion, R(r)

l,j,n (ᾱ[k]) ∈ C(2JL+3)×NB = vec[u(r,t)
l,j,n |∀t = 1 : NB]

and U(r)
j,n (ᾱ[k]) ∈ CNB ×(L+1) = [μ(r)

l,j,n |∀l = 0 : L], where

u
(r,t)
l,j,n =

⎡

⎢

⎢

⎣

μ
(r,t)∗
l,j,n �

(r,t)
l,j,n

μ
(r,t)
l,j,nρ

(r,t)∗
l,j,n

μ
(r,t)∗
l,j,n ῠ

(r,t)
l,j,n

⎤

⎥

⎥

⎦

,

and �
(r,t)
l,j,n , ρ(r,t)

l,j,n , ῠ
(r,t)
l,j,n and μ(r,t)

l,j,n is given by (50), (51), (52)
and (19), respectively.

APPENDIX F
PROOF OF LEMMA 3

1) Uniqueness of h
 [k]: Since the system model is linear
w.r.t. h[k] as shown in (13), h
 [k] is unique at each LCE stage.

2) Uniqueness of x
 [k]: For easy notation, we use g(x)
to denote g(x, ϑ,v,h[k];ω) (given by (13)) with any point
ϑ, v and h[k], use f(x) = ‖z[k] − g(x)‖2

2 to denote the
LCE cost function of x, and we use x = x
 [k] + ψχ to de-
note any point of x, where χ is a unit direction vector
and ψ is the length. Then, f(x) is cast as f(x
 [k] + ψχ) =
‖g(x
 [k] + ψχ) − g(x
 [k]) − υ
 [k]‖2

2 , where υ
 [k] = z[k] −
g(x
 [k]) (independent of x and ψ). Let f̃(x
 [k] + ψχ) =
f(x
 [k] + ψχ)|τl , j =0,∀l,j , which is a tight lower bound of
f(x
 [k] + ψχ), as verified later.

Example. Consider a case of J = M = NU = NB = NC =
1 and L = 0. Then, f(x
 [k] + ψχ) and f̃

(

x
 [k] + ψχ
)

Eh[k ]{Bβ[k ](α,h[k];ω)} = σ2Eh[k ]

{(

∑

r,n,m

[

K(r)
n,m

(

α;ω
)

h[k]hH[k]
(

K(r)
n,m

(

α;ω
))H K(r)

n,m

(

α;ω
)

h[k]G(r)
n,m (α;ω)

(

K(r)
n,m

(

α;ω
)

h[k]G(r)
n,m (α;ω)

)H (

G(r)
n,m (α;ω)

)HG(r)
n,m (α;ω)

])−1}

� σ2

(

∑

r,n,m

[

K(r)
n,m

(

α;ω
)

Σ
(

K(r)
n,m

(

α;ω
))H 0(2JL+3)×J (L+1)

0H
(2JL+3)×J (L+1)

(

G(r)
n,m (α;ω)

)HG(r)
n,m (α;ω)

])−1

︸ ︷︷ ︸

B̄β[k ] (α,Σ ;ω)

. (55)

s(α•[k];α�
[i] [k],h

�
[i] [k]) = vec[(α•[k] − α�

[i] [k])
�Ψ(r)

n,m,j (α
•[k] − α�

[i] [k])|∀n, r,m, j]. (58)
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reduce to that in (64) and (65) shown at the bottom of this page,
respectively. �

It can be verified by the above simple case that f̃ (x
 [k] + ψχ)
satisfies (i) f̃(x
 [k]) = f(x
 [k]) and (ii) f̃(x
 [k] + ψχ) <
f(x
 [k] + ψχ), ∀χ : ‖χ‖2 = 1 and ψ �= 0. That is to say,
f̃(x
 [k] + ψχ) is a tight lower bound of f(x
 [k] + ψχ).

Moreover, f̃(x
 [k] + ψχ) also satisfies (i) f̃(x
 [k] + ψχ) =
f̃(x
 [k]) forψ = 0; and (ii) f̃(x
 [k] + ψχ) > f̃(x
 [k]) forψ �=
0, since the modulus (or hl,j [k]) is reduced with transmission
distance due to path loss. That is, except x
 [k], there is no other
point such that f̃(x) is lower than f̃(x
 [k]), i.e., x
 [k] is the
unique optimal solution to A

(LCE)
SLAB .

3) Uniqueness of v
 [k]: Its proof is similar to that of x.
4) Uniqueness of ϑ
 [k]: We use f(ϑ
 [k] + ν) with ν ∈

(−π, π] to denote the LCE cost function ‖z[k] − g(ϑ)‖2
2 (de-

tailed in (66) shown at the bottom of this page) with any point
x, v, h[k], where ϑ
 [k] is one optimal solution of ϑ at each
LCE stage. Consider again that simple case. Then, f

(

ϑ
 [k] + ν
)

will reduce to (66), where C(r,t)
LOS,n

(

h0,j [k],x
)

is the constant
independent of ϑ
 [k] and ν. Thus, we have f

(

ϑ
 [k] + ν
)

>

f
(

ϑ
 [k]
)

, for any ν �= 0 and ν ∈ (−π, π]. Hence, ϑ
 [k] is
unique, and lemma 3 is proved.

APPENDIX G
PROOF OF THEOREM 3

To prove theorem 3, we need to give a lemma regrading the
continuity of the LCE system.

Lemma 4: If A1–A2 are satisfied, ‖β[k] − βtrue [k]‖2 ≤ C1
‖g(β[k ])−g(βt r u e [k ])‖2

‖∇H
β[k ] g(βt r u e [k ])‖2

holds, ∀β[k], for C1 ≥ 0.7

Proof: We have that ‖g(βtrue [k] + Δβ) − g(βtrue [k])‖2
= ‖∇H

β[k ]g(βtrue [k])Δβ + O(‖Δβ‖2
2)‖2 , and hence we have

‖g(βtrue [k] + Δβ) − g(βtrue [k])‖2 ≥ ‖∇H
β[k ]g(βtrue [k])Δ

β‖2 −O(‖Δβ‖2
2). As a result, we have the following inequality:

‖∇H
β[k ]g(βtrue [k])Δβ‖2 ≤‖g(βtrue [k]+Δβ)−g(βtrue [k])‖2

+O(‖Δβ‖2
2). In addition, there must be C1 ≥ 0 such that

‖∇H
β[k ]g(βtrue [k])Δβ‖2 ≥ C1‖∇H

β[k ]g(βtrue [k])‖2‖Δβ‖2 .

Thus, C1‖∇H
β[k ]g(βtrue [k])‖2‖Δβ[k]‖2≤ ‖g(βtrue [k] + Δβ)

−g(βtrue [k])‖2 + O(‖Δβ‖2
2). Then, we arrive at ‖Δβ‖2 ≥

‖Δg(βt r u e [k ])‖2 +O(‖Δβ‖2
2 )

C1 ‖∇H
β[k ] g(βt r u e [k ])‖2

, in which Δg(βtrue [k]) = g(βtrue [k]

+ Δβ) − g(βtrue [k]) denotes the range variation.
Based on lemma 3, when there is no measurement error,

(α
 [k],h
 [k]) is equal to (αtrue ,htrue [k]). This means that for
any ξ > 0, there exists ζ > 0 such that ‖β
 [k] − βtrue [k]‖2 < ξ
must hold if ‖ε[k]‖2 < ζ. Thus, O(‖β
 [k] − βtrue [k]‖2

2) can be
safely ignored, and lemma 4 is proved.

Thus, based on lemma 4 we have ‖β
 [k] − βtrue [k]‖2 ≤
‖g(β
 [k ])−g(βt r u e [k ])‖2 +O(‖β
 [k ]−βt r u e [k ]‖2

2 )
C1 ‖∇H

β[k ] g(βt r u e [k ])‖2
. In addition, since β


[k] is the optimal solution and g(βtrue [k]) is noiseless, ‖g
(β
 [k]) − g(βtrue [k])‖2 ≤ ‖z[k] − g(βtrue [k])‖2 = ‖ε[k]‖2 .

7We drop w[k] in g(•) for brevity.

‖ (∇H
αg(α�

[i] [k],h
�
[i] [k])

)†(z[k] − g(α�
[i] [k],h

�
[i] [k])

)

+ α�
[i] [k]

︸ ︷︷ ︸

α◦
[ i+ 1 ] [k ]

−α•[k]‖2 = ‖(∇H
αg(α�

[i] [k],h
�
[i] [k])

)†s(α•[k];α�
[i] [k],h

�
[i] [k])‖2

= ‖∇H
αg(α�

[i] [k],h
�
[i] [k])

(

α•[k] − α�
[i] [k]

)‖2
2 . (59)

Gj,n (ᾱ[k];w[i] [k]) =
∑

l=0:L
r=1:NU

η2
l R

(r)H
l,j,n

(

ᾱ[k]
)

B̄
H
α

(

w[i] [k]
)

B̄α

(

w[i] [k]
)

R(r)
l,j,n

(

ᾱ[k]
)

σ2 , (60)

Hj,n (ᾱ[k];w[i] [k]) =
∑

r=1:NU

U(r)
j,n

(

ᾱ[k]
)

B̄
H
hj [k ]

(

w[i] [k]
)

B̄hj [k ]
(

w[i] [k]
)

U(r)H
j,n

(

ᾱ[k]
)

σ2 . (61)

B̄α

(

w[i] [k]
)

=

⎛

⎝

∑

l,j,r,n,m

η2
l R

(r)
l,j,n (ᾱ[k])w∗

j,[i] [k, n,m]w�
j,[i] [k, n,m]R(r)H

l,j,n (ᾱ[k])

⎞

⎠

−1

, (62)

B̄hj [k ]
(

w[i] [k]
)

=

(

∑

r,n,m

U(r)H
j,n (ᾱ[k])w∗

j,[i] [k, n,m]w�
j,[i] [k, n,m]U(r)

j,n (ᾱ[k])

)−1

. (63)

f
(

x
 [k] + ψχ
)

=
∥

∥ hl,j [k]ωj [n,m]
︸ ︷︷ ︸

Equivalent modulus

e
−j 2 π n

N ′
C
T s

‖x 
 [k ]+ ψ χ−u j ‖2
c

︸ ︷︷ ︸

Equivalent phase

−hl,j [k]ωj [n,m]e
−j 2 π n

N ′
C
T s

‖x 
 [k ]−u j ‖2
c − υ

(r)

j,n [k]

∥

∥

2
2 , (64)

f̃
(

x
 [k] + ψχ
)

=
∥

∥hl,j [k]ω
(t)
j [n,m] − hl,j [k]ω

(t)
j [n,m] − υ

(r)

j,n [k]

∥

∥

2
2 . (65)

f
(

ϑ
 [k] + ν
)

=
∥

∥

∥C
(r,t)
LOS,n

(

h0,j [k],x
)

(

e j dU π

λn
(r−1) sin(θU , l , j −ϑ
 [k ]−ν ) − ej dU π

λn
(r−1) sin(θU , l , j −ϑ
 [k ])

)

− υ
(r)

j,n [k]

∥

∥

∥

2

2
. (66)
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dH
j,[i+1][k, n,m]∇ωj [n,m ] κ

(

wj,[i] [k, n,m]
)

=
(

w�
j,[i+1][k, n,m]

)H∇ωj [n,m ] κ
(

wj,[i] [k, n,m]
)

(67)

= −2
(

w�
j,[i+1][k, n,m]

)H

(‖wj,[i] [k, n,m]‖2
2INB − w∗

j,[i] [k, n,m]w�
j,[i] [k, n,m]

)

Gj,n (ᾱ[k];w[i] [k])w∗
j,[i] [k, n,m]

‖wj,[i] [k, n,m]‖4
2

(68)

=

(

w�
j,[i+1][k, n,m]

)Hw∗
j,[i] [k, n,m]

‖wj,[i] [k, n,m]‖2
2

·
(

(

w�
j,[i] [k, n,m]Gj,n (ᾱ[k];w[i] [k])w∗

j,[i] [k, n,m]

‖wj,[i] [k, n,m]‖2
2

︸ ︷︷ ︸

≤λ′
m a x

−λ′max

)

≤ 0. (69)

Thus, ‖β
 [k] − βtrue [k]‖2 ≤ ‖ε[k ]‖2 +O(‖β
 [k ]−βt r u e [k ]‖2
2 )

C1 ‖∇H
β[k ] g(βt r u e [k ])‖2

, and

theorem 3 is proved.

APPENDIX H
PROOF OF THEOREM 4

We will prove ∇H
ωj [n,m ]κ

(

wj,[i] [k, n,m]
)

dj,[i+1][k, n,m] ≤
0, ∀j, n,m, and the equality holds only if {wj,[i] [k, n,m]} is

an optimal solution of A
(BFR)

SLAB ,[i+1] . Once this is proved, theo-
rem 4 will be proved by combining lemma 2, thus it directly
follows from the convergence of the feasible direction method
[42] subject to the Armijo rule [40].

Let λ′max be the largest eigenvalue of Gj,n (ᾱ[k];w[i] [k]).
Since w�

j,[i+1][k, n,m] is its principal eigenvector, we

have
(

w�
j,[i+1][k, n,m]

)H
Gj,n (ᾱ[k];w[i] [k])wj,[i] [k, n,m] =

λ′max
(

w�
j,[i+1][k, n,m]

)Hwj,[i] [k, n,m]. In addition, combin-

ing with (46), we know wH
[i] [k]∇ω κ

(

w[i] [k]
)

= 0. Thus, we
have (67)–(69) shown at the top of this page, and the inequality
of the condition is verified.

From (69) we know the equality holds only if wj,[i] [k, n,m]
is the principal eigenvector of Gj,n (ᾱ[k];w[i] [k]) which is the

optimal solution to the problem in (43) and hence A
(BFR)
j,[i+1] in

(41) equivalently. Hence, theorem 4 is proved.

APPENDIX I
PROOF OF THEOREM 5

Since g(α,h[k];ω) is twice differential w.r.t. ω for any point
ω such that ∇ωg(α,h[k];ω) is element-wise Lipschitz con-
tinuous w.r.t. ω, as per theorem 3, ᾱ[k] − αtrue = O(‖ε[k]‖2).
Thus, we have ∇ω trace(B̄β[k ](ᾱ[k],Σ;w[k]))=∇ω trace
(B̄β[k ](αtrue ,Σ;w[k])) + O(‖ε[k]‖2).Note that �{∇H

ω trace
(B̄β[k ](ᾱ[k],Σ;w[k]))(ω − w[k])} ≥ 0, ∀ω, since w[k]
is a stationary point of the BFR problem given ᾱ[k]. Thus,
�{∇H

ω trace(B̄β[k ](αtrue ,Σ;w[k]))(ω − w[k])} ≥Wmis ,
where Wmis ∼ O(‖ε[k]‖2), and thus theorem 5 is proved.
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