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Non-Uniform Burst-Sparsity Learning for Massive
MIMO Channel Estimation
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Abstract—We address the downlink channel estimation prob-
lem for massive multiple-input multiple-output (MIMO) systems
in this paper, where the inherit burst-sparsity structure is exploited
to improve the channel estimation performance. In the literature,
the commonly used burst-sparsity model assumes a uniform burst-
sparse structure in which all bursts have similar sizes. However,
such assumption is oversimplified to hold in practice. Outliers devi-
ated from such uniform burst structures can significantly degrade
the accuracy of the existing burst-sparsity models, which may re-
sult in a reduced recovery performance. To capture a more gen-
eral burst-sparsity structure in practice, we propose a novel non-
uniform burst-sparsity model and introduce an improved pattern-
coupled prior to account for more realistic non-uniform burst
structures. A generic sparse Bayesian learning based framework
to exploit the non-uniform burst-sparsity and to enhance massive
MIMO channel estimation performance is then developed. We fur-
ther prove that our solution converges to a stationary point of the
associated optimization problem, and our framework includes the
state-of-the-art pattern-coupled method as a special case. Simula-
tion results verify the robust performance of the devised method.

Index Terms—Channel estimation, burst-sparsity, massive
multiple-input multiple-output (MIMO), sparse Bayesian learning
(SBL), off-grid refinement.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) is a
core candidate technology in the next generation of wire-

less communications due to its potential high spectrum and
power efficiency [1]–[3]. To significantly improve the capacity
and reliability of systems with excessive base station (BS) anten-
nas, knowledge of channel state information at the transmitter
(CSIT) is essentially required [4], [5]. However, it is challeng-
ing to acquire the accurate CSIT, since the training overhead
for CSIT acquisition grows proportionally with the number of
BS antennas, which can be very large in massive MIMO sys-
tems. In conventional works, time-division duplexing (TDD)
mode is usually considered and then channel reciprocity can
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be exploited to obtain CSIT via uplink pilot training. How-
ever, due to random radio-frequency (RF) circuit mismatches
in the uplink and downlink and limited coherence time, the
channel reciprocity performance may degrade substantially [6],
[7]. Moreover, channel reciprocity does not hold for massive
MIMO systems with a frequency-division duplexing (FDD)
model. Hence, CSIT acquisition for massive MIMO systems
can be an extremely challenging task.

In practice, elements in the massive MIMO channel are not
completely independent because of the limited local scatter-
ing effect in the propagation environment. Many studies have
shown that the massive MIMO channel actually has a much
lower effective dimension than its original dimension [8]–[11].
For example, the channel could have an approximately sparse
representation under the discrete Fourier transform (DFT) basis
if the BS is equipped with a large uniform linear array (ULA)
[10], [12]–[14]. Exploiting such sparsity with the DFT basis,
many compressive sensing (CS) algorithms have been proposed
for downlink channel estimation and feedback [8], [10], [11],
[15]–[19]. However, these DFT-based methods are applicable
to ULAs only since applying the DFT basis requires a spe-
cial structure of ULAs, and they always suffer from inevitable
modeling error caused by direction mismatch [20].

Recently, sparse Bayesian learning (SBL) has become a pop-
ular method for sparse signal recovery problems [21]–[25], in-
cluding massive MIMO channel estimation. The SBL-based
framework has an inherent learning capability, and hence, no
prior knowledge about the sparsity level, noise variance and/or
direction mismatch is required. Moreover, it includes the l1-
norm minimization method as a special case when the maxi-
mum a posteriori (MAP) optimal estimate is adopted with the
Laplace signal prior [21], [23]. To overcome the aforementioned
challenges of the DFT-based methods, an off-grid SBL-based
method for downlink channel estimation with arbitrary 2D-array
geometry has been suggested in [20]. Its main idea is to consider
the sampled grid points in the representation basis as adjustable
parameters, and then iteratively refine the grid points to mini-
mize the modeling error caused by the direction mismatch.

However, [20] has only considered i.i.d. sparsity (i.e., the
entries of the sparse channel are assumed to be i.i.d.). In prac-
tice, massive MIMO channel has more sophisticated structured
sparsity that can be further exploited to enhance the channel
estimation performance [19], [26]–[28]. Specifically, due to the
physical scattering structure, the significant elements in the an-
gular domain massive MIMO channel will appear in bursts.
Burst-sparsity in massive MIMO channel was first exploited
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in [19], where a burst LASSO algorithm using a block-sparse
lifting transformation has been developed to successfully re-
cover the massive MIMO channel with much fewer pilots com-
pared to the original LASSO algorithm. However, the burst
LASSO algorithm requires that all bursts have a similar size
and its value must be known in advance. Recently, a struc-
tured Turbo-CS algorithm is proposed in [27] to recover burst-
sparse signals, where a Markov chain prior is adopted to cap-
ture the burst-sparsity structure. Since the Turbo-CS algorithm
has a similar procedure as approximate message passing [29],
[30], the DFT basis is required in its theoretical derivation and
state evolution performance analysis. The burst-sparsity struc-
ture of wireless channels is also utilized to enhance the channel
estimation performance for millimeter wave communications
in [31].

The problem of recovering burst-sparse signals from the per-
spective of SBL has been tackled in [32]–[36]. Note that a similar
block-sparse lifting transformation is adopted in [32] to handle
unknown block structures, which results in the same shortcom-
ings as in [19]. [33] extends a “spike-and-slab” prior model to
impose clustered prior on non-zero entries, but only a numerical
Gibbs sampler is provided to carry out the Bayesian inference
due to the troublesome modeling. In [34], unknown group spar-
sity is induced by organizing the corresponding scale parameters
in a conditional autoregressive model. The introduced pattern-
coupled SBL (PC-SBL) framework [35] (in which the sparsity
of each coefficient is controlled not only by its own hyperparam-
eter, but also by its neighbor hyperparameter) has the potential
to enforce a burst-sparse solution, and it has been extended to 2D
burst-sparse patterns in [37]. Moreover, a pattern-coupled chan-
nel estimation method for millimeter wave communications is
proposed in [36]. Nevertheless, there are at least three disad-
vantages of the existing PC-SBL-based approach: (i) it only
works well for separable bursts (i.e., the distance between any
two adjacent bursts is sufficiently large); (ii) hyperparameter
updates are not optimal in each iteration; and (iii) convergence
analysis is theoretically intractable. In this paper, we devise a
pattern-coupled SBL-based approach for massive MIMO down-
link channel estimation, which can overcome the above short-
comings. The following summarizes the contributions of this
paper.

� Non-Uniform Burst-Sparsity Model: We present a new
non-uniform burst-sparsity model to better capture real-
istic sparsity structure in massive MIMO channels. The
commonly used burst-sparse channel model in [19] re-
quires channels being uniform burst-sparse with similar
burst sizes in the angular domain. For burst-sparse signals
with any outliers deviated from uniform burst structures,
accuracy of the existing burst-sparsity models degrades
significantly, which, in return, results in a reduced recov-
ery performance. To address this issue, we propose a new
non-uniform burst-sparsity model to characterize a more
realistic sparse structure in practical massive MIMO chan-
nels, and then an improved pattern-coupled prior to account
for the non-uniform burst sparsity is introduced.

� Generic SBL-Based Framework for Non-Uniform Burst-
Sparse Channel Estimation: We develop a more gen-

eral SBL-based method to autonomously exploit the non-
uniform burst-sparsity during channel estimation. In the
literature, there are many SBL-based methods that can be
applied to the massive MIMO channel estimation, but few
of them can handle the non-uniform burst-sparsity struc-
ture. For example, the popular pattern-coupled SBL-based
method in [35] is designed for separable bursts only. More-
over, it has other drawbacks, e.g., it employs a sub-optimal
solution to update the hyperparameters and cannot guar-
antee the convergence behavior with a theoretical analysis.
In this work, we propose a generic SBL-based framework
to exploit the non-uniform burst-sparsity to enhance the
performance of massive MIMO channel estimation. It will
be shown that our algorithm framework converges to a sta-
tionary point of the optimization problem and it includes
the pattern-coupled solution in [35] as a special case by
fixing some variables as sub-optimal solutions. Moreover,
the grid-refining procedure used in [20] is further blended
with the framework to combat the modeling error caused
by direction mismatch.

The rest of the paper is organized as follows. In Section II, we
present the system model and non-uniform burst-sparsity model.
In Section III, the SBL-based method for recovering the massive
MIMO channel with non-uniform burst-sparsity is developed.
In Section IV, we introduce the grid-refining procedure to deal
with the modeling error caused by direction mismatch. Numer-
ical experiments and conclusion follow in Sections V and VI,
respectively.

Notation: C denotes complex number, ‖ · ‖p denotes p-norm,
(·)T denotes transpose, (·)H denotes Hermitian transpose, I de-
notes identity matrix, CN (·|μ,Σ) denotes complex Gaussian
distribution with mean μ and covariance Σ, Γ(·|a, b) denotes
Gamma distribution with shape parameter a and inverse scale
parameter b, tr(·) denotes trace operator, diag(·) denotes di-
agonal operator, Re(·) denotes real part operator, ∝ stands for
equality up to a multiplicative constant, p(·) and q(·) are used
to represent probability density functions for the variables of
their arguments, and 〈·〉q(·) stands for expectation with respect
to q(·).

II. DATA MODEL

A. Massive MIMO Channel Model

Consider a flat block-fading massive MIMO system. There
is one BS with N (� 1) antennas and K mobile users (MUs)
with a single antenna. For each MU to estimate the downlink
channel hk ∈ CN ×1 , the BS broadcasts a sequence of T training
pilot symbols X ∈ CT ×N . Then, the downlink received signal
yk ∈ CT ×1 at the k-th MU is given by

yk = Xhk + nk , (1)

where nk ∈ CT ×1 stands for the additive complex i.i.d. Gaus-
sian noise with each element having zero mean and variance σ2

in the downlink, and tr(XXH ) = PTN , with P/σ2 measuring
the training signal-to-noise ratio (SNR). If the BS is equipped
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with a linear array, hk can be formulated as [26], [38], [39]

hk =
Nc∑

c=1

Ns∑

s=1

ξk
c,sa(θk

c,s), (2)

where Nc stands for the number of scattering clusters, Ns is the
number of sub-paths per scattering cluster, ξk

c,s is the complex
gain of the s-th sub-path in the c-th scattering cluster for the
k-th MU, and θk

c,s and a(θk
c,s) are the corresponding angle-

of-departure (AoD) and steering vector. Although we fix the
number of sub-paths per cluster in the channel model (2), this
model allows for more general channels (i.e., with potentially
different number of paths per cluster) by fixing some ξk

c,ss to
zeros.

For ease of exposition, we focus on the downlink channel
estimation problem for a reference MU, where we drop the MU’s
index k and denote the true AoDs as {θl , l = 1, 2, . . . , L} with
L = NcNs . Assuming that the BS is equipped with a ULA,1 the
steering vector a(θ) can then be simplified as

a(θ) = [1, e−j2π d
λ

sin(θ) , . . . , e−j2π
(N −1 )d

λ
sin(θ) ]T , (3)

where λ is the wavelength of the downlink propagation and
d stands for the distance between adjacent sensors. Let ϑ̂ =
{ϑ̂l}L̂

l=1 be a fixed sampling grid that covers the angular range
[−π/2, π/2], where L̂ denotes the number of grid points. If the
grid is fine enough such that the true AoDs θl s, l = 1, 2, . . . , L,
lie on the grid, we can use the following model for y

y = XAw + n = Φw + n, (4)

where A = [a(ϑ̂1), a(ϑ̂2), . . . , a(ϑ̂L̂ ) ] ∈ CN ×L̂ , Φ = XA

and w ∈ CL̂×1 is a vector with a few non-zero elements cor-
responding to the true directions at {θl , l = 1, 2, . . . , L}. As
illustrated in [20], the DFT basis becomes a special case of
A if L̂ = N + 1 and {sin(ϑ̂l)}L̂

l=1 uniformly covers the range
[−1, 1]. Note that the assumption that all true AoDs are located
on the predefined spatial grid is not always valid in practical
implementation [24], [40]. Nevertheless, our solutions are also
extended to deal with the direction mismatch, which will be
discussed in detail in Section IV.

B. Non-Uniform Burst-Sparsity

According to the geometry-based stochastic channel model
(GSCM) [39], the number of scattering clusters Nc is usually
small and the sub-paths associated with each scattering clus-
ter are likely to concentrate in a small range due to the lim-
ited local scattering effect in the propagation environment [8],
[13], [14]. As a result, only a few elements of w are occu-
pied by non-zero values and these significant elements might
appear in bursts [19]. However, it is worth noting that the cur-
rent burst-sparsity assumption is too strong to hold in practical
scenarios, because it requires channels being uniform sparse
in the angular domain. What is worse, the grid choice and the

1For clarity, we focus on the case when BS is equipped with a ULA. However,
we may extend the main results to an arbitrary 2D-array geometry as in [20].

Fig. 1. Illustration of the uniform burst-sparsity and non-uniform burst-
sparsity, where the significant elements of the sparse representation vector wk s
appear in bursts with uniform and non-uniform burst sizes, respectively.

direction mismatch can further break the burst-sparsity struc-
ture. For example, consider a channel realization consists of
Nc = 2 random scattering clusters and each cluster contains
Ns = 3 sub-paths, whose AoDs are θ1,1 = 0◦, θ1,2 = 1◦, θ1,3 =
3◦, θ2,1 = 10◦, θ2,2 = 11◦, and θ2,3 = 12◦. If the grid is chosen
as ϑ̂ = {−90◦,−89◦,−88◦, . . . , 89◦, 90◦}, the sparse represen-
tation vector w is not strictly burst-sparse in the angular domain.

To capture a more realistic burst-sparsity structure, we adopt
a non-uniform burst-sparsity model.

Definition 1. Non-Uniform Burst-Sparsity: The significant
elements of w appear in bursts with possibly non-uniform burst
sizes, and the burst distance can be arbitrary.2

Fig. 1 illustrates the difference between the uniform burst-
sparsity and non-uniform burst-sparsity. Our aim is to automat-
ically detect bursts with non-uniform sizes, and simultaneously
obtain the channel estimation. It is expected to obtain more ac-
curate channel estimation performance because we will exclude
the harmful effect from outliers, i.e., bursts with very small sizes.

C. Pattern-Coupled Prior

In this subsection, we first review the existing pattern-coupled
prior for burst-sparsity, as well as its challenges for the non-
uniform burst-sparsity model, and a new pattern-coupled prior
to better capture the non-uniform burst-sparsity structure in mas-
sive MIMO channels is then developed. In the conventional SBL
framework [22], w is assigned a Gaussian prior distribution:

p(w|γ) =
L̂∏

l=1

CN (wl |0, γ−1
l ), (5)

where γ = [γ1 , γ2 , . . . , γL̂ ]T and w = [w1 , w2 , . . . , wL̂ ]T with
γl being the precision of wl . For tractable inference of γ, the

2The burst size stands for the number of significant elements in the burst, and
the burst distance stands for the number of zero elements between two adjacent
bursts.
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elements of γ are usually modeled as independent Gamma dis-
tributions, i.e.,

p(γ) =
L̂∏

l=1

Γ(γl |a, b), (6)

where a and b are some small constants (e.g., a = b = 10−10).
It is worth noting that the precisions γls directly indicate the

support of w. For example, if γl is large, wl tends to zero;
otherwise, the value of wl is significant. However, the prior
model in (5) assumes independence among wls and has no
freedom to encourage burst-sparse solutions. To handle burst-
sparse signals with unknown burst structures, a pattern-coupled
model has been suggested in [35], in which w is modeled as

p(w|γ) =
L̂∏

l=1

CN (wl |0, (βγl−1 + γl + βγl+1)−1), (7)

where γ0 = γL̂+1 = 0, and 0 ≤ β ≤ 1 is a parameter indicating
the pattern relevance between the coefficient wl and its neigh-
boring coefficients.3 Clearly, when β > 0, the sparsity of each
coefficient is controlled not only by its own hyperparameter, but
also by its immediate neighbor hyperparameters; If β = 0, (7)
reduces to (5).

The model (7) has the potential to enforce a burst-sparse so-
lution. If γl approaches a significantly large value, wl−1 , wl and
wl+1 will decrease to zero at the same time, because their pre-
cisions are involved by the large γl simultaneously. However,
it does not work well for sparse signals with nearby bursts. For
example, let wl−1 and wl+1 be sufficiently large and wl be zero.
According to the prior defined in (7), the significant elements
(wl−1 and wl+1) require the hyperparameters (γ(l−2) , γ(l−1) ,
γ(l) , γ(l+1) and γ(l+2)) taking some small values. This enforces
the value of wl deviating from zero with a high possibility, be-
cause its variance (βγl−1 + γl + βγl+1)−1 approaches a large
value. The other shortcoming of the pattern-coupled model (7)
is that it brings an intractable Bayesian inference, namely, op-
timal hyperparameter updates cannot be found in each iteration
and convergence cannot be theoretically guaranteed. To address
these issues, we will present a new pattern-coupled prior to fit
the non-uniform burst-sparsity structure as follows.

Definition 2 New Pattern-Coupled Prior: Let zl = [zl,1 ,
zl,2 , zl,3 ]T be an assignment vector that takes values from
e1 = [1, 0, 0]T , e2 = [0, 1, 0]T and e3 = [0, 0, 1]T with equal
probability, and then we model the distribution of w conditional
on Z = {zl}L̂

l=1 and γ as

p(w|Z,γ)=
L̂∏

l=1

({CN (wl |0, γ−1
l−1)
}zl , 1 · {CN (wl |0, γ−1

l )
}zl , 2

·{CN (wl |0, γ−1
l+1)
}zl , 3
)

︸ ︷︷ ︸
�p(wl |z l ,γl−1 ,γl ,γl + 1 )

(8)

and the elements of γ are similarly modeled as in (6).

3How to select β for the pattern-coupled model (7) is still an open problem.
According to the empirical evidence provided in [35], we set β = 1 for PC-SBL
in the simulations.

Note that the prior distribution of zl can be formulated as a
non-informative categorical distribution:4

p(zl) =
(

1
3

)[z l =e1 ] (1
3

)[z l =e2 ] (1
3

)[z l =e3 ]

,

or, equivalently,

p(zl) =
(

1
3

)zl , 1
(

1
3

)zl , 2
(

1
3

)zl , 3

, (9)

where zl ∈ {e1 , e2 , e3}. Since only one element of zl is acti-
vated on a single trial, the new pattern-coupled prior (8) can
enforce the burst-sparsity of w and handle outliers simultane-
ously. For each wl , if its neighbor wl−1 (or wl+1) has a signifi-
cant value, its value will also be significant with taking zl = e1
(or zl = e3); while for an outlier wl (i.e., wl−1 and wl+1 have
significant values, but wl does not), (8) still works, because it
can take zl = e2 and adopt its own hyperparameter to account
for outliers.

Although the forms of (8) and (7) are quite distinct, we will
show that the Bayesian inference for our model includes the one
for (7) as a special case, which will be detailed in Section III-D.

III. NON-UNIFORM BURST-SPARSE CHANNEL ESTIMATION

In this section, a general SBL-based method to autonomously
exploit the non-uniform burst-sparsity during channel estima-
tion is developed. For ease of exposition, we begin by introduc-
ing the SBL formulation for non-uniform burst-sparse signal
recovery. Then, we resort to the variational Bayesian inference
(VBI) methodology [41] and propose an alternating update al-
gorithm to jointly exploit the non-uniform burst-sparsity and
estimate the channel. Finally, a parameterized transformation
of the proposed algorithm is provided, together with its con-
vergence analysis. Our solutions can be extended to cope with
the modeling error caused by direction mismatch, which will be
addressed in the next section.

A. Overview of Proposed Method

Under the assumption of circular symmetric complex Gaus-
sian noise, we have

p(y|w, α) = CN (y|Φw, α−1I), (10)

where α = σ−2 stands for the noise precision, which is usu-
ally unknown. Hence, it is modeled as a Gamma hyperprior
p(α) = Γ(α|a, b), where a and b are defined in (6). Obvi-
ously, the hidden variables that need to be estimated are
Θ � {α,w,γ,Z}. Based on the above hierarchical model, the
joint distribution of variables is expressed as

p(y,Θ) = p(y|w, α)p(w|Z,γ)p(α)p(γ)p(Z). (11)

4It is easy to extend our method to more complicated priors for zl . For exam-
ple, we may consider a hierarchical prior p(zl |ρ) = ρ

z l , 1
1 ρ

z l , 2
2 ρ

z l , 3
3 , where

ρ � [ρ1 , ρ2 , ρ3 ]T and ρg s are unknown non-negative constants satisfying∑3
g =1 ρg = 1. However, empirical evidence shows that the non-informative

prior and hierarchical priors give very similar performance.
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Note that the non-uniform burst-sparsity structure and channel
estimation are jointly obtained if we can calculate the MAP
estimate of Θ (given y). Specifically, the non-uniform burst-
sparsity structure is indicated by the MAP estimator of the as-
signment vectors zl s, and the sparse representation channel
vector can be calculated from the MAP estimator of w. Unfor-
tunately, this MAP estimate is intractable.

To make the MAP estimate tractable, we resort to the VBI
methodology to find an approximate posterior denoted by q(Θ),
instead of calculating the posterior p(Θ|y) exactly. Let q(Θ)
be factorized approximately as

q(Θ) = q(α)q(w)q(γ)q(Z) (12)

and then the corresponding optimization problem is to find the
“best” approximate posterior under the factorized constraint in
(12). In other words, the factorization of q(Θ) should be chosen
to minimize the Kullback-Leibler divergence

DKL(q(Θ)||p(Θ|y)) = −
∫

q(Θ) ln
p(Θ|y)
q(Θ)

dΘ, (13)

or, equivalently,

q�(Θ) = arg max
q(Θ)

∫
q(Θ) ln

p(y,Θ)
q(Θ)

dΘ
︸ ︷︷ ︸

�U(q(Θ1 ),q(Θ2 ),q(Θ3 ),q(Θ4 ))

, (14)

where Θn stands for the n-th element in Θ. As shown in [41], the
optimal distribution to (14) must satisfy the following equation

ln q�(Θn ) = 〈ln p(y,Θ)〉∏
i 
= n q� (Θ i ) + const., n = 1, 2, 3, 4.

(15)

Since the solution q�(Θn ) given in (15) is dependent on other
solutions q�(Θj ), j 
= n, it is difficult to find the optimal solution
in closed-form. Here, we adopt an alternating update algorithm
to find a stationary solution instead. Specifically, q(α), q(w),
q(γ) and q(Z) are iteratively updated as:

q(i+1)(α) ∝ 〈ln p(y,Θ)〉q ( i ) (w )q ( i ) (γ)q ( i ) (Z) , (16)

q(i+1)(w) ∝ 〈ln p(y,Θ)〉q ( i + 1 ) (α)q ( i ) (γ)q ( i ) (Z) , (17)

q(i+1)(γ) ∝ 〈ln p(y,Θ)〉q ( i + 1 ) (α)q ( i + 1 ) (w )q ( i ) (Z) , (18)

q(i+1)(Z) ∝ 〈ln p(y,Θ)〉q ( i + 1 ) (α)q ( i + 1 ) (w )q ( i + 1 ) (γ) , (19)

where (·)(i) stands for the i-th iteration. In the following, we
first discuss how to solve (16)–(19). It is then revealed that
they can be transformed into parameterized problems. Finally,
a convergence analysis of the proposed algorithm based on the
parameterized transformation is provided.

B. Detailed Updates

In this subsection, we address the updates (16)–(19) in detail.

1) Update of q(α): The update (16) gives a unique solution

ln q(i+1)(α)

∝ 〈ln p(y|w, α)〉q ( i ) (w ) + ln p(α)

∝ (a + T︸ ︷︷ ︸
�a

( i + 1 )
α

−1) ln α

− α ·
(
b + ‖y − Φμ(i)‖2

2 + tr(ΦΣ(i)ΦH )
)

︸ ︷︷ ︸
b

( i + 1 )
α

, (20)

where μ(i) � 〈w〉q ( i ) (w ) and Σ(i) � 〈(w − μ(i))(w −
μ(i))H 〉q ( i ) (w ) (whose closed-form expressions will be given

latter). Hence, q(i+1)(α) obeys a Gamma distribution:

q(i+1)(α) = Γ(α|a(i+1)
α , b(i+1)

α ) (21)

and the mean of α is

α̂(i+1) � 〈α〉q ( i + 1 ) (α) =
a

(i+1)
α

b
(i+1)
α

. (22)

2) Update of q(w): The update (17) gives a unique solution

ln q(i+1)(w)

∝ 〈ln p(y,Θ)〉q ( i + 1 ) (α)q ( i ) (γ)q ( i ) (Z) (23)

∝ 〈ln p(y|w, α)〉q ( i + 1 ) (α) + 〈ln p(w|Z,γ)〉q ( i ) (γ)q ( i ) (Z)

(24)

∝ −α̂(i+1)‖y − Φw‖2
2

− wH (Ψ(i)
1 Λ(i)

R + Ψ(i)
2 Λ(i) + Ψ(i)

3 Λ(i)
L )w, (25)

where Ψ(i)
g � diag{φ(i)

1,g , φ
(i)
2,g . . . , φ

(i)
L̂ ,g

} with φ
(i)
l,g � q(i)(zl =

eg ), g = 1, 2, 3, Λ(i) � diag{γ(i)
1 , γ

(i)
2 , . . . , γ

(i)
L̂

}, Λ(i)
R �

diag{γ(i)
L̂

, γ
(i)
1 , γ

(i)
2 , . . . , γ

(i)
L̂−1

}, and Λ(i)
L � diag{γ(i)

2 , γ
(i)
3 ,

. . . , γ
(i)
L̂

, γ
(i)
1 }. This equality shows that q(i+1)(w) follows a

Gaussian distribution:

q(i+1)(w) = CN (w|μ(i+1) ,Σ(i+1)), (26)

where μ(i+1) = α̂(i+1)Σ(i+1)ΦH y and Σ(i+1) = (α̂(i+1)

ΦH Φ + Ψ(i)
1 Λ(i)

R + Ψ(i)
2 Λ(i) + Ψ(i)

3 Λ(i)
L )−1 .

3) Update of q(γ): The update (18) gives a unique solution

ln q(i+1)(γ)

∝ 〈ln p(y,Θ)〉q ( i + 1 ) (α)q ( i + 1 ) (w )q ( i ) (Z) (27)

∝ 〈ln p(w|Z,γ)〉q ( i + 1 ) (w )q ( i ) (Z) + ln p(γ) (28)

∝
L̂∑

l=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝a + φ
(i)
l+1,1 + φ

(i)
l,2 + φ

(i)
l−1,3︸ ︷︷ ︸

�a
( i + 1 )
l

−1

⎞

⎟⎟⎟⎠ ln γl

− γl ·
(
b + φ

(i)
l+1,1


(i+1)
l+1 + φ

(i)
l,2


(i+1)
l + φ

(i)
l−1,3


(i+1)
l−1

)

︸ ︷︷ ︸
�b

( i + 1 )
l

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

(29)
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where 

(i+1)
l � |μ(i+1)

l |2 + Σ(i+1)
l,l with μ

(i+1)
l being the l-th

element of μ(i+1) and Σ(i+1)
l,l being the l-th diagonal element of

Σ(i+1) . Note that we let the undefined μ0 and μL̂+1 equal μL̂

and μ1 , respectively, so are Σ0,0 , ΣL̂+1,L̂+1 , φ0,g and φL̂+1,g .

Since γl is separable for each other, q(i+1)(γl) obeys a Gamma
distribution:

q(i+1)(γl) = Γ
(
γl |a(i+1)

l , b
(i+1)
l

)
. (30)

The means of γl and ln γl can be calculated as

γ̂
(i+1)
l � 〈γl〉q ( i + 1 ) (γl ) =

a
(i+1)
l

b
(i+1)
l

(31)

and

(l̂n γl)
(i+1) � 〈ln γl〉q ( i + 1 ) (γl )

= Ψ
(
a

(i+1)
l

)
− ln
(
b
(i+1)
l

)
, (32)

respectively, where Ψ(·) stands for the digamma function.
4) Update of q(Z): The update (19) gives a unique solution

ln q(i+1)(Z)

∝ 〈ln p(y,Θ)〉q ( i + 1 ) (α)q ( i + 1 ) (w )q ( i + 1 ) (γ) (33)

∝ 〈ln p(w|Z,γ)〉q ( i + 1 ) (w )q ( i + 1 ) (γ) . (34)

Since each zl is a discrete vector, we are able to exhaustively
calculate the value of ln q(i+1)(zl = eg ), ∀g, as

ln q(i+1)(zl = e1) ∝ ( ̂ln γl−1)(i+1) − γ̂
(i+1)
l−1 


(i+1)
l︸ ︷︷ ︸

�ς
( i + 1 )
l , 1

, (35)

ln q(i+1)(zl = e2) ∝ (l̂n γl)(i+1) − γ̂
(i+1)
l 


(i+1)
l︸ ︷︷ ︸

�ς
( i + 1 )
l , 2

, (36)

ln q(i+1)(zl = e3) ∝ ( ̂ln γl+1)(i+1) − γ̂
(i+1)
l+1 


(i+1)
l︸ ︷︷ ︸

�ς
( i + 1 )
l , 3

. (37)

Because
∑3

g=1 q(i+1)(zl = eg ) = 1, we obtain

φ
(i+1)
l,g = q(i+1)(zl = eg ) =

exp(ς(i+1)
l,g )

∑3
g=1 exp(ς(i+1)

l,g )
. (38)

C. Parameterized Transformation and Convergence Analysis

From Section III-B, it is clear that each factor in q(Θ) =
q(α)q(w)q(γ)q(Z) can be considered as a parameterized func-
tion. Specifically, (21) shows that q(α) is in a form of Gamma
distribution parameterized by Ω1 � {aα , bα}; (26) indicates
that q(w) is Gaussian distributed, parameterized by Ω2 �
{μ,Σ}; (30) shows that q(γ) is in a form of Gamma distribution
parameterized by Ω3 � {al , bl}L̂

l=1 ; (38) means that q(Z) is a

discrete distribution parameterized by Ω4 � {φl,g}L̂ ,3
l=1,G=1 . As

a result, the optimization problem (14) which is optimized over

function spaces can be converted into a conventional parame-
terized optimization problem:

(Ω�
1 ,Ω

�
2 ,Ω

�
3 ,Ω

�
4)

= arg max
Ω1 ,Ω2 ,Ω3 ,Ω4

U (Ω1 ,Ω2 ,Ω3 ,Ω4) , (39)

where U(Ω1 ,Ω2 ,Ω3 ,Ω4) is short for U(q(α|Ω1), q(w|Ω2),
q(γ|Ω3), q(Z|Ω4)) whose definition can be found in (14). Then,
the alternating update algorithm is considered as an alternating
optimization (AO) approach [42], [43]

Ω(i+1)
1 = arg max

Ω1
U
(
Ω1 ,Ω

(i)
2 ,Ω(i)

3 ,Ω(i)
4

)
, (40)

Ω(i+1)
2 = arg max

Ω2
U
(
Ω(i+1)

1 ,Ω2 ,Ω
(i)
3 ,Ω(i)

4

)
, (41)

Ω(i+1)
3 = arg max

Ω3
U
(
Ω(i+1)

1 ,Ω(i+1)
2 ,Ω3 ,Ω

(i)
4

)
, (42)

Ω(i+1)
4 = arg max

Ω4
U
(
Ω(i+1)

1 ,Ω(i+1)
2 ,Ω(i+1)

3 ,Ω4

)
. (43)

Note that the solutions to (40)–(43) almost coincide with the
ones to (16)–(19), which can be found in (21), (26), (30) and
(38), respectively. The only difference is in that the parame-
terized method provides the parameters of the posterior distri-
butions, while the standard method gives the whole posterior
distributions. Once the algorithm converges, the approximate
posteriors q(α), q(w), q(γ) and q(Z) are obtained. Then, we
use the mean of the posterior q(w) as the estimate of w, and the
estimated downlink channels he is calculated as

he = Aμ. (44)

where μ is the posterior mean of the angular channel vector w.
It is worth noting that to trigger the AO algorithm (40)–(43),

initialization for Ω0
2 , Ω0

3 and Ω0
4 is needed. Empirical evidence

shows that the proposed method remains very robust to the
choice of initial guesses. Therefore, we simply do:

� Ω0
2 is initialized with μ(0) = Σ(0)ΦH y and Σ(0)

k =
(ΦH Φ + I)−1 ;

� Ω0
3 is initialized with a

(0)
l = b

(0)
l = 1,∀l;

� Ω0
4 is initialized with random φ

(0)
l,g s such that

∑3
g=1 φ

(0)
l,g =

1,∀l.
The steps of the proposed algorithm are summarized in Fig. 2.
Finally, we give a convergence analysis for our method.

Since the original optimization problem (14) is equal to the
parameterized optimization problem (39), we focus on the
parameterized optimization problem as follows. The non-
decreasing property of the sequence U(Ω(i)

1 ,Ω(i)
2 ,Ω(i)

3 ,Ω(i)
4 ),

i = 1, 2, 3, . . ., is well guaranteed by the update rules (40)–
(43). SinceU(Ω1 ,Ω2 ,Ω3 ,Ω4) has an upper bound, the sequence
U(Ω(i)

1 ,Ω(i)
2 ,Ω(i)

3 ,Ω(i)
4 ), i = 1, 2, 3, . . ., converges to a limit.

Moreover, each subproblem in (40)–(43) has a unique solution.
Hence, according to Theorem 2-b in [42], we further establish
that the limit of the objective solution is an exact stationary
point.

Lemma 3: If variables are iteratively updated by solving
(40), (41), (42) and (43), the iterates generated by the AO
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Fig. 2. Procedure of proposed algorithm.

algorithm converge to a stationary solution of the optimization
problem (39).

Proof: See Appendix F in [20]. �

D. Relation With [35]

As mentioned in Section II-C, the method in [35] adopts the
pattern-coupled model (7) to exploit burst-sparsity, which brings
an intractable Bayesian inference. Since the optimal hyperpa-
rameter update for γ̂ls cannot be found in each iteration, only a
sub-optimal solution is available (see (26) in [35]), i.e.,

γ̂
(i+1)
l =

ā

0.5(β

(i+1)
l−1 + 


(i+1)
l + β


(i+1)
l+1 ) + b̄

, ∀l, (45)

where ā > 0 and b̄ is a small constant (e.g., b̄ = 10−10). Note that
such sub-optimal choice may degrade the recovery performance,
and its convergence cannot be theoretically guaranteed. Differ-
ent from [35], our method has several advantages: (i) it is able to
cope with the non-uniform burst-sparsity model which can cap-
ture a more complicated and realistic burst-sparsity structure;
and (ii) it overcomes the aforementioned algorithmic shortcom-
ings encountered by the existing pattern-coupled method [35].
Actually, our update for γ̂ls in (31) includes the sub-optimal one
in (45) as a special case.

Lemma 4: The proposed method includes the existing
pattern-coupled method as a special case if we use fixed values
for the posterior estimates of zls, i.e., φ(i)

l,1 = φ
(i)
l,3 = β, φ(i)

l,2 = 1,
∀l, i.

Proof: Let φ(i)
l,1 = φ

(i)
l,3 = β, and φ

(i)
l,2 = 1, ∀l, i, then (31) can

be written as

γ̂
(i+1)
l =

a + 1 + 2β

b + β

(i+1)
l−1 + 


(i+1)
l + β


(i+1)
l+1

≈ 1 + 2β

β

(i+1)
l−1 + 


(i+1)
l + β


(i+1)
l+1

, (46)

because a and b are sufficiently small. On the other hand, (45)
is similarly written as

γ̂
(i+1)
l ≈ 2ā

β

(i+1)
l−1 + 


(i+1)
l + β


(i+1)
l+1

. (47)

The only difference between (46) and (47) in the numerators.
However, this gap can be fixed by scaling the dictionary ma-
trix or the measurement directly. For example, if we use the

dictionary matrix Φ̂ �
√

2ā
1+2β · Φ instead of Φ in (4), the cor-

responding update (46) will coincide with (47). �
From Lemma 4, the proposed method is expected to out-

perform [35], because our pattern-coupled coefficients are au-
tomatically determined by the Bayesian inference, which will
bring enhanced recovery performance. But it should be noted
that Lemma 4 is just a byproduct. The core principle behind
our solution is the new pattern-coupled prior introduced in
Definition 2, which makes the Bayesian inference tractable for
the non-uniform burst-sparsity model. On the other hand, since
the new model introduces additional assignment vectors zls into
the SBL framework, the proposed method might suffer from a
risk of overfitting. However, empirical evidence shows that the
proposed method remains very robust to outliers and works quite
well with practical channel models.

IV. HANDLING DIRECTION MISMATCH

In practical scenarios, signals usually come from random di-
rections. Therefore, as mentioned in Section II-A, the assump-
tion of true AoDs being located on the predefined spatial grid
may not be valid. To solve the direction mismatch problem,
off-grid models have been applied widely to direction-of-arrival
estimation in array signal processing [24], [44]. The commonly
used first-order linear approximation model does not work well
when the grid is not sufficiently fine [40]. The direction mis-
match problem for the massive MIMO channel estimation has
been investigated in [20], and a dynamic off-grid model is de-
veloped to avoid using any approximations so as to significantly
alleviate the modeling error. Note that the main idea of the dy-
namic off-grid model is to consider the sampled grid points as
adjustable parameters, which has also been adopted in [45]–
[48]. In this section, we blend the off-grid model proposed in
[20] with our SBL-based framework to combat the modeling er-
ror caused by direction mismatch. Specifically, if θl /∈ {ϑ̂i}L̂

i=1
and ϑ̂nl

, nl ∈ {1, 2, . . . , L̂}, is the nearest grid point to θl , θl is
written as:

θl = ϑ̂nl
+ βnl

, (48)

where βnl
corresponds to the direction mismatch (or off-grid

gap). From (48), we have a (θl) = a(ϑ̂nl
+ βnl

), and the re-
ceived signal y can be rewritten as

y = Φ(β)w + n, (49)
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where Φ(β) = XA(β), β = [β1 , β2 , . . . , βL̂ ]T , A(β) =
[a(ϑ̂1 + β1),a(ϑ̂2 + β2), . . . ,a(ϑ̂L̂ + βL̂ )], and

βnl
=

{
θl − ϑ̂nl

, l = 1, 2, . . . , L

0, otherwise
.

Clearly, the direction mismatch can be significantly allevi-
ated because there always exists some βk,nl

making (48) hold
exactly.

With the off-grid model (49), almost all the results in
Section III-A remain unchanged, except that (10) is replaced
by

p(y|w, α,β) = CN (y|Φ(β)w, α−1I), (50)

and the parameterized problem (39) is modified to

(Ω�
1 ,Ω

�
2 ,Ω

�
3 ,Ω

�
4 ,β)

= arg max
Ω1 ,Ω2 ,Ω3 ,Ω4 ,β

U (Ω1 ,Ω2 ,Ω3 ,Ω4 ,β) . (51)

Then, the corresponding AO algorithm becomes

Ω(i+1)
1 = arg max

Ω1
U
(
Ω1 ,Ω

(i)
2 ,Ω(i)

3 ,Ω(i)
4 ,β(i)

)
, (52)

Ω(i+1)
2 = arg max

Ω2
U
(
Ω(i+1)

1 ,Ω2 ,Ω
(i)
3 ,Ω(i)

4 ,β(i)
)

, (53)

Ω(i+1)
3 = arg max

Ω3
U
(
Ω(i+1)

1 ,Ω(i+1)
2 ,Ω3 ,Ω

(i)
4 ,β(i)

)
, (54)

Ω(i+1)
4 = arg max

Ω4
U
(
Ω(i+1)

1 ,Ω(i+1)
2 ,Ω(i+1)

3 ,Ω4 ,β
(i)
)

,

(55)

β(i+1) = arg max
β

U
(
Ω(i+1)

1 ,Ω(i+1)
2 ,Ω(i+1)

3 ,Ω(i+1)
4 ,β

)
.

(56)

The solutions to (52)–(55) can be achieved similarly as in
Section III-B, where the only difference is in replacing Φ by
Φ(β). What remains is to obtain the solution to (56). Since the
same optimization problem has been addressed in (33) of [20],
we provide the main update result for β here, but without any
derivations. The interested reader is referred to Section III-D
of [20].

Following the procedure in [20], we apply gradient update
on the objective function of (56) and obtain a simple one-step
update for βs, where the derivative of the objective function,
with respect to, β, is calculated as

ζ
(i+1)
β = [ζ(i+1)(β1), ζ(i+1)(β2), . . . , ζ(i+1)(βL̂ )]T , (57)

with

ζ(i+1)(βl)=2Re
(
(a′(ϑ̂l +βl))H XH X(a(ϑ̂l +βl))

)
· c(i+1)

1

+ 2Re
(
(a′(ϑ̂l +βl))H XH c(i+1)

2

)
. (58)

Here, c
(i+1)
1 = −α(i+1)(χ(i+1)

ll + |μ(i+1)
l |2), c(i+1)

2 = α(i+1)

((μ(i+1)
l )∗y(i+1)

−l − X
∑

j 
= l χ
(i+1)
j l a(ϑ̂j + βj )), y(i+1)

−l = y −
X ·∑j 
= l(μ

(i+1)
j · a(ϑ̂j + βj )), a′(ϑ̂j + βl) = da(ϑ̂j + βl)/

dβl , μ
(i+1)
l and χ

(i+1)
j l denote the l-th element and the (j, l)-th

entry of μ(i+1) and Σ(i+1) , respectively. With (57), we update
β in the derivative direction, i.e.,

β(i+1) = β(i) + Δ · ζ(i+1)
β( i ) , (59)

where Δ is the stepsize that can be optimized by backtracking
line search [49]. However, choosing the right stepsize can be
time-consuming. Alternatively, we adopt a fixed stepsize, i.e.,

β(i+1) = β(i) +
rθ

100
· sign(ζ(i+1)

β( i ) ), (60)

where rθ stands for the grid interval, and sign(·) is the signum
function. As mentioned in [20], the term rθ/100 guarantees that
the final gap is smaller than 1% of rθ , and the (approximate)
true values may be attained within 100 iterations in the worst
case. When the algorithm converges, the estimated downlink
channels he is calculated as he = A(β)μ.

V. SIMULATION RESULTS

In this section, we conduct numerical simulations to investi-
gate the performance of our proposed method, which is com-
pared with the following baseline schemes:

� Baseline 1 (LASSO): h is recovered using the l1-norm
minimization algorithm [50], [51].

� Baseline 2 (SBL): h is recovered using the standard SBL
method [22].

� Baseline 3 (Off-grid SBL): h is recovered using the off-grid
SBL method [20].

� Baseline 4 (Burst LASSO): h is recovered using the burst
LASSO method [19].

� Baseline 5 (PC-SBL): h is recovered using the pattern-
coupled SBL method [35].

� Baseline 6 (GSVB): h is recovered using the group sparse
variational Bayes method [34].

For fairness, same size of the grid points is used for all the
methods. The 3GPP spatial channel model (SCM) [39] is em-
ployed to generate the channel coefficients for an urban micro-
cell, and we assume that the pilot matrix X has i.i.d. zero-mean
circularly symmetric complex Gaussian entries with unit vari-
ance. The downlink frequency is set to 2170 MHz and the inter-
antenna spacing is d = c/(2f0), with c being the light speed and
f0 = 2000 MHz. The normalized mean square error (NMSE) is
defined as

1
Mc

Mc∑

m=1

‖he
m − hm‖2

2

‖hm‖2
2

, (61)

where he
m is the estimate of hm at the m-th Monte Carlo trial and

Mc is the number of Monte Carlo trials. Unless stated otherwise,
we assume that every channel realization consists of Nc random
scattering clusters ranging from −90◦ to 90◦, and each cluster
contains Ns sub-paths concentrated in a A angular spread. In
this case, the channels are generated with off-grid (continuous)
path angles. Note that MATLAB codes have been made available
online at https://sites.google.com/site/jsdaiustc/publication.

https://sites.google.com/site/jsdaiustc/publication
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Fig. 3. Element modulus of w for three independent trials with N = 100, L̂ = 180, T = 50 and SNR = 0 dB. The true azimuth AoDs are denoted by dotted
lines. (a) Proposed. (b) PC-SBL. (c) SBL. (d) Burst LASSO. (e) LASSO.

A. Recovered Channel Sparsity in Angular Domain

We study the effect of non-uniform burst-sparsity on the re-
covery performance for different channel estimation strategies.
Consider a simple on-grid scenario where a ULA with 100 an-
tennas at the BS is used to send the training pilot symbols with
Nc = 2 scattering clusters and each cluster contains Ns = 5
sub-paths. The true AoDs are θ1,1 = 6◦, θ1,2 = 7◦, θ1,3 =
8◦, θ1,4 = 9◦, θ1,5 = 10◦, θ2,1 = 20◦, θ2,2 = 21◦, θ2,3 = 24◦,
θ2,4 = 25◦, and θ2,5 = 26◦. The training pilots are randomly
generated with T = 50 and the SNR is set to 0 dB. Fig. 3 shows
the element modulus of the recovered channel sparse represen-
tation w, where the grid is fixed to [−90◦,−89◦,−88◦, . . . , 90◦]
for all the methods. It is observed that (i) the methods (PC-SBL
and Burst LASSO) designed for burst-sparsity recovery have a
significant performance loss due to the leakage of energy over
outliers, e.g., at the grid points 22◦ and 23◦; (ii) the methods
(SBL and LASSO) designed for individual sparsity recovery are
not affected by outliers much, but they have a leakage of energy
over some random positions, which will result in a more serious
performance loss than the one caused by leakage of energy over
outliers, because the random positions are usually far from the
true positions; and (iii) our proposed method can greatly im-
prove the sparsity and accuracy of the channel representation,
and outliers can almost be eliminated.

B. Channel Estimation Performance Versus T

In Fig. 4, Monte Carlo trials are carried out to investigate the
impact of the number of pilot symbols on the channel estima-
tion performance. Assume that a ULA is equipped at the BS

with N = 128 antennas, the training plots are randomly gener-
ated, the number of grid points is fixed at L̂ = 200, and SNR is
chosen as 0 dB. All the results are obtained by averaging over
200 Monte Carlo channel realizations. Every independent run
consists of Nc = 2 or 3 random scattering clusters ranging from
−90◦ to 90◦, and each cluster contains Ns = 10 sub-paths con-
centrated in a A = 10◦ or 30◦ angular spread.5 Fig. 4 shows the
NMSE performance of the downlink channel estimate achieved
by the different channel estimation strategies versus the number
of training pilot symbols T . It is seen that: (i) the NMSEs of
all the methods decrease as the number of training pilot sym-
bols increases, and the LASSO-based methods give the worst
performance; (ii) Burst LASSO can get a performance gain by
exploiting burst-sparsity with a small angular spread (Fig. 4(a)),
because a small angular spread will bring a low possibility of
occurring outliers in the angular domain; (iii) the SBL-based
methods improve the NMSE performance, especially for off-
grid SBL, PC-SBL and GSVB; and (iv) our solution always
outperforms the state-of-the-art methods, which verifies that the
former can jointly exploit burst-sparsity and exclude the harmful
effect from outliers.

C. Channel Estimation Performance Versus SNR

In Fig. 5, Monte Carlo trials are carried out to study the
impact of SNR on the channel estimation performance. We
consider the same scenario as in Section V-B, except that the

5Since path angles are randomly generated, the on-grid assumption is not
valid.
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Fig. 4. NMSE of downlink channel estimate versus number of training pilot
symbols with N = 128, L̂ = 200 and SNR = 0 dB. (a) Nc = 3 and A = 10◦.
(b) Nc = 2 and A = 30◦.

number of training pilot symbols is fixed at 60. Fig. 5 shows the
NMSE performance of the downlink channel estimate achieved
by the different channel estimation strategies versus SNR. All
the results are obtained by averaging over 200 Monte Carlo
channel realizations. It is observed that: (i) the NMSEs of all
the methods decrease as SNR increases, and the LASSO- based
methods still give the worst performance; (ii) compared with off-
grid SBL, PC-SBL and GSVB obtain very limited gain from the
burst-sparsity structure when SNR is sufficiently high, because
the outliers deviated from block structures are significant in this
case; (iii) our method is always superior to the others, and the
performance gap between our method and PC-SBL increases
when SNR increases.

D. Channel Estimation Performance Versus A
We now examine the impact of the angular spread on the

channel estimation performance, where two scenarios are con-
sidered: (i) a ULA is equipped at the BS with N = 150 antennas

Fig. 5. NMSE of downlink channel estimate versus SNR with N = 128,
L̂ = 200 and T = 60. (a) Nc = 3 and A = 10◦. (b) Nc = 2 and A = 20◦.

and Nc = 3; and (ii) N = 128 and Nc = 2. Other parameters
are set as follows: T = 60, Ns = 10, L̂ = 200 and SNR= 0 dB.
Fig. 6 shows the NMSE performance of the downlink channel
estimate achieved by the different channel estimation strategies
versus the angular spread. All the results are obtained by av-
eraging over 200 Monte Carlo channel realizations. It is seen
that the performance of PC-SBL degrades significantly with the
increase of the angular spread; while our method keeps a rea-
sonable performance gain, especially for the second scenario
(Fig. 6(b)). Actually, the same observations are found in Figs. 4
and 5. For example, the performance gap between our method
and PC-SBL in Fig. 4(b) is larger than the one in Fig. 4(a),
where Fig. 4(b) has a larger angular spread. The main reason
is that the larger the angular spread is, the higher possibility of
occurring outliers is.

E. Channel Estimation Performance Versus L̂

Finally, the impact of the number of grid points on the chan-
nel estimation performance is examined. Consider a ULA is
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Fig. 6. NMSE of downlink channel estimate versus angular spread with L̂ =
200 and T = 60. (a) N = 150, Nc = 3 and SNR = 0 dB. (b) N = 128,
Nc = 2 and SNR = 0 dB.

equipped at the BS with N = 150 antennas, the number of
training pilot symbols is fixed at T = 80, and SNR is chosen as
10 dB. Fig. 7 shows the NMSE performance of the downlink
channel estimate achieved by the different channel estimation
strategies versus the number of grid points. All the results are
obtained by averaging over 200 Monte Carlo channel realiza-
tions. We see that the NMSEs of all the methods decrease as
the number of grid points increases, and our method always
outperforms the state-of-the-art schemes, especially for a small
L̂. Moreover, it reaffirms that the performance gap between the
proposed algorithm and PC-SBL increases when the angular
spread increases.

VI. CONCLUSION

The problem of joint downlink channel estimation and non-
uniform burst-sparsity exploiting for massive MIMO systems
is tackled in this paper. Firstly, we devise a novel non-uniform
burst-sparsity model to capture a more general burst-sparsity

Fig. 7. NMSE of downlink channel estimate versus number of grid points with
N = 150, T = 80 and SNR = 10 dB. (a) Nc = 3 and A = 10◦. (b) Nc = 2
and A = 20◦.

structure in practice, and an improved pattern-coupled prior to
account for bursts and outliers simultaneously is then intro-
duced. Finally, we propose a generic SBL-based framework to
automatically detect unknown outliers and bursts, and simul-
taneously achieve massive MIMO channel estimation. Simu-
lation results illustrate that our method indeed works for the
non-uniform burst-sparsity model, and it can significantly im-
prove the channel estimation performance when the strict block-
sparsity assumption is invalid. Compared with the pattern-
coupled SBL-based method in [35] that only gives a sub-optimal
solution without convergence guarantee, our method provides a
stationary solution and can include [35] as a special case.
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