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Abstract—This paper addresses the problem of joint downlink
channel estimation and user grouping in massive multiple-input
multiple-output (MIMO) systems, where the motivation comes
from the fact that the channel estimation performance can be im-
proved if we exploit additional common sparsity among nearby
users. In the literature, a commonly used group sparsity model
assumes that users in each group share a uniform sparsity pattern.
In practice, however, this oversimplified assumption usually fails
to hold, even for physically close users. Outliers deviated from the
uniform sparsity pattern in each group may significantly degrade
the effectiveness of common sparsity, and hence bring limited (or
negative) gain for channel estimation. To better capture the group
sparse structure in practice, we provide a general model having
two sparsity components: commonly shared sparsity and individ-
ual sparsity, where the additional individual sparsity accounts for
any outliers. Then, we propose a novel sparse Bayesian learning
based framework to address the joint channel estimation and user
grouping problem under the general sparsity model. The frame-
work can fully exploit the common sparsity among nearby users
and exclude the harmful effect from outliers simultaneously. Simu-
lation results reveal substantial performance gains over the existing
state-of-the-art baselines.

Index Terms—Channel estimation, user grouping, massive
multiple-input multiple-output (MIMO), sparse Bayesian learning
(SBL), off-grid refinement.

I. INTRODUCTION

MASSIVE multiple-input Multiple-output (MIMO) can
support high spectrum and energy efficiency, and it has

been widely considered as one of the key candidate technolo-
gies to meet the capacity demand for the next generation of
wireless communications [1]–[3]. To fully harvest the benefit
of excessive base station (BS) antennas, knowledge of chan-
nel state information at the transmitter (CSIT) is an essential
requirement [4], [5]. However, it is challenging to acquire the
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accurate CSIT, since the training overhead for CSIT acquisition
grows proportionally with the number of BS antennas, which
can be very large in such systems. Early works sidestep this
challenge by adopting a time-division duplexing (TDD) model
[4], [6], where the CSIT can be obtained by exploiting channel
reciprocity, and the uplink pilot-aided training overhead is only
proportional to the number of mobile users.

Unfortunately, channel reciprocity does not hold for mas-
sive MIMO systems with a frequency-division duplexing (FDD)
model. Compared with a TDD system, an FDD system has its
own advantages; e.g., it can provide more efficient communi-
cations with low latency [7], [8]. FDD also dominates current
cellular systems, and for 5G wireless networks, the radio capa-
bility for FDD remains in the specifications [9]. Therefore, it is
also important to consider CSIT acquisition for FDD systems. In
fact, there are situations when it is necessary to consider down-
link channel estimation even in TDD systems. For example,
due to random radio-frequency (RF) circuit mismatches in the
uplink and downlink and limited coherence time, the channel
reciprocity may no longer hold [10], [11]. Moreover, in LTE/5G
systems, there exist situations when users only use some of the
antennas to transmit in the uplink. In this case, the channel as-
sociated with the other user antennas has to be estimated via
downlink training. In addition, the cell-edge users may suffer
from very low SNR in the channel estimation phase due to the
limited power budget at the mobile device. In this case, it is
preferable to use downlink channel estimation because the BS
can transmit pilot signals at a larger power to meet the channel
estimation accuracy.

Many works have shown that the effective dimension of a
massive MIMO channel is actually much less than its origi-
nal dimension because of the limited local scattering effect in
the propagation environment [12]–[15]. Specifically, the mas-
sive MIMO channel has an approximately sparse representation
under the discrete Fourier transform (DFT) basis if the BS is
equipped with a large uniform linear array (ULA) [13], [16]–
[18]. As a consequence, a large number of compressive sensing
(CS) algorithms that exploit the hidden sparsity under the DFT
basis have been proposed for downlink channel estimation and
feedback [8], [12], [13], [15], [19]–[23]. Nevertheless, there are
at least two challenges of the DFT-based methods: 1) they are
only applicable to ULAs because the sparse property hinges
strongly on the shared structure between the DFT basis and the
ULA steering; and 2) they always suffer from inevitable mod-
eling error caused by direction mismatch. To alleviate the mod-
eling error, a denser sampling grid covering the angular domain
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with more points (named overcomplete DFT basis) was con-
sidered in [24]–[26]. However, the overcomplete DFT method
is still applicable to ULAs only, and it may lead to a high
performance loss if the grid is not sufficiently dense.

Recently, the sparse Bayesian learning (SBL) method has
attracted significant attention for sparse signal recovery [27]–
[32]. The SBL-based framework has an inherent learning capa-
bility, and hence, no prior knowledge about the sparsity level,
noise variance or direction mismatch is required. Moreover,
theoretical and empirical results have shown that SBL methods
can achieve better performance than the l1-norm-based meth-
ods [27], [30]. Our previous work [31] introduced an off-grid
SBL-based method for downlink channel estimation, which can
be applied to arbitrary 2D-array geometry and substantially re-
duces the modeling error caused by direction mismatch. The
method in [31] overcomes all the aforementioned challenges
of the DFT-based methods, and simulation results illustrated
that it can achieve much better channel estimation performance
than the existing state-of-the-art methods. However, [31] only
focused on single-user channel estimation in massive MIMO
systems.

Many studies have observed that channels of multi-user mas-
sive MIMO systems may share common sparsity structures due
to the commonly shared local scattering clusters [14], [33]. To
exploit the common sparsity among nearby users, a joint orthog-
onal matching pursuit recovery algorithm was proposed in [13].
However, the effectiveness of that approach relies on appropriate
user clustering in the multi-user MIMO network. While there
are various user clustering methods [7], [34], [35] in the liter-
ature, they are targeted for different purposes. It is also worth
noting that the meaning of group sparsity from the perspective
of compressed sensing (CS) [36], [37] is different from the one
used in this paper. In CS, group sparsity is usually known as
block sparsity, which means the locations of significant coef-
ficients cluster in blocks under a known specific sorting order.
To the best of our knowledge, user clustering for maximizing
the common sparsity has not been investigated before. In this
paper, we propose an efficient off-grid SBL-based approach for
joint channel estimation and user grouping to enhance the ef-
fectiveness of common sparsity in massive MIMO systems. The
following summarizes the contributions of this paper.

� General Sparsity Model for User Grouping
We develop a more general sparsity model to better cap-
ture the group sparse structure in practical multi-user mas-
sive MIMO systems. In the literature, a commonly used
group sparsity model assumes that users in each group
share a uniform sparsity pattern [38]. This oversimpli-
fied model can simplify the procedure for user group-
ing; however, it usually fails to hold, even for physi-
cally close users, in practice. Outliers deviated from the
uniform sparsity pattern in each group may significantly
degrade the effectiveness of the common sparsity, and
bring limited (or negative) gain for channel estimation.
To address this issue, we propose a general model hav-
ing two sparsity components: a commonly shared spar-
sity and an individual sparsity. Since the additional in-
dividual sparsity can account for any outliers, the new

Fig. 1. Illustration of system model and general sparsity mode, where the
commonly shared support sets for two groups are S1 = {1, 2, 3} and S2 =
{7, 8, 10}, respectively.

model may capture a more complex and realistic group
sparse structure in real-world applications (see Fig. 1 for
example).

� SBL-based Framework for Joint Channel Estimation
and User Grouping
We propose a novel SBL-based method to autonomously
partition users into groups during the channel estimation
under the general sparsity model. SBL-based methods
have been widely applied to estimate the sparse channel
in single-user massive MIMO systems, but they are not
applicable to joint user grouping and channel estimation
in multi-user massive MIMO systems. To the best of our
knowledge, the method proposed for wideband direction-
of-arrival estimation in [38] is the only candidate that may
be tailored to solve the problem of joint channel estima-
tion and user grouping. However, it requires the aforemen-
tioned restrictive assumption that users in each group share
a uniform sparsity structure. To handle the more practical
general sparsity model, we propose a novel SBL-based
framework, which can fully exploit the common sparsity
among nearby users and exclude the harmful effect from
outliers simultaneously. Moreover, the grid-refining pro-
cedure used in [31] is also extended to the framework to
efficiently combat direction mismatch with an arbitrary
2D-array geometry.

The rest of the paper is organized as follows. In Section II,
we present the system model and the general sparsity model. In
Section III, we provide the SBL-based method for joint channel
estimation and user grouping. In Section IV, we extend the pro-
posed method to handling direction mismatch with an arbitrary
2D-array geometry. Numerical experiments and a conclusion
follow in Sections V and VI, respectively.
Notations : C denotes complex number, ‖ · ‖p denotes p-

norm, (·)T denotes transpose, (·)H denotes Hermitian transpose,
(·)† denotes pseudoinverse, I denotes identity matrix, AΩ de-
notes the sub-matrix formed by collecting the columns from Ω,
CN (·|μ,Σ) denotes complex Gaussian distribution with mean
μ and variance Σ, supp(·) denotes the set of indices of nonzero
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elements, tr(·) denotes trace operator, diag(·) denotes diagonal
operator, and Re(·) denotes real part operator.

II. DATA MODEL

A. Massive MIMO Channel Model

Consider a massive MIMO system as illustrated in Fig. 1.
There is one BS with N (� 1) antennas and K mobile users
(MUs) with a single antenna. Assume that the BS broadcasts a
sequence of T training pilot symbols, denoted by X ∈ CT ×N ,
for each MU to estimate the downlink channel. Then, the down-
link received signal yk ∈ CT ×1 at the k-th MU is given by

yk = Xhk + nk , (1)

where hk ∈ CN×1 stands for the downlink channel vector from
the BS to the k-th MU, nk ∈ CT ×1 stands for the additive
complex Gaussian noise with each element being zero mean
and variance σ2 in the downlink, and tr(XXH ) = PTN , with
P/σ2 measuring the training signal-to-noise ratio (SNR). If the
BS is equipped with a linear array, hk can be formulated as
[39]–[41]

hk =
Nc∑

c=1

Ns∑

s=1

ξkc,sa(θkc,s), (2)

whereNc stands for the number of scattering clusters,Ns stands
for the number of sub-paths per scattering cluster, ξkc,s is the
complex gain of the s-th sub-path in the c-th scattering cluster
for the k-th MU, and θkc,s is the corresponding azimuth angle-of-
departure (AoD). For a linear array, the steering vector a(θ) ∈
CN×1 is in the form of

a(θ) = [1, e−j2π
d 2
λ sin(θ) , . . . , e−j2π

dN
λ sin(θ) ]T , (3)

where λ is the wavelength of the downlink propagation, and dn
stands for the distance between the n-th antenna and the first
antenna. For a ULA, a(θ) can be simplified by

a(θ) = [1, e−j2π
d
λ sin(θ) , . . . , e−j2π

(N−1 )d
λ sin(θ) ]T , (4)

where d stands for the distance between adjacent sensors.
For ease of notation, we denote the true AoDs for MU k as

{θkl , l = 1, 2, . . . , L} with L = NcNs . Let ϑ̂ = {ϑ̂l}L̂l=1 be a
fixed sampling grid that uniformly covers the angular domain
[− π

2 ,
π
2 ], where L̂ denotes the number of grid points. If the grid

is fine enough, such that all the true AoDs θkl s, l = 1, 2, . . . , L,
lie on (or practically close to) the grid, we have1

hk = Awk , (5)

where A =
[
a(ϑ̂1), a(ϑ̂2), . . . , a(ϑ̂L̂ )

] ∈ CN×L̂ , and wk ∈
CL̂×1 is a vector with a few non-zero elements corresponding
to the true directions at {θl , l = 1, 2, . . . , L}. With (1) and (5),
yk can be rewritten by

yk = XAwk + nk = Φwk + nk , (6)

1The DFT basis becomes a special case of A if the BS is equipped with a

ULA and there are N grid points such that {sin ϑ̂l}L̂l=1 uniformly covers the
range [−1, 1].

where Φ � XA. Note that the assumption that all true AoDs
are located on the predefined spatial grid is not always valid
in practice [32], [42]. We will address the direction mismatch
in Section IV, as well as the extension for arbitrary 2D-array
geometry.

B. General Sparsity Model

The massive MIMO channel usually has the following two
important properties:

� (Sparsity Property): Due to the limited local scattering
effect in the propagation environment [12], [17], [18], the
number of scattering clusters Nc is usually small and the
sub-paths associated with each scattering cluster are likely
to concentrate in a small range. In other words, only a
few angles are occupied in the angular domain, which, in
return, brings a sparse representation wk .

� (Group Property): Some users may face a very similar scat-
tering structure if they are physically close to each other
[13], [14], [33]. Hence, the performance of the downlink
channel estimation can be improved if we can exploit the
common sparsity among nearby users, because it can bring
additional useful information for sparse signal recovery
algorithms.

Without loss of generality, assume that the K users can be
partitioned into G groups {G1 ,G2 , . . . ,GG}. The commonly
used group sparsity model assumes that users in each group
share a uniform sparsity pattern [38], i.e.,

supp(wp) = supp(wq ), p, q ∈ Gg . (7)

This assumption can simplify the procedure for user grouping,
but usually fails to hold in practice, because it is a restrictive
constraint requiring the same scattering structure for users in
each group. The channel estimation performance may be sig-
nificantly degraded by the outliers deviated from the uniform
sparsity pattern in each group.

To capture a more complex and realistic group sparse struc-
ture, we partition the sparse representation vector into two parts,
i.e.,

wk = ws
k + wv

k , (8)

where ws
k stands for the commonly shared sparse representa-

tion vector whose support corresponds to the commonly shared
support, and wv

k stands for the individual sparse representation
vector whose support corresponds to the individual support.

Definition 1 (General Sparsity Model): Let the sparse repre-
sentation vector be formulated as in (8), and there be multiple
groups, with each group having a distinct commonly shared
sparsity pattern; i.e.,

Sg = supp(ws
p) = supp(ws

q ), ∀p, q ∈ Gg , (9)

Sĝ �= Sǧ , ∀ĝ �= ǧ, (10)

where Sg stands for the commonly shared support set for the
g-th group.

From Definition 1, it is worth noting that 1) ws
k indicates

which group the k-th MU belongs to; and 2) the additional indi-
vidual sparse representation vector wv

k accounts for any outliers.
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Clearly, the general sparsity model is more reasonable in practi-
cal implementations. It includes the commonly shared sparsity
as a special case with wv

k = 0. Moreover, the outlier problem in
the scenario of a single group has been addressed in [13], where
the named joint sparsity model used can also be included as a
special case of ours withG = 1. Fig. 1 shows an example of the
general sparsity model where the commonly shared support sets
for two groups are S1 = {1, 2, 3} and S2 = {7, 8, 10}, respec-
tively. Specifically, if w1 = [×,×,×,×, 0, 0,×, 0, 0, 0]T , with
“× ” standing for a significant value, its corresponding gen-
eral sparsity pattern is ws

1 = [×,×,×, 0, 0, 0, 0, 0, 0, 0]T and
wv

1 = [0, 0, 0,×, 0, 0,×, 0, 0, 0]T .
The aim of this paper is to automatically partition the users

into G groups according to their hidden commonly shared
supports (determined by ws

k ), and simultaneously obtain the
channel estimation for each user. This expected to obtain more
accurate channel estimation performance because we exploit
additional information about common sparsity among nearby
users, as captured by (9). The main challenge introduced by the
general sparsity model is that it is difficult to directly extract
the commonly shared component ws

k from wk because ws
k and

wv
k are mixed. To the best of our knowledge, there lacks an

efficient method for simultaneously handling ws
k and wv

k . In
the presence of a uniform sparsity model (i.e., wv

k = 0,∀k),
the proposed method for wideband DOA estimation in [38] is
the only candidate that may be tailored to solve the problem
of joint channel estimation and user grouping. However, it
does not apply to the more practical general sparsity model. To
overcome the challenge, in the next section, we propose a novel
SBL-based framework which can fully exploit the common
sparsity among nearby users and exclude the harmful effect
from outliers simultaneously.

Remark 2: Although we set the number of groups G to a
fixed value in the general sparsity model, this fixed value is not
required to be the real number of user groups G� . When G is
chosen to be larger than G� , the algorithm will automatically
cluster users into G� groups and assign zero users to the re-
maining G−G� groups. Therefore, the number of groups can
be “optimized” by the proposed algorithm in an implicit way.
When G is smaller than the optimal G� , the outliers deviated
from the uniform sparsity pattern can be mitigated by the gen-
eral model. As a result, the channel estimation performance of
the proposed algorithm is not sensitive to the choice ofG (which
will be verified in the simulations).

III. JOINT CHANNEL ESTIMATION AND USER GROUPING

In this section, we propose an efficient SBL-based method
for joint channel estimation and user grouping with the general
sparsity model. For ease of exposition, we proceed as follows.
We begin by introducing the SBL formulation for group sparse
signal recovery. Then, we resort to the variational Bayesian
inference (VBI) methodology [43] and adopt an alternating op-
timization algorithm to perform the Bayesian inference, so as to
jointly cluster the users and estimate the channel. Note that the
modeling error caused by direction mismatch will be addressed
in the next section.

A. Sparse Bayesian Learning Formulation

In order to separate the commonly shared support and the
individual support for the k-th MU, we use (8) to rewrite the
received signal yk as

yk = Φ(ws
k + wv

k ) + nk = Φ̄w̄k + nk , (11)

where Φ̄ = [Φ,Φ] and w̄k = [(ws
k )
T , (wv

k )
T ]T . Following the

classical sparse Bayesian model [28], we model ws
k and wv

k

associated with user k in group g as non-stationary Gaussian
prior distributions:

p(ws
k |γ∗

g ) = CN (ws
k |0,diag

(
γ∗
g

)−1),∀k ∈ Gg (12)

and

p(wv
k |γv

k ) = CN (wv
k |0, ρ · diag (γv

k )
−1), (13)

where ρ is a small positive constant (whose function
will be explained later), γ∗

g = [γ∗g ,1 , γ
∗
g ,2 , . . . , γ

∗
g ,L̂

]T , γv
k =

[γvk,1 , γ
v
k,2 , . . . , γ

v
k,L̂

]T , and γ∗g ,l and γvk,l stand for the preci-
sion of the l-th elements of ws

k and wv
k , respectively. Note that

all users in group g share a common precision vector γ∗
g for the

common sparse vector ws
k , which captures the common spar-

sity shared by the users. On the other hand, different users in
group g have different precision vectors γs

k for the individual
sparse vector wv

k , which captures the individual sparsity caused
by the outliers deviated from the uniform sparsity pattern. For a
given sparse vector wk , there are multiple ways to partition wk

into a common sparse vector ws
k and an individual sparse vec-

tor wv
k , where each partition corresponds to one user grouping

result. Clearly, a user grouping result is only meaningful when
the users in the same user group share a large common support;
i.e., we favor a denser ws

k over wv
k . Hence, we introduce a small

positive constant ρ ∈ (0, 1) in (13) to provide a sparser prior for
wv
k than for ws

k . Empirical evidence shows that the performance
of our method is not sensitive to the choice of ρ, as long as ρ is
sufficiently small. In the simulations, we set ρ = 0.001.

To force the clustering of ws
k s with G groups, we introduce

zk of size G× 1 as the assignment vector for the k-th MU.
Specifically, if the k-th MU belongs to the g-th group (i.e.,
k ∈ Gg ), zk is a zero vector, except for the g-th element being
one. Then, the distribution of ws

k conditional on zk and γ∗
g s can

be expressed as

p(ws
k |zk ,Γ∗) =

G∏

g=1

{CN (ws
k |0,diag(γ∗

g )
−1}zk , g , (14)

where Γ∗ = {γ∗
g}Gg=1 , and zk,g stands for the g-th element of

zk .
For tractable inference of γ∗

g s and γv
k s, the elements of γ∗

g

and γv
k (denoted by γ∗g ,l and γvk,l , l = 1, 2, . . . , L̂) are modeled

as independent Gamma distributions, i.e.,

p(γ∗
g ) =

L̂∏

l=1

Γ(γ∗g ,l |a, b) (15)
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and

p(γv
k ) =

L̂∏

l=1

Γ(γvk,l |a, b), (16)

where a and b are some small constants (e.g., a = b = 0.0001).
Gamma distribution is a conjugate prior of Gaussian distribu-
tion, and the two-stage hierarchical prior provided by (14) and
(15) [or (13) and (16)] for ws

k (or wv
k ) is recognized as encour-

aging sparsity, due to the heavy tails and sharp peak at zero [27],
[28]. In fact, it can be shown that finding a MAP estimate of
wv
k (or ws

k ) with the two-stage hierarchical prior is equivalent
to finding the minimum l0-norm solution using FOCUSS with
p→ 0 [44], where p corresponds to the parameter of lp -norm.
It is worth noting that the precisions γ∗g ,ls in (12) [or γvk,ls in
(13)] directly indicate the support of ws

k (or wv
k ). For example,

if γ∗g ,l is large, the l-th element of ws
k tends to zero; otherwise,

the value of the l-th element is significant.
Under the assumption of circular symmetric complex Gaus-

sian noise, we have

p(yk |ws
k ,w

v
k , α) = CN (yk |Φwk , α

−1I), (17)

whereα = σ−2 stands for the noise precision. Sinceα is usually
unknown, we similarly model it as a gamma hyperprior p(α) =
Γ(α|a, b).

Let Θ = {α,W̄,Γ∗,Γv ,Z, } be the set of hidden variables to
be estimated, where W̄ = {w̄k}Kk=1 , Γv = {γv

k}Kk=1 , and Z =
{zk}Kk=1 . The user groups and channel estimation can be jointly
obtained if we can calculate the maximum a posteriori (MAP)
optimal estimate of p(Θ|Y), whereY = {yk}Kk=1 . Specifically,
the user group is indicated by the MAP estimator of the group
assignment vector zk , and the angular domain channel vectorwk

can be calculated from the MAP estimator of w̄k according to
(8). Unfortunately, this MAP estimate is intractable. Therefore,
in the next subsection, we will resort to the VBI methodology
and will adopt an alternating optimization algorithm to infer the
hidden variables iteratively.

B. Overview of the Proposed Method

The principle behind VBI is to find an approximate poste-
rior of Θ (denoted by q(Θ)), instead of the exact posterior, to
make the MAP estimate tractable, where q(Θ) is assumed to be
factorized approximately as

q(Θ) = q(α)
K∏

k=1

q(w̄k )

︸ ︷︷ ︸
�q(W̄ )

G∏

g=1

q(γ∗
g )

︸ ︷︷ ︸
�q(Γ∗)

K∏

k=1

q(γv
k )

︸ ︷︷ ︸
�q(Γv )

K∏

k=1

q(zk )

︸ ︷︷ ︸
�q(Z)

, (18)

and it should be chosen to minimize the Kullback-Leibler (KL)
divergence with respect to (w.r.t.) the true posterior:

DKL (q(Θ)||p(Θ|Y)) = −
∫
q(Θ) ln

p(Θ|Y)
q(Θ)

dΘ. (19)

In other words, the corresponding optimization problem to find
the “best” approximate posterior under the factorized constraint

in (18) can be formulated as

q�(Θ) = arg max
q(Θ)

∫
q(Θ) ln

p(Y,Θ)
q(Θ)

dΘ
︸ ︷︷ ︸

�U(q1 ,q2 ,q3 ,q4 ,q5 )

, (20)

where qi denotes q(Θi) for simplicity, and Θi stands for the i-th
element in Θ. Since the above objective is a high-dimensional
non-convex function, it is difficult to find the optimal solution.
Here, we adopt an alternating optimization algorithm to find a
stationary solution instead. Specifically, we update qis as

q
(i+1)
1 = arg max

q1
U(q1 , q

(i)
2 , q

(i)
3 , q

(i)
4 , q

(i)
5 ), (21)

q
(i+1)
2 = arg max

q2
U(q(i+1)

1 , q2 , q
(i)
3 , q

(i)
4 , q

(i)
5 ), (22)

q
(i+1)
3 = arg max

q3
U(q(i+1)

1 , q
(i+1)
2 , q3 , q

(i)
4 , q

(i)
5 ), (23)

q
(i+1)
4 = arg max

q4
U(q(i+1)

1 , q
(i+1)
2 , q

(i+1)
3 , q4 , q

(i)
5 ), (24)

q
(i+1)
5 = arg max

q5
U(q(i+1)

1 , q
(i+1)
2 , q

(i+1)
3 , q

(i+1)
4 , q5), (25)

where (·)(i) stands for the i-th iteration. Once the algorithm con-
verges, we can obtain the approximate posteriors: q(α), q(w̄k )s,
q(γ∗

g )s, q(γv
k )s and q(zk )s. Let

φ̂k = 〈zk 〉q(zk ) (26)

and

μ̄k = 〈w̄k 〉q(w̄k ) , (27)

where 〈·〉p(x) stands for the expectation operator w.r.t. p(x).
Then, we are able to cluster the users into G groups; e.g., user
k belongs to group g�k if

g�k = arg max
g

φ̂k,g , (28)

where φ̂k,g stands for the g-th element of φ̂k . Recall that wk =
ws
k + wv

k and w̄k = [(ws
k )
T , (wv

k )
T ]T . Therefore, we have

μk � 〈wk 〉q(w̄k ) = μ̄k,1 + μ̄k,2 , (29)

where μ̄k,1 and μ̄k,2 stand for the first and last L̂ elements of μ̄k ,
respectively. Letting Ωk = supp(μk ), the estimated downlink
channels hek s can be calculated by

hek = AΩk
(ΦΩk

)† yk . (30)

The overall flow of the proposed algorithm is given in Fig. 2.
In the following subsections, we will illustrate how to solve the
optimization problems (21)–(25) in detail (Section III-C) and
then give a convergence analysis of the alternating optimization
algorithm (Section III-D).

C. Detailed Implementations

In this subsection, we focus on handling the optimiza-
tion problems (21)–(25), whose solutions will be presented in
Lemmas 3–7 as follows. It is worth noting that some initial-
izations are required to trigger the iterations, which will be
addressed later.
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Fig. 2. The overall flow of the proposed algorithm.

1) Update for q1: We update q1 [or q(α)] by solving the
optimization problem (21), whose solution follows a gamma
distribution.

Lemma 3: The optimization problem (21) has a unique
solution:

q(i+1)(α) = Γ(α|a(i)
α , b(i)α ), (31)

where a
(i)
α = (a+KT ) and b

(i)
α = b+

∑K
k=1(‖yk − Φμ

(i)
k

‖2
2 + tr(ΦΣ(i)

k ΦH )), with μ
(i)
k and Σ(i)

k being the mean and
variance of wk at the i-th iteration [whose closed-from expres-
sions will be given later, in (34) and (35)].

Proof: See Appendix-A. �
Note that the mean of α, w.r.t. the gamma distribution defined

in (31), can be calculated as a byproduct:

α̂(i+1) � 〈α〉q ( i+1 ) (α) =
a

(i)
α

b
(i)
α

, (32)

which will be used in the next lemma.
2) Update for q2: We update q2 [or q(W̄)] by solving the

optimization problem (22), whose solution follows a Gaussian
distribution.

Lemma 4: The optimization problem (22) has a unique
solution:

q(i+1)(W̄) =
K∏

k=1

q(i+1)(w̄k ) =
K∏

k=1

CN (w̄k |μ̄(i+1)
k , Σ̄(i+1)

k ),

(33)

where μ̄
(i+1)
k = α̂(i+1)Σ̄(i+1)

k Φ̄Hyk and Σ̄(i+1)
k = (α̂(i+1)

Φ̄H Φ̄ + diag([(γ̂s
k )

(i) ; ρ−1(γ̂v
k )

(i) ]))−1 with (γ̂s
k )

(i) and
(γ̂v

k )
(i) being the means of γs

k and γv
k at the i-th iteration (whose

closed-from expressions will be given later, in (39) and (41),
respectively).

Proof: See Appendix-B. �
Since wk = ws

k + wv
k , we have

μ
(i+1)
k � 〈wk 〉q ( i+1 ) (w̄k ) = μ̄

(i+1)
k,1 + μ̄

(i+1)
k,2 (34)

and

Σ(i+1)
k �

〈
(wk − μ

(i+1)
k )(wk − μ

(i+1)
k )H

〉

q ( i+1 ) (w̄k )

= Σ̄(i+1)
k,1 + Σ̄(i+1)

k,2 + Σ̄(i+1)
k,3 + Σ̄(i+1)

k,4 , (35)

where μ̄
(i+1)
k,1 = μ̄

(i+1)
k (1 : L̂), μ̄

(i+1)
k,2 = μ̄

(i+1)
k (L̂+ 1 : 2L̂),

Σ̄(i+1)
k,1 = Σ̄(i+1)

k (1 : L̂, 1 : L̂), Σ̄(i+1)
k,2 = Σ̄(i+1)

k (L̂+ 1 : 2L̂,

L̂+ 1 : 2L̂), Σ̄(i+1)
k,3 = Σ̄(i+1)

k (1 : L̂, L̂+1 : 2L̂), and Σ̄(i+1)
k,4 =

Σ̄(i+1)
k (L̂+ 1 : 2L̂, 1 : L̂). Note that these byproducts will be

required for updating both q3 and q4 .
3) Update for q3: We update q3 [or q(Γ∗)] by solving the

optimization problem (23), whose solution follows a gamma
distribution.

Lemma 5: The optimization problem (23) has a unique
solution:

q(i+1)(Γ∗) =
G∏

g=1

L̂∏

l=1

q(i+1)(γ∗g ,l)

=
G∏

g=1

L̂∏

l=1

Γ
(
γ∗g ,l |(a∗g ,l)(i+1) , (b∗g ,l)

(i+1)
)
, (36)

where (a∗g ,l)
(i+1) = a+

∑K
k=1 φ̂

(i)
k,g , (b∗g ,l)

(i+1) = b+
∑K

k=1

φ̂
(i)
k,g (|μ̄(i+1)

k,1,l |2 + Σ̄(i+1)
k,1,l ), φ̂

(i)
k,g = q(i)(zk,g = 1) [whose closed-

from expression will be given later, in (43)], μ̄(i+1)
k,1,l stands for

the l-th element of μ̄
(i+1)
k,1 , and Σ̄(i+1)

k,1,l stands for the l-th diagonal

element of Σ̄(i+1)
k,1 .

Proof: See Appendix-C. �
Then, the mean of γ∗g ,l at the (i+ 1)-th iteration is

(γ̂∗g ,l)
(i+1) �

〈
γ∗g ,l
〉
q ( i+1 ) (γ ∗

g , l )
=

(a∗g ,l)
(i+1)

(
(b∗g ,l)(i+1)

) , (37)

and the logarithmic expectation is

(̂ln γ∗g ,l)
(i+1) �

〈
ln γ∗g ,l

〉
q ( i+1 ) (γ ∗

g , l )

= Ψ
(
(a∗g ,l)

(i+1)
)
− ln

(
(b∗g ,l)

(i+1)
)
, (38)

where Ψ(·) stands for the digamma function. We define γsk,l =
∑G

g=1(zk,g γ
∗
g ,l), and then the mean of γsk,l at the (i+ 1)-th

iteration is

(γ̂sk,l)
(i+1) =

〈
γsk,l
〉
q ( i+1 ) (Γ∗)q ( i ) (zk ) =

G∑

g=1

φ̂
(i)
k,g (γ̂

∗
g ,l)

(i+1) .

(39)

Note that (39) will be required for updating q(Z).
4) Update for q4: We update q4 [or q(Γv )] by solving the

optimization problem (24), whose solution also follows a
gamma distribution.
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Lemma 6: The optimization problem (24) has a unique
solution:

q(i+1)(Γv ) =
K∏

k=1

L̂∏

l=1

q(i+1)(γvk,l)

=
K∏

k=1

L̂∏

l=1

Γ
(
γvk,l |(avk,l)(i+1) , (bvk,l)

(i+1)
)
, (40)

where (avk,l)
(i+1) = a+K and (bvk,l)

(i+1) = b+ρ−1(|μ̄(i+1)
k,2,l |2

+ Σ̄(i+1)
k,2,l ).

Proof: The proof is similar to Lemma 3. So it is omitted for
brevity. �

With (40), the mean of γvk,l at the (i+ 1)-th iteration is

(γ̂vk,l)
(i+1) �

〈
γvk,l
〉
q ( i+1 ) (γ vk , l )

=
(avk,l)

(i+1)

(
(bvk,l)(i+1)

) , (41)

which was required for updating q2 .
5) Update for q5: We update q5 [or q(Z)] by solving the

optimization problem (25), whose solution is characterized by
the following lemma.

Lemma 7: The optimization problem (25) has a unique
solution:

q(i+1)(Z) =
K∏

k=1

q(i+1)(zk ) =
K∏

k=1

G∏

g=1

(
φ̂

(i+1)
k,g

)zk , g
, (42)

where

φ̂
(i+1)
k,g = q(i+1)(zk,g = 1) =

exp(ς(i+1)
k,g )

∑G
g=1 exp(ς(i+1)

k,g )
(43)

and

ς
(i+1)
k,g =

L̂∑

l=1

(̂ln γ∗g ,l)
(i+1)−

L̂∑

l=1

(γ∗g ,l)
(i+1)
(
|μ̄(i+1)
k,1,l |2 + Σ̄(i+1)

k,1,l

)
.

(44)

Proof: See Appendix-D. �
The proposed algorithm proceeds by repeated application of

(31), (33), (36), (40) and (42), and its convergence will be ad-
dressed in the next subsection. The main computational burden
of the proposed method is given as follows.

� The most cost for updating q(α) is to calculate bα , whose
computational complexity is O(T L̂2K) per iteration.

� Calculating Σ̄k s and μ̄k s in each iteration for updating
q(W̄) is O(T L̂2K) and O(L̂2K), respectively.

� The complexities in updating q(Γ�) and q(Γv ) in each
iteration are O(GL̂K) and O(L̂K), respectively.

� The complexity in updating q(Z) isO(GL̂)K per iteration.
This suggests the total computational requirement of the pro-

posed method is O(T L̂2K) per iteration.
Following are some practical implementation tips for the pro-

posed method. In order to trigger the alternating optimization
algorithm, we need some initializations for q(0)(W̄), q(0)(Γ∗),
q(0)(Γv ) and q(0)(Z). According to the main results in Lemmas
4–7, we can simply set the initializations as follows:

� initialize a Gaussian distribution function q(0)(W̄), with

parameters μ̄
(i+1)
k = Σ̄(0)

k Φ̄Hyk and Σ̄(0)
k = (Φ̄H Φ̄ +

diag([1L̂×1 ; ρ
−11L̂×1 ]))

−1 ;
� initialize a gamma distribution function q(0)(Γ∗), with pa-

rameters (a∗g ,l)
(0) = (b∗g ,l)

(0) = 1,∀g, l;
� initialize a gamma distribution function q(0)(Γv ), with pa-

rameters (avk,l)
(0) = (bvk,l)

(0) = 1,∀k, l;
� initialize q(0)(Z), with ς(0)

k,g s being uniformly chosen from
[0, 1].

Empirical evidence shows that the proposed method remains
very robust to these initializations. Moreover, we set a = b =
0.0001 in the simulations.

D. Convergence Analysis and Discussion

The non-decreasing property of the sequence
U(q(i)

1 , q
(i)
2 , q

(i)
3 , q

(i)
4 , q

(i)
5 ), i = 1, 2, 3, . . ., is well guaran-

teed by the update rules (21)–(25).
Lemma 8: The update rules (21)–(25) give a non-decreasing

sequence U(q(i)
1 , q

(i)
2 , q

(i)
3 , q

(i)
4 , q

(i)
5 ), i = 1, 2, 3, . . ..

Proof: See Appendix-E. �
Together with the fact that the objective function

U(q1 , q2 , q3 , q4 , q5) has an upper bound of 1,2 the sequence
U(q(i)

1 , q
(i)
2 , q

(i)
3 , q

(i)
4 , q

(i)
5 ), i = 1, 2, 3, . . ., converges to a limit.

The alternating algorithm does not converge to a stationary so-
lution in general. However, the specific conditions satisfied by
our problem make it possible to prove the convergence of the
alternating algorithm to a stationary point. The alternating opti-
mization algorithm can be viewed as a special case of the block
MM algorithm. Hence, we have the following lemma:

Lemma 9: The iterates generated by the alternating opti-
mization algorithm converge to a stationary solution of the op-
timization problem (20).

Proof: See Appendix-F. �
Finally, we discuss the relationship between our method and

the method in [38]:
� Recall that the general sparsity model used in our method

includes the commonly shared sparsity model used in [38]
as a special case of wv

k = 0,∀k. Thereore, our method
designed for the general sparsity model is more general
than the method in [38]. It can also handle the commonly
shared sparsity model, by simply ignoring the updates for
wv
k s and γv

k s.
� Our method performs Bayesian inference for the hidden

variables from a new perspective of alternating optimiza-
tion. Compared with the traditional Bayesian inference
used in [38], our method has the following advantages: 1)
its convergence is more easily proved (see Lemma 8); 2)
it reveals that the convergence solution is also a station-
ary solution (see Lemma 9), which is a stronger conver-
gence result since the traditional method only establishes
the convergence of objective values to a certain point, with-
out proving the converged solution is a stationary solution;

2This is because of
∫
q(Θ) ln p (Y ,Θ )

q (Θ ) dΘ ≤ ln
∫
q(Θ) p (Y ,Θ )

q (Θ ) dΘ =
ln p(Y), where the first inequality follows Jensen’s inequality.
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and 3) it provides a flexible framework to handle the prob-
lem of direction mismatch (see Section IV).

� In our method, each zk is treated as a simple assignment
vector without a prior distribution, and the number of
groups G is assumed to be known, while in [38], each
zk is treated as a random vector that is generated from
a Dirichlet process prior, and the number of groups G is
automatically determined. It is worth noting that extend-
ing our method with the Dirichlet process (DP) prior and
the automatically determined G is straightforward. Even
without such extending, empirical results (also refer to the
simulations) show that our method is still applicable to an
unknown G. This is because the adopted general model
can capture a much more general group sparse structure
and can provide a robust result for an inexact choice of G
(Remark 2). The simulation results also show that there is
no performance loss by removing the DP prior.

Another motivation for choosing a fixed G comes from that
fact that the user grouping result with a fixed G can be ap-
plied to some practical applications in massive MIMO systems.
For example, we may combine the proposed method with Joint
Spatial Division and Multiplexing (JSDM) [34], [35], where a
fixed G is required. It is worth noting that we do not try to pro-
vide an improved JSDM framework, but only replace the user
grouping algorithm used in JSDM with ours. This application is
just a byproduct of our method. Compared with the traditional
user grouping method, our method can bring some significant
advantages: 1) it does not require prior knowledge about the
channel covariance, where the acquisition of channel covari-
ance may pose great challenges because it requires collecting
a large number of channel samples in practical implementa-
tions; and 2) it can give a better user grouping result in the
sense of Bayesian optimality, so as to alleviate the interference
across different groups and enhance the sum-rate performance
of JSDM systems.

IV. HANDLING DIRECTION MISMATCH WITH ARBITRARY

2D-ARRAY GEOMETRY

In the section, we extend the proposed method to handling
direction mismatch with an arbitrary 2D-array geometry. Note
that the steering vector a(θ, φ) for an arbitrary 2D-array geom-
etry contains both azimuth angle θ and elevation angle φ [31],
[45]:

a(θ, φ) = [1, e−j2π
d 2
λ cos(φ) sin(θ−ψ2 ) ,

. . . , e−j2π
dN
λ cos(φ) sin(θ−ψN ) ]T , (45)

where (dn , ψn ) is the coordinates of the n-th sensor. Following
the convention in Section III, we adopt a fixed sampling grid
ϑ̂ = {ϑ̂l}L̂l=1 to uniformly cover the azimuth domain [−π, π].
Recall that the direction mismatch between the true AoD and
the grid point is unavoidable because signals usually come from
random directions in practice. Here, we adopt the off-grid model
proposed in [31] to handle the direction mismatch. Let θkl and
φkl denote the l-th true azimuth and elevation AoDs of the k-th

MU, repectively. If θkl /∈ {ϑ̂i}L̂i=1 and ϑ̂nl , nl ∈ {1, 2, . . . , L̂},

is the nearest grid point to θkl , we write θkl as

θkl = ϑ̂nl + βk,nl , (46)

where βk,nl corresponds to the azimuth direction mismatch (or
off-grid gap). With (46), the received signal yk can be rewritten
by

yk = Φ(βk ,ϕk )(ws
k + wv

k ) + nk , (47)

where Φ(βk ,ϕk ) = XA(βk ,ϕk ), βk = [βk,1 , βk,2 , . . . ,
βk,L̂ ]T , ϕk = [ϕk,1 , ϕk,2 , . . . , ϕk,L̂ ]T , A(βk ,ϕk ) = [a(ϑ̂1 +
βk,1 , ϕk,1),a(ϑ̂2 + βk,2 , ϕk,2), . . . ,a(ϑ̂L̂ + βk,L̂ , ϕk,L̂ )],

βk,nl =

{
θkl − ϑ̂nl , l = 1, 2, . . . , L
0, otherwise

, and ϕk,nl =
{
φkl , l = 1, 2, . . . , L
0, otherwise

. Note that ϕk,nl corresponds to

elevation direction mismatch. Due to introducing the term of
the off-grid gap, the direction mismatch can be significantly
alleviated. Another advantage is that the commonly shared
support among nearby users does not need to coincide strictly
with each other. For example, let L̂ = 180 and the azimuth
AoDs of two nearby MUs be {8.1◦, 10.2◦, 11.9◦, 15.3◦} and
{7.4◦, 10.3◦, 12.3◦, 15.1◦}, respectively. In this case, the nearest
grid points for the first supports of the two MUs are different.
However, an appropriate choice of off-grid gap can fix the
commonly shared support mismatch, e.g., 8.1◦ = 8◦ + 0.1◦

and 7.4◦ = 8◦ − 0.6◦.
In the sparse Bayesian learning formulation for the off-

grid model (47), almost all the results in Section III-B remain
unchanged, except that (17) is replaced by

p(yk |ws
k ,w

v
k , α,βk ,ϕk ) = CN (yk |Φ(βk ,ϕk )wk , α

−1I)
(48)

and the optimization problem (20) is modified by

{q�(Θ),B�} = arg max
q(Θ),B

U(Θ,B), (49)

where B = {βk ,ϕk}Kk=1 is treated as a unknown parameter,
rather than a random variable. Similarly, in the (i+ 1)-th itera-
tion, we update qis and B as

q
(i+1)
1 = arg max

q1
U(q1 , q

(i)
2 , q

(i)
3 , q

(i)
4 , q

(i)
5 ,B(i)), (50)

q
(i+1)
2 = arg max

q2
U(q(i+1)

1 , q2 , q
(i)
3 , q

(i)
4 , q

(i)
5 ,B(i)), (51)

q
(i+1)
3 = arg max

q3
U(q(i+1)

1 , q
(i+1)
2 , q3 , q

(i)
4 , q

(i)
5 ,B(i)), (52)

q
(i+1)
4 = arg max

q4
U(q(i+1)

1 , q
(i+1)
2 , q

(i+1)
3 , q4 , q

(i)
5 ,B(i)), (53)

q
(i+1)
5 = arg max

q5
U(q(i+1)

1 , q
(i+1)
2 , q

(i+1)
3 , q

(i+1)
4 , q5 ,B(i)),

(54)

B(i+1) = arg max
B

U(q(i+1)
1 , q

(i+1)
2 , q

(i+1)
3 , q

(i+1)
4 , q

(i+1)
5 ,B).

(55)
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Applying the results in Section III-C, we can obtain the solutions
to (50)–(54) directly, where the only difference is in replacing
Φ with Φ(βk ,ϕk ).

What remains is to obtain the update for B. However, the last
maximization problem (55) is non-convex and it is difficult to
find its optimal solution. Alternatively, we apply gradient update
on the objective function of (55) and obtain a simple one-step
update for each βk and ϕk as in [31]. As shown in Appendix G,
the derivative of the objective function, w.r.t. βk , can be calcu-
lated as

ζ
(i+1)
k = [ζ(i+1)(βk,1), ζ(i+1)(βk,2), . . . , ζ(i+1)(βk,L̂ )]T , (56)

with

ζ(i+1)(βk,l)

= 2Re
(
(a′(ϑ̂l + βk,l , ϕ

(i)
k,l))

HXHXa(ϑ̂l + βk,l , ϕ
(i)
k,l)
)

· c(i+1)
k1 + 2Re

(
(a′(ϑ̂l + βk,l , ϕ

(i)
k,l))

HXH c(i+1)
k2

)
, (57)

where c
(i+1)
k1 = −α̂(i+1)(χ(i+1)

k,ll + |μ(i+1)
k,l |2), c(i+1)

k2 = α̂(i+1)

((μ(i+1)
k,l )∗y(i+1)

k−l −X
∑

j �= l χ
(i+1)
k,j l a(ϑ̂j +β(i)

k,j , ϕ
(i)
k,j )), y(i+1)

k−l =

yk−X ·∑j �= l(μ
(i+1)
k,j · a(ϑ̂j+β

(i)
k,j , ϕ

(i)
k,j )), a′(ϑ̂l+βk,l , ϕk,l)

= da(ϑ̂l + βk,l , ϕk,l)/dβk,l , and μ(i+1)
k,l and χ(i+1)

k,j l denote the

l-th element and the (j, l)-th element of μ
(i+1)
k and Σ(i+1)

k ,
respectively. With (56), we are able to update the value of βk

in the derivative direction, i.e.,

β
(i+1)
k = β

(i)
k + Δk · ζ(i+1)

k , (58)

where Δk is the stepsize that can be optimized by backtrack-
ing line search [46]. As mentioned in Section III-D of [31],
choosing the right stepsize can be time-consuming. To reduce
the computational complexity, we use a fixed stepsize to update
βk :

β
(i+1)
k = β

(i)
k +

rθ
100

· sign(ζ(i+1)
k ), (59)

where rθ = π/L̂ stands for the grid interval, and sign(·) stands
for the signum function.

Following similar procedures to these in Appendix VI-G, we
can obtain the derivative of the objective function w.r.t ϕk as

ς
(i+1)
k = [ς(i+1)(ϕk,1), ς(i+1)(ϕk,2), . . . , ς(i+1)(ϕk,L̂ )]T , (60)

with

ς(i+1)(ϕk,l)

= 2Re
(
(a′

ϕ (ϑ̂l + β
(i)
k,l , ϕk,l))

HXHXa(ϑ̂l + β
(i)
k,l , ϕk,l)

)

· c(i+1)
k1 + 2Re

(
(a′

ϕ (ϑ̂l + β
(i)
k,l , ϕk,l))

HXH c(i+1)
k2

)
, (61)

where a′
ϕ (ϑ̂l + βk,l , ϕk,l) = da(ϑ̂l + βk,l , ϕk,l)/dϕk,l . With

(60), we can update ϕk similarly to (58). As mentioned in [31],
the elevation angle ranges from −π/2 to π/2, but it is sufficient
to assume that ϕk,l ranges from 0 to π/2, because the steering
vector contains cosϕk,l only. Therefore, we initialize each ϕk,l
uniformly from [0, π/2], and use a fixed stepsize to update ϕk

[similarly to (59)]:

ϕ
(i+1)
k = ϕ

(i)
k +

π

36
· max

{
(�)i , 0.001

} · sign(ς(i+1)
k ), (62)

where 0.9474 < � < 1 is a constant [31].
Once the algorithm converges, the estimated downlink chan-

nels hek s can be calculated as

hek = AΩk
(βk ,ϕk ) (ΦΩk

(βk ,ϕk ))
† yk . (63)

V. SIMULATION RESULTS

In this section, numerical simulations are conducted to eval-
uate the performance of our proposed method. The proposed
method is compared with the following baselines:

� Baseline 1 (Individual-DFT): Each hk is individually re-
covered using the l1-norm minimization algorithm [47],
[48] with a DFT basis.

� Baseline 2 (Individual-SBL): Each hk is individually re-
covered using the standard SBL method [28] with a DFT
basis.

� Baseline 3 (Individual-off-grid): Each hk is individually
recovered using the off-grid SBL method [31].

� Baseline 4 (Joint-OMP): hk s are jointly recovered using
the joint orthogonal matching pursuit recovery method
[13].

� Baseline 5 (Common-SBL): hk s are jointly recovered us-
ing the multiple measurement SBL method [32] with an
off-grid basis, where hk s are assumed to share a uniform
sparsity structure.

� Baseline 6 (Group-SBL): hk s are jointly recovered
using the group SBL method [38] with an off-grid
basis.3

We first focus on simulations for ULAs, where we use
the 3GPP spatial channel model (SCM) [41] to generate the
channels for an urban microcell. The downlink frequency is
2170 MHz and the inter-antenna spacing is d = c/(2f0), with c
being the light speed and f0 = 2000 MHz. Then, we run simu-
lations with the 3GPP 3D channel model [49], which provides a
2D array model. All the parameters of the 3D channel model fol-
low 3D-UMa-NOLS (see Table 7.3-6 in [49]). The normalized
mean square error (NMSE) is defined as

1
Mc

Mc∑

m=1

∑K
k=1 ‖h̃mk − hmk ‖2

2∑K
k=1 ‖hmk ‖2

2

, (64)

where hmk is the downlink channel vector for the k-th MU
at the m-th Monte Carlo trial, h̃mk is the estimate of hmk , and
Mc = 200 is the number of Monte Carlo trials. Unless otherwise
specified, in the following, we assume that every channel real-
ization consists of Nc random scattering clusters, each cluster
contains Ns = 20 sub-paths concentrated in a A = 10◦ angu-
lar spread, and the number of grid points is fixed at L̂ = N .
Note that MATLAB codes have been made available online at
https://sites.google.com/site/jsdaiustc/publication.

3For fairness, the off-grid refinement method used in [38] is replaced by the
one used in ours.
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Fig. 3. NMSE of downlink channel estimate versus the number of training
pilot symbols for ULA, where N = 80, K = 60, G = 3 and SNR = 0 dB. a)
Ls = 4 and Lv = 0; b) Ls = 2 and Lv = 2.

A. Channel Estimation Performance Versus T for ULA

In Fig. 3, Monte Carlo trials are carried out to investigate the
impact of the number of pilot symbols on the channel estimation
performance for ULA. Assume that a ULA is equipped at the BS
with N = 80 antennas and the system supports K = 60 MUs.
The MUs are randomly dropped into three groups with a uni-
form distribution. The number of shared (unshared) scattering
clusters for users in the same group is denoted by Ls (Lv ).4 If
Ls = Nc , it means that users in the same group have a uniform
scattering structure, while if Ls = 0, there is no group property
for users. The center AoD of each scattering clusters ranges
from −90◦ to 90◦ uniformly. The training pilots are randomly
generated, and the SNR is chosen as 0 dB. Fig. 3 shows the
NMSE performance of the downlink channel estimate achieved
by the different channel estimation strategies versus the num-
ber of training pilot symbols T . All the results are obtained by
averaging over 200 Monte Carlo channel realizations. It can be
seen that 1) the NMSEs of all the methods decrease as the num-
ber of training pilot symbols increases; 2) compared with the

4Note that Ls + Lv = Nc , and two users sharing a scattering cluster means
that the AoD mean of the scattering cluster is the same.

Fig. 4. NMSE of downlink channel estimate versus SNR for ULA, where
N = 80,G = 4,K = 50 and T = 60. a) Ls = 3 and Lv = 0; b) Ls = 2 and
Lv = 1.

individual recovery methods (Individual-DFT, Individual-SBL,
Individual-off-grid), Joint-OMP and Common-SBL, our method
and Group-SBL can improve the NMSE performance due to ex-
ploiting the common sparsity among nearby users; 3) when the
uniform shared sparsity assumption holds true for each group
(Ls = 4 andLv = 0), our method and Group-SBL achieve sim-
ilar channel estimation performance (Fig. 3-a), which verifies
that removing the DP prior in our method does not bring any
performance loss; and 4) when the uniform sparsity assump-
tion fails to hold (Ls = 2 and Lv = 2), our method outperforms
Group-SBL because our method can handle outliers but Group-
SBL is only designed for the uniform sparsity assumption.

B. Channel Estimation Performance Versus SNR for ULA

In Fig. 4, we study the impact of SNR on the channel esti-
mation performance for ULA. We consider the same scenario
as in Section V-A, except that the number of training pilot sym-
bols is fixed at 60 and the number of users is set to 50. Fig. 4
shows the NMSE performance of the downlink channel esti-
mate achieved by the different channel estimation strategies
versus SNR. All the results are obtained by averaging over
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Fig. 5. Sum spectral efficiency versus SNR for JSDM, whereN = 80,G = 4,
K = 100, T = 60, Ls = 2 and Lv = 1.

Fig. 6. Sum spectral efficiency versus the angular spread for JSDM, where
N = 80, G = 4, K = 100, Ls = 2, Lv = 1, T = 50 and SNR = 0 dB.

200 Monte Carlo channel realizations. It is shown that 1) the
NMSEs of all the methods decrease as SNR increases; 2) when
the uniform shared sparsity assumption holds true, our method
and Group-off-grid achieve very similar channel estimation per-
formance (Fig. 4-a); 3) when the uniform sparsity assumption
fails to hold, Group-off-grid gives very bad performance because
of outliers deviated from the group sparsity patterns (Fig. 4-b);
and 4) the proposed general sparsity model can capture the true
group sparse structure, and our method indeed works for the
general sparsity model and can significantly improve the chan-
nel estimation performance.

C. Comparison of Sum Spectral Efficiency for JSDM

In Figs. 5 and 6, we study the sum spectral efficiency when the
proposed method is integrated into JSDM. Assume that a ULA is
equipped at BS with N = 80 antennas and the system supports
K = 100 MUs. The MUs are randomly dropped into four groups

Fig. 7. NMSE of downlink channel estimate versus inexactG, whereG� = 4,
N = 100, K = 50, T = 60, Ls = 2, Lv = 1, and SNR = 0 dB.

with a uniform distribution, and 20% of MUs will be activated
in the system. Following [35], the standardK-Means algorithm
is chosen to cluster users if the method (e.g., Individual-DFT,
Individual-SBL, Individual-off-grid, Joint-OMP and Common-
SBL) cannot provide knowledge of the user grouping, and then
zero-forcing beamforming (ZFBF) with semi-orthogonal user
selection (SUS) is adopted for each group in the JSDM frame-
work. Fig. 5 shows the sum spectral efficiency achieved by the
different strategies versus SNR, and Fig. 6 shows the sum spec-
tral efficiency achieved by the different strategies versus angular
spread. All the results are obtained by averaging over 200 Monte
Carlo channel realizations. Compared with other methods, ours
can significantly improve the sum-rate performance of JSDM
systems. This is because our method can give better channel
estimation and user grouping results in the sense of Bayesian
optimality, so as to alleviate the interference across different
groups.

D. Channel Estimation Performance Versus Inexact G

In Fig. 7, we illustrate that our method applies to unknown
real number of user groupsG� . Assume that a ULA is equipped
at the BS with N = 100 antennas and the system supports
K = 50 MUs. The number of training pilot symbols is fixed
at 60, Ls = 2 and Lv = 1. The MUs are randomly dropped into
four groups with a uniform distribution, but the real number of
user groups is not exactly known. Fig. 7 shows the NMSE per-
formance of the downlink channel estimate achieved by the dif-
ferent channel estimation strategies versus an inexactG. It is in-
teresting to see that most curves in the figure remain unchanged.
The reason that NMSEs do not change much for the individual
methods (Individual-DFT, Individual-SBL, Individual-off-grid)
is because each hk is estimated individually for each user, and
thus its estimation performance is not related to G or G� , while
Common-SBL and Joint-OMP always assume that there is just
one group (G = 1). The reason why the NMSE of our method
also does not change much is because the adopted general model
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Fig. 8. NMSE of downlink channel estimate versus T for 2D array, where
N = 10 × 10, G = 4, K = 30, SNR = 0 dB, Ls = 2 and Lv = 1.

Fig. 9. Sum spectral efficiency versus T for 2D array, where N = 10 × 10,
G = 4, K = 30, SNR = 0 dB, Ls = 2 and Lv = 1.

can capture a much more general group sparse structure and can
provide a robust result for an inexact choice of G, as long as
G is not much smaller than the true value G� . Hence, Fig. 7
verifies that our method works well for an unknown G.

E. Channel Estimation and Sum Rate Performance With 2D
Array

In Figs. 8–11, Monte Carlo trials are carried out to investigate
the channel estimation and sum rate performance with the 2D
array. Assume that the 2D planar array at the BS is equipped
with 10 × 10 antennas, where both the horizontal and vertical
inter-antenna spacings are a half wavelength. Every channel re-
alization consists of Nc = 3 random scattering clusters (with
Ls = 2 and Lv = 1), and each cluster contains Ns = 20 sub-
paths. The AoDs are randomly generated in the 3GPP 3D chan-
nel model, where the azimuth AoDs range from −180◦ to 180◦

and the elevation AoDs range from −90◦ to 90◦. The system

Fig. 10. NMSE of downlink channel estimate versus SNR for 2D array, where
N = 10 × 10, G = 4, K = 30, T = 60, Ls = 2 and Lv = 1.

Fig. 11. Sum spectral efficiency versus SNR for 2D array, where N = 10 ×
10, G = 4, K = 30, T = 60, Ls = 2 and Lv = 1.

supports K = 30 MUs simultaneously, and minimum mean-
squared error (MMSE) precoder is adopted at the BS. All the
results are obtained by averaging over 200 Monte Carlo channel
realizations. Figs. 8 and 9 show the NMSE and the sum spectral
efficiency achieved by the different strategies versus the num-
ber of training pilot symbols T , respectively, and Figs. 10 and
11 show the NMSE and the sum spectral efficiency achieved
by the different strategies versus SNR, respectively. It can be
seen that our proposed method indeed works for the 2D array,
and the results reverify that our method can substantially im-
prove the channel estimation performance, as well as the sum
spectral efficiency.

VI. CONCLUSION

The problem of joint downlink channel estimation and user
grouping in massive MIMO systems is addressed in this pa-
per. We first provide a general model to capture a more gen-
eral sparse structure for user grouping. Then, we propose an
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SBL-based framework to handle the general sparsity model,
which can fully exploit the common sparsity to cluster nearby
users and exclude the harmful effect from outliers simultane-
ously. To the best of our knowledge, our work is the first to utilize
an off-grid SBL-based framework to jointly estimate the chan-
nel and cluster the users. Simulation results demonstrate that
our method indeed works for the general sparsity model and
can significantly improve the channel estimation performance
when the uniform sparsity assumption fails to hold. Moreover,
it is worth noting that extending our method with the DP prior
and an automatically determined G is straightforward.

APPENDIX

A. Proof of Lemma 3

The objective function in (21) can be rewritten as

U(q1 , q
(i)
2 , q

(i)
3 , q

(i)
4 , q

(i)
5

=
∫
q1q

(i)
2 q

(i)
3 q

(i)
4 q

(i)
5 ln

p(Y,Θ)

q1q
(i)
2 q

(i)
3 q

(i)
4 q

(i)
5

dΘ) (65)

∝
∫
q1 〈ln p(Y,Θ)〉q ( i ) (Θ\Θ1 ) dΘ1 −

∫
q1 ln q1dΘ1 (66)

=
∫
q1 ln

exp
(
〈ln p(Y,Θ)〉q ( i ) (Θ\Θ1 )

)

q1
dΘ1 (67)

≤ ln
∫
q1

exp
(
〈ln p(Y,Θ)〉q ( i ) (Θ\Θ1 )

)

q1
dΘ1 (68)

= ln
∫

exp
(
〈ln p(Y,Θ)〉q ( i ) (Θ\Θ1 )

)
dΘ1 , (69)

where Θ \ Θj stands for the set Θ excluding Θj , and Jensen’s
inequality is applied in (68). Clearly, the objective function in
(21) is maximized, if the inequality in (68) holds strictly, which
means the optimization problem (21) has a unique solution:

ln q(i+1)(α)

∝ 〈ln p(Y,Θ)〉q ( i ) (W̄ )q ( i ) (Γ∗)q ( i ) (Γv )q ( i ) (Z) (70)

∝ 〈ln p(Y|W̄, α)
〉
q ( i ) (W̄ ) + ln p(α)

∝ (a+KT − 1) lnα

− α

(
b+

K∑

k=1

(
‖yk − Φμ

(i)
k ‖2

2 + tr(ΦΣ(i)
k ΦH )

))
,

(71)

where μ
(i)
k � 〈wk 〉q ( i ) (w̄k ) and Σ(i)

k � 〈(wk − μ
(i)
k )(wk −

μ
(i)
k )H 〉q ( i ) (w̄k ) [whose closed-form expressions are given in

(34) and (35)]. Hence, q(i+1)(α) obeys a gamma distribution:

q(i+1)(α) = Γ(α|a(i)
α , b(i)α ), (72)

where a
(i)
α = (a+KT ) and b

(i)
α =b+

∑K
k=1(‖yk − Φμ

(i)
k

‖2
2 + tr(ΦΣ(i)

k ΦH )).

B. Proof of Lemma 4

Following a similar derivation to (65)–(69), the optimization
problem (22) has a unique solution:

ln q(i+1)(W̄)

∝ 〈ln p(Y,Θ)〉q ( i+1 ) (α)q ( i ) (Γ∗)q ( i ) (Γv )q ( i ) (Z) (73)

∝
K∑

k=1

〈ln p(yk ,Θ)〉q ( i+1 ) (α)q ( i ) (Γ∗)q ( i ) (γv
k )q ( i ) (Z) . (74)

For each term in (74), we have

〈ln p(yk ,Θ)〉q ( i+1 ) (α)q ( i ) (Γ∗)q ( i ) (γv
k )q ( i ) (zk )

∝ 〈ln p(yk |w̄k )〉q ( i+1 ) (α) + 〈ln p(wv
k |γv

k )〉q ( i ) (γv
k )

+ 〈ln p(ws
k |zk ,Γ∗)〉q ( i ) (Γ∗)q ( i ) (zk ) (75)

∝ − α̂(i+1)‖yk − Φ̄w̄k‖2
2 − ρ−1(wv

k )
H diag

(
(γ̂v

k )
(i)
)
wv
k

− (ws
k )
H diag

(
G∑

g=1

φ̂
(i)
k,g (γ̂

∗
g )

(i)

)

︸ ︷︷ ︸
�(γ̂s

k )( i )

ws
k , (76)

where (γ̂v
k )

(i) = 〈γv
k 〉q ( i ) (γv

k ) and (γ̂∗
g )

(i) = 〈γ∗
g 〉q ( i ) (γ∗

g ) .

This equality shows that q(i+1)(W̄) is separable for each w̄k ,
and q(i+1)(w̄k ) follows a Gaussian distribution:

q(i+1)(w̄k ) = CN (w̄k |μ̄(i+1)
k , Σ̄(i+1)

k ), (77)

where μ̄
(i+1)
k = α̂(i+1)Σ̄(i+1)

k Φ̄Hyk and Σ̄(i+1)
k =(α̂(i+1)

Φ̄H Φ̄ + diag([(γ̂s
k )

(i) ; ρ−1(γ̂v
k )

(i) ]))−1 .

C. Proof of Lemma 5

Following a similar derivation to (65)–(69), the optimization
problem (23) has a unique solution:

ln q(i+1)(Γ∗)

∝ 〈ln p(Y,Θ)〉q ( i+1 ) (α)q ( i+1 ) (W̄ )q ( i ) (Γv )q ( i ) (Z) (78)

∝
K∑

k=1

〈ln p(ws
k |zk ,Γ∗)〉q ( i+1 ) (W̄ )q ( i ) (Z) +

G∑

g=1

ln p(γ∗
g ) (79)
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g=1
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k=1
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l=1

φ̂
(i)
k,g γ

∗
g ,l

〈
(ws

k,l)
∗ws

k,l

〉
q ( i+1 ) (w̄k )

+
G∑

g=1

K∑

k=1

L̂∑

l=1

φ̂
(i)
k,g ln γ∗g ,l +

G∑

g=1

L̂∑

l=1

((a− 1) ln γ∗g ,l − bγ∗g ,l).

(80)
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Clearly, q(i+1)(Γ∗) is separable for each γ∗g ,l , and we obtain

ln q(i)(γ∗g ,l) ∝ −γ∗g ,l
(
b+

K∑

k=1

φ̂
(i)
k,g

(
|μ̄(i+1)
k,1,l |2 + Σ̄(i+1)

k,1,l

))

+

(
a− 1 +

K∑

k=1

φ̂
(i)
k,g

)
ln γ∗g ,l , (81)

where φ̂(i)
k,g � q(i)(zk,g = 1), μ̄(i+1)

k,1,l stands for the l-th element

of μ̄
(i+1)
k,1 , and Σ̄(i+1)

k,1,l stands for the l-th diagonal element of

Σ̄(i+1)
k,1 . Hence, q(i+1)(γ∗g ,l) obeys a gamma distribution:

q(i+1)(γ∗g ,l) = Γ
(
γ∗g ,l |(a∗g ,l)(i+1) , (b∗g ,l)

(i+1)
)

(82)

with (a∗g ,l)
(i+1) = a+

∑K
k=1 φ̂

(i)
k,g and (b∗g ,l)

(i+1) =

b+
∑K

k=1 φ̂
(i)
k,g (|μ̄(i+1)

k,1,l |2 + Σ̄(i+1)
k,1,l ).

D. Proof of Lemma 7

Following a similar derivation to (65)–(69), the optimization
problem (25) has a unique solution:

ln q(i+1)(Z)

∝ 〈ln p(Y,Θ)〉q ( i+1 ) (α)q ( i+1 ) (W̄ )q ( i+1 ) (Γ∗)q ( i+1 ) (Γv ) (83)

∝
K∑

k=1

〈ln p(ws
k |zk ,Γ∗)〉q ( i+1 ) (W̄ )q ( i+1 ) (Γ∗) . (84)

From (84) and the fact that zk is a discrete vector, we are able
to exhaustively calculate the value of ln q(i+1)(zk,g = 1), ∀k, g
as

ln q(i+1)(zk,g = 1)

∝
L̂∑

l=1

(̂ln γ∗g ,l)
(i+1) −

L̂∑

l=1
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(
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k,1,l |2 + Σ̄(i+1)
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)
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=ς ( i+1 )

k , g

.

Since
∑G

g=1 q
(i+1)(zk,g = 1) = 1, we obtain

φ̂
(i+1)
k,g = q(i+1)(zk,g = 1) =

exp(ς(i+1)
k,g )

∑G
g=1 exp(ς(i+1)

k,g )
. (85)

E. Proof of Lemma 8

The non-decreasing property can be achieved by
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4 , q
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5 ), (90)

where (86), (87), (88), (89) and (90) follow (21), (22), (23), (24)
and (25), respectively.

F. Proof of Lemma 9

From Section III-C, it is clear that q(Θ) =
q(α)q(W̄)q(Γ∗)q(Γv )q(Z) can be considered as some
parameterized functions, e.g., a gamma distribution function
with parameters aα and bα for q(α), a Gaussian distribution
function with parameters μ̄k s and Σ̄k s for q(W̄), and so on.
As a result, the optimization problem (20) which is optimized
over function spaces can be converted into a conventional
parameter optimization problem. Therefore, the definition and
convergence result for the conventional stationary point can be
applied.

Let the surrogate function be chosen as the objective function
itself, and then, according to Theorem 2-b in [50], the proposed
algorithm converges to a stationary solution because the prob-
lems in (21)–(25) have a unique solution.

G. Derivation for Eq. (56)

Ignoring the independent terms, the objective function in (55)
becomes
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Obviously, the objective function is separable for each βk . Cal-
culating the derivative of each term in the above equality w.r.t.
βk,l , we obtain
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and

∂tr
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Φ(βk ,ϕk )Σ

(i+1)
k ΦH (βk ,ϕk )

)

∂βk,l

= 2Re
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)
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⎛
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×
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k,j l a(ϑ̂j + βk,j , ϕk,j )

⎞

⎠ ,

where y(i+1)
k−l = yk − X ·∑j �= l(μ

(i+1)
k,j · a(ϑ̂j + βk,j , ϕk,l)),

a′(ϑ̂l + βk,l , ϕk,l) = da(ϑ̂l + βk,l , ϕk,l)/dβk,l , and μ(i+1)
k,l and

χ
(i+1)
k,j l denote the l-th element and the (j, l)-th element of

μ
(i+1)
k and Σ(i+1)

k , respectively. Hence, the derivative element
ζ(i+1)(βk,l) in (57) is achieved.

REFERENCES

[1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590–3600, Nov. 2010.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[3] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with
very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60,
Jan. 2013.

[4] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
overview of massive MIMO: Benefits and challenges,” IEEE J. Sel. Topics
Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[5] J.-C. Shen, J. Zhang, K.-C. Chen, and K. B. Letaief, “High-dimensional
CSI acquisition in massive MIMO: Sparsity-inspired approaches,” IEEE
Syst. J., vol. 11, no. 1, pp. 32–40, Mar. 2017.

[6] J. Hoydis, S. Ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of cellular networks: How many antennas do we need?” IEEE J. Sel. Areas
Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[7] Y. Xu, G. Yue, and S. Mao, “User grouping for massive MIMO in FDD
systems: New design methods and analysis,” IEEE Access, vol. 2, pp. 947–
959, 2014.

[8] Z. Gao, L. Dai, W. Dai, B. Shim, and Z. Wang, “Structured compres-
sive sensing-based spatio-temporal joint channel estimation for FDD
massive MIMO,” IEEE Trans. Commun., vol. 64, no. 2, pp. 601–617,
Feb. 2016.

[9] 3GPP, “First 5G NR Specs Approved,” 2017. [Online]. Available:
http://www.3gpp.org/newsevents/3gpp-news/1929-nsa_nr_5g.

[10] D. Mi, M. Dianati, L. Zhang, S. Muhaidat, and R. Tafazolli, “Massive
MIMO performance with imperfect channel reciprocity and channel esti-
mation error,” IEEE Trans. Commun., vol. 65, no. 9, pp. 3734–3749, Sep.
2017.

[11] E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive MIMO
systems with non-ideal hardware: Energy efficiency, estimation, and ca-
pacity limits,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7112–7139,
Nov. 2014.

[12] Z. Gao, L. Dai, Z. Wang, and S. Chen, “Spatially common spar-
sity based adaptive channel estimation and feedback for FDD massive
MIMO,” IEEE Trans. Signal Process., vol. 63, no. 23, pp. 6169–6183,
Dec. 2015.

[13] X. Rao and V. K. Lau, “Distributed compressive CSIT estimation and feed-
back for FDD multi-user massive MIMO systems,” IEEE Trans. Signal
Process., vol. 62, no. 12, pp. 3261–3271, Jun. 2014.

[14] J. Hoydis, C. Hoek, T. Wild, and S. ten Brink, “Channel measurements for
large antenna arrays,” in Proc. Int. Symp. Wireless Commun. Syst., 2012,
pp. 811–815.

[15] A. Liu, F. Zhu, and V. K. Lau, “Closed-loop autonomous pilot and com-
pressive CSIT feedback resource adaptation in multi-user FDD massive
MIMO systems,” IEEE Trans. Signal Process., vol. 65, no. 1, pp. 173–183,
Jan. 2017.

[16] C.-K. Wen, S. Jin, K.-K. Wong, J.-C. Chen, and P. Ting, “Channel es-
timation for massive MIMO using Gaussian-mixture Bayesian learn-
ing,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1356–1368,
Mar. 2015.

[17] Z. Chen and C. Yang, “Pilot decontamination in wideband massive MIMO
systems by exploiting channel sparsity,” IEEE Trans. Wireless Commun.,
vol. 15, no. 7, pp. 5087–5100, Jul. 2016.

[18] J.-C. Shen, J. Zhang, E. Alsusa, and K. B. Letaief, “Compressed CSI
acquisition in FDD massive MIMO: How much training is needed?” IEEE
Trans. Wireless Commun., vol. 15, no. 6, pp. 4145–4156, Jun. 2016.

[19] X. Rao and V. K. Lau, “Compressive sensing with prior support qual-
ity information and application to massive MIMO channel estimation
with temporal correlation,” IEEE Trans. Signal Process., vol. 63, no. 18,
pp. 4914–4924, Sep. 2015.

[20] J. Choi, D. J. Love, and P. Bidigare, “Downlink training techniques for
FDD massive MIMO systems: Open-loop and closed-loop training with
memory,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 802–814,
Oct. 2014.

[21] L. You, X. Gao, A. L. Swindlehurst, and W. Zhong, “Channel acquisition
for massive MIMO-OFDM with adjustable phase shift pilots,” IEEE Trans.
Signal Process., vol. 64, no. 6, pp. 1461–1476, Oct. 2016.

[22] Z. Gao, C. Zhang, Z. Wang, and S. Chen, “Priori-Information aided itera-
tive hard threshold: A low-complexity high-accuracy compressive sensing
based channel estimation for TDS-OFDM,” IEEE Trans. Wireless Com-
mun., vol. 14, no. 1, pp. 242–251, Jan. 2015.

[23] A. Liu, V. K. Lau, and W. Dai, “Exploiting burst-sparsity in massive
MIMO with partial channel support Information,” IEEE Trans. Wireless
Commun., vol. 15, no. 11, pp. 7820–7830, Nov. 2016.

[24] Y. Ding and B. D. Rao, “Channel estimation using joint dictionary learn-
ing in FDD massive MIMO systems,” in Proc. IEEE GlobalSIP, 2015,
pp. 185–189.

[25] Y. Ding and B. D. Rao, “Compressed downlink channel estimation based
on dictionary learning in FDD massive MIMO systems,” in Proc. IEEE
GLOBECOM, 2015, pp. 1–6.

[26] Y. Ding and B. D. Rao, “Dictionary learning based sparse channel repre-
sentation and estimation for FDD massive MIMO systems,” IEEE Trans.
Wireless Commun., vol. 17, no. 8, pp. 5437–5451, Aug. 2018.

[27] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,”
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, Aug. 2004.

[28] M. E. Tipping, “Sparse Bayesian learning and the relevance vector ma-
chine,” J. Mach. Learn. Res., vol. 1, no. Jun, pp. 211–244, 2001.

[29] J. Dai and H. C. So, “Sparse Bayesian learning approach for outlier-
resistant direction-of-arrival estimation,” IEEE Trans. Signal Process.,
vol. 66, no. 3, pp. 744–756, Feb. 2018.

[30] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans.
Signal Process., vol. 56, no. 6, pp. 2346–2356, Jun. 2008.

[31] J. Dai, A. Liu, and V. K. Lau, “FDD massive MIMO channel estimation
with arbitrary 2D-array geometry,” IEEE Trans. Signal Process., vol. 66,
no. 10, pp. 2584–2599, May 2018.

[32] Z. Yang, L. Xie, and C. Zhang, “Off-grid direction of arrival estimation
using sparse Bayesian inference,” IEEE Trans. Signal Process., vol. 61,
no. 1, pp. 38–43, Jan. 2013.

[33] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Linear pre-coding perfor-
mance in measured very-large MIMO channels,” in Proc. Veh. Technol.
Conf., 2011, pp. 1–5.

[34] A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division
and multiplexingłThe large-scale array regime,” IEEE Trans. Inf. Theory,
vol. 59, no. 10, pp. 6441–6463, Oct. 2013.

[35] J. Nam, A. Adhikary, J.-Y. Ahn, and G. Caire, “Joint spatial division and
multiplexing: Opportunistic beamforming, user grouping and simplified
downlink scheduling,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5,
pp. 876–890, 2014.

[36] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group
lasso,” J. Comput. Graph. Statist., vol. 22, no. 2, pp. 231–245, 2013.

[37] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based
compressive sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1982–
2001, Apr. 2010.

[38] L. Wang, L. Zhao, G. Bi, C. Wan, L. Zhang, and H. Zhang, “Novel wide-
band DOA estimation based on sparse Bayesian learning with Dirichlet
process priors,” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 275–289,
Jan. 2016.



DAI et al.: JOINT CHANNEL ESTIMATION AND USER GROUPING FOR MASSIVE MIMO SYSTEMS 637

[39] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[40] Universal Mobile Telecommunications System (UMTS); Spatial Channel
Model for Multiple Input Multiple Output (MIMO) Simulations, 3GPP TR
25.996 version 11.0.0 Release 11, 2012.

[41] A. F. Molisch, A. Kuchar, J. Laurila, K. Hugl, and R. Schmalenberger,
“Geometry-based directional model for mobile radio channelsłprinciples
and implementation,” Trans. Emerging TeleCommun. Technol., vol. 14,
no. 4, pp. 351–359, 2003.

[42] J. Dai, X. Bao, W. Xu, and C. Chang, “Root sparse Bayesian learning
for off-grid DOA estimation,” IEEE Signal Process. Lett., vol. 24, no. 1,
pp. 46–50, Jan. 2017.

[43] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational approxi-
mation for Bayesian inference,” IEEE Signal Process. Mag., vol. 25, no. 6,
pp. 131–146, Jun. 2008.

[44] B. D. Rao and K. Kreutz-Delgado, “An affine scaling methodology for best
basis selection,” IEEE Trans. Signal Process., vol. 47, no. 1, pp. 187–200,
Jan. 1999.

[45] W. Shen, L. Dai, B. Shim, Z. Wang, and R. W. Heath, “Channel
feedback based on aod-adaptive subspace codebook in FDD massive
MIMO systems,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5235–5248,
Nov. 2018.

[46] S. J. Wright and J. Nocedal, Numerical Optimization. Berlin, Germany:
Springer Science 2006.

[47] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[48] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[49] 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Study on 3D Channel Model for LTE, 3GPP TR 36.873
version 12.2.0 Release 12, 2015.

[50] M. Razaviyayn, “Successive convex approximation: Analysis and appli-
cations,” Ph.D. dissertation, Dep. Elect. Comput. Eng., Univ. Minnesota,
Minneapolis, MN, USA, 2014.

Jisheng Dai (S’08–M’11) received the B.Eng. de-
gree in electronic engineering from the Nanjing Uni-
versity of Technology, Nanjing, China, in 2005, and
the Ph.D. degree in information and communication
engineering from the University of Science and Tech-
nology of China, Hefei, China, in 2010. He was a
Research Assistant with the Department of Electrical
Engineering, University of Hong Kong, in 2009, and
Visiting Scholar with the Department of Electronic
and Computer Engineering, The Hong Kong Univer-
sity of Science and Technology, during 2017–2018.

He is currently a Research Associate with the School of Electrical and Informa-
tion Engineering, Jiangsu University, Zhenjiang, China. His research interests
include convex optimization theory, wireless communications, machine learn-
ing, and bioinformatics.

An Liu (S’07–M’09–SM’17) received the B.S. and
Ph.D. degrees in electrical engineering from Peking
University, Beijing, China, in 2011 and 2004, respec-
tively. From 2008 to 2010, he was a Visiting Scholar
at the Department of Electrical, Computer, and En-
ergy Engineering, University of Colorado at Boulder.
He was a Postdoctoral Research Fellow during 2011–
2013, Visiting Assistant Professor in 2014, and Re-
search Assistant Professor during 2015–2017, with
the Department of Electronic and Computer Engi-
neering, The Hong Kong University of Science and

Technology. He is currently a Distinguished Research Fellow with the Col-
lege of Information Science and Electronic Engineering, Zhejiang University,
Hangzhou, China. His research interests include wireless communications,
stochastic optimization, and compressive sensing.

Vincent K. N. Lau (SM’04–F’12) received the
B.Eng. (Distinction 1st Hons.) from the University of
Hong Kong, Hong Kong, in 1992 and the Ph.D. from
the Cambridge University, Cambridge, U.K., in 1997.
He was with Bell Labs from 1997 to 2004 and the De-
partment of Electronic and Computer Engineering,
The Hong Kong University of Science and Technol-
ogy (HKUST), in 2004. He is currently a Chair Pro-
fessor and the Founding Director of Huawei-HKUST
Joint Innovation Lab, HKUST. His current research
focus includes robust and delay-optimal cross layer

optimization for MIMO/OFDM wireless systems, and interference mitigation
techniques for wireless networks, massive MIMO, M2M, and network control
systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


