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Abstract—In this two-part paper, we present a novel framework
and methodology to analyze data from certain image-based bio-
chemical assays, e.g., ELISPOT and Fluorospot assays. In this sec-
ond part, we focus on our algorithmic contributions. We provide
an algorithm for functional inverse diffusion that solves the varia-
tional problem we posed in Part I. As part of the derivation of this
algorithm, we present the proximal operator for the non-negative
group-sparsity regularizer, which is a novel result that is of inter-
est in itself, also in comparison to previous results on the proximal
operator of a sum of functions. We then present a discretized ap-
proximated implementation of our algorithm and evaluate it both
in terms of operational cell-detection metrics and in terms of dis-
tributional optimal-transport metrics.

Index Terms—Proximal operator, non-negative group sparsity,
functional optimization, biomedical imaging, source localization.

I. INTRODUCTION

SOURCE localization (SL) arises in application fields in
which a number of point-sources emit some measurable

signal, e.g., chemical compounds [1]–[12], sound [13], [14],
light [15], [16] or heat [17], [18], and one wants to recover
their location. Typically, the measured signal is a map of these
locations observed through a linear operator, such as convolution
[10], [13] or diffusion [2], [3], [9]. This is the second part of a
paper that considers SL in the context of cell detection in image-
based biochemical assays. In this case, the source locations
are explicit in the source density rate, the reactive term in a
reaction-diffusion-adsorption-desorption system, from which a
single image of the adsorped density at the end of the experiment
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is measured. For more details on the exact setup, its biological
application or the physics involved, see Part I [19, Section II].

In Part I [19, Section III], we proposed the following opti-
mization problem to detect particle-generating (active) cells in
this setting,

min
a∈A

⎡
⎢⎢⎢⎣‖Aa− dobs‖2D + δA+ (a) +λ

f1 (a)︷ ︸︸ ︷∥∥∥‖ξar‖L2 (R+ )

∥∥∥
L1 (R2 )︸ ︷︷ ︸

f (a)

⎤
⎥⎥⎥⎦. (1)

Here, the non-negative quantity a we aim to recover is the post
adsorption-desorption source density rate (PSDR). The PSDR is
an equivalent to the source density rate (SDR) where the infor-
mation on adsorption and desorption have been summarized. In
fact, it characterizes the generation of particles across a plane,
that we represent by the locations r ∈ R2 , and a third non-
negative dimension σ ≥ 0 that expresses the distance each gen-
erated particle has diffused from its origin. Here, non-negative
group-sparsity, induced by the regularizer f in (1), plays a fun-
damental role. This is because a certain form of grouping [20]
is key for the end application, i.e., cell detection, but a has to
remain non-negative at all times to preserve its physical mean-
ing. In particular, it is important that the different values of
ar(σ) = a(r, σ) across the different distances σ for a certain
position r are grouped, because they represent the same poten-
tial active cell generating particles which are captured either
closer to the cell (low σ s) or further away (large σ s). To our
knowledge, previous techniques for promoting group-sparsity,
e.g., [21], [22], can not handle non-negativity constraints.

The Hilbert space where this PSDR lies is defined as
A =

{
a ∈ L2 (Ω) : supp (a) ⊆ supp (μ)× [0, σmax]

}
, where

Ω = R2 ×R+ , μ is a (0, 1)-indicator function of a bounded
set supp (μ) in which cells can physically lie, and σmax =√

2DT is given by the physical parameters of the assay.
The image observation dobs lies in a weighted L2

(
R2
)

space defined as D =
{
d : R2 → R : (d|d)D < +∞}, where

(d1 |d2)D =
(
w2 · |·)L2 (R2 ) and w ∈ L∞+

(
R2
)

is a non-negative
bounded weighting function that penalizes errors at different lo-
cations according to sensor properties. The bounded linear op-
erator A ∈ L (A,D) represents the forward diffusion process,
that maps an a onto dobs , and was derived in [19, Section II-B]
as the mapping a 	→ ∫ σm a x

0 Gσaσdσ, where Gσ is the
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convolutional operator with 2D rotationally invariant Gaussian
kernel of standard deviation σ. The diffusion operator A was
extensively characterized in Part I [19, Section III-B]. Finally,
the group-sparsity regularizer includes a non-negative bounded
weighting function ξ ∈ L∞+ [0, σmax] that allows incorporating
further prior knowledge in terms of the relative importance of
each value of σ.

In this paper, we derive an accelerated proximal gradient
(APG) algorithm to solve (1). Namely, we combine the charac-
terization of the diffusion operator A we presented in Part I [19,
Section III-B] with the derivation of the proximal operator of the
non-negative group-sparsity regularizer, i.e., of f in (1). Further-
more, we present an efficient implementation of a discretization
of the resulting algorithm and provide thorough performance
evaluation on synthetic data, complementing the real data ex-
ample in Part I [19, Section V-A].

A. Proximal Operator of a Sum of Functions

Proximal methods for convex optimization [23]–[25] are now
prevalent in the signal processing, inverse problems and machine
learning communities [26]–[28]. This is mainly due to their first-
order nature, i.e., that the intermediate variables they entail have
at most the same dimensionality as the variable one seeks, and
to their ability to handle complex, non-smooth shapes of the
functional to optimize. Consequently, applications are charac-
terized by high-dimensional parameters with rich structure and
non-smooth penalizations.

In the most generic setting, the problems solved by these
methods are of the form

min
x∈X

[g(Bx) + f(x)] , (2)

where f : X → R̄ and g : G → R̄ are proper, convex, and lower
semi-continuous and the domains X and G are two real Hilbert
spaces. On one hand, a smoothness assumption is made on g,
namely, that it is Frchet differentiable in G and has a β−1-
Lipschitz continuous Frchet derivative ∇g : G → G∗ for some
β > 0. On the other hand, no further structure is imposed on
f , which can be non-smooth and discontinuous. Finally, the
bounded linear operator B ∈ L (X ,G) has an adjoint B∗ ∈
L (G,X ) and operator norm ‖B‖L(X ,G) .

The term proximal that encompasses these methods relates to
the proximal operator of the function f , which is necessary for
a fundamental step in the iterations defined by these algorithms.
The proximal operator is a mapping proxγf : X → X such that

proxγf (x) = arg min
y∈X

[
‖y − x‖2X + 2γf(y)

]
. (3)

A case that generates special interest is that in which f is
constructed as a sum of two non-smooth components [26], [28]–
[31]. In particular, [29, Proposition 12] proved that if X = R
and f = f1 + δZ , with δZ the (∞, 0)-indicator function of a
closed convex subsetZ ⊂ X , then proxf = PZ ◦proxf1

, where
◦ represents composition and PZ the projection onto Z . In the
context of the derivation of the proximal operator of the non-
negative group-sparsity regularizer f in (1), we provide a con-
trasting result. In particular, in the appendix to this paper, we
prove that ifX = L2 ,Z = X+ , and f1 = ‖·‖X , the inverse order

applies, i.e., proxf = proxf1
◦PZ .1 Combining this result with

the separable sum property allows us to prove that this same
order is applicable when f = λf1 + δZ for some λ ≥ 0, f1
is the group-sparsity regularizer with non-overlapping groups,
and X and Z are as above. Besides allowing us to solve (1),
the proximal operator for the non-negative group sparsity reg-
ularizer facilitates the use of group-sparsity in other fields that
inherently require non-negativity constraints, e.g., classification,
text mining, environmetrics, speech recognition and computer
vision [35], [36].

B. Notation

When sets and spaces of numbers are involved, we use
either standard notation such as R+ = [0,+∞), R̄ = R ∪
{−∞,+∞} and R̄+ = [0,+∞] or capital non-Latin letters.
When discussing locations in R2 , we note them as bold face
letters, e.g., r ∈ R2 .

When discussing functional sets and spaces, we use capital
calligraphic notation, such as X for a generic normed space,
‖ · ‖X for its norm, and (·|·)X for its inner product if X is also
a Hilbert space. For any functional space X , X+ ⊂ X is the
cone of non-negative functionals, and for any functional f , f+
is its positive part, i.e., f+(y) = max{f(y), 0}, for any y in
its domain Y . The support of the functional f is written as
supp(f) = {y ∈ Y : f(y) �= 0} ⊂ Y . For any set Z ⊆ X , its
(∞, 0)-indicator function is the function δZ : X → {0,+∞}
such that δZ(x) = 0 if x ∈ Z and δZ(x) = +∞ if x ∈ Zc =
X \ Z .

When discussing operators, if Z is some normed space, we
writeL(X ,Z) for the space of linear continuous operators from
X to Z , with norm ‖ · ‖L(X ,Z) . We will note operators as A or
B, e.g., B ∈ L (X ,Z). Adjoints are noted as B∗ ∈ L (Z,X ).

When discussing matrices and tensors, the space of real M -
by-N matrices for some M,N ∈ N is T (M,N), while its
element-wise positive cone is T+ (M,N). For a specific ma-
trix f̃ ∈ T (M,N), we specify it as a group of its elements⎧
⎩f̃m ,n

⎫
⎭ for m ∈ {1, 2, . . . ,M} and n ∈ {1, 2, . . . , N}. For

tensors, we work analogously by adding appropriate indexes,

e.g., f̃ ∈ T (M,N,K) and
⎧
⎩f̃m ,n,k

⎫
⎭ for k ∈ {1, 2, . . . ,K}.

When presenting our statements, we refer to them as proper-
ties if they are not novel, but are necessary for clear exposition,
lemmas if they contain minor novel contributions and theorems
if they constitute major novel contributions.

II. ACCELERATED PROXIMAL GRADIENT FOR WEIGHTED

GROUP-SPARSE REGULARIZED INVERSE DIFFUSION

In this section, we propose to use the accelerated proximal
gradient algorithm (APG algorithm or FISTA [23]) to solve
(1). Because the APG algorithm is posed in generic Hilbert
spaces, we do not need to discretize the problem in order to
derive and pose our algorithm. In other words, the proposed

1After the acceptance of this paper, we were informed that this claim, made in
our Lemma 4, was covered by the broader result [32, Proposition 2.2]. During
the revision of this paper, [33], [34] also presented statements equivalent or
encompassing Lemma 4.
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Algorithm 1: Accelerated Proximal Gradient to find
xopt that solves (2) with function-value convergence rate
O (i−2

)
. To simplify exposition, we identify G with its dual

G∗ and write∇g(By) to refer to its representation in G. We
also note ‖B‖2 = ‖B‖2L(X ,G) . Moreover, the ratio ‖B‖2/β
here is representing the best Lipschitz continuity constant
for ∇ (g ◦B), but can be replaced by any constant upper
bound of this quantity and the convergence rate O (i−2

)
will still be preserved.

Require: An initial x(0) ∈ X
Ensure: A solution xopt ∈ X that solves (2)
1: y(0) ← x(0) , i← 0
2: repeat
3: i← i + 1, α← t(i−1)−1

t(i)

4: x(i) ← prox β

‖B ‖2 f

[
y(i−1) − β

‖B ‖2 B∗∇g
(
By(i−1)

)]

5: y(i) ← x(i) + α
(
x(i) − x(i−1)

)
6: until convergence
7: xopt ← x(i)

algorithm will work directly on the abstract parameter space
A. For an introduction on optimization in function spaces, see
[37]. Any implementation, however, will require some form of
discretization. In our case, we choose the simple discretization
presented in Part I [19, Section IV].

A. Accelerated Proximal Gradient

The APG algorithm, i.e., Algorithm 1, was proposed in [23]
to solve (2) with t : N → R+ such that t(i) = 1/2 + [1/4 +
t2(i− 1)]1/2 , ∀i ≥ 1 and t(0) = 1. [23] proved that this algo-
rithm yields a sequence of objective values f(xi) + g(Bxi) with
a convergence rate towards the minimum value ofO (i−2

)
. [38]

proposed modifying the update rule of the Nesterov accelera-
tion term to t(i) = (i + a− 1)/a, ∀i ≥ 1, for some a > 2. This
modification preserves the convergence rate of the objective val-
ues, and additionally grants weak convergence of the iterates,
i.e., xi → xopt weakly (see [37] for more on weak convergence).
As discussed in [38], convergence is observed empirically with
the sequence proposed by [23] too, and thus, a choice between
the two methods will be mainly based on observed empirical
results.

In summary, in order to solve a problem of the form (2)
using the APG algorithm, one needs to identify or upper-bound
‖B‖L(X ,G) , find an expression for B∗ and ∇g, identify β, and
be able to obtain proxγf (x) for any x ∈ X .

B. Accelerated Proximal Gradient for Weighted
Group-Sparse-Regularized Inverse Diffusion

In this section, we introduce the results that allow us to
solve (1) using the APG algorithm. First, note that (1) is of
the form (2) by identifying, with respect to the notation in
Section I-A, the Hilbert spaces G = D, X = A, the opera-
tor B = A : A → D, the lower semi-continuous non-smooth

convex function f : A → R̄ such that

f(a) = δA+ (a) + λ
∥∥∥‖ξar‖L2 (R+ )

∥∥∥
L1 (R2 )

, (4)

∀a ∈ A, and the lower semi-continuous, Frchet-differentiable
convex function g : D → R such that

g(d) = ‖d− dobs‖2D ,∀d ∈ D . (5)

Consequently, to derive the APG algorithm to solve (1), we use
some of the results we obtained in Part I [19, Section III-B] on
the diffusion operator A, namely, a bound on its norm and the
expression for its adjoint. Furthermore, we need to find a β > 0
such that∇g is β−1-Lipschitz continuous, and provide a way to
compute proxγf (a) for any γ > 0 and a ∈ A.

We start by characterizing the behavior of the smooth function
g in (5). The result in Property 1 follows finite-dimensional
intuition and specifies this behavior completely.

Property 1: (Fréchet derivative of the squared-norm loss).
Consider the functional g : D → R in (5). Then, g has a Frchet
derivative ∇g : D → D∗ such that ∇g(d) is represented in D
by 2(d− dobs), ∀d ∈ D. Additionally, ∀d1 , d2 ∈ D
‖∇g(d1)−∇g(d2)‖D∗ = ‖2d1 − 2d2‖D = 2 ‖d1 − d2‖D

and, thus,∇g is 2-Lipschitz continuous, i.e., β = 1/2. Here,D∗
is the dual space of D, where ∇g(d) resides. See [37] for more
on dual spaces and Frchet derivatives.

Now, we turn our attention towards the non-smooth function
f in (4). Deriving a closed form expression for proxγf (a) is
the most complex result required to use the APG algorithm.
This is mainly because the proximal operator does not generally
decompose well for sums of functions, and no previous result
indicates that proxγf (a) can be computed in closed form. The
appendix of this paper is dedicated to proving our contribution
in Theorem 1, which provides an expression for proxγf in the
most generic setting possible. To simplify the exposition of this
result, let ℵ = supp (ξ) and ℵc = [0, σmax] \ ℵ. These two sets
distinguish values of σ at which the recovered PSDR a in (1)
is influenced by the weighted group-sparsity regularization, i.e.,
σ ∈ ℵ, from values of σ at which it is not, i.e., σ ∈ ℵc. Consider
also, for any a ∈ A, two functions aℵ, aℵc : Ω→ R+ such that

supp (aℵ) ⊂ R2 × ℵ, supp (aℵc) ⊂ R2 × ℵc,

and a = aℵ + aℵc , which provides a way for us to refer to these
two distinct regions of the PSDR a.

Theorem 1 (Proximal operator of the non-negative weighted
group-sparsity regularizer): Consider the functional f : A → R̄
in (4). For any γ, λ > 0, if p = proxγf (a), then,

pr = [ar ]+ − PB̄ξ (λγ )
[
[aℵ,r ]+

]
.

Here, PB̄ξ (λγ ) is the projection onto B̄ξ (λγ), the closed el-

lipsoid of ξ−1-weighted norm under λγ. This convex set and
the projection onto it are further discussed in the appendix.
Following the convention used in (1), for each r ∈ R2 , we
have pr , aℵ,r : [0, σmax]→ R+ such that aℵ,r(σ) = aℵ(r, σ)
and pr(σ) = p(r, σ) for any σ ∈ [0, σmax].

The interpretation of this result is a direct parallel with the
interpretation of the FISTA iterations in the known framework
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of 	1-regularized inverse problems, i.e., an iterative shrinkage-
thresholding effect. To see this, consider a specific r ∈ R2

at which w(r) > 0, and analyze the iteration of Step 4 in
Algorithm 1. The iteration of the proximal operator in Theo-
rem 1 will keep shrinking [aℵ,r ]+ by subtracting its projection
onto the ellipsoid B̄ξ (λγ). If the gradient step inside does not
raise this contribution again due to its importance for the min-
imization of g, at some point we will have [aℵ,r ]+ ∈ B̄ξ (λγ),
which will result in a thresholding effect, because then applying
the proximal operator in Theorem 1 again will yield [aℵ,r ]+ = 0.
In this context, we can read Theorem 1 as a statement that
the non-negativity constraint and the weighted norm in (4) de-
couple, neither affecting the optimality of iterative shrinkage-
thresholding for inducing sparsity.

Expressing the projection in Theorem 1 in closed form for
a generic ξ and for each r ∈ R2 , however, is not trivial. In
Property 2 in the appendix, we generalize a well-known finite
dimensional result that states that this projection can not gen-
erally be fully determined in closed form and, thus, iterative
procedures should be used for each r ∈ R2 . Although this es-
tablishes an interesting research direction to obtain algorithms
that solve (1) in its more generic form, we opt here for limit-
ing our choice of ξ. In particular, we select only its support ℵ
and we let ξ = 1 a.e. in ℵ. This simplifies the projection onto
the closed ellipsoid B̄ξ (λγ), which becomes the simple closed
ball of norm smaller than λγ in L2 (ℵ) (see Property 3 in the
appendix). For this particular case, Theorem 2 states a closed-
form expression for proxγf (a),∀a ∈ A, completing the list of
required results to use the APG algorithm.

Theorem 2 (Proximal operator of the non-negative group-
sparsity regularizer on ℵ): Consider the functional f : A → R̄
in (4). Let ξ = 1 a.e. in ℵ. Then, ∀γ, λ > 0, if p = proxγf (a),

pr = [aℵc,r ]+ + [aℵ,r ]+

(
1− γλ∥∥[aℵ,r ]+

∥∥
L2 (ℵ)

)

+

.

Here, aℵ,r and pr are defined as in Theorem 1 and aℵc,r is defined
mutatis mutandis.

This result, jointly with the bound on the diffusion op-
erator’s norm derived in Part I [19, Section III-B], is sum-
marized in the proposed algorithm for inverse diffusion, i.e.,
Algorithm 2. This algorithm establishes a reference from which
different discretization schemes can lead to different imple-
mentable algorithms for inverse diffusion and cell detection. A
relevant observation here is that, precisely because proxγf =
proxγλf1

◦PA+ , where f1 is the group-sparsity regularizer as
in (1), the implementation of proxγf is decomposed in the non-
negative projection in Step 4 and the subsequent group-sparsity
shrinkage-thresholding in Step 5.

C. Discretization of the APG for Inverse Diffusion

In Part I [19, Section IV] we presented a discretization scheme
that establishes approximation rules for any element inA by an
element of T (M,N,K), and for any element in D by an ele-
ment of T (M,N). Here, M and N are the number of pixels in
each dimension, and K is the number of discretization points
for the σ-dimension. This discretization scheme also enables

Algorithm 2: Accelerated Proximal Gradient to find aopt
that solves (1) with function-value convergence rateO (i−2

)
when ξ = 1 a.e. in ℵ. Here, η = σ−1

max ‖w‖−2
L∞(R2 ) is used for

clarity of exposition.

Require: An initial a(0) ∈ A, an image observation
dobs ∈ D

Ensure: A solution aopt ∈ A that solves (1)
1: b(0) ← a(0) , i← 0
2: repeat
3: i← i + 1, α← t(i−1)−1

t(i)

4: a(i) ←
[
b(i−1) − ηA∗

(
Ab(i−1) − dobs

)]
+

5: a
(i)
ℵ ← a

(i)
ℵ

(
1− η

2
λ
∥∥∥a(i)

r,ℵ
∥∥∥
−1

L2 (ℵ)

)

+

6: b(i) ← a(i) + α
(
a(i) − a(i−1)

)
7: until convergence
8: aopt ← a(i)

us to obtain discrete versions of the diffusion operator A and
its adjoint A∗, and yields Algorithm 3 as a practical implemen-
tation of Algorithm 2. In Algorithm 3, d̃obs , w̃, μ̃ and ã are
discretizations of dobs , w, μ and a, ℵ̃ is the set of indexes k that
represent portions of the σ-dimension that lie inside ℵ, and g̃k

are the doubly spatially integrated Gaussian kernels, as speci-
fied in Part I [19, Section IV]. In Algorithm 3, Steps 1, 3, and
12 take care of the Nesterov acceleration of the proximal gradi-
ent algorithm by using the momentum in its convergence path,
Step 4 computes the diffusion operator and evaluates the predic-
tion error, Step 6 computes the adjoint operator, completes the
gradient step, and enforces the positivity constraint, and Steps 8
and 10 implement the group-sparsity shrinkage-thresholding.

Many of the choices implicit in the discretization scheme pre-
sented in Part I [19, Section IV] were derived from an intuitive
goal, i.e., that the properties present in the function spaces are
preserved after discretization. In this manner, the discretized ad-
joint is the adjoint of the discretized operator, and the proximal
operator is preserved, because the discretized and continuous
norms are equivalent in an inner-approximation sense. As a
result, Algorithm 3 is an APG algorithm too, and it can be
proven to solve the discretized equivalent to (1), i.e., (6), for
ã ∈ T+ (M,N,K) (see Part I [19, Equation (24)]).

min
ã

⎧
⎨
⎩

∥∥∥∥∥d̃obs−
K∑

k=1

g̃k � ãk

∥∥∥∥∥
2

w̃

+λ
∑
m,n

√∑

k∈ℵ̃
ã2

m,n,k

⎫
⎬
⎭ (6)

III. NUMERICAL RESULTS

In this section, we provide empirical validation of the opti-
mization framework we presented in Part I [19, Section III],
i.e., (1), and of the theoretical results in Section II. We do this
through the evaluation of an efficient approximated implemen-
tation of Algorithm 3 we present in Section III-A. In particular,
in Section III-B we specify how we use the observation model
we presented in Part I [19, Section II-B] to generate realistic
synthetic data, in which the location and total secretion of each
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Algorithm 3: Algorithm to find a discrete approximation
ãopt ∈ T (M,N,K) to the solution of (1), i.e., the solution
to (6). Here, η is as in Algorithm 2, � refers to discrete
zero-padded same-size convolution, and all matrix powers
and products are element-wise.

Require: An initial ã(0) ∈ T (M,N,K), a discrete image
observation d̃obs ∈ T (M,N)

Ensure: A discrete approximation ãopt ∈ T (M,N,K) to
the solution of (1), i.e., the solution to (6)

1: b̃(0) ← ã(0) , i← 0
2: repeat
3: i← i + 1, α← t(i−1)−1

t(i)

4: d̃(i) ←
K∑

k=1

g̃k � b̃
(i−1)
k − d̃obs

5: for k = 1 to K do
6: ã

(i)
k ←

[
b̃
(i−1)
k − ημ̃�

(
g̃k �

[
w̃2 � d̃(i)

])]
+

7: end for

8: p̃←

⎛
⎜⎝1− η

2
λ

⎡
⎢⎣
√√√√
∑

k∈ℵ̃

(
ã

(i)
k

)2

⎤
⎥⎦
−1⎞
⎟⎠

+

9: for k ∈ ℵ̃ do
10: ã

(i)
k ← p̃� ã

(i)
k

11: end for
12: b̃(i) ← ã(i) + α

(
ã(i) − ã(i−1)

)
13: until convergence
14: ãopt ← ã(i)

of the active cells is known. On that data, we evaluate our ap-
proach in two different ways. First, in Section III-C1, we provide
detection performance metrics after simple post-processing, and
compare that to the detection performance of a human expert on
similarly generated data. This, jointly with our results on real
data in Part I [19, Section V-A], validates our proposal for use
in practical scenarios. Second, in Section III-C2, we evaluate
the output ãopt of Algorithm 3 by interpreting its accumulated
sum over k as a 2D discrete particle distribution, and compar-
ing it to the one given by the true simulated PSDR ã using
optimal-transport theory.

A. Implementation, Kernel Approximations

The main driving factor of the computational cost of
Algorithm 3 is the 2K convolutions with 2D kernels g̃k at each
iteration in Steps 4 and 6. Although efficiently parallelizable in
GPUs, 2D convolution is still an expensive operation. Recall
from Part I [19, Section IV] that the discretized filters g̃k are
given by

g̃k [(m,n)] =
1√
Δk

∫ σ̃k

σ̃k −1

ωσ̃ (m)ωσ̃ (n)dσ̃ , (7)

for some ωσ̃ : Z→ R+ , where Δk = σ̃k − σ̃k−1 is the width of
the σ̃-dimension bin represented by k. This expression suggests
that g̃k is close to being separable, at least for small values of
Δk . In the particular choice of parameters for our analysis on

TABLE I
PARAMETERS USED FOR DATA-GENERATION IN OUR SIMULATIONS. NOTE THAT

THE SELECTION OF THESE PARAMETERS HAS BEEN DONE WITHIN REALISTIC

RANGES (SEE, AMONG OTHERS, [39] FOR ELISPOT EXAMPLES). NONETHELESS,
κa AND σb HAVE BEEN SPECIFICALLY ADJUSTED TO MATCH THE ASPECT OF

THE REAL FLUOROSPOT DATA THAT WAS AVAILABLE. FINALLY, NOTE THAT

WITH THESE PHYSICAL PARAMETERS, σ̃m ax =
√

2DT /Δpix ≈ 64.5

synthetic data, detailed in Section III-B, Table III, the smallest
value of λ1/

∑
λl , where λl are the decreasingly sorted singu-

lar values of a given kernel g̃k , was 97.72 %, while the smallest
value of (λ1 + λ2 + λ3)/

∑
λl was 99.99 %. In this context,

we propose to approximate the 2D kernels g̃k by separable
2D kernels, i.e., rank-one kernels. Thus, we will approximate
each convolution with a 2D kernel by 2 successive convolu-
tions with 1D kernels, substantially reducing the computational
effort. Note, however, that regardless the approximation, the
2K convolutions per iteration will still remain the bottleneck
of Algorithm 3, and thus, further efforts on the reduction of
the computational burden should involve efficient techniques to
implement these convolutions.

In Section III-C, we report the results of approximating g̃k

as gbr1
k , the best rank-one approximation in terms of the Frobe-

nius norm. gbr1
k can be obtained numerically by using singular

value decomposition on the original kernel g̃k . In the supple-
mentary material to this paper, we discuss two simpler rank-one
approximations and report their performance, which was sig-
nificantly worse than that of gbr1

k in almost every scenario. In
order to quantify the loss in performance due to the rank-one
approximation, we will also include in Section III-C the re-
sults using gbr3

k , the best rank-three approximation in terms
of the Frobenius norm, which approximates every convolu-
tion with a 2D kernel by combining 6 convolutions with 1D
kernels.

B. Data Simulation

We simulated image data from a physical system that fol-
lows the reaction-diffusion-adsorption-desorption process we
presented in Part I [19, Section II-A] with the parameters speci-
fied in Table I. Here, we have that 1) κa , κd , D and T are physical
parameters characterizing the biochemical assays, 2) M , N and
Δpix determine the spatial discretization of a supposed cam-
era, as detailed in Part I [19, Section IV], 3) Nt determines
the number of discretization points in time used to generate
the SDR s(r, t), 4) Kg determines the number of uniform dis-
cretization intervals of the PSDR a(r, σ) in the σ-dimension
during data generation, 5) J determines the number of terms to
which we truncate the infinite sum that expresses ϕ(τ, t), the
function that relates the SDR s to the PSDR a, as we exposed
in Part I [19, Section II-C, Lemma 2], and 6) σ̃b determines the
standard deviation of the discretized Gaussian kernel used to
simulate an imperfect optical system, as presented in Part I [19,
Section II-D].
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TABLE II
CHARACTERISTIC PARAMETERS OF THE 12 DIFFERENT SCENARIOS

CONSIDERED IN THE SIMULATIONS, FORMED BY FOUR NOISE

LEVELS (NL) AND THREE CELL DENSITIES

TABLE III
PARAMETERS USED FOR ALGORITHM 3 IN ALL OF THE SIMULATIONS

PRESENTED IN THIS PAPER. NOTE HERE THAT THE CHOICE OF THE GRID IN

THE σ̃-DIMENSION IS COHERENT WITH THE OBSERVATION MODEL UNDER AN

IMPERFECT OPTICAL SYSTEM DERIVED IN [19, SECTION II-D], i.e., WITH

RESPECT TO TABLE I, σ̃0 ≈ σ̃b AND σ̃K ≈ σ̃m ax + σ̃b

For each considered active cell, say, in a location (m,n),
we generated a random discrete SDR s̃m ,n in the form of a
square pulse in time. In particular, we drew uniform activation
(particle generation initiation) and deactivation (particle gener-
ation finalization) times in the interval (1, 6)h, and we chose
the amplitude of the square pulse by uniformly drawing the total
amount of generated particles between a certain maximum and
its half. This was done for 50 different sets of uniformly-drawn,
pixel-centered, active-cell locations for each considered number
Nc of active cells in an image.

We then used our contribution in Part I [19, Theorem 2] to
obtain the PSDR ã ∈ T (M,N,Kg ) from the resulting SDR
s̃ ∈ T (M,N,Nt). Details on the exact procedure to do so can
be found in the supplementary material to this paper. Then, we
computed the ideal discretized measurement by applying the
discretized diffusion operator Ã to it. Note here that in synthe-
sis, the kernels g̃k were not approximated. We then simulated
the effect of an imperfect optical system by convolution with
a discretized, i.e. spatially integrated, Gaussian kernel with a
standard deviation of σ̃b , and rescaled the image to keep the in-
tensity in the range [0, 1]. We then incorporated additive white
Gaussian noise of the variance that corresponded to that of
the statistical model for quantization in the range [0, 1] with
a number of bits b, i.e. 2−2b/12. Finally, we clipped the re-
sulting image to the range [0, 1] and re-scaled it to the range
[0, 255]. It is worthwhile to mention here that extensive anal-
ysis carried out on real data has suggested that the Gaussian
assumption is sensible. Moreover, no magnification is usually
employed in the image capture for the described biochemical
assays. This implies high photon counts, which theoretically
supports the Gaussian assumption over the Poisson assump-
tion, more common in low-photon-count applications such as
microscopy.

Throughout this section, we will present results obtained by
this data-generation procedure in twelve different scenarios, in
which three different cell densities (few, average, many) and
four different noise levels (NL) are considered. For details on
their characterization in terms of Nc and b, see Table II.

C. Performance Evaluation and Numerical Results

The empirical evaluation of Algorithm 3 can be addressed
in terms of diverse metrics. On one hand, one could focus on
metrics characteristic of the optimization framework itself, i.e.,
the prediction’s square error, the group-sparsity level in the so-
lution, or the value of the cost function from (1) and the rate
at which it decreases. Fig. 1 exemplifies the statistics of these
quantities during convergence. These metrics, however, have
already been studied theoretically and do not hold operational
meaning in terms of performance on the task at hand, i.e., SL
on data from reaction-diffusion-adsorption-desorption systems.
On the other hand, detection metrics such as precision and re-
call, or their compromise, the F1-score, directly characterize
SL performance, and are therefore naturally operational. There-
fore, when presenting results to validate the operational value of
our algoriths, we will use the F1-score after I = 104 iterations,
relying on convergence. For example, in Fig. 3 we compare
our algorithm’s F1-Score to that of an expert human labeler
on synthetic data for some specific experimental conditions.
Nonetheless, pure detection metrics like the F1-score can not
be obtained simply from the value ãopt our algorithm provides,
and some post-processing is necessary. Therefore, any attempt
at evaluating our approach in this manner will be influenced by
the specificities of the chosen post-processing. In this context,
optimal transport theory and the earth mover’s distance (EMD)
[40] offer an interesting alternative. In particular, the EMD is
an interpretable objective metric between any two discrete dis-
tributions of the same total weight. In other words, it not only
evaluates the location at which each spatial peak in the recovered
ãopt is, but also their relative contribution to the total amount
of particles. In conclusion, then, when evaluating our results in
terms of the accuracy of the information they provide about the
spatial distribution of particle generation, we will use the EMD
as our preferred metric.

1) Operational Evaluation and Detection Results: Consider
an SL detector that, given an observation d̃obs , provides a list of
positions {rl}Ll=1 ⊂ R2 and a co-indexed list of positive num-
bers (pseudo-likelihoods) {pl}Ll=1 ⊂ R+ . Then, for a given tol-
erance � > 0, we will evaluate each position rl in decreasing
order of pseudo-likelihood pl , and consider it a correct detec-
tion if a previously unmatched true cell location rc can be found
inside the ball with diameter � centered at rl . If that is the case,
the closest such true cell location will not be paired with any
further rls. Then, if we refer to TP, FP and FN as the number of
correct detections, incorrect detections, and cells that were not
detected, respectively, the precision pre, recall rec and F1-score
F1 are defined as

pre =
TP

TP + FP
, rec =

TP
TP + FN

, and F1 =
2pre · rec
pre + rec

.

Note, then, that the F1-score is a number in the range [0, 1] that
establishes a compromise between the probability of a detection
being correct (precision) and the probability of a true cell being
found (recall). Throughout the rest of the paper, we will use
� = 3 pix as our tolerance for the localization of active cells.
Note here that, as mentioned in [19, Section II-A], the cells under
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Fig. 1. Statistics of the optimization metrics’ convergence with the number of iterations i. Showing the normalized prediction’s square error NSE = ‖Aa −
dobs‖2D/‖dobs‖2D , the value of the group sparsity regularizer (GS), and the value of the cost function in (1). Comprising results from 50 images with Nc = 750
cells and noise level 3 (see Table II) when analyzed with Algorithm 3 with the parameters in Table III and λ = 0.5. For each quantity, a dot and the line illustrate
mean behavior, whiskers indicate the evolution of the 10th and 90th percentiles, and the box indicates the evolution of the 25th, 50th and 75th percentiles.

consideration are tens of μms in diameter, and so a tolerance of
�Δpix = 19.5 μm should be considered extremely accurate.

Obtaining a set of detections {(rl , pl)}Ll=1 from the output
of Algorithm 3 can be done in multiple ways. In an ideal case,
i.e., with the perfect reconstruction of ã, we would simply use
{r̃l}Ll=1 =

⋃K
k=1 supp (ãk ), where the support of a matrix is the

set of indexes r̃ ∈ Z2 where its elements are not zero. In this
case, the value of pl would not have any impact, and the obtained
F1-score would be 1. In real cases, in which an imperfect recon-
struction ãopt includes approximation and numerical errors, we
propose to first compute a pseudo-likelihood for each pixel, cor-
responding to the contribution of each pixel to the overall group-

sparsity regularizer, i.e. the matrix p̃ =
(∑

k∈ℵ̃ ã2
k

)1/2
. We then

propose to build a list of candidate detections {r̃q}Qq=1 formed
by the local maxima (with 8-connectivity) in p̃, and discard those
with pseudo-likelihood pq = p̃r̃q

under a certain threshold, i.e.,

for some δ > 0, {(r̃l , pl)}Ll=1 = {(r̃q , pq ) : pq > δ}. In prac-
tice, we pick the δ that yields the best F1-score given the known
true data. This mimics real application, in which experts select
the threshold that best fits their criterion by visual inspection
of the results overlaid on the image data. This same evaluation
by connected maxima detection and optimal thresholding can be
applied to other methods in which the pseudo-likelihood image
p̃ is generated differently. Finally, note that although different
heuristics could generate a better set of detections and pseudo-

Fig. 2. Statistics of the obtained F1-scores for different methods to obtain
p̃. Dependence on the regularization parameter λ. Those methods that do not
use a regularization parameter appear centered in the figure. The statistics are
reported in the whiskers-box plot as in Fig. 1.

likelihoods {rl , pl}Ll=1 , our focus here is in showing that the
PSDR ã recovered from Algorithm 3 provides the means for
robust and reliable SL.

In Figs. 2, 3, and 5, we report statistics on the results of using
p̃ computed as above when Algorithm 3 is used with the parame-
ters in Table III and the sequence t : N → R+ suggested in [23]
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Fig. 3. Statistics of the obtained F1-scores for different methods. Dependence
on the total number of cells in the simulated image, at the two highest noise
levels. For noise level 3, performance obtained by an expert human labeler
on one image of each density. Regularization parameters λ = 0.5 and λd = 0
chosen for their respective methods due to the results in Fig. 2. The statistics
are reported in the whiskers-box plot as in Fig. 1.

(see Section II-A for details). Note here that K = 8 implies that
the discretization in the σ̃-dimension used in the analysis is much
coarser than that used in the generation of the data, i.e., Kg = 30.
Note also that due to the large amount of decisions involved in
choosing the discretization of the σ̃-dimension, this was done
manually by trial-and-error and always maintaining SL perfor-
mance in mind. In this sense, the lowest σ̃ s were discretized
with more detail, since they allow for a more accurate localiza-
tion of the active cells’ position. Finally, note that w̃(r̃) = 1 and
μ̃(r̃) = 1 were used in the context of the simulated data.

To provide a fair evaluation, we compare the obtained results
with different proposals for p̃. As a baseline for comparison,
we obtain the results of using a noise-free version of the ob-
served image d̃obs as p̃. Because under the observation model
Aa = dobs , isolated active cells lead to monomode profiles in
dobs around the true cell location, this will provide a reference on
how detection is affected by interactions between different ac-
tive cells. At the same time, this will also provide an upper bound
on the performance of any denoising-centered approach. Simi-
larly, we will also obtain the results of using p̃ = d̃obs directly,
which will provide a reference on how detection is affected by
additive noise. Finally, we also provide the results of obtaining
p̃ from a sparsity-based deconvolution scheme on d̃obs that aims
to invert the blur introduced by the optics. This latter approach
is implemented by using I = 104 iterations of Algorithm 3 with
K = 1 and g1 the same kernel used to simulate the optical

imperfections, and with the step-length η optimized to obtain
the empirically best results, in terms of both performance and ro-
bustness, i.e., η ≈ 0.44. For the analysis of Figs. 2, 3, and 5, we
will consider that the difference between two quantities is statis-
tically significant if the 10th empirical percentile of one of the
two quantities is above the 90th empirical percentile of the other.

Both the sparsity-based deconvolution scheme and our own
approach rely on an hyper-parameter λ that needs to be selected.
As is common in sparsity-based optimization frameworks, this
choice is made here experimentally. Fig. 2 shows the statistics
of the F1-score for the considered methods as a function of λ
for Nc = 750 and the third noise level considered in Table II.
Methods that do not depend on λ are additionally reported for
comparison.

Fig. 2 suggests that the choice of regularizer in the optimiza-
tion framework (1) proposed in Part I [19, Section III] is bene-
ficial for SL. Indeed, regardless of the approximation used, any
of the tested values for the regularization parameter λ yield sig-
nificantly better F1-scores than λ = 0. Furthermore, the results
in Fig. 2 indicate that (1) is robust to the choice of regulariza-
tion parameter λ, showing practically no change in performance
across a whole order of magnitude, i.e., from λ = 0.15 to λ = 2.
In contrast, the results for sparsity-based deconvolution indicate
that 	1-regularization is not appropriate in this setting, and that,
if used, the choice of regularization parameter will be critical
to the obtained performance. Additionally, Fig. 2 also validates
our rank-one approximation strategy, as using gbr3

k yields only
non-significant improvements on the performance obtained by
using gbr1

k while triplicating the computational cost.
These conclusions, i.e., 1) that the regularizer chosen in (1)

is adequate for inverse diffusion for SL, 2) that the proposed
optimization framework is robust to the choice of regularization
parameter, and 3) that the differences in performance when using
a rank-one and a rank-three approximation of the kernels are
non-significant, are preserved throughout the remaining eleven
scenarios characterized by combinations of the parameters in
Table II. Replicates of Fig. 2 for all possible combinations are
reported in the supplementary material. Finally, using Fig. 2,
we decide that for the remainder of our analysis we will use
λ = 0.5 for our approach and λd = 0 for deconvolution.

Of the two factors under consideration that affect SL perfor-
mance, interference between several sources seems to be the
hardest to address. Indeed, in Fig. 3 we see that all considered
methods, including an expert human labeler, decay steeply in
detection performance when dealing with higher densities of
active cells. This is to be expected, because the closer any two
active cells are, the more indistinguishable they will be on the
spots that result in the observed image. In particular, we ob-
serve that the performance of the expert human labeler decays
with Nc at a similar or at a steeper rate as that obtained by our
methodology. This seems to indicate that there is a common
limiting factor to these performances, to which our methodol-
ogy is at least as robust as a domain expert. Further, Fig. 3
indicates that, for the tested cell densities, the human labeler
consistently performs within the 10th and the 90th percentile
of the results obtained by our approximated implementation of
Algorithm 3, exhibiting no significant differences. Nonetheless,
the gap between the performance obtained by using gbr3

k in



5430 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 20, OCTOBER 15, 2018

Fig. 4. Example of SL performance on a section of a simulated image with
Nc = 1250 and noise level 4 (see Table II).

Algorithm 3 and that obtained by the expert human labeler does
clearly increase with Nc , which suggests that substantial dif-
ferences could have been observed at higher cell densities, i.e.,
for Nc > 1250. Note here that due to the considerable amount
of time required to manually label each image, only three syn-
thetic images were manually labeled by the human expert, one
of each cell density and at noise level 3. Further, note that the
expert human labeler was unaware of the total expected number
of cells in each image.

Fig. 3 also shows that Algorithm 3 provides significantly
better SL performance than even picking local maxima in a
noise-free version of the image. Indeed, only when our approach
is exposed to a noise level 4 and we consider the lowest cell
density does a noise-free image yield similar performances.
This suggests that our approach is capable, through a noisy
observation of d̃obs , of breaking apart clusters that would not
exhibit local maxima at the active cells’ locations even in a
noise-free observation.

An example of this capacity of breaking clusters that do not
exhibit maxima at the sought locations is illustrated in Fig. 4,
where a section of a simulated image in the worst considered
scenario (noise level 4, Nc = 1250) is shown, together with its
true active cell locations and the obtained detections.

In conclusion then, although Algorithm 3 is still incapable of
telling apart cells that are arbitrarily close, it is well equipped
to accurately detect active cells from spots generated by their
combined secretion. In fact, Fig. 3 suggests that better approx-

Fig. 5. Statistics of the obtained F1-scores for different methods. Dependence
on the noise level, at the lowest and highest cell densities. The method that does
not depend on noise appears centered in the figure. Regularization parameters’
choice and reporting of statistics consistent with Fig. 2.

imations of the kernels gk yield increased robustness in this
sense, vouching for the proposed optimization framework [19,
Section III], i.e., (1). In Fig. 4, note that most of the correctly
detected cells are detected in the exact same pixel they were
located, and all others are at a distance of one single pixel. This
accuracy of the obtained locations has been observed consis-
tently throughout our experimentation.

Finally, Fig. 3 also reveals a great advantage of Algorithm 3,
i.e., robustness to additive noise. Indeed, Fig. 5 confirms that
Algorithm 3, and our optimization framework exhibit an unpar-
alleled robustness to additive noise, regardless the considered
cell density.

2) Distributional Evaluation and Results: Consider now
p̃ =

∑K g
k=1

√
σmax/Kg ãk , the true spatial distribution of re-

leased particles within the discretization scheme of [19,
Section IV], approximating the term

∫ σm a x

0 adσ. The ultimate
objective of any source localization and characterization tech-
nique is to recover p̃ perfectly. Indeed, if one obtains p̃, one
knows exactly how many particles were released from each lo-
cation, and thus, the exact location of each source and their
relative importance. For the evaluation of source localization
and characterization algorithms, then, it is natural to consider
whether an interpretable metric between p̃ and a recovered or
estimated spatial density p̂ is available.

The EMD [40] plays this role when two discrete distri-
butions have the same total weight, i.e. if

∑M,N
m,n=1 p̃m ,n =∑M,N

m,n=1 p̂m ,n . In the following, we will consider this condi-
tion to be verified, and practically normalize both p̃ and p̂ to
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Fig. 6. Statistics of the EMD between p̃ and p̂ resulting from Algorithm 3 using
the best rank-one approximation to the discretized kernels and the parameters
in Table III. Estimated from 50 images with Nc = 250 cells. Dependence on
noise level.

the same overall weight, i.e., the true number of cells Nc . The
EMD can be interpreted as the minimal average displacement
required to transform the estimated distribution p̂ into the real
distribution p̃. To formalize how the EMD is computed, consider
I = supp (p̂) ⊂ Z2 and J = supp (p̃) ⊂ Z2 , and consider the
Euclidean distance (in pix) between any two locations i ∈ I and
j ∈ J , i.e., ‖i− j‖2 . Then, the following linear program

min
f̃∈T (|I|,|J |)

∑
i∈I

∑
j∈J

f̃i,j ‖i− j‖2

subject to f̃i,j ≥ 0,∀(i, j) ∈ I × J ,
∑
j∈J

f̃i,j ≤ p̂i,∀i ∈ I

∑
i∈I

f̃i,j ≤ p̃j,∀j ∈ J , and
∑
i∈I

∑
j∈J

f̃i,j = Nc ,

is known as Monge-Kantorovich transportation problem. In our
context, it determines the density of particles fi,j that has to
be moved from each location i to each location j so that p̂ be-
comes p̃ with the minimal amount of overall work, understood
as the product between the densities of particles and the dis-
tances they have to be moved. As a result, one can derive the
average distance the density of particles has been transported (in
pix), i.e., the EMD, as

EMD =
∑
i∈I

∑
j∈J

f̃i,j

Nc
‖i− j‖2 ,

for the f̃ ∈ T (|I|, |J |) that solved the linear program above.
In our setting, we used p̂ =

∑K
k=1
√

Δk ãopt,k , where ãopt is
the PSDR recovered from Algorithm 3 with the same config-
uration as in the previous section and λ = 0.5. We solved the
transportation problem above using CVX [41] with the MOSEK
[42] solver and reported the statistics of the obtained EMD s for
50 images with Nc = 250 for each of the four different noise
levels of Table II in Fig. 6. There, we can observe that for the
three first noise levels, the EMD consistently stays below 3 pix.
This result is remarkable, because it does not only include the
displacement of the highest peaks of particle secretion density,
but also any errors in the relative scalings between different

Fig. 7. Two extreme examples of the recovery of ar (σ̃) in simulated spots
in different simulation conditions. In blue, ar (σ̃) that is used to simulate the
particular spot, with generation parameters as in Table II. In red, âopt ,r (σ̃)
that is recovered by Algorithm 3 with the parameters in Table III, λ = 0.5, and
using the kernel approximations gbr1

k . Above, recovery for a cell in an image
with Nc = 1 and noise level 1. Below, recovery for a well-detected cell in an
image with Nc = 1250 and noise level 4. The two profiles were normalized to
integrate to the same total secretion.

locations, and even cells that have been omitted or falsely de-
tected. Further, the behavior of the EMD with respect to the
noise level confirms what we observed in Fig. 5, in which the
progressive increase of the noise level seems to have no effect
up to a breaking point. Figs. 5 and 6, then, appear to suggest
that this breaking point is more related to the inverse problem
at hand than to any metric in particular.

3) Recovery of the Third Dimension: To finalize this sec-
tion, we transcend the purpose of localization and present in
Fig. 7 two examples of the recovery of the PSDR’s behavior
over σ̃, i.e., ar(σ̃) for some location r ∈ R2 . There, we can see
that the quality of this recovery depends highly on the simu-
lation conditions. On one hand, in complete absence of inter-
ference, i.e., in an image with Nc = 1, and with noise level 1,
this recovery partly captures some of the traits of the real curve.
In particular, although it exhibits important errors for lower
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σ̃ s, it correctly captures the decay of the amount of secretion
from k = 3 onwards. On the other hand, with many interfer-
ing sources (Nc = 1250) and noise level 4, the information on
the σ̃-dependence of the PSDR is completely lost. Although
we will not explore this any further in this paper, note that the
positive weighting function ξ in (1) introduced in Part I [19]
could be used to correct systematic errors in the estimation of
the PSDR and its profile over σ̃, like the apparent systematic
overestimation of the first bin in Fig. 7.

IV. DISCUSSION

Throughout this two-part paper, we have: 1) proposed an ob-
servation model in function spaces for image measurements of
a 3D reaction-diffusion-adsorption-desorption system; 2) pro-
vided results that fully characterize our observation model with
respect to physical parameters and allow the generation of syn-
thetic data; 3) proposed an optimization problem in function
spaces for inverse diffusion when the reactive term is spa-
tially localized and temporally continuous; 4) proposed sound
methodology for solving the aforementioned optimization prob-
lem; 5) contributed a novel proximal operator of the sum of two
functions, i.e., that of the non-negative group-sparsity regular-
izer; 6) provided a discretization scheme that leads to practical,
easy-to-approximate algorithms for synthesis and analysis
of data based on our methods and; 7) thoroughly exam-
ined the results of our optimization algorithm in terms of
operational performance metrics and distributional recovery
metrics.

The proposed algorithm provides high-performing, un-
matched SL detection results across a wide range of realistic
experimental conditions with remarkable and unique robust-
ness to additive noise. Moreover, the source location estimates
are very accurate, even when the observed spot is the result
of the combined emissions of several close sources. Addition-
ally, although our algorithm requires an hyper-parameter λ, it is
very robust to its choice, which makes it a good candidate for
practical use.

Our study is not without limitations. In particular, because
much of what concerns discretization of ill-posed functional in-
verse problems is yet unknown, we provide no guideline for dis-
cretizations of our functional methods different than our own.
In fact, even our own discretization is argued intuitively, and
theoretical results to strongly support it are left for further re-
search. Furthermore, because we focus on the analysis of the
proposed optimization framework, we disregard the discussion
of convergence, relying only on the theoretical results on the
convergence rate. In practice, however, theoretically sound ap-
proaches to speeding up the convergence of proximal-gradient-
based algorithms are available [43], [44], and many heuristics
can substantially reduce computations without a substantial loss
in SL detection performance. In particular, the masking function
μ(r) in our optimization framework can be modified adaptively
after some iterations in order to discard regions that appear to
have no cells, and thereby focus the algorithmic effort on more
promising areas. Finally, because the computations involved in
generating synthetic data are substantial, we limit the resolu-
tion of the underlying source locations to 1 pix, and obtain the

discretized kernels for generation from the hypothesis that cells
are pixel-centered. This could bias our analysis, since kernels
within our algorithms are computed analogously. However, we
consider that this is unlikely, because the different discretiza-
tion of the σ̃-dimension in synthesis and analysis affects the
kernels greatly, and because experimentation on real data yields
similarly impressive results.

In our work, we have also encountered paths for future re-
search efforts. While discussing discretizations, we have sug-
gested representations with either thinner spatial grids or off-
the-grid solutions to obtain super-resolution location accuracy.
Throughout the paper, we have suggested that further improve-
ments in the estimation of the PSDR could enable the study
and assessment of the per-cell secretion in a biochemical assay.
These improvements could plausibly be achieved through the
weighting function ξ(σ) that controls the group-sparsity reg-
ularizer, which is supported in all of our theoretical results.
Finally, through our discretized algorithm in this paper, we have
provided empirical evidence that tensor-based modeling of a
matrix observation, through adequate group-sparsity coupling
and non-negativity constraints, is a viable option for the recon-
struction of highly-structured images.

APPENDIX

CONSTRAINTS AND REGULARIZATION, PROXIMAL OPERATORS

In this appendix, we will provide and prove the results on
proximal operators upon which the proposed regularized algo-
rithm relies. These will relate to the analysis of the functional f
in (4), which represents both the regularizer and the constraint
imposed in (1). Because this appendix includes the most tech-
nical functional-analytic derivations in the paper, we will first
introduce some extra notations, and urge the interested reader to
explore [24], [37] for details on optimization in function spaces
and relevant references.

A. Notation

Consider this section a continuation of Section I-B. For
any specific functional f : Y → R, f− : Y → R is its negative
part, i.e., f−(y) = min{f(y), 0} ,∀y ∈ Y , and we have that
f = f+ + f−.

When discussing a Hilbert space X , X∗ is its dual space,
and for any x∗ ∈ X ∗, rx∗ ∈ X is its Riesz representation,
i.e. 〈x∗, x〉X = (rx∗ |x)X ,∀x ∈ X . Further, x∗p ∈ X∗ (and x∗n ∈
X∗) are the linear continuous functionals represented by [rx∗ ]+
(and [rx∗ ]−, respectively), and x∗ = x∗p + x∗n . We refer to x∗p
and x∗n as dual-positive and dual-negative parts, respectively.

When discussing a normed functional space, and given any
strictly positive weight function, i.e., ξ ∈ X+ such that 1/ξ =
ξ−1 ∈ X+ , and γ > 0, B̄ξ (γ) =

{
x ∈ X :

∥∥ξ−1x
∥∥
X ≤ γ

}
is

the closed ellipsoid with constant ξ−1-weighted norm under γ
and B̄∗ξ (γ) =

{
x∗ ∈ X ∗ :

∥∥ξ−1rx∗
∥∥
X ≤ γ

}
is the closed dual

ellipsoid with ξ−1-weighted dual norm under γ. Additionally,
B̄ (γ) is the closed ball in X with norm under γ. Finally, for
any convex set Z ⊂ X , PZ : X → Z is the projection operator
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onto it, i.e.,

PZ [x] = arg min
y∈Z

[
‖y − x‖2X

]
.

B. Proximal Operator of the Positively-Constrained
Weighted Norm in L2 (ℵ)

Throughout this section, recall the weighting function ξ ∈
L∞+ [0, σmax] introduced in Section I and [19, Section III],
and recall that we use ℵ = supp (ξ) and ℵc = [0, σmax]\ℵ.
Additionally, let X = L2 (ℵ).

In Definition 1, we introduce the functional that characterizes
the behavior of the constraint set and the regularizer in (1) in
the σ-dimension.

Definition 1 (Non-negative weighted norm inX ): Define the
the functional

ϑ : X → R̄+ (8a)

x 	→ ‖ξx‖X + δX+ (x),∀x ∈ X . (8b)

The main results of this appendix, which will be presented in
Lemmas 3 and 4, will provide the value of the proximal operator
of γϑ, i.e., proxγϑ (x), ∀x ∈ X ,∀γ > 0. This results are used in
the proofs of Theorems 1 and 2, which are presented at the end of
the appendix. In order to derive Lemmas 3 and 4, we will follow
a path similar to the classical proof of the proximal operator
of a norm. We will first find the convex conjugate functional
(γϑ)∗ in Lemma 1. Then, we will derive its proximal operator
prox(γϑ)∗(x∗), ∀x∗ ∈ X ∗,∀γ > 0 in Lemma 2. Finally, we will
use this result and Moreau’s identity to lead us into Lemmas 3
and 4.

Lemma 1 (Fenchel conjugate of the scaled, non-negative
weighted norm inX ): Consider the functional ϑ in Definition 1.
Then, ∀γ > 0, we have that the convex conjugate functional of
γϑ is

(γϑ)∗ : X∗ → R̄

x∗ 	→ δB̄∗ξ (γ )(x
∗
p) ,∀x∗ ∈ X ∗,

with B̄∗ξ (γ) as defined in the previous section.
Proof: Here, we will instead show that the Fenchel conjugate

of δB̄∗ξ (γ )(x∗p) is the functional ϑ̂ : X → R̄ such that

ϑ̂ =
[
δB̄∗ξ (γ )(x

∗
p)
]∗

= γϑ .

The Fenchel-Moreau theorem then allows us to conclude
that, because ϑ is convex, proper and lower semi-continuous,
δB̄∗ξ (γ )(x∗p) is the Fenchel conjugate of γϑ.

Starting now from the definition of ϑ̂ we obtain

ϑ̂(x) = sup
x∗∈X ∗

{
〈x∗, x〉X − δB̄∗ξ (γ )(x

∗
p)
}

= sup
x∗∈X ∗

{
〈x∗n , x〉X +

〈
x∗p , x

〉
X − δB̄∗ξ (γ )(x

∗
p)
}

.

Here, we can readily determine that, if x �∈ X+ , ϑ̂(x) = +∞.
Indeed, if ∃S ⊂ ℵ such that x < 0 a.e. in S, we have that for
ϑ̂(x) ≥ supx∗∈X ∗ 〈x∗n , x〉X ≥ supK <0 K

∫
S x = +∞.

We continue by noting that, if x ∈ X+ , then 〈x∗n , x〉X ≤ 0,
and thus, it will be enough to consider the case x∗ = x∗p , i.e.,

x∗n = 0, to determine ϑ̂(x). Therefore, for any x ∈ X+ we can
use the Cauchy-Schwartz inequality to show that

ϑ̂(x) = sup
x∗∈X ∗

{〈
x∗p , x

〉
X − δB̄∗ξ (γ )(x

∗
p)
}

= sup
x∗∈X ∗

{
〈x∗, x〉X − δB̄∗ξ (γ )(x

∗)
}

= sup
x∗∈B̄∗ξ (γ )

{〈x∗, x〉X }

= sup
rx ∗∈B̄ξ (γ )

{(
ξ−1rx∗ |ξx

)
X
}

= γ ‖ξx‖X .

In conclusion, then,

ϑ̂(x) =

{
+∞ if x �∈ X+ ,

γ ‖ξx‖X if x ∈ X .

}

= γ ‖ξx‖X + δX+ (x) = γϑ ,

which finishes our proof. �
Similarly to what happens with the dual of a norm, the dual

functional (γϑ)∗ is a simple indicator. This makes its proxi-
mal operator in Lemma 2 a combination of simple, standard
operations, such as dual-positive and dual-negative parts, and
projections onto convex sets.

Lemma 2 (Projection of the positive part on the dual ellip-
soid): Consider the functional

ζ : X∗ → {0,+∞}
x∗ 	→ δB̄∗ξ (γ )(x

∗
p), ∀x∗ ∈ X ∗ ,

i.e., ζ = (γϑ)∗. Then,

proxζ (x
∗) = x∗n + PB̄∗ξ (γ )

[
x∗p
]

.

Proof: Recall here that obtaining proxζ (x∗) is obtaining the
minimizer of

min
y ∗∈X ∗

[
1
2
‖y∗ − x∗‖2X∗ + δB̄∗ξ (γ )(y

∗
p)
]

. (9)

In this proof, let us refer to this minimizer as y∗opt . The solution
to (9) is intuitively simple. On one hand, because the value
ζ(y∗) does not vary with changes in the negative part of y∗,
we will have that the minimization of the term ‖y∗ − x∗‖2X∗
will dominate the negative part of the optimal solution and
y∗opt,n = x∗n . On the other hand, the positive part of y∗ is only
constrained to be in the ellipsoid B̄∗ξ (γ) and, thus, the positive
part of the solution will be the point at minimum distance from
x∗p inside the ellipsoid, i.e., y∗opt,p = PB̄∗ξ (γ )

[
x∗p
]
.

Let us now formalize this by considering any element x∗ ∈
X ∗, and letting Nx∗ = {σ ∈ ℵ : rx∗(σ) < 0} = supp

(
rx∗n

)
.

For any y∗ ∈ X ∗, let py ∗ , ny ∗ ∈ X be such that

supp (py ∗) ⊂ N c
x∗ , supp (ny ∗) ⊂ Nx∗ , (10)

with N c
x∗ = ℵ \Nx∗ , and

ry ∗ = py ∗ + ny ∗ . (11)
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Then,

‖y∗ − x∗‖2X∗ =
∫

N c
x ∗

(
rx∗p − py ∗

)2

+
∫

Nx ∗

(
rx∗n − ny ∗

)2

=
∥∥∥rx∗p − py ∗

∥∥∥
2

X
+
∥∥rx∗n − ny ∗

∥∥2
X .

Therefore, (9) is equivalent to

min
py ∗ ,ny ∗∈X

s.t. [p y ∗ ]+ + [n y ∗ ]+ ∈B̄ξ (γ )

[
1
2

∥∥∥rx∗p − py ∗

∥∥∥
2

X
+

1
2

∥∥rx∗n − ny ∗
∥∥2
X

]

as long as (10) and (11) are fulfilled.
We will now prove that ny ∗o p t

≤ 0 a.e. in ℵ, which will de-
couple the minimization of the two summands in the problem
above. Assume that y∗opt ∈ X∗ is an optimal point of (9) that
does not fulfill this condition, i.e., that if

Θ =
{

σ ∈ Nx∗ : ny ∗o p t
(σ) > 0

}
, then

∫

Θ
ny ∗o p t

> 0 .

Let y∗1 ∈ X∗ such that py ∗1 = py ∗o p t
, and ny ∗1 =

[
ny ∗o p t

]
−

. Then,

because y∗opt was a feasible point, i.e., y∗opt,p ∈ B̄∗ξ (γ), we have
that

γ2 ≥
∫

ℵ
ξ−2
([

py ∗o p t

]
+

+
[
ny ∗o p t

]
+

)2

≥
∫

ℵ
ξ−2
[
py ∗o p t

]2
+

= ‖y∗1,p‖2X∗ ,

i.e., y∗1,p ∈ B̄∗ξ (γ) and y∗1 is a feasible point. Moreover, ∀σ ∈ Θ,

we have that
∣∣∣rx∗n (σ)− ny ∗o p t

(σ)
∣∣∣ >
∣∣rx∗n (σ)

∣∣ and thus

∥∥∥rx∗n − ny ∗o p t

∥∥∥
2

X
=
∫

Nx ∗

(
rx∗n − ny ∗o p t

)2

>

∫

Nx ∗ \Θ

(
rx∗n − ny ∗o p t

)2
+
∫

Θ
r2
x∗n

=
∥∥rx∗n − ny ∗1

∥∥2
X , (12)

which implies that
∥∥y∗opt − x∗

∥∥2
X∗ > ‖y∗1 − x∗‖2X∗ . This contra-

dicts the optimality of y∗opt . Thus, an optimal point y∗opt must
fulfill ny ∗o p t

≤ 0 a.e. in ℵ.
Therefore, (13) is equivalent to (9), as long as conditions (10)

and (11) are fulfilled.

min
py ∗∈X

s.t. [p y ∗ ]+ ∈B̄ξ (γ )

[
1
2

∥∥∥rx∗p − py ∗

∥∥∥
2

X

]
(13a)

min
ny ∗∈X

[
1
2

∥∥rx∗n − ny ∗
∥∥2
X

]
(13b)

(13b) is an unconstrained norm minimization, and has its min-
imum at ny ∗o p t

= rx∗n , which fulfills (10). Using an argument
parallel to the one that lead to (12), we have that rx∗p ≥ 0 a.e. in

ℵ implies that py ∗o p t
≥ 0 a.e. in ℵ too. Thus, (9) is equivalent to

min
py ∗∈B̄ξ (γ )

[
1
2

∥∥∥rx∗p − py ∗

∥∥∥
2

X

]
,

and thus, py ∗o p t
= PB̄ξ (γ ) [rx∗p ]. In Property 2, we obtain an

expression for PB̄ξ (γ ) [x] for any x ∈ X that shows that

supp(PB̄ξ (γ ) [x]) ⊂ supp(x) and, thus, (10) is fulfilled. Then,
the solution to (9) is given by (11) as the y∗opt ∈ X∗ represented
by ry ∗o p t

= rx∗n + PB̄ξ (γ ) [rx∗p ], i.e.,

y∗opt = x∗n + PB̄∗ξ (γ )
[
x∗p
]

. �

We now can use the relation between the proximal operator
of a functional and that of its convex conjugate to finally achieve
the desired result in Lemma 3.

Lemma 3 (Proximal operator of the scaled, non-negative
weighted norm in X ): Consider the functional ϑ in
Definition 1. Then, ∀γ > 0, we have that the proximal oper-
ator of the functional γϑ is

proxγϑ (x) = x+ − PB̄ξ (γ ) [x+] ,∀x ∈ X .

Proof: Lemmas 1 and 2 grant that prox(γϑ)∗(x∗) = x∗n +
PB̄∗ξ (γ )

[
x∗p
]
. A well-known generalization of Moreau’s decom-

position theorem for projection on convex cones in Hilbert
spaces is that

proxγϑ (x) + prox(γϑ)∗(x) = x . (14)

Note here that we abuse the notation by identifying X with
its dual X∗ and prox(γϑ)∗(x) with rprox(γ ϑ ) ∗ (x∗) ∈ X such that
x∗ ∈ X ∗ is represented by rx∗ = x. Directly from (14), then, we
obtain that

proxγϑ (x) = x− prox(γϑ)∗(x)

= x+ − PB̄ξ (γ ) [x+] . �

Although we now have our result compactly expressed in
terms of simple, known operations, the inherent optimization
problem in the term PB̄ξ (γ ) [x+] is known to have no closed-form
solution. For completeness, we include this result in Property 2.

Property 2 (Projection on an ellipsoid): The projection of a
functional x ∈ X onto the closed ellipsoid B̄ξ (γ) is

PB̄ξ (γ ) [x] =

{
x if x ∈ B̄ξ (γ) ,

ξ 2

ξ 2 +2λx if x ∈ X \ B̄ξ (γ) ,

with λ ≥ 0 such that∥∥∥∥
ξ

ξ2 + 2λ
x

∥∥∥∥
X

= γ .

Proof: Recall here that the projection operator is defined as

PB̄ξ (γ ) [x] = arg min
y∈B̄ξ (γ )

[
1
2
‖x− y‖2X

]
. (15)

Because X is complete and B̄ξ (γ) is convex and closed, the
projection operator is well defined and strong Lagrange dual-
ity is granted. Note that the convexity of B̄ξ (γ) is granted by
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the convexity of the weighted norm
∥∥ξ−1 ·∥∥X , which follows

directly from the convexity of the norm ‖·‖X .
The Lagrangian for this problem is

L(y, λ) =
1
2
‖x− y‖2X + λ

(∥∥ξ−1y
∥∥2
X − γ2

)

=
(

y

[
1
2

+ λξ−2
]
|y
)

X
+

1
2

(x|x)X − (x|y)X − λγ2

with λ ≥ 0. Because the Lagrangian L(y, λ) is convex and
Frchet differentiable with respect to y ∈ X , and its Frchet
derivative is ∇yL(y, λ) = 2y

[ 1
2 + λξ−2

]− x, its minimizer
yopt ∈ X is

yopt(λ) =
1
2

x
1
2 + λξ−2

=
ξ2

ξ2 + 2λ
x .

The dual function for (15) is

h(λ) = L(yopt , λ)

= −λγ2 +
1
2

[
‖x‖2X −

(
x|1

2
x

1
2 + λξ−2

)

X

]

=
‖x‖2X

2
− λγ2 −

∫

ℵ

x2

4
1

1
2 + λξ−2

,

which is concave in λ ≥ 0 and, thus, has its maximum at either
λopt,1 = 0 or at that λopt,2 that yields

∂

∂λ
h = −γ2 +

∫

ℵ

x2

4
ξ−2

( 1
2 + λopt,2ξ−2

)2 = 0 ,

i.e.,
∥∥ξ−1yopt(λopt,2)

∥∥
X = γ. Generally, the value of λopt,2

cannot be obtained in closed form.
If x ∈ B̄ξ (γ), we know that the optimal value for (15) is 0 and

is achieved at yopt = x, which implies that the optimal Lagrange
multiplier is λ = λopt,1 = 0. If x ∈ X \ B̄ξ (γ), we know that
the optimal value for (15) must be larger than zero, which by
strong duality implies that λ �= 0 and, thus, that the optimal
Lagrange multiplier is λ = λopt,2 and the optimal primal point
is yopt(λopt,2), which is primal-feasible by definition. �

This result determines the shape of PB̄ξ (γ ) [x+], but it does
not give a closed-form expression for it. To find this projection,
the value of λ in Property 2 has to be found. Several numerical
methods have been developed to find this value or otherwise
compute the projection on an ellipsoid [45]. Using these in
the context of our problem, however, is outside the scope of
our paper. We opt instead for particularizing in Property 3 to
cases in which the weighting function is constant a.e. in ℵ. This
makes the projection to be computed, without loss of generality,
PB̄(γ ) [x+], the projection onto a closed ball in X .

Property 3 (Projection on a ball): The projection of a func-
tional x ∈ X onto the closed ball of norm under γ, i.e.,
B̄ (γ), is

PB̄(γ ) [x] =

{
x if x ∈ B̄ (γ) ,
γ
‖x‖X x if x ∈ B̄ (γ)c .

Proof: Note that this is nothing but a particular case of Prop-
erty 2 in which ξ = 1 a.e. in ℵ. Then, the case x ∈ B̄ (γ) is

trivial. For x ∈ B̄ (γ)c, the equation for λ ≥ 0 in Property 2 can
be solved in closed form, yielding

∥∥∥∥
x

1 + 2λ

∥∥∥∥
X

=
∣∣∣∣

1
1 + 2λ

∣∣∣∣ ‖x‖X =
1

1 + 2λ
‖x‖X = γ ,

i.e., λ = 1
2

( ‖x‖X
γ − 1

)
, and

yopt(λ) =
ξ2x

ξ2 + 2λ
=

x

1 + 2
‖x ‖X

γ −1
2

=
γ

‖x‖X
x. �

This allows us to obtain a closed-form version of Lemma 3
for this specific choice of ξ, i.e., Lemma 4.

Lemma 4 (Proximal operator of the scaled, non-negative
norm in X ): Consider the functional ϑ in Definition 1 when
ξ = 1 a.e. in ℵ. Then, ∀γ > 0, we have that the proximal oper-
ator of the functional γϑ is

proxγϑ (x) = x+

(
1− γ

‖x+‖X

)

+
.

Proof: Using Lemma 3 and Property 3 we obtain that

proxγϑ (x) = x+ − PB̄(γ ) [x+]

=

{
0 if ‖x+‖X /γ ≤ 1,

x+

(
1− γ

‖x+ ‖X

)
if ‖x+‖X /γ > 1,

= x+

(
1− γ

‖x+‖X

)

+
. �

We now use the results above to prove Theorems 1 and 2,
which constitute the backbone of Algorithm 2.

Proof - Theorem 1 (Proximal operator of the non-negative
weighted group-sparsity regularizer): Consider the functional ϑ
in Definition 1. Then, recalling the functional f in (4), we have

γf(a) = δA+ (a) + γλ ‖‖ξar‖X ‖L1 (R2 ) (16a)

= δA+ (a) + γλ

∫

R2
‖ξaℵ,r‖X dr (16b)

=
∫

R2

(
δL2

+ [0,σm a x ](ar) + γλ ‖ξaℵ,r‖X
)

dr (17a)

=
∫

R2

(
δL2

+ (ℵc)(aℵc,r) + γλϑ (aℵ,r)
)

dr . (17b)

Here, (16) uses that ξar = 0 a.e. in ℵc, and (17) uses that a ∈
A+ is equivalent to ar ∈ L2

+[0, σmax] for almost any r ∈ R2 ,
and that is equivalent to aℵc,r ∈ L2

+ (ℵc) and aℵ,r ∈ L2
+ (ℵ) =

X+ for almost any r ∈ R2 .
proxγf (a) is the minimizer to

min
b∈A

[
1
2
‖b− a‖2A + γf(b)

]
,
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or, equivalently,

min
b∈A

[∫

R2

(
1
2
‖br,ℵc − aℵc,r‖2L2 (ℵc) + δL2

+ (ℵc)(bℵc,r)

+
1
2
‖br,ℵ − aℵ,r‖2X + γλϑ (bℵ,r)

)
dr

]
.

By linearity of the integral, then, the optimization of b for σ ∈ ℵ
and σ ∈ ℵc is completely decoupled. Furthermore, if obtaining
the minimizer br,opt ∈ L[0, σmax] of the term inside the integral
for each r ∈ R2 and constructing bopt such that bopt(σ, r) =
br,opt(σ),∀σ ∈ [0, σmax] yields bopt ∈ A, bopt will be optimal
with respect to the problem above. In this light, we consider first
the optimization for σ ∈ ℵc and a specific r ∈ R2 , i.e.,

arg min
br ,ℵc∈L2

+ (ℵc)

[
1
2
‖br,ℵc − aℵc,r‖2L2 (ℵc)

]
= [aℵc,r ]+ ,

and see that it is resolved by a simple non-negative projection.
Then, we observe that the optimization for σ ∈ ℵ and a specific
r ∈ R2 is of the form considered in Lemma 3, which resolved
it to [aℵ,r ]+ − PB̄ξ (γλ)

[
[aℵ,r ]+

]
. We then have that

br,opt = [aℵc,r ]+ + [aℵ,r ]+ − PB̄ξ (γλ)
[
[aℵ,r ]+

]

= [ar ]+ − PB̄ξ (γλ)
[
[aℵ,r ]+

]
.

Note that

‖br,opt‖2L2 [0,σm a x ] ≤
∥∥[ar ]+

∥∥2
L2 [0,σm a x ] ≤ ‖ar‖2L2 [0,σm a x ] ,

(18)
and, thus, a ∈ A implies that bopt ∈ A, which completes the
proof of Theorem 1. �

Proof - Theorem 2 (Proximal operator of the non-negative
group-sparsity regularizer on ℵ): Using the same proof structure
as in Theorem 1, but using Lemma 4 for the optimization for
σ ∈ ℵ and a specific r ∈ R2 , we obtain that

br,opt = [aℵc,r ]+ + [aℵ,r ]+

(
1− γλ∥∥[aℵ,r ]+

∥∥
L2 (ℵ)

)

+

,

and (18) implies that bopt ∈ A, which concludes the proof. �
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