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Cell Detection by Functional Inverse Diffusion and
Non-negative Group Sparsity—Part I: Modeling

and Inverse Problems
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Abstract—In this two-part paper, we present a novel framework
and methodology to analyze data from certain image-based bio-
chemical assays, e.g., ELISPOT and Fluorospot assays. In this first
part, we start by presenting a physical partial differential equa-
tions (PDE) model up to image acquisition for these biochemical
assays. Then, we use the PDEs’ Green function to derive a novel
parameterization of the acquired images. This parameterization
allows us to propose a functional optimization problem to ad-
dress inverse diffusion. In particular, we propose a non-negative
group-sparsity regularized optimization problem with the goal of
localizing and characterizing the biological cells involved in the
said assays. We continue by proposing a suitable discretization
scheme that enables both the generation of synthetic data and im-
plementable algorithms to address inverse diffusion. We end Part I
by providing a preliminary comparison between the results of our
methodology and an expert human labeler on real data. Part II is
devoted to providing an accelerated proximal gradient algorithm
to solve the proposed problem and to the empirical validation of
our methodology.

Index Terms—Inverse problems, biomedical imaging, convex op-
timization, source localization, biological modeling.

I. INTRODUCTION

B IOLOGICAL processes in which cells generate particles
that diffuse in a solution and bind to receptors are ubiq-

uitous [1]–[6]. Such processes are often measured using bio-
chemical assays where cells are contained in a well with a
receptor-coated bottom, and an image of the resulting density of
bound particles is obtained. Examples include the ELISPOT [7]
and Fluorospot [8] assays. If particles bind relatively close to
their origin, the cells that generated these particles (active cells)
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can be localized in the obtained image. Localization enables
counting, and therefore, quantitative studies of the proportions
of active cells within the cell population under study. Thereby,
these assays provide answers to relevant questions in fields rang-
ing from biochemical, pharmacological, and medical research
[5], [9], [10], to the diagnosis of specific diseases [11], [12].
Hence, source localization (SL) algorithms are critical to the de-
velopment of automated analysis systems for high-throughput
pharmacological and medical applications. In this first part of
our paper, we present a 2-dimensional (2D) equivalent diffu-
sion model for the density of bound particles generated by a
3D reaction-diffusion-adsorption-desorption process. We then
propose a functional optimization framework for inverse 2D
diffusion that promotes stationary-source explanations of the
observed data. Then, we present a discretization scheme that
allows both for the synthesis of realistic data and for numeri-
cal solutions to the proposed optimization problem. Part II of
this paper [13] is devoted to algorithmic solutions to solve this
optimization problem.

The accuracy of SL algorithms becomes critical when char-
acterizing cell sub-populations by multiplex assays, e.g. Fluo-
rospot [8]. Multiplex assays allow different kinds of particles
to be independently and simultaneously measured, yielding co-
located images. The results of their analyses are then merged
to detect which cells were producing which combinations of
particle types. This data fusion is conducted based on the only
comparable feature of multiple-secreting cells in each of the im-
ages, i.e., their location. Therefore, localization accuracy has a
direct impact on the estimated proportions, i.e., on the accuracy
of multiplex assays. The optimization framework we propose
uses a non-parametric model-based approach to produce results
that enable accurate SL and, thereby, accurate results in mul-
tiplex assays. In finalizing this first part, we provide results
on real data by comparing our solution to the labeling of a
human expert. In Part II of this paper [13], we provide a thor-
ough evaluation of the proposed methodology using synthetic
data.

SL on 2D or 3D data from linear observation models has
been widely studied for biologic [14]–[22], astronomic [23],
[24], acoustic [25], [26], heat conduction [27], [28], and envi-
ronmental applications [29]–[31], as well as in more generic
settings [32]–[36]. Parametric approaches to SL have been thor-
oughly investigated when the source-map is observed through
a convolutional operator [20], [25], [33], [34]. In particular,
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sparsity-based approaches have been shown to have many fa-
vorable properties in this case (see [37] and references therein).
To our knowledge, SL from data obtained from linear diffusion
has only been addressed parametrically [29]–[31]. A down-
side of parametric approaches is that the full characterization
of the observation system is seldom available and, thus, it has
to be specifically measured [29] or estimated [38]. This im-
plies additional costs for practical use, which hinder scala-
bility. Non-parametric approaches to image-based SL can be
divided in two categories. On one hand, model-independent
approaches work solely on image properties, yielding heuris-
tic methods to find dot-like shapes in images [14]–[19]. These
are combined with generic data-analytic procedures to address
measurement-noise and yield results that may be satisfactory,
but are biased by the arbitrary heuristics and tend to over- or
under-react to small perturbations. On the other hand, model-
based approaches use the structure of the problem, exploit-
ing properties specific to the process that generated the data
without requiring previous measurement of the intrinsic values
that regulate it. Most representative of these model-based non-
parametric approaches are blind deconvolution methods, e.g.,
[35]. The inverse diffusion approach we present is model-based
and non-parametric, providing a robust and scalable methodol-
ogy to address SL in reaction-diffusion-adsorption-desorption
models.

The inversion of diffusion equations has been widely stud-
ied [28], [39]–[41]. However, most methods address the ill-
posedness of the problem by regularizing it to favor smooth
solutions, i.e., by aiming to provide the least sharp release of
particles over time and space that explains the data. In SL, how-
ever, one is assuming that the data has been created by localized
sources. Consequently, one would want to favor the most lo-
calized, i.e., spatially sharpest, release of particles over time
that explains the data. There are some approaches that target
diffusion-based SL, or, closely related, the recovery of non-
smooth solutions from inverse diffusion problems [27], [29]–
[31]. However, inverse diffusion leads to very different problem
formulations depending on the restrictions one imposes on the
generation of particles, the boundary conditions of the medium,
i.e., the additional effects one takes into account (such as ad-
sorption and desorption), and the kind of measurements one has
access to. [29]–[31] study 2D reaction-advection-diffusion, but
only consider particles released from a single point, and intend
to localize it as accurately as possible. This allows for a study
specific to SL, in the sense that generic inversion of the diffusion
equation is unnecessary. In particular, [30], [31] provide tech-
nical results on the identifiability of a single source. In contrast,
[27] studies 1D diffusion with known-concentration boundary
conditions, and while it allows for an initial concentration of
particles that varies throughout the considered area, it does not
contemplate the effect of the continuous generation of parti-
cles (reaction). In this paper, we study 3D reaction-diffusion-
adsorption-desorption, we do not impose any restrictions on
reaction, and we do not presume any artificial Dirac behavior
in the spatial or temporal domains. Instead, we use regulariza-
tion to favor explanations of the data that are spatially sparse
and temporally continuous, as stationary cells releasing particles
would be.

A. Notation

When sets and spaces of numbers are involved, we will
use either standard notation such as R+ = [0,+∞), R̄ =
R ∪ {−∞,+∞} and R̄+ = [0,+∞] or capital non-Latin let-
ters, e.g., we will use Ω = R2 × R+ because of the many times
we will refer to functions in this particular support. When dis-
cussing locations in R2 , we will note them as bold face letters,
e.g., r ∈ R2 .

When discussing functional sets and spaces, we will use cap-
ital calligraphic notation, such as X for a generic normed space,
which will have norm ‖ · ‖X . If X is also a Hilbert space,
X will have scalar product (·|·)X . For any functional
space X , X+ ⊂ X is the cone of non-negative function-
als. Specifically, if X contains functionals f : Y → R, then
X+ = {f ∈ X : f(y) ≥ 0,∀y ∈ Y} ⊂ X . For any set Z ⊆ X ,
its (∞, 0)-indicator function is the function δZ : X → {0,+∞}
such that δZ(x) = 0 if x ∈ Z and δZ(x) = +∞ if x ∈ Zc =
X \ Z , while its (0, 1)-indicator function is the function iZ :
X → {0, 1} such that iZ(x) = 1 if x ∈ Z and iZ(x) = 0 if
x ∈ Zc.

When discussing a specific functional f ∈ X , f+ : Y → R
will be its positive part, i.e., f+(y) = max{f(y), 0} ,∀y ∈
Y . The support of the functional f ∈ X will be written
as supp (f) = {y ∈ Y : f(y) �= 0} ⊂ Y . Finally, for any two
given functions f, g : RN → R for some N ∈ N, we refer to
their convolution as (f ∗ g) and to the j-th convolutional power
of f as fj∗.

When discussing operators, if Z is some normed space, we
will write L (X ,Z) for the space of linear continuous operators
from X to Z . Coherently with the notation above, this space of
operators will have norm ‖ · ‖L(X ,Z) . We will note operators as
A orB, e.g.,B ∈ L (X ,Z). For any suchB, we will refer to its
adjoint as B∗ ∈ L (Z,X ). Recall that, if X and Z are Hilbert
spaces, (Bx|z)Z = (x|B∗z)X , for any x ∈ X and any z ∈ Z .

When discussing matrices and tensors, the space of real M -
by-N matrices for some M,N ∈ N is T (M,N), while its
element-wise positive cone is T+ (M,N). For a specific ma-
trix f̃ ∈ T (M,N), we specify it as a group of its elements⎧
⎩f̃m ,n

⎫
⎭ for m ∈ {1, 2, . . . ,M} and n ∈ {1, 2, . . . , N}. For

tensors, we work analogously by adding appropriate indexes,

e.g., f̃ ∈ T (M,N,K) and
⎧
⎩f̃m ,n,k

⎫
⎭ for k ∈ {1, 2, . . . ,K}.

When presenting our statements, we will refer to them as
properties if they are not novel, but are necessary for clear
exposition, lemmas if they contain minor novel contributions
and theorems if they constitute major novel contributions.

II. DATA MODEL

A. Physical Model

We consider a physically motivated 3D stochastic model
where cells are immobilized on a flat surface, represented here
by the xy-plane. Some of these cells are active, i.e., they release
particles into a medium located above the surface, in the half-
space z ≥ 0. Released particles then move in a 3D isotropic
Brownian motion. The same surface where the cells reside is
evenly coated with imperfect receptors tuned specifically to the
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Fig. 1. (a) Visualization, at a particle level, of the physical data model de-
scribed in Section II-A. Three particles, each secreted by a different cell (dark
gray) immobilized on the plane (light gray), follow a Brownian motion. When
the particles hit the plane, they might bind to it (adsorption; black marks). After
a time, they may disassociate (desorption) and continue their Brownian motion.
At the end of the experiment, i.e., at time T , they may be free (blue dots) and
thus not imaged or bound to the surface (red dot) and thus contribute to the
final image. Note that while the relative scale between movement and the pixel
size of a potential imaging sensor is consistent with accurate physical parame-
ters, the relative scale of cells and particles was selected for clear visualization.
(b) Example section of an image observation from a Fluorospot assay. Here,
FITC dye was used as a marker for trapped IFN-γ molecules, and the resulting
512 nm fluorescence was isolated by optic filters and subsequently captured by
a color camera at approximately 1 to 1 magnification.

released particles. Therefore, particles diffusing in the medium
that collide with the surface may bind to it, but also, bound
particles may disassociate from the surface after some time.
Particles bound to the surface at a time T , i.e., when the exper-
iment finishes, are then tagged with some visible marker, and
their density is imaged. This produces spots around each active
cell in the captured image. The model is illustrated at a particle
level in Fig. 1, which also includes a section from a typical ob-
servation from a Fluorospot assay. Note here that cells are tens
of μms in diameter and that the particles of interest are typi-
cally of a few nms in diameter [42]. Moreover, the visible spots
produced by active cells in these assays are typically no more
than 200μm in diameter. Because these assays are conducted
inside wells of approximately 7 mm in diameter, we disregard
the effects of the borders of the well for the rest of the paper.

We assume that the medium is homogeneous and that the par-
ticle concentrations are low enough so that we can consider the
binding affinity and disassociation rate of the surface constant
and uniform. These assumptions imply that we can model the
movement of individual particles as independent of each other,
which renders the model spatially invariant in any direction on

the xy-plane. These assumptions are also consistent with the
models considered in, e.g., [1]–[6].

Consider the function c : R2 × R+ × R+ → R+ such that
c(x, y, z, t) [m−3 ] is the time-varying concentration of free par-
ticles in the medium. This concentration c is modeled via the
3D homogeneous diffusion equation,

∂

∂t
c = DΔc , (1a)

where Δ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace op-
erator and D [m2s−1 ] is the diffusion constant of the re-
leased particles in the medium. Consider now the function
d : R2 × [0,+∞) → R+ such that d(x, y, t) [m−2 ] is the sur-
face density of bound particles at time t. This density d is cou-
pled to c via the adsorption-desorption boundary condition [43],
given by

∂

∂t
d = κac

∣
∣
z=0 − κdd , (1b)

and via the condition on the flow of particles away from the
surface [4], given by

−D ∂

∂z
c
∣
∣
z=0 = s+ κdd− κac

∣
∣
z=0 . (1c)

Here, the function s : R2 × [0,+∞) → R+ is such that
s(x, y, t) [m−2s−1 ] denotes the source density rate (SDR) of
new particles released from cells residing at the surface, and
κa [ms−1 ] and κd [s−1 ] are the adsorption and desorption con-
stants, respectively. We will assume here that c(x, y, z, t) = 0,
d(x, y, t) = 0, and s(x, y, t) = 0 for t < 0, i.e., that before start-
ing the experiment no particles have been generated or are
present.

B. Observation Model

Our primary interest in (1) lies in characterizing the surface
density d at the time T at which it is imaged, in terms of the SDR
s. Therefore, we consider the concentration c in the medium
to be only an intermediate nuisance parameter. For notational
brevity we will write as r = (x, y) the spatial coordinates of a
generic point on the surface z = 0, and refer to the final image
observation as dobs , i.e., dobs(r) = d(r, T ). Note here that while
dobs is considered to be exactly equal to the density of particles
bound to the surface, in practice, imaging sensors will have
different sensitivities and, thus, there will always be a factor
of scale α > 0, which we will disregard in this paper. Further
limitations of imaging sensors, such as finite dimensionality and
imperfections in the optical and electrical systems involved, are
discussed in Section II-D.

To obtain a suitable characterization of the mapping from s to
dobs , we will follow the arguments given in [3] and interchange-
ably rely on macroscopic arguments pertaining to the evolution
of particle distributions, governed by (1), and microscopic ar-
guments pertaining to the behavior of individual particles [44].
Note now that: 1) (1) is a linear system of equations and 2) the
homogeneity of (1a) implies that the movement of free particles
is independent in the three spatial dimensions. It follows then
that the location of a particle originally released at the origin
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r = 0, will, after a time τ [s] in Brownian motion with no in-
termediate binding events, have a distribution over the xy-plane
given by the Green function for the homogeneous diffusion
equation in 2D during a time τ , i.e., gσ as in Definition 1 with
σ =

√
2Dτ [m] (see [44]).

Definition 1 (Gaussian kernels): {gσ : R2 → R+}σ>0 is a
scale family of 2D rotationally invariant Gaussian kernels, where

gσ (r) =
1

2πσ2 exp
(

−rTr
2σ2

)

, ∀r ∈ R2 .

Because Brownian motions are Markov processes, it follows
that the total displacement over directions in the xy-plane is
fully determined by the total time in free motion τ , even when
intermediate binding events are present. The total time in free
motion of any given particle over some specific time interval is,
however, random. Specifically, it depends on the particle’s ran-
dom trajectory, on the collisions of the trajectory with the plane
z = 0, and on the subsequent random associations (adsorption)
and disassociations (desoprtion), as modeled by (1b) and (1c).
Let

ϕ : {(τ, t) ∈ [0, T ]2 | τ ≤ t} → R+ , (2)

such that ϕ(τ, t) is the probability (density)1 of a particle be-
ing in free motion for a total time τ before being found in a
bound state at time t [s]. ϕ(τ, t) is defined for τ ∈ [0, t] and is
determined implicitly by (1). The specific nature of ϕ(τ, t) is of
little relevance to the objective of this section, and only its
existence is required. Nonetheless, its characterization will be
fundamental for some of the uses of our observation model.
In Section II-C, we present a novel and detailed derivation of
ϕ in terms of κa , κd and D, extending results from [3] by
characterizing desorption from the surface in terms of its effect
on the total time in free motion.

For a given ϕ, then, the spatial probability density of finding
a particle bound to the surface at time t, after a release into the
medium at the origin at time 0, is given by (see [3])

p(r, t) =
∫ t

0
g√2Dτ (r)ϕ(τ, t)dτ ,

which can be viewed as the Green function for d(r, t) in (1).
Note that p(r, t) integrated over r ∈ R2 yields the probability
that a particle released at time 0 is bound at time t. By linearity,
time-invariance, and spatial invariance on the directions in the
xy-plane, it follows that d can be expressed as

d(r, t) = (s ∗ p)(r, t) , (3)

i.e., as a spatio-temporal convolution of the Green function p
and the SDR s. For the spatial part of the convolution in (3), it is
convenient to introduce the Gaussian blur operators as follows.

Definition 2 (Gaussian blur operators):
{
Gσ ∈ L (L2 (R2) ,L2 (R2))}

σ>0

1The terms probability or probability density are technically incorrect in this
case. A formal definition of the quantity ϕ(τ, t) is given in Section II-C.

is a family of convolutional operators, where

(Gσf)(r) =
∫

R2
f(r − ρ)gσ (ρ)dρ,∀f ∈ L2 (R2) ,

and gσ is given by Definition 1.
By using Definition 2 and evaluating the convolution in (3)

independently over the spatial and temporal dimensions, we can
express d compactly as

d(r, t) =
∫ t

0
G√

2Dτ v(r, τ, t)dτ , (4)

where v : R2 × R2
+ → R+ is such that

v(r, τ, t) =
∫ t

τ

s(r, t− η)ϕ(τ, η)dη . (5)

v summarizes the effect of movement in the z-dimension, ad-
sorption, and desorption on the diffusion of the particles gen-
erated with a source density rate s. Theorem 1 summarizes the
conclusions from the discussion above in terms of the image
observation dobs . A step-by-step derivation of (4), (5), (6), and
(7) from (3) can be found in the supplementary material to this
paper.

Theorem 1 (Observation model): Let dobs : R2 → R+ be
the spatial density of bound particles at time T , i.e., when the
experiment finishes. Then, we have that

dobs(r) =
∫ σm a x

0
Gσ a(r, σ)dσ , (6)

where σ =
√

2Dτ , σmax =
√

2DT , and

a(r, σ) =
σ

D
v

(

r,
σ2

2D
,T

)

, (7)

with v as in (5). We will refer to a : Ω → R+ in (7) as the post
adsorption-desorption source density rate (PSDR).

An important feature of (6) is that the spatial properties of s
are retained by a, as (5) and (7) operate only on the temporal
dimension. This implies that the PSDR a contains the same
amount of information for SL as the original SDR s.

The value of the PSDR a(r, σ) can be interpreted as the
density of particles released from a location r that will appear
in dobs after a 2D diffusion of τ = σ2/(2D). The model in
(4), however, is not a 2D diffusion model with an equivalent
source v, due to the dependence of v on the observation time t.
Nonetheless, we can and will treat (6) as our observation model
with a, rather than s, as the sought unknown quantity. This will
result in a few important benefits. First, the relative simplicity
of (6) will prove beneficial both for formulating the inverse
diffusion problem and for constructing its algorithmic solution.
Second, the recovery of a in (7) can be addressed without an
explicit characterization of ϕ. This removes the need for the
values of κa , κd and D, which can vary between assays, are
costly to measure [29], and hard to estimate [38]. This said,
an explicit characterization of ϕ is still desirable. In particular,
it could enable the recovery of the original SDR s from the
recovered a, and it allows for simulation of data based on a
given SDR s, which is easier to postulate than the PSDR a. We
therefore continue by providing an explicit characterization of
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Fig. 2. Example section of an image simulated from model (1) using the result
in Theorem 2, observed through a simulated imperfect, noisy image acquisition
system. The image is loaded into the green channel for ease of comparison with
Fig. 1. For details on the discretization and numerical techniques employed to
obtain this image, see Section IV, Section II-C, and the supplementary material
to this paper.

ϕ that exhibits favorable properties with regards to its numerical
approximation.

C. Physical Parameters and Data Synthesis

The quantity ϕ(τ, t) summarizes the relation between the
time t at which a particle released at time 0 is found bound,
and the total time τ it has spent in free movement. Formally,
consider a particle released at time 0 and let its position in the
z-dimension be {zt}t∈[0,T ] . For each t ∈ [0, T ], consider the
random variables τ = |{τ̃ ∈ [0, t] : zτ̃ > 0}|, i.e., the time in
free motion before t, and bt ∈ {0, 1} such that bt = 1 if zt = 0
and bt = 0 otherwise, i.e., an indicator of the particle being
bound2 at time t. Then, ϕ(τ, t) is formally the Radon-Nikodym
derivative of the joint distribution of the continuous random
variable τ and the discrete random variable bt , i.e., ∀τ ∈ [0, t],

ϕ(τ, t) = fτ |bt (τ |bt = 1)Pr (bt = 1) ,

where fτ |bt (·|bt = 1) is the probability density function of the
time in free motion τ given that the particle is found bound at
time t.

Obtaining a characterization of ϕ(τ, t) in terms of κa , κd and
D provides further possibilities to exploit the model (6). First,
one can use this model to obtain synthetic data that corresponds
to specific reaction-diffusion-adsorption-desorption models and
specific source density rates s(r, t), which provides a way of ob-
jectively comparing algorithmic proposals. Second, one could,
if the physical parameters of a real assay were known, address
the inverse problem of obtaining s(r, t) from any estimation of
a(r, σ) by inverting the linear system formed by equations (5)
and (7). In Theorem 2, we provide the full characterization of
ϕ(τ, t) in terms of the physical parameters of the model. Both
Theorem 2 and Lemma 1, an intermediate result, are proved in
Appendix A. In Fig. 2, we show a section of a synthetic image
generated using the result in Theorem 2, for comparison with
the image obtained from a real Fluorospot assay in Fig. 1.

Consider first a characterization of the simpler case κd = 0,
i.e., the case in which particles that are bound to the surface can
not be desorbed, which we present in Lemma 1.

2Note here that the event zt = 0 is equivalent to the particle being bound
(bt = 1) because under a free Brownian motion, zt = 0 has probability 0.

Lemma 1 (Characterization of the observation model from
physical parameters, Case κd = 0): Consider model (1) when
κd = 0. Then, we have that ϕ(τ, t) = i[0,t)(τ)φ(τ), with

φ(τ) =
κa√
πDτ

− κ2
a

D
erfcx

(

κa

√
τ

D

)

, (8)

where

erfcx(x) = ex
2
erfc(x) , and erfc(x) =

2√
π

∫ ∞

x

e−t
2
dt ,

are the scaled-complementary and complementary error func-
tions, respectively.

Theorem 2 extends this result to the general case in which
κd ≥ 0 by segmenting the total time of free motion in sub-
sequent fractions of free motion interrupted by adsorption-
desorption events.

Theorem 2 (Characterization of the observation model from
physical parameters): Consider model (1). Then, we have that

ϕ(τ, t) = i[0,t)(τ)
∞∑

j=1

φj∗(τ)p [j − 1;κd(t− τ)] , (9)

where φj∗(τ) is the j-th convolutional power of φ(τ) in (8) and

p[j;λ] =
λje−λ

j!
,∀j ∈ N,∀λ ≥ 0 , (10)

is the probability mass function of a Poisson random variable
with mean λ evaluated at j.

Note that [43] also studied model (1) with κd ≥ 0, but in
terms of an expression for the distribution of particles in the z-
dimension after a time t since they were released, i.e. a parallel
to the u(z, t) used in Appendix A to prove Lemma 1. However,
because our goal is to characterize the total time in free motion,
and u(z, t) does not reveal how a particle arrived at a position z
at time t, our result in Theorem 2 is needed.

For any practical application, ϕ(τ, t) needs to be computed,
i.e. approximated and discretized in some manner. To this end,
note that truncating (9) at a finite Jε can be done at any arbi-
trary error level ε > 0. Intuitively, this is because p[j;λ] decays
exponentially for large js while φj∗(τ) is stable (in norm) with
j. Formally, this result is stated in Lemma 2 and proved in
Appendix A.

Lemma 2 (Truncation of the sum to characterize the model):
Consider, for any ε > 0,

Jε = QPoi

(

1 − ε

‖φ‖2
L2 (0,+∞)

;κdT

)

,

whereQPoi(p;λ) is the quantile function, i.e. the inverse cumu-
lative distribution function, of a Poisson random variable with
mean λ > 0 evaluated at p ∈ (0, 1). Then,

ϕ̃(τ, t) =

∣
∣
∣
∣
∣
∣
ϕ(τ, t) −

Jε−1∑

j=1

φj∗(τ)p [j − 1;κd(t− τ)]

∣
∣
∣
∣
∣
∣
≤ ε ,

∀(τ, t) ∈ [0, T ]2 such that τ ≤ t.
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Finally, note that a discrete approximation to the j-th con-
volutional power φj∗(τ) can be computed numerically by dis-
cretization of φ(τ) and recursive discrete convolution.

D. Model Flexibility and Imaging Limitations

To assume that an imaging system can provide measurements
given by (6) is, naturally, an idealization. Besides finite dimen-
sionality, which will be treated in detail in Section IV, any phys-
ically feasible image acquisition must deviate from this model
due to the following factors: 1) random photonic and electronic
events, often modeled by additive white noise in the final obser-
vation, 2) non-linear effects, such as limited dynamic ranges or
quantization, 3) linear effects, such as a blur with a point-spread
function (PSF) that limits the resolution of a particular optical
system, and 4) a bounded field of view.

In terms of the effect of random events, we will numerically
demonstrate in Part II of this paper [13, Section III] that our
approach to SL is very robust to the presence of additive white
noise. In terms of non-linear effects, we assume that the dynamic
range of the camera is adjusted automatically so that saturation is
not an issue. Additionally, we implicitly assume that the imaging
sensor is noise-limited instead of quantization-limited, as is the
case with most current cameras. In our empirical validation
on synthetic data in Part II [13, Section III], we enforce this
by using a statistical model for quantization to ensure that the
levels of additive noise under analysis are much larger than
those expected from quantization error in a current scientific
camera, e.g., 12-bit quantization. In terms of linear effects, we
will assume that the PSF for the optical system is monomodal
and symmetric, and well approximated by a Gaussian kernel
gσb with some standard deviation σb . Under these assumptions,
we modify (6) to express the blurred observation db

obs as

db
obs = gσb ∗ dobs =

∫ σm a x

0
Gσ+σb aσdσ . (11)

All of the results in this two-part paper are invariant to this shift
in σ and can be re-derived mutatis mutandis for (11). Finally, in
terms of the limited field of view, we will make the reasonable
assumption that all the sources we aim at recovering are within
the camera’s field of view.

III. INVERSE DIFFUSION BY FUNCTIONAL OPTIMIZATION

A. Optimization Problems for Inverse Diffusion

In this section, we first present the inverse problem of recov-
ering the PSDR a from the density of bound analyte dobs as
a non-negative minimum-norm functional optimization prob-
lem. Then, we propose to address the ill-posedness of this
naı̈ve minimum-norm formulation by regularizing it accord-
ing to the available prior knowledge. As a result, we propose
a non-negative group-sparsity regularized minimum-norm opti-
mization problem to fit the observation model in Section II to
the data.

Our treatment and language will be that of functional analysis,
which will enable the exposition of the optimization problem
in the natural spaces of particle densities. Although discretiza-

tion will eventually be necessary for the synthesis and analysis
of data, introducing it already in the observation model (6)
would mask the generality of the proposed approach. Indeed, in
Section IV we propose a simple discretization scheme for (6)
and any functional algorithm for inverse diffusion, but our expo-
sition opens up inverse diffusion to the use of more sophisticated
discretization schemes. For example, off-the-grid solutions such
as [45] dynamically estimate the support of a discrete measure
observed through a convolutional operator, and offer opportuni-
ties for more rigorous mathematical analysis. In conclusion, in a
philosophy strongly supported by [46, ch. 5], we present an op-
timization problem to address inverse diffusion on a functional
(infinite-dimensional) setting and discretize the problem only
after that. Similarly, in Part II [13], we propose first the func-
tional version of the algorithm, and use the simple discretization
in Section IV only after that to provide an implementable algo-
rithm and empirical results.

We begin by introducing the Hilbert spaces needed to prop-
erly state the inverse problem. The definitions of these function
spaces will permit the adaptation of the problem to specific,
practical conditions. For instance, in defining the space of ob-
served densities, we include a weighting function that enables
us to, in each case, set a value on the cost of wrongly predicting
the observed density in each location. This allows us, for exam-
ple, to make the inverse problem robust to regions of an image
sensor that are known beforehand to be faulty or irrelevant.

Definition 3 (Observed density space): Consider a weight-
ing function w ∈ L∞

+
(
R2
)

such that w �= 0. Then, the bilinear
form

(d1 |d2)D =
∫

R2
w2(r)d1(r)d2(r)dr, ∀d1 , d2 : R2 → R ,

is positive and symmetric. Therefore, the linear space

D =
{
d : R2 → R : (d|d)D < +∞} ,

equipped with the inner product (·|·)D is a Hilbert space, and it
is where the observed density lies, i.e., dobs ∈ D+ .

Similarly, in defining the space of PSDRs, we include a mask-
ing pattern that indicates which locations can hold cells and
which cannot. This reduces the support of the considered PS-
DRs, thus making the inverse problem easier by incorporating
prior knowledge.

Definition 4 (PSDR space): Consider a masking pattern
function μ : R2 → {0, 1} with a non-empty bounded support
supp (μ). Then, the linear space

A =
{
a ∈ L2 (Ω) : supp (a) ⊆ supp (μ) × [0, σmax]

}
,

equipped with the inner product (·|·)A = (·|·)L2 (Ω) is a Hilbert
space, and it is the space where the PSDR lies, i.e., a ∈ A+ .
Here, recall that Ω = R2 × R+ .

The core of the observation model in Theorem 1 is the op-
erator that reflects how a change in the PSDR a ∈ A+ affects
the observed density dobs ∈ D+ , i.e., the observation operator
in this inverse problem. We refer to it as the diffusion operator
because of the parallelism between dobs and an observation of
a 2D diffusion process with SDR v, which we discussed at the
end of Section II-B.



DEL AGUILA PLA AND JALDÉN: CELL DETECTION BY FUNCTIONAL INVERSE DIFFUSION AND NON-NEGATIVE GROUP SPARSITY—PART I 5413

Definition 5 (Diffusion operator): The linear operator A :
A → D such that

Aa =
∫ σm a x

0
Gσaσdσ, ∀a ∈ A ,

represents the dependence between a and dobs specified by
Theorem 1. Here, aσ : R2 → R+ is such that aσ (r) = a(r, σ),
∀(r, σ) ∈ Ω.

The measurement model (6) can now be succinctly expressed
as dobs = Aa. In this view, the estimation of the PSDR amay be
addressed as a least squares problem with respect to the operator
A, i.e., as the convex optimization problem

min
a∈A

[
‖Aa− dobs‖2

D + δA+ (a)
]
. (12)

Here, the penalty function for the prediction Aa is precisely the
square of the norm ‖·‖D on the space of observations, which
takes into account the weighting w to determine the importance
of an error in each of the different spatial positions. Additionally,
for the PSDR to have physical meaning, the positivity constraint
a ∈ A+ has to be met. Note that A+ ⊂ A is a convex cone, and
that the indicator function notation for the convex constraint is
convenient for later treatment.

Because the dimensionality of the PSDR a exceeds that of
the observation dobs , (12) is ill-posed in the sense that many
different PSDRs lead to the same observation. This calls for the
use of a regularizer that eases the inverse problem by biasing
the solution towards more plausible explanations. In particular,
we propose to use a non-negative group-sparsity regularizer to
induce group behavior in the σ-dimension and sparsity in the
spatial dimensions. This is consistent with the explanation of the
bound density dobs as a result of particle generation by a finite
number of spatially separated, immobilized cells. Therefore, we
propose to solve the optimization problem

min
a∈A

[

‖Aa− dobs‖2
D+δA+ (a)+λ

∥
∥
∥‖ξar‖L2 (R+ )

∥
∥
∥

L1 (R2 )

]

(13)

which is convex and suited to iterative non-smooth convex op-
timization methods, as we show in Part II [13]. Here, for each
r ∈ R2 , ar : [0, σmax] → R+ is such that ar(σ) = a(r, σ) for
any σ ∈ [0, σmax], λ > 0 is the regularization parameter, and
ξ ∈ L∞

+ [0, σmax] is a non-negative bounded weighting function
in σ that can be used to incorporate further prior knowledge. For
example, if one knew the exact parameters κa , κd and D of the
physical system, one could use the characterization of ϕ in The-
orem 2 to choose ξ so that the penalization in (13) corresponds
to a uniform penalization through t in the original SDR s. Ad-
ditionally, if one knew that the particular experimental setting
only allows for cells to generate particles during times t such
that t0 < t < t1 < T , one could choose ξ to have very large
values for σ ∈ [0,

√
2Dt1 ] ∪ [

√
2D(T − t0), σmax]. Finally, if

one wanted to impose the restrictions of the model only on a cer-
tain range of σs, say σ ∈ ℵ ⊂ [0, σmax], and relax them for its
complement ℵc = [0, σmax] \ ℵ, one could choose ξ such that
supp (ξ) = ℵ. The case in which ξ is simply the (0, 1)-indicator
function of a set ℵ is of special relevance in Part II [13] due to
its tractability, and is useful, for example, to use the values of

a for σ ∈ ℵc to account for a low-frequency background that
could not be explained by cell secretion alone.

Note now that while in both (12) and (13) we have used min
instead of inf , we have yet been unable to formally prove that
these problems do have a minimizer in A+ . Nonetheless, in the
following section we provide some results that characterize the
diffusion operator A, providing some insight on its structure
and beneficial properties. Some of these results will enable us
to prove, in Section IV, that the discretized equivalents to (12)
and (13) under our discretization scheme do have a minimizer.

B. Characterization of the Diffusion Operator

First, we verify that A is a continuous, i.e., bounded, linear
operator. Although this does not provide the existence of a min-
imizer of (12) or (13), it does give some intuitive hope in terms
of the bounded inverse theorem.

Lemma 3 (Boundedness of the diffusion operator): The
norm in L (A,D) of the linear operator A : A → D in
Definition 5 is bounded as

‖A‖L(A,D) ≤
√
σmax ‖w‖L∞(R2 ) .

Thus, A is a bounded operator and, because A is linear, A is a
linear continuous operator, i.e. A ∈ L (A,D).

We proceed by characterizing the nullspace of the operator,
showing that it only contains a very specific class of functions.
This rather simple result, which is also valid for any convolu-
tional operator with non-negative unit L1-norm kernel, will be
of great help when characterizing the existence of minimizers
in the discrete case.

Lemma 4 (Nullspace of the diffusion operator): Consider
the nullspace of the diffusion operator, i.e., N (A) = {a ∈ A :
Aa = 0}. Then, ∀a ∈ N (A), we have that ‖a+‖L1 (Ω) =
‖a−‖L1 (Ω) .

Note that an immediate consequence of Lemma 4 is thatA+ ∩
N (A) = {0}, since a ∈ A+ implies ‖a−‖L1 (Ω) = 0, which, if
a ∈ N (A), implies that ‖a+‖L1 (Ω) = 0, i.e., a= a+ + a− = 0.

For the sake of completeness, we also present here the ex-
pression for the adjoint operator A∗ of the diffusion operator
A, which will be of great value in the design of algorithms to
minimize (13) in Part II [13].

Lemma 5 (Adjoint to the diffusion operator): The adjoint
operator A∗ ∈ L (D,A) to the diffusion operator A in
Definition 5 is such that

(A∗d) (r, σ) = μ(r) · (Gσ

{
w2d
})

(r),∀d ∈ D ,

for each r ∈ R2 and σ > 0.
Both Lemma 3 and Lemma 5 are based on an equivalent

characterization of the family of Gaussian blur operators {Gσ}
from Definition 2, based on standard results for convolutional
operators. This characterization, i.e., Properties 1 and 2, can be
found together with the proof for the results in this section in
Appendix B.

IV. DISCRETIZATION

In practice, no imaging sensor is infinitely resolute. A digital
camera will instead obtain a matrix d̃obs ∈ T+ (M,N), which
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will be some discretization of dobs in (6). Here, M,N ∈ N
represent the number of pixels in each dimension of the imaging
sensor, with typical values of 1024 or 2048 for current scientific
cameras. In particular, the relation between d̃obs and dobs in a
generic discrete imaging sensor can be modeled by the operator
RD : D → T (M,N) such that

d̃ = RD (d) =
⎧
⎩d̃m ,n

⎫
⎭ =

⎧
⎪⎪⎪⎩

∫

Λm,n

d(r) dr

⎫
⎪⎪⎪⎭ , (14)

∀d ∈ D, where m ∈ {1, 2, . . . ,M}, n ∈ {1, 2, . . . , N} and
Λm,n = {(m,n)} + [−0.5, 0.5]2 is the region that corresponds
to the pixel at the position (m,n). Here, the scale of each spatial
variable is normalized with respect to the pixel size to simplify
further derivations. Additionally, each spatial variable is trans-
lated so that (1, 1) corresponds to the location of the first pixel’s
center. Note that in order to preserve consistency, normalization
is also needed on the σ-dimension in (6)–(7), i.e., we will work
with σ̃ = σ/Δpix and σ̃max = σmax/Δpix , where Δpix [m] is
the length of a pixel’s side.

In the classical theory of discretization [47, Ch. 34–35], one
wants to numerically solve a functional inverse problem, e.g.,
find a ∈ A+ such that Aa = dobs for a specific dobs ∈ D+ .
Then, to do so numerically, one defines a discretization scheme
parametrized by the dimensionalities q1 , q2 ∈ N of the obser-
vation and solution, i.e., some rule to obtain approximations

Ãq1 ,q2 ∈ T (q1 , q2) , ãq1 ∈ Rq1 , d̃obs,q2 ∈ Rq2 ,

and one solves Ãq1 ,q2 ãq1 = d̃obs,q2 instead, relying on equiva-
lence results when q1 , q2 → +∞. In our case, we want to solve
the functional optimization problem proposed in (5), but only
have access to a discretized observation d̃obs = RD (dobs). This
imposes the structure in (14) onto our discretization of the image
observation dobs , and fixes its dimension to q2 = M ×N . With
respect to (13), we will assume that the user-specified parame-
ters μ, w and ξ are chosen consistently with the discretization.
For example, we will assume that instead of a weighting function
w(r), we have a weighting matrix w̃ = RD(w) ∈ T (M,N), at
the same discretization level as d̃obs .

Classical results in discretization theory [47] cover only cases
in which the functional inverse problem is well-posed. In fact,
the design of discretization schemes in the context of possibly
ill-posed inverse problems, such as (13), is an open research
topic [48]–[51]. Thus, formulating a discretization that is opti-
mal in some sense is beyond the scope of this paper. Instead, we
will use the basic ideas from inner approximation schemes [47,
Ch. 34] to propose an intuitively natural discretization.

A discretization scheme for (13) under the inner approxima-
tion paradigm involves two restriction operators, i.e.

RA : A → Aq1 , RD : D → Dq2 ,

where Aq1 and Dq2 are q1- and q2-dimensional spaces, respec-
tively, and RD is characterized in (14) with Dq2 = T (M,N)
and two extension operators, i.e.

EA : Aq1 → A , ED : Dq2 → D .

These operators fully characterize the discretization scheme,
because they not only determine the discrete approximation
of each element in A or D through the restriction operators,
but also the discrete approximation of any operator from and
to these spaces. In our case, we are specifically interested in
the finite-dimensional approximation of the diffusion operator
A under a given discretization scheme, which can be used di-
rectly to synthesize data, but also will be a fundamental step
in any discrete iterative procedure to approximate a solution
to (13). The latter also applies to finding the discrete expres-
sion for the adjoint A∗, which will play an important role in
any discrete algorithm that aims to exploit the smoothness of
the square norm ‖Aa− dobs‖2

D in (13). Given a discretiza-
tion scheme, these finite-dimensional approximations are the
operators Ã : Aq1 → Dq2 and Ã∗ : Dq2 → Aq1 such that [47,
p. 964]

Ãã = RD (AEA [ã]) , ∀ã ∈ Aq1 , (15a)

Ã∗d̃ = RA
(
A∗ ED

[
d̃
])
, ∀d̃ ∈ Dq2 . (15b)

Similarly, any operators B1 : A → A, B2 : D → D will be
approximated within the discretization scheme by B̃1 : Aq1 →
Aq1 and B̃2 : Dq2 → Dq2 such that

B̃1 ã = RA (B1 EA [ã]) , ∀ã ∈ Aq1 , (16a)

B̃2 d̃ = RD
(
B2 ED

[
d̃
])
, ∀d̃ ∈ Dq2 , (16b)

and any functional ϑ : A → R will be approximated by ϑ̃ :
Aq1 → R such that

ϑ̃ (ã) = ϑ (EA [ã]) , ∀ã ∈ Aq1 . (17)

In our particular case, we have chosen the following restric-
tion and extension operators, and through them, a specific dis-
cretization. The restriction operator forD is given by the camera
and fulfills (14). For restricting A, then, we propose using

RA (a) =
⎧
⎩ãm ,n,k

⎫
⎭=

⎧
⎪⎪⎪⎪⎩

1√
Δk

∫

Λm,n,k

a(r, σ) drdσ

⎫
⎪⎪⎪⎪⎭, (18)

with Aq1 = T (M,N,K), m,n as above, k ∈ {1, 2, . . . ,K},
Λm,n,k = Λm,n × [σ̃k−1 , σ̃k ] and Δk = (σ̃k − σ̃k−1), with
{σ̃0 , σ̃1 , . . . , σ̃K } an arbitrary grid in the σ̃-dimension such
that ˜σk−1 < σ̃k , σ̃0 = 0 and σ̃K = σ̃max . As mentioned be-
fore, this discretization is also assumed in user parameters
that concern a(r, σ), i.e., μ̃ ∈ T (M,N) is considered as a
mask in the finite-dimensional spatial coordinates and ξ̃ ∈ RK

+
is considered as a non-negative weighting vector across ks.
For the latter, note that if ξ has the structure discussed at
the end of Section III-A, i.e., it is the (0, 1)-indicator of a
set ℵ ⊂ [0, σmax], this set will be aligned with respect to the
discretization boundaries σ̃k , and an equivalent set of discrete
indexes ℵ̃ = {k ∈ {1, 2, . . . ,K} : (σ̃k−1 , σ̃k ) ⊂ ℵ} can be de-
fined.

For the extension operators, we use the inner approximation
interpretation of the discrete spaces Aq1 ⊂ A and Dq2 ⊂ D,



DEL AGUILA PLA AND JALDÉN: CELL DETECTION BY FUNCTIONAL INVERSE DIFFUSION AND NON-NEGATIVE GROUP SPARSITY—PART I 5415

Fig. 3. Example of a discretization grid for A with M = N = 9, K = 6.
Highlighted, Λ5 ,4 ,2 and Λ7 ,7 ,6 . In gray, is the sensor’s grid, which coincides
with the spatial grid for A and the resolution of the recovered PSDR. In blue, is
the support of a mask μ(r) that specifies where particle sources can be located.
Note that the particular support can also be specified in terms of a mask matrix
μ̃. In red, are the sets ℵ and ℵc that characterize the behavior of ξ. Note that
here, ℵ̃ = {1, 2, . . . , 5} and ℵ̃c = {6}.

and consider them as parameterizations of piece-wise constant
functions in A and D, i.e.

ED
(
d̃
)

=
N∑

n=1

M∑

m=1

d̃m ,n iΛm,n , (19)

and

EA (ã) =
N∑

n=1

M∑

m=1

K∑

k=1

1√
Δk

ãm,n,k iΛm,n,k
, (20)

with iΛm,n and iΛm,n,k
the (0, 1)-indicator functions for Λm,n

and Λm,n,k , respectively.
An example of the structure chosen for the discretization ofA

is portrayed in Fig. 3. Because the camera’s restriction operator
(14) fixed the understanding of the spatial domain in D as a
regular grid, it was natural to use the same regular grid structure
for the spatial dimension in the discretization of A too. The
discretization of the σ-dimension, however, could have been
addressed much differently, for example, using a more flexible
function basis in (20). However, we opted to use an irregular
grid in σ, which provides modeling flexibility and preserves
mathematical tractability.

In terms of the dimensionality of the problem, our choices
imply that A is discretized with the same spatial resolution as
the observation d̃obs . A finer resolution in this discretization

would yield super-resolution in the recovery of the PSDR and,
therefore, more accurate SL. However, even with the modest
typical values M = N = 512 and K = 8 used in our numer-
ical evaluations in Part II [13], our choice already results in a
discretized inverse problem with q1 ≈ 2 · 106 optimization vari-
ables. In real scenarios, like the one introduced in Section V-A,
these values are M = N = 2048 and K = 6, which result in
q1 ≈ 25 · 106 unless the resolution of the sensor is artificially
decreased. Therefore, we have left further inquiries into grid-
based super-resolution methods outside of the scope of this
paper.

Direct computation of (15) using the particular restriction and
extension operators (14), (18), (19), and (20) yields

Ãã =
K∑

k=1

g̃k � ãk , (21)

Ã∗d̃ =
⎧
⎩μ̃�

(
g̃k �

[
w̃2 � d̃

])⎫
⎭ , (22)

for k ∈ {1, 2, . . . ,K}, where ·2 refers to element-wise squar-
ing, � to the Hadamard (element-wise) product, � to dis-
crete convolution with zero-padding, ãk ∈ T (M,N) for k ∈
{1, 2, . . . ,K} to the different cuts in the k-dimension in ã, and
gk : Z2 → R+ for k ∈ {1, 2, . . . ,K} to the discrete convolu-
tional kernels such that

g̃k (r̃) =
1√
Δk

∫ σ̃k

σ̃k −1

∫

Λ2
0,0

gσ̃ (r̃ + ρ1 − ρ2) dρ1 × dρ2dσ̃ ,

for any r̃ ∈ Z2 . Note that, because gσ̃ is an isotropic 2D Gaus-
sian probability density function, it is separable in the different
spatial dimensions, and, therefore

g̃k [(m,n)] =
1√
Δk

∫ σ̃k

σ̃k −1

ωσ̃ (m)ωσ̃ (n)dσ̃ , (23)

∀(m,n) ∈ Z2 withωσ̃ : Z → R+ such that for anym ∈ Z, [52]

ωσ̃ (m) =
∫ 1

2

− 1
2

[

Φ
(
m+ ρ+ 1

2

σ̃

)

− Φ
(
m+ ρ− 1

2

σ̃

)]

dρ ,

where Φ : R → [0, 1] is the standard 1D normal cumulative
density function. The detailed derivation of the expressions (21),
(22) and (23), as well as insights on techniques for the numerical
computation of (23), can be found in the supplementary material
to this paper.

Using the proposed discretization scheme we obtain a dis-
cretized equivalent to (13), i.e., the finite-dimensional optimiza-
tion problem

min
ã

{
∥
∥
∥Ãã− d̃obs

∥
∥
∥

2

w̃
+ λ
∑

m,n

∥
∥
∥ξ̃ � ãm ,n

∥
∥
∥

2

}

, (24)

subject to ã ∈ T+ (M,N,K), where ‖ · ‖w̃ denotes the finite-
dimensional w̃-weighted Euclidean norm, and ãm ,n ∈ RK .
Now, the finite dimensionality of the problem enables us to
rely on the extreme-value theorem for deriving the existence of
a minimizer of (24) from the closed and bounded sublevel sets
given by the regularizer when λ > 0 and ξ̃k > 0 for any k, or
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Fig. 4. Example of SL performance on a section of real Fluorospot data. To the left, grayscale image recovered from the raw RGB data, with increased luminosity.
To the right, detection results (yellow circles) and human labeling (orange squares) for a specific section displayed on top of the grayscale image with increased
luminosity.

from those of the data penalty term if ξ̃k = 0 for some k or
λ = 0. This is summarized in Lemma 6.

Lemma 6 (Existence of a solution to the discretized problem):
Consider the functionC : T (M,N,K) → R̄ such thatC(ã) =
‖d̃obs − Ãã‖2

w̃ + f(ã), with f : T (M,N,K) → R̄ such that

f(ã) = δT+ (M,N,K )(ã) + λ
∑

m,n

∥
∥
∥ξ̃ � ãm ,n

∥
∥
∥

2
.

Then, if either λ > 0 and ξ̃k > 0 for any k, or w̃m,n > 0
for any (m,n), ∃ãopt ∈ T+ (M,N,K) such that C(ãopt) =
inf ã∈T (M,N,K ) C(ã), i.e. (24) has a minimizer.

The extension of Lemma 6 to function spaces is challenging
even in the case in which λ > 0 and ξ(σ) > 0 a.e. in [0, σmax].
Even if it was possible to extract closed and bounded sublevel
sets from the behavior of the regularizer, the characterization of
compact sets in Lp involves Lp -equicontinuity, which does not
seem to follow easily for our problem set-up. Nonetheless, the
case p = 2 is slightly more tractable [53], and the possibility
remains that the smoothing property of the kernels that com-
pose the diffusion operatorA can somehow be exploited. In any
case, further characterizing the diffusion operator A, its range,
nullspace and spectrum would surely help in addressing this is-
sue and understanding its specifics. Uniqueness statements are
challenging to obtain for both the continuous and discrete for-
mulations. However, the intuition remains that, by coupling the
third dimension with the non-negative group-sparsity regular-
izer, the optimization does not only get biased towards more
plausible explanations of the data in terms of stationary sources,
but the inverse problem also improves its condition by treating

differently different a ∈ A+ that approximate the observation
at the same level of accuracy ‖Aa− dobs‖D.

V. EXAMPLE ON REAL DATA AND CLOSING REMARKS

A. Example on Real Data

In Part II of this paper [13] we provide, along with the
algorithmic developments, an extensive quantitative assess-
ment of the proposed SL methodology. However, in order
to keep this Part I self contained and exhibit the benefits of
the contributed modeling and inverse problems framework,
we analyzed a real Fluorospot image and compared the re-
sults to expert human labeling. In particular, we discretized
an algorithm to solve (13) with λ = 4000, using K = 6 and
{σ̃0 , σ̃1 , . . . , σ̃6} = {2, 15, 20, 30, 40, 50, 70}. The details and
approximations in the algorithmic solution were analogous to
those used in the numerical results of Part II [13, Section III].
This resulted in a discretized recovered PSDR ãopt that, after
minor post-processing (see Part II [13, Section III]) yielded an
F1-Score relative to the human labeling of 0.9, with precision
0.92 and recall 0.88. A visualization of the image and some of
the SL results are shown in Fig. 4. In terms of the cell count, our
algorithm obtained 346 cell locations, while the human labeling
contained 360 locations.

This image was obtained from a biochemical assay in which
FITC dye was used as a marker, and it was captured by an RGB
sensor that produced raw data with dimensionsM = N = 2048
and a dynamic range of [0, 216 − 1]. This raw data was subject
to a Bayer color filter array [54], in which neighboring pix-
els correspond to different color bands. Because the different
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color filters have different sensitivities to the particular wave-
length emitted by the FITC molecules, neighboring pixels were
weighted accordingly to estimate the underlying luminosity. The
weighting function w̃(r̃) was also updated to weight the errors
in each position with respect to the sensor’s sensitivity in that
position. Additionally, the area comprised by the well was se-
lected manually, and any position outside it was given weight
zero, i.e. w̃(r̃) = 0. Finally, the mask function μ(r̃) was set to
1 for all r̃ ∈ Z2 .

In our opinion, the SL results produced by our algorithm are
of a quality comparable to that of the expert human labeling.
Indeed, in many cases the recovered location seems to be more
reliable, and the criteria to determine what constitutes a true
detection seems to be more consistent throughout the image.

B. Closing Remarks

In this first part of our paper, we have developed a novel ob-
servation model for images that measure 3D reaction-diffusion-
adsorption-desorption physical processes. This model provides
an objective means to generate reliable synthetic data for bio-
chemical assays from the specific physical parameters that char-
acterize them. We have then proposed an optimization frame-
work to recover reaction, i.e. particle secretion, by exploiting
the assumption that it was spatially localized and temporally
continuous. These properties are common in the context of SL
in diffusion models, and are easy to interpret from the perspec-
tive of biochemical assays. Moreover, the designed optimization
framework allows for the inclusion of different kinds of prior
information, which can impact practical use greatly. To finalize
the paper, we have introduced a simple discretization scheme
to implement both synthesis and analysis methods based on our
model, and we have provided some experimental results on real
Fluorospot data.

In Part II of our paper [13], we develop an accelerated prox-
imal gradient algorithm to solve the functional optimization
problem in (13), providing an expression for the proximal op-
erator of the non-negative group-sparsity regularizer. We also
use the discretization scheme we presented here to derive an
efficient implementation that approximates solutions of (24).
Finally, we provide thorough empirical evaluation of our algo-
rithm both in terms of detection and in terms of optimal transport
metrics.

APPENDIX A
CHARACTERIZATION OF THE MODEL FROM

PHYSICAL PARAMETERS

As in Section II-B, we will interchangeably rely on macro-
scopic arguments pertaining to the evolution of particle distribu-
tions, governed by (1), and microscopic arguments pertaining to
the behavior of individual particles [44]. We start by presenting
the proof of the characterization of the model in a simplified
case, i.e., κd = 0.

Proof - Lemma 1 (Characterization of the observa-
tion model from physical parameters, Case κd = 0): From

[55, Equation (3.1)] or [43, Equations (10), (22) and (27)] we
have that, particles released at time 0 are, at time t, distributed
in the z-dimension according to the density

u(z, t) =
1√
πDt

exp
(

− z2

4Dt

)

− κa

D
exp
(
κaz + κ2

at

D

)

erfc

(
z√
4Dt

+ κa

√
t

D

)

,

for z ≥ 0. For κd = 0, bound particles are never released. Thus,
the time until the first binding event is the same as the total time
in free motion. For a particle released at time 0, the probability
density function of the time until the first binding event is [3]
φ(τ) = κau(0, τ). Because τ was defined as the total time in
free motion within the time window [0, t), we have thatϕ(τ, t) =
φ(τ)i[0,t)(τ). �

We now present how this result is extended to κd ≥ 0.
Proof - Theorem 2 (Characterization of the observation model

from physical parameters): Consider first that, for κd = 0, (9)
particularizes to (8), and, thus, our statement is already proved
in Lemma 1.

Consider then the case κd > 0. Then, for any given time win-
dow, a particle that at the end of that period is bound has some
probability of having been bound and remained still thereafter;
some probability of having been bound, disassociated, and then
bound again; some probability of having been bound and disas-
sociated twice, and then bound again, and so on. Note that we
focus only on those particles that are found bound at the end of
a specific period, as those are the ones modeled by ϕ(τ, t) and
(6). For any i ∈ {1, 2, . . . }, consider the random variables τi
and ηi , that represent the time spent in free motion and bound,
respectively, the i-th time a particle goes through this cycle. The
time invariance of (1), i.e., the lack of memory in the diffusion,
association and disassociation processes, yields that {τi}∞i=1 and
{ηi}∞i=1 are mutually independent sequences of independent and
equally distributed random variables.

Because both after release and after disassociation particles
start their free motion at the surface, i.e. z = 0, the distribution
of any specific τi is given by φ(τi) as in (8), Lemma 1. Sec-
ond, the probability density ψ(ηi) of any ηi may be obtained
from ∂

∂ηi
ψ(ηi) = −κdψ(ηi) [cf. (1b)] and

∫∞
η=0 ψ(ηi)dηi = 1

as ψ(ηi) = κ−1
d e−κd ηi .

Consider now τ (j ) , a random variable representing the total
amount of time in free motion before the j-th disassociation
event. Then, τ (j ) =

∑j
i=1 τi . Because τ1 , τ2 , . . . , τj are inde-

pendent and identically distributed with density φ(τi), the den-
sity of τ (j ) is given by the j-th convolutional power φj∗(τ (j )) of
φ(τ). Similarly, consider η(j ) , a random variable representing
the total time a particle has been bound to the surface before
the j-th disassociation event. Then, η(j ) =

∑j
i=1 ηi and is dis-

tributed with density ψj∗(η(j )).
We now obtain the probability that a particle released at time

0 remains bound at time t, after having been bound a total
of exactly j times, and having spent a total time τ = τ (j ) in
free motion. Note that this is equivalent to stating that η(j ) ≥
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t− τ (j ) . Therefore,

Pr
(
τ = τ (j )

)
= Pr

(
η(j ) ≥ t− τ (j )

)
=
∫ +∞

t−τ ( j )
ψj∗(η)dη

= p
[
j − 1;κd

(
t− τ (j )

)]
,

where p[·; ·] is the Poisson probability mass function as in (10).
This result is naturally expected, as it merely states that the
probability of the sum of the first j binding times exceeding
t− τ (j ) is the same as the probability of having exactly j − 1
disassociation events during a time span of t− τ (j ) . Indeed, at a
disassociation rate of κd , this probability is given by the Poisson
distribution with parameter λ = κd

(
t− τ (j )

)
.

Using the law of total probability and that τ was defined as
the time in free motion before time t only, we have that

ϕ(τ, t) = i[0,t)(τ)
∞∑

j=1

φj∗(τ) Pr
(
τ = τ (j )

)

= i[0,t)(τ)
∞∑

j=1

φj∗(τ)p [j − 1;κd(t− τ)] .

�
Finally, we present the proof Lemma 2, that provides the

truncation point of the infinite sum in Theorem 2 at which a
certain accuracy ε > 0 is guaranteed.

Proof - Lemma 2 (Truncation of the sum to characterize
the model): Note first that, ∀λ1 , λ2 > 0 such that λ1 > λ2 ,
we have that

∑+∞
j=J p[j, λ1 ] >

∑+∞
j=J p[j, λ2 ] for any J ∈ N.

Now, consider that, because φ(τ) is a probability density de-
fined for τ ∈ [0,+∞), if we consider its extension by ze-
ros, φ : R → R+ such that φ(τ) = 0 for τ < 0, we have that
‖φ‖L1 (R) = 1. Then, using Young’s inequality (see [56] for de-
tails), we have that ‖φ(k+1)∗‖L2 (R) ≤ ‖φk∗‖L2 (R) for k ≥ 1 and
thus, ‖φk∗‖L2 (R) ≤ ‖φ‖L2 (R) = ‖φ‖L2 (0,+∞) for any k ≥ 1.

Using Young’s inequality again [56] but with r = ∞,
p = q = 2 and n = 1, we obtain that for any f, g ∈ L2 (R),
‖f ∗ g‖L∞(R) ≤ ‖f‖L2 (R) ‖g‖L2 (R) .

Then, we have that for any (τ, t) ∈ [0, T ]2 such that τ < T ,

ϕ̃(τ, t) =
+∞∑

j=Jε

φj∗(τ)p [j − 1;κd(t− τ)]

≤
+∞∑

j=Jε

∥
∥φj∗
∥
∥

L∞(R) p [j − 1;κd(t− τ)]

≤
+∞∑

j=Jε

‖φ‖L2 (R)

∥
∥
∥φ(j−1)∗

∥
∥
∥

L2 (R)
p [j − 1;κd(t− τ)]

≤ ‖φ‖2
L2 (0,+∞)

+∞∑

j=Jε

p [j − 1;κd(t− τ)]

≤ ‖φ‖2
L2 (0,+∞)

+∞∑

j=Jε

p [j − 1;κdT ]

≤ ‖φ‖2
L2 (0,+∞)

ε

‖φ‖2
L2 (0,+∞)

= ε.

�

APPENDIX B
DIFFUSION AND INVERSE DIFFUSION

In this appendix, we present the proof to Lemmas 3 to 5,
which characterize the diffusion operator A in Definition 5.
Furthermore, we provide a proof of Lemma 6, that guarantees
the existence of a solution for the discretized version of the
optimization problem that we propose for inverse diffusion.

Consider first Properties 1 and 2, which constitute a character-
ization of the Gaussian blur operators {Gσ}σ>0 in Definition 2
in terms of their norm and adjoint operators.

Property 1 (Norm of the Gaussian blur operator): The
Gaussian blur operators in Definition 2 have norm 1, i.e.,

‖Gσ‖L(L2 (R2 ),L2 (R2 )) = ‖gσ‖L1 (R2 ) = 1 .

Proof: For any f ∈ L2
(
R2
)
, let f̌ ∈ L2

(
R2
)

denote its
Fourier transform. Then, we have that

‖f ∗ gσ‖L2 (R2 ) =
∥
∥f̌ ǧσ

∥
∥

L2 (R2 ) ≤ |ǧσ (0)|∥∥f̌∥∥L2 (R2 ) (25a)

=
∫

R2
gσ (ρ)dρ

∥
∥f̌
∥
∥

L2 (R2 )

= ‖gσ‖L1 (R2 ) ‖f‖L2 (R2 ) . (25b)

In (25a), we have used the Parseval-Plancherel theorem and
the convolution theorem followed by the bound on the Fourier
transform of any real and non-negative function by the value at
its origin. In (25b), we have used again the Parseval-Plancherel
theorem, the expression for the Fourier transform evaluated at
0, and the non-negativity of the Gaussian kernel.

Consider now the sequence of Gaussian kernels with stan-
dard deviation n ∈ N, i.e., {gn}N ⊂ L2

(
R2
)

and observe that
‖gn‖L2 (R2 ) = 1/(2πn). Further,Gσgn = gn ∗ gσ = gn+σ , and
thus,

‖Gσgn‖L2 (R2 )

‖gn‖L2 (R2 )
=

n

σ + n
→ 1 when n→ +∞ .

Therefore, (25) is tight and ‖Gσ‖L(L2 (R2 ),L2 (R2 )) = 1. �
Property 2 (Self-Adjointness of the Gaussian blur operator):

The Gaussian blur operators in Definition 2 are self-adjoint in
L2
(
R2
)
, i.e., G∗

σ = Gσ ,∀σ > 0.
Proof: We will prove here that any convolutional operator

from L2
(
R2
)

to L2
(
R2
)

with symmetric kernel is self-adjoint.
This will yield the desired result because the Gaussian ker-
nel in Definition 1 is symmetric. Let G be such an operator
with symmetric kernel g. Recall the definition of adjoint from
Section I-A. For any f1 , f2 ∈ L2

(
R2
)
, we have

(Gf1 |f2)L2 (R2 ) =
∫

R2

∫

R2
g(r − ρ)f1(ρ)dρf2(r)dr

=
∫

R2

∫

R2
g(ρ − r)f2(r)drf1(ρ)dρ

= (f1 |Gf2)L2 (R2 ) ,

and thus G∗ = G. �
Properties 1 and 2 will now be used in the following two

proof.
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Proof - Lemma 3 (Boundedness of the diffusion operator):
Recall that the norm of the operator A is defined as

‖A‖L(A,D) = sup
a∈A

{‖Aa‖D
‖a‖A

}

.

Consider, then, that

‖Aa‖2
D =
∥
∥
∥
∥w

∫ σm a x

0
Gσaσdσ

∥
∥
∥
∥

2

L2 (R2 )
(26a)

≤ ‖w‖2
L∞(R2 )

∥
∥
∥
∥

∫ σm a x

0
Gσaσdσ

∥
∥
∥
∥

2

L2 (R2 )
(26b)

= η−1σmax

∫

R2

[
1

σmax

∫ σm a x

0
Gσaσdσ

]2

dr (27a)

≤ η−1
∫

R2

∫ σm a x

0
[Gσaσ ]2 dσdr (27b)

= η−1
∫ σm a x

0
‖Gσaσ‖2

L2 (R2 ) dσ (28a)

≤ η−1
∫ σm a x

0
‖aσ‖2

L2 (R2 ) dσ = η−1 ‖a‖2
A . (28b)

Here, η = σ−1
max ‖w‖−2

L∞(R2 ) , (26) uses the fact that w ∈
L∞ (R2

)
to bound it by its maximum value, (27) uses Jensen’s

inequality on the convex function α ∈ R �→ α2 , and (28) uses
Property 1 to bound the norm of Gσaσ ,∀σ > 0. Therefore,
∀a ∈ A, we have that

‖Aa‖2
D

‖a‖2
A

≤ σmax ‖w‖2
L∞(R2 ) ,

and, thus, ‖A‖L(A,D) ≤ √
σmax ‖w‖L∞(R2 ) . �

Proof - Lemma 5 (Adjoint to the diffusion operator): Recall
the definition of adjoint from Section I-A. For any a ∈ A,
d ∈ D, we have that

(Aa|d)D =
([∫ σm a x

0
Gσaσdσ

]

|w2d

)

L2 (R2 )
(29a)

=
∫ σm a x

0

(
Gσaσ |w2d

)

L2 (R2 ) dσ (29b)

=
∫ σm a x

0

(
aσ |Gσ

{
w2d
})

L2 (R2 ) dσ (29c)

= (a|ds)L2 (R3 ) = (a|μds)A . (30)

Here, ds ∈ A such that ds = Gσ

{
w2d
}

, (29) uses the lin-
earity of the integral and the inner product, and (30) uses that
because a ∈ A, a(r, σ)ds(r, σ) = 0,∀r �∈ supp (μ). Therefore,
A∗d = μds. �

We proceed by proving Lemma 4, which characterizes the
nullspace of the diffusion operator in a simple but insightful
way.

Proof - Lemma 4 (Nullspace of the diffusion operator): Let
Aa = 0. Then,
∫

R2
(Aa)(r)dr =

∫

R2

∫ σm a x

0
(Gσaσ )(r) dσdr

=
∫

R2

∫ σm a x

0

∫

R2
gσ (r − ρ)a(ρ, σ) dρdσdr

=
∫ σm a x

0

∫

R2

∫

R2
gσ (r − ρ)dr a(ρ, σ) dρdσ

=
∫ σm a x

0

∫

R2
a(ρ, σ) dρdσ

= ‖a+‖L1 (Ω) − ‖a−‖L1 (Ω) = 0 .

�
We finalize this appendix by proving Lemma 6, which guar-

antees the existence of a minimizer of the non-negative group-
sparsity regularized inverse diffusion problem under discretiza-
tion.

Proof - Lemma 6 (Existence of a solution to the discretized
problem): We will prove that ∀ε > 0, ∃δ > 0 such thatC(ã) ≤ ε
implies ‖ã‖2 ≤ δ, i.e., ã ∈ B̄δ = {ã ∈ T (M,N,K) : ‖ã‖2 ≤
δ}. As a consequence, we will have shown that (24) is
equivalent to

min
ã∈[B̄δ ]+

{
∥
∥
∥Ãã− d̃obs

∥
∥
∥

2

w̃
+ λ
∑

m,n

∥
∥
∥ξ̃ � ãm ,n

∥
∥
∥

2

}

. (31)

Because (31) is a minimization problem of a continuous function
on a closed bounded set, the extreme-value theorem guarantees
that it has a minimizer, and thus, (24) has a minimizer too.

Consider first the simpler case ξ̃k > 0 for any k ∈ {1, 2,
. . . ,K} and λ > 0. Then, for any ε > 0, we have that C(ã)
≤ ε implies f(ã) ≤ ε, which, for any (m,n) implies that
‖ξ̃ � ãm ,n‖2 ≤ ε/λ. Then, ‖ãm ,n‖2 ≤ ε/(λmink ξ̃k ) for any
(m,n) and

‖ã‖2 =
√
∑

m,n
‖ãm ,n‖2

2 ≤
√
MN

ε

λmink ξ̃k
= δ .

Consider now the case in which either ξ̃k = 0 for some k or
λ = 0. Consider the decomposition of ã on three unique compo-
nents, i.e., ã = ã⊥ + ã+ + ã−, where ã⊥ is the component on
the orthogonal complement to the nullspace of Ã, while ã+ and
ã− are the non-negative and non-positive parts of the component
in the nullspace of Ã, i.e.,

ã⊥ ∈ N
(
Ã
)⊥

and ãN = ã+ + ã− ∈ N
(
Ã
)
.

Then, we have that if ε ≥ C(ã), then
√
ε ≥
∥
∥
∥Ãã− d̃obs

∥
∥
∥
w̃
≥
∥
∥
∥Ãã
∥
∥
∥
w̃
−
∥
∥
∥d̃obs

∥
∥
∥
w̃

=
∥
∥
∥w̃ � Ãã

∥
∥
∥

2
−
∥
∥
∥d̃obs

∥
∥
∥
w̃

≥ min
m,n

w̃m,n

∥
∥
∥Ãã
∥
∥
∥

2
−
∥
∥
∥d̃obs

∥
∥
∥
w̃

≥ κmin
m,n

w̃m,n ‖ã⊥‖2 −
∥
∥
∥d̃obs

∥
∥
∥
w̃
,
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where κ is the smallest non-zero singular value of Ã, and, in
conclusion,

‖ã⊥‖2 ≤
√
ε+
∥
∥
∥d̃obs

∥
∥
∥
w̃

κminm,n w̃m,n
= δ1 .

Moreover, because C(ã) < +∞, the non-negative constraint
must be satisfied, and therefore, ‖ã−‖∞ ≤ ‖ã⊥‖∞. Further,
because T (M,N,K) is a finite-dimensional space, for any
p, q ∈ [1,∞], ∃cp,q ≥ 0 such that for any ã ∈ T (M,N,K),
‖ã‖p ≤ cp,q ‖ã‖q . Then, Lemma 4 yields that

‖ãN‖2 ≤ c2,1 ‖ãN‖1 = 2 c2,1 ‖ã−‖1

≤ 2 c2,1c1,∞ ‖ã−‖∞ ≤ 2 c2,1c1,∞ ‖ã⊥‖∞
≤ 2 c2,1c1,∞c∞,2 ‖ã⊥‖2 ,

and

‖ã‖ =
√

‖ãN‖2
2 + ‖ã⊥‖2

2

≤ δ1

√

1 + 4[c2,1c1,∞c∞,2 ]2 = δ .

�
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