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Continuous-Domain Solutions of Linear Inverse
Problems With Tikhonov Versus Generalized

TV Regularization
Harshit Gupta , Julien Fageot , and Michael Unser , Fellow, IEEE

Abstract—We consider one-dimensional (1-D) linear inverse
problems that are formulated in the continuous domain. The ob-
ject of recovery is a function that is assumed to minimize a convex
objective functional. The solutions are constrained by imposing a
continuous-domain regularization. We derive the parametric form
of the solution (representer theorems) for Tikhonov (quadratic)
and generalized total-variation (gTV) regularizations. We show
that, in both cases, the solutions are splines that are intimately
related to the regularization operator. In the Tikhonov case, the
solution is smooth and constrained to live in a fixed subspace that
depends on the measurement operator. By contrast, the gTV reg-
ularization results in a sparse solution composed of only a few
dictionary elements that are upper-bounded by the number of
measurements and independent of the measurement operator. Our
findings for the gTV regularization resonates with the minimiza-
tion of the �1 norm, which is its discrete counterpart and also
produces sparse solutions. Finally, we find the experimental solu-
tions for some measurement models in one dimension. We discuss
the special case when the gTV regularization results in multiple
solutions and devise an algorithm to find an extreme point of the
solution set which is guaranteed to be sparse.

Index Terms—Linear inverse problem, representer theorem,
regularization, spline, total variation, L2 , quadratic regulariza-
tion.

I. INTRODUCTION

IN A linear inverse problem, the task is to recover an un-
known signal from a finite set of noisy linear measurements.

To solve it, one needs a forward model that describes how these
measurements are acquired. Generally, this model is stated as
the continuous-domain transform of a continuous-domain sig-
nal. For example, MRI data is modeled as the samples of the

Manuscript received November 13, 2017; revised April 9, 2018 and June
26, 2018; accepted July 5, 2018. Date of publication July 27, 2018; date of
current version August 3, 2018. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Cédric Févotte.
This work was supported by H2020-ERC under Grant 692726-GlobalBioIm
and by the Swiss National Science Foundation under Grant 200020_162343/1.
(Corresponding author: Harshit Gupta.)

The authors are with the Biomedical Imaging Group, École Polytechnique
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Fourier transform of a continuous-domain signal. The traditional
approach to state this inverse problem is to choose an arbi-
trary but suitable basis {ϕn} and to write that the reconstructed
signal is

f(x) =
N∑

n=1

fnϕn (x), (1)

where f = (f1 , . . . , fN ) ∈ RN . Given the measurements z ∈
RM , the task then is to find the expansion coefficients f by
minimizing

f ∗ = arg min
f ∈RN

⎛

⎝‖z − Hf‖2
2︸ ︷︷ ︸

I

+λ ‖Lf‖2
2︸ ︷︷ ︸

II

⎞

⎠ , (2)

where H ∈ RM ×N has elements [H]m,n = 〈hm , ϕn 〉. The
analysis functions {hm}M

m=1 specify the forward model which
encodes the physics of the measurement process. Term I in (2)
is the data fidelity. It ensures that the recovered signal is close
to the measurements. Term II is the regularization, which en-
codes the prior knowledge about the signal. The regularization
is imposed on some transformed version of the signal coeffi-
cients using the matrix L. Linear reconstruction algorithms [1],
[2] can be used to solve Problem (2). In recent years, the no-
tion that the real-world signals are sparse in some basis (e.g.,
wavelets) has become popular. This prior is imposed by us-
ing the sparsity-promoting �1-regularization norm [3], [4] and
results in the minimization problem

f ∗ = arg min
f ∈RN

(‖z − Hf‖2
2 + λ‖Lf‖1

)
(3)

which can be efficiently solved using iterative algorithms [5],
[6]. The solutions to (2), (3), and their variants with generalized
data-fidelity terms are well known [7]–[10].

While those discretization paradigms are well studied and
used successfully in practice, it remains that the use of a pre-
scribed basis {ϕn}, as in (1), is somewhat arbitrary.

In this paper, we propose to bypass this limitation by refor-
mulating and solving the linear inverse problem directly in the
continuous domain. To that end, we impose the regularization in
the continuous domain, too, and restate the reconstruction task
as a functional minimization. We show that this new formulation
leads to the identification of an optimal basis for the solution
which then suggests a natural way to discretize the problem.
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Our contributions are two folds and are summarized as
follows:

a) Theoretical.
� Given z ∈ RM , we formalize 1D inverse problem in the

continuous domain as

f ∗
R = arg min

f ∈X
(‖z − H{f}‖2

2 + λR(f)
)

︸ ︷︷ ︸
JR (f |z)

, (4)

where f is a function that belongs to a suitable func-
tion space X . Similarly to the discrete regularization
terms ‖Lf‖2

�2
and ‖Lf‖�1 in (2) and (3), we focus

on their continuous-domain counterparts R(f) = ‖Lf‖2
L2

and R(f) = ‖Lf‖M, respectively. There, L and H are the
continuous-domain versions of L and H, while ‖Lf‖M is
the proper continuous-domain counterpart of the discrete
�1 norm. We show that the effect of these regularizations
is similar to the one of their discrete counterparts.

� We provide the parametric form of the solution (representer
theorem) that minimizes JR(f |z) in (4) for the Tikhonov
regularization R(f) = ‖Lf‖2

L2
and the generalized total-

variation (gTV) regularization R(f) = ‖Lf‖M. Our re-
sults underline how the discrete regularization resonates
with the continuous-domain one. The optimal solution for
the Tikhonov case is smooth, while it is sparse for the gTV
case. The optimal bases in the two cases are intimately
connected to the operators L and H.

� We present theoretical results that are valid for any con-
vex, coercive, and lower-semicontinuous data-fidelity term
which is proper in the range of H. This includes the case
when the data-fidelity term is ‖z − H{f}‖2

2 . In this sense,
for the gTV case our work extends the results in [11] which
only deals with indicator function over a feasible convex-
compact set as a data-fidelity term.

b) Algorithmic.
� We propose a discretization scheme to minimize JR(f |z)

in the continuous domain. Even though the minimization of
JR(f |z) is an infinite-dimensional problem, the knowledge
of the optimal basis of the solution makes the problem
finite-dimensional: it boils down to the search for a set of
optimal expansion coefficients.

� We devise an algorithm to find a sparse solution when the
gTV solution is non-unique. For this case, the optimiza-
tion problem turns out to be a LASSO [8] minimization
with non-unique solution. We introduce a combination of
FISTA [12] and the simplex algorithm to find a sparse solu-
tion which we prove to be an extreme point of the solution
set.

The paper is organized as follows: In Sections II and III, we
present the formulation and the theoretical results of the inverse
problem for the two regularization cases. In Section IV, we com-
pare the solutions of the two cases. We present our numerical
algorithm in Section V and illustrate its behavior with various
examples in Section VI. The mathematical proofs of the main
theorems are given in the appendices and the supplementary
material.

A. Related Work

The use of R(f) = ‖Lf‖2
L2

goes back to Tikhonov’s theory
of regularization [1] and to kernel methods in machine learn-
ing [13]. In the learning community, representer theorems (RT)
as in [14], [15] use the theory of reproducing-kernel Hilbert
spaces (RKHS) to state the solution of the problem for the re-
stricted case where the measurements are samples of the func-
tion. For the generalized-measurement case, there are also tight
connections between these techniques and variational splines
and radial-basis functions [16]–[18]. These representer theo-
rems, however, either have restrictions on the empirical risk
functional or on the class of measurement operators.

Specific spline-based methods with quadratic regularization
have been developed for inverse problems. In particular, [19],
[20] used variational calculus. Here, we strengthen these results
by proving the uniqueness and existence of the solution of (4)
for R(f) = ‖Lf‖2

L2
. We revisit the derivation of the result using

the theory of RKHS.
Among more recent non-quadratic techniques, the most pop-

ular ones rely on (TV) regularization which was introduced as
a noise-removal technique in [21] and is widely used in com-
putational imaging and compressed sensing, although always
in discrete settings. Splines as solutions of TV problems for
restricted scenarios have been discussed in [22]. More recently,
a RT for the continuous-domain R(f) = ‖Lf‖M in a general
setting has been established in [11], extending the seminal work
of Fisher and Jerome [23]. The solution has been shown to be
composed of splines that are directly linked to the differential
operator L. Other recent contributions on inverse problems in the
space of measures include [24]–[28]. In particular, in this paper,
we extend the result of [11] to an unconstrained version of the
problem. The unconstrained formulation is useful in devising
numerical algorithms which are one of the main contributions
of our paper. In addition our results are valid for a much larger
set of data-fidelity terms than [11]. This is useful in practical
scenarios where one may use data-fidelity terms depending on
factors like distribution of noise, etc..

B. Notation

Scalar constants, variables, and functions are denoted by
oblique letters. For ex. in f(x) = ax, a is a constant, x is a
variable, and f a function. Vectors are denoted by lowercase
bold letters for ex. a, z. Discrete domain linear operators (or
Matrix) are denoted by uppercase bold letters for ex. H,L.
Continuous domain operators are denoted by uppercase straight
letters for ex. L. Linear and non-linear functionals are denoted
by uppercase straight letters followed by {·} and (·), respec-
tively. For ex., H{f} and R(f). Function spaces are typically
denoted by uppercase calligraphic letters for ex. X .

II. FORMULATION

In our formulation of a linear inverse problem, the signal f
is a function of the continuous-domain variable x ∈ R. The
task is then to recover f from the vector of measurements z =
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H{f} + n ∈ RM , where n is an unknown noise component
that is typically assumed to be i.i.d. Gaussian.

In the customary discrete formulation, the basis of the recov-
ered function is already chosen and, therefore, all that remains
is to recover the expansion coefficients of the signal represen-
tation (1). In this scenario, one often includes matrices H and
L that directly operate on these coefficients. However, for our
continuous-domain formulation, the operations have to act di-
rectly on the function f . For this reason, we also need the
continuous-domain counterparts of the measurement and reg-
ularization operators. The entities that enter our formulation are
described next.

A. Measurement Operator

The system matrix H in (2) and (3) is henceforth replaced
by the operator H : X → RM that maps the continuous-domain
functions living in a Banach space X to the linear measurements
z ∈ RN . This operator is described as

H{f} = (〈h1 , f〉, . . . , 〈hM , f〉) = (z1 , . . . , zM ) = z, (5)

where 〈h, g〉 =
∫

R h(x)g(x) dx, which in the case of gener-
alized functions should be interpreted as the duality prod-
uct. Furthermore, the map hm : f �→ 〈hm , f〉 is assumed to
be continuous in X → R. For example, the components of
the measurement operator that samples a function at the lo-
cations x1 , . . . , xM are represented by hm = δ(· − xm ) such
that 〈δ(· − xm ), f〉 = f(xm ). Similarly, Fourier measurements
at pulsations ω1 , . . . , ωM are obtained by taking hm = e−jωm ·.

B. Data-Fidelity Term

As extension of the conventional quadratic data-fidelity term
‖z − Hf‖2

2 , we consider a general cost functional E(z, ·) :
RM → R+ ∪ {∞} with some assumptions (see Assumption 2
in Section III), that measures the discrepancy between the given
measurements z and the values H{f} predicted from the recon-
struction. A relevant example is the weighted quadratic data-
fidelity term, which is often used when the measurement noise
is Gaussian with diagonal covariance. Similarly, we can use
‖z − H{f}‖1 , for example, when the additive noise is Lapla-
cian. Alternatively, when the measurements are noiseless, we
use the indicator function

I(z,H{f}) =
{

0, z = H{f}
∞, z �= H{f}, (6)

which imposes an exact fit.

C. Regularization Operator

Since the underlying signal is continuously defined, we need
to replace the regularization matrix L in (2) and (3) by a regu-
larization operator L : X → Y , where X and Y are appropriate
(generalized) function spaces to be defined in Section II-E. The
typical example that we have in mind is the derivative opera-
tor L = D = d

dx . The continuous-domain regularization is then
imposed on Lf . We assume that the operator L is admissible in
the sense of Definition 1.

Definition 1: The operator L : X → Y is called spline-
admissible if

� it is linear and shift-invariant;
� its null space NL ={p∈X :Lp = 0} is finite-dimensional;
� it admits the Green’s function ρL : R → R with the prop-

erty that LρL = δ.
Given that L̂ is the frequency response of L, the Green’s

function can be calculated through the inverse Fourier transform
ρL = F−1{ 1

L̂
}. For example, if L = D, then ρD(x) = 1

2 sign(x).
Here the Fourier transform, F : f �→ Ff =

∫
R f(x)e−jx(·) dx,

is defined when the function is integrable and can be extended
in the usual manner to f ∈ S′(R) where S′(R) is ‘Schwartz’
space of tempered distributions. In cases such as ρL = F−1{ 1

L̂
}

when the argument is non-integrable, the definition should be
seen in terms of generalized Fourier Transform [18, Defintion
8.9] which treats the argument as a distribution.

D. Regularization Norms

Since the optimization is done in the continuous domain, we
also have to specify the proper counterparts of the �2 and �1
norms, as well as the corresponding vector spaces.

i) Quadratic (or Tikhonov) regularization: R2(f)=‖Lf‖2
L2

,
where

‖w‖2
L2

=
∫

R
|w(x)|2 dx. (7)

ii) Generalized total variation: R1(f) = ‖Lf‖M, where

‖w‖M = sup
ϕ ∈S(R),‖ϕ‖∞=1

〈w,ϕ〉. (8)

There S(R) is the ‘Schwartz’ space of smooth and rapidly
decaying functions, which is also the dual of S′(R).
Moreover, M = {w ∈ S′(R) | ‖w‖M < ∞}. In particu-
lar, when w ∈ L1 ⊂ M, we have that

‖w‖M =
∫

R
|w(x)|dx = ‖w‖L1 . (9)

Yet, we note that M is slightly larger than L1 since it
also includes the Dirac distribution δ with ‖δ‖M = 1.
The popular TV norm is recovered by taking ‖f‖TV =
‖Df‖M [11].

E. Search Space

The Euclidean search space RN is replaced by spaces of
functions, namely,

X2 = {f : R → R | ‖Lf‖L2 < +∞}, (10)

X1 = {f : R → R | ‖Lf‖M < +∞}. (11)

In other words, our search (or native) space is the largest
space over which the regularization is well defined. It turns
out that X2 and X1 are Hilbert and Banach spaces, respec-
tively. However, this is nontrivial to see since these spaces
contain the null space which makes ‖Lf‖L2 and ‖Lf‖M semi-
norms. This null-space can be taken care off by using an appro-
priate inner-product 〈·, ·〉NL (norm ‖ · ‖NL , respectively) such
that 〈·, ·〉X2 = 〈L·,L·〉 + 〈·, ·〉NL (‖ · ‖X1 = ‖L · ‖M + ‖ · ‖NL ,
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respectively) is the inner-product (norm, respectively) on X2
(X1 , respectively). The structure of these spaces has been stud-
ied in [11] and is recalled in the supplementary material.

As we shall see in Section III, the solution of (4) will be
composed of splines; therefore, we also review the definition of
splines.

Definition 2 (Nonuniform L-spline): A function f : R → R
is called a nonuniform L-spline with spline knots (x1 , . . . , xK )
and weights (a1 , . . . , aK ) if

Lf =
K∑

k=1

akδ(· − xk ). (12)

By solving the differential equation in (12), we find that the
generic form of the nonuniform spline f is

f = p0 +
K∑

k=1

akρL(· − xk ), (13)

where p0 ∈ NL .

III. THEORETICAL RESULTS

To state our theorems, we need some technical assumptions.
Assumption 1: Let the search space X and the regularization

space Y be Banach spaces such that the following holds.
i) The functionals hm for m ∈ {1, . . . , M} are linear con-

tinuous over X and the vector-valued functional H :
X → RM gives the linear measurements f �→ H{f} =
(〈h1 , f〉, . . . , 〈hM , f〉).

ii) The regularization operator L : X → Y is spline-
admissible. Its finite-dimensional null space NL has the
basis p = (p1 , . . . , pN0 ).

iii) The inverse problem is well posed over the null space.
This means that, for any pair p1 , p2 ∈ NL , we have that

H{p1} = H{p2} ⇔ p1 = p2 . (14)

In other words, different null-space functions result in
different measurements.

In particular, Condition iii) is equivalent to NL ∩NH = {0},
where NH is the null space of the vector-valued measure-
ment functional. This property prevents from having a nonzero
f0 ∈ NL ∩NH whose addition to any f ∈ X can neither be
detected by the data-fidelity term nor by the regularization term.
This is essential in ensuring the boundedness of the set of the
minimizers.

Assumption 2: For a given z ∈ RM , the functional E(z, ·) :
RM → R+ ∪ {∞} is convex, coercive, and lower semi-
continuous on the whole RM , and is proper (has finite value
for at least one input) in the range of H.

Assumption 2’: For a given z ∈ RM , the functional E(z, ·)
satisfies Assumption 2 as well as one of the following.

i) It is strictly convex; or
ii) it is an indicator function I(z, ·).
As we shall see later, stronger results can be derived for the

E(z, ·) that satisfy Assumption 2’.
Two remarks are in order. Firstly, the condition of being

proper in the range of H implies that there exists an f ∈ X such

that E(z,H{f}) is finite. Secondly, when E(z, ·) is strictly con-
vex or is such that its range does not include ∞, it is redundant
to ensure that it is proper in the range of H.

We now state our two main results. Their proofs are given in
Appendix A and Appendix B, respectively.

A. Inverse Problem with Tikhonov/L2 Regularization

Theorem 3: Let Assumptions 1 and 2 hold with the search
space X = X2 and regularization space Y = L2 . Then, the set

V2 = arg min
f ∈X2

(
E(z,H{f}) + λ‖Lf‖2

L2

)
(15)

of minimizers is nonempty, convex, and such that any f ∗
2 ∈ V2

is of the form

f ∗
2 (x) =

M∑

m=1

am ϕm (x) +
N0∑

n=1

bnpn (x), (16)

where ϕm = F−1{ ĥm

|L̂|2 }, and a = (a1 , . . . , aM ), and b = (b1 ,

. . . , bN0 ) are expansion coefficients such that

M∑

m=1

am 〈hm , pn 〉 = 0 (17)

for all n ∈ {1, . . . , N0}. Moreover, if E(z, ·) satisfies
Assumption 2’ then the minimizer is unique (the set V2 is sin-
gleton).

B. Inverse Problem With gTV Regularization

Theorem 4: Let Assumptions 1 and 2 hold for the search
space X = X1 and regularization space Y = M. Moreover, as-
sume that H is weak*-continuous (see Supplementary Material).
Then, the set

V1 = arg min
f ∈X1

(E(z,H{f}) + λ‖Lf‖M) (18)

of minimizers is nonempty, closed-convex, weak*-compact, and
its extreme points are nonuniform L-splines of the form

f ∗
1 (x) =

K∑

k=1

akρL(x − xk ) +
N0∑

n=1

bnpn (x) (19)

for some K ≤ (M − N0). The unknown knots (x1 , . . . , xK ),
and the expansion coefficients a = (a1 , . . . , aK ) and b =
(b1 , . . . , bN0 ) are the parameters of the solution with ‖Lf ∗

1 ‖M =
‖a‖1 . The solution set V1 is the closed-convex hull of these ex-
treme points. Moreover, if Assumption 2’ is satisfied then all the
solutions have the same measurement; i.e., zV1 = H{f}, ∀ f ∈
V1 .

A sufficient condition for weak*-continuity of hm is
∫

R |hm

(x)|(1 + |x|)D dx < ∞ ([11, Theorem 6]), meaning that hm

should exhibit some minimal decay at infinity (see Section A
of the supplementary material for more details). Here D =
inf{n ∈ N : (ess supx ∈R ρL(1 + |x|)n ) < +∞}. The ideal
sampling is feasible as well, provided that the ρL is continu-
ous; a detailed proof of the weak*-continuity of δ(· − xn ) for
the case L = D2 can be found in [29, Proposition 6].
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We remark that [11, Theorem 2] is a special case of
Theorem 4. The former states the same result as Theorem 4
for the minimization problem

V1 = arg min
H{f }∈ C

‖Lf‖M, (20)

where C is feasible, convex, and compact. Feasibility of C means
that the set CX1 = {f ∈ X1 : Hf ∈ C} is nonempty. In our set-
ting, problem (20) can be obtained by using an indicator func-
tion over the feasible set C as the data-fidelity term. However,
Theorem 4 covers other more useful cases of E; for example,
‖z − H{f}‖1 and ‖z − H{f}‖2

2 . Moreover, as discussed ear-
lier, when data-fidelity terms are strictly convex or do not have
∞ in their range, they are proper in the range of H for any
z ∈ RM . This means that they do not require careful selection
of C in order to satisfy the feasibility condition. This is help-
ful in directly devising and deploying algorithms to find the
minimizers.

Also, fundamentally (20) only penalizes the regulariza-
tion value, whereas Theorem 4 additionally penalizes a data-
fidelity term that can recover more desirable solutions. In fact,
Theorem 4 also covers cases such as

V1 = arg min
H{f }∈ C

E(z,H{f}) + λ‖Lf‖M, (21)

which allow more control than (20) over the data-fidelity of the
recovered solution.

C. Illustration With Ideal Sampling

Here, we discuss the regularized case where noisy data points
((x1 , z1), . . . , (xM , zM )) are fitted by a function. The measure-
ment functionals in this case are the shifted Dirac impulses
hm = δ(· − xm ) whose Fourier transform is ĥm (ω) = e−jωxm .
We choose L = D2 and E = ‖z − H{f}‖2

2 which satisfies
Assumption 2’.i). Here D2 is the generalized second-order
derivative. For the L2 problem, we have that

f ∗
2 = arg min

f ∈X2

(
M∑

m=1

|zm − f(xm )|2 + λ‖D2f‖2
L2

)
. (22)

As given in Theorem 3, f ∗
2 is unique and has the basis func-

tion ϕm (x) = F−1{ e−j ( ·)x m

|−(·)2 |2 }(x) = 1
12 |x − xm |3 . The resulting

solution is piecewise linear. It can be expressed as

f ∗
2 (x) = b1 + b2x +

M∑

m=1

1
12

am |x − xm |3 , (23)

where b1 + b2x ∈ ND2 is a linear function.
We contrast (22) with the gTV version

f ∗
1 = arg min

f ∈X1

⎛

⎜⎝
M∑

m=1

|zm − f(xm )|2 + λ ‖D2f‖M︸ ︷︷ ︸
‖Df ‖TV

⎞

⎟⎠ . (24)

In this scenario, the term ‖D2f‖M is the total variation of the
function Df . It penalizes solutions whose slope varies too much
from one point to the next.

Fig. 1. Reconstructions of a signal from nonuniform samples for L = D2 : (a)
Tikhonov (L2 ) vs. gTV solution, and (b) Corresponding basis functions ρD2

vs. ρD2 ∗D2 .

The Green’s function in this case is ρD2 = |x|
2 . Based on

Theorem 4, any extreme point of (24) is of the form

f ∗
1 (x) = b1+b2x +

1
2

K∑

k=1

a′
k |x − τk |, (25)

which is a piecewise linear function composed of a linear term
b1 + b2x and K ≤ (M − 1) basis functions, {|x − τk |}K

k=1 .
The knots (or locations) {τk}K

k=1 are not fixed a priori and
usually differ from the measurement points {xm}M

m=1 .
The two solutions and their basis functions are illustrated

in Figure 1 for specific data. This example demonstrates
that the mere replacement of the L2 penalty with the gTV
norm has a fundamental effect on the solution: piecewise-
cubic functions having knots at the sampling locations are
replaced by piecewise-linear functions with a lesser number
of adaptive knots. Moreover, in the gTV case, the regulariza-
tion has been imposed on the generalized second-order deriva-
tive of the function

(‖D2f‖M
)
, which uncovers the innova-

tions D2f ∗
1 =
∑K

k=1 a′
k δ(· − τk ). By contrast, when R2(f) =

‖D2f‖2
L2

= 〈D2∗D2f, f〉, the recovered solution is such that

D2∗D2f ∗
2 =
∑M

m=1 am δ(· − xm ), where D2∗ = D2 is the ad-
joint operator of D2 . Thus, in both cases, the recovered func-
tions are composed of the Green’s function of the corresponding
active operators: D2 vs. D2∗D2 = D4 .

IV. COMPARISON

We now discuss and contrast the results of Theorems 3 and 4.
In either case, the solution is composed of a primary component
and a null-space component whose regularization cost vanishes.
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A. Nature of the Primary Component

1) Shape and Dependence on Measurement Functionals:
The solutions for the gTV regularization are composed of atoms
within the infinitely large dictionary {ρL(· − τ)}, ∀τ ∈ R,
whose shapes depend only on L. In contrast, the L2 solutions
are composed of fixed atoms {ϕm}M

m=1 whose shapes depend
on both L and H. As the shape of the atoms of the gTV solu-
tions does not depend on H, this makes it easier to inject prior
knowledge in that case.

2) Adaptivity: The weights and the location of the atoms
of the gTV solution are adaptive and found through a data-
dependent procedure which results in a sparse solution that
turns out to be a nonuniform spline. By contrast, the L2 solution
lives in a fixed finite-dimensional space.

B. Null-Space Component

The second component in either solution belongs to the null
space of the operator L. As its contribution to regularization
vanishes, the solutions tend to have large null-space components
in both instances.

C. Oscillations

The modulus of the Fourier transform of the basis function
of the gTV case, |{ 1

L̂
}| typically decays faster than that of the

L2 case, |{ ĥm

|L̂|2 }|. Therefore, the gTV solution exhibits weaker

Gibbs oscillations at edges.

D. Uniqueness of the Solution

Our hypotheses guarantee existence. Moreover, the minimizer
of the L2 problem is unique when Assumption 2’ is true. By con-
trast, even for this special category of E(z, ·), the gTV problem
can have infinitely many solutions, despite all having the same
measurements. Remarkably, however, when the gTV solution is
unique, it is guaranteed to be an L-spline.

E. Nature of the Regularized Function

One of the main differences between the reconstructions f ∗
2

and f ∗
1 is their sparsity. Indeed, Lf ∗

1 uncovers Dirac impulses
situated at (M − 1) locations for the gTV case, with Lf ∗

1 =∑M −1
m=1 am δ(· − τm ). In return, Lf ∗

2 is a nonuniform L-spline
convolved with the measurement functions, whose temporal
support is not localized. This allows us to say that the gTV
solution is sparser than the Tikhonov solution.

V. DISCRETIZATION AND ALGORITHMS

We now lay down the discretization procedure that trans-
lates the continuous-domain optimization into a more tractable
finite-dimensional problem. Theorems 3 and 4 imply that the
infinite-dimensional solution lives in a finite-dimensional space
that is characterized by the basis functions {ϕm}M

m=1 for L2 and
{ρL(· − τk )}K

k=1 for gTV, in addition to {pn}N0
n=1 as basis of the

null space. Therefore, the solutions can be uniquely expressed
with respect to the finite-dimensional parameter a ∈ RM or

a ∈ RK , respectively, and b ∈ RN0 . Thus, the objective func-
tional JR i

(f |z, λ), for a given i ∈ {1, 2}, can be discretized
to get the objective functional JR i

(a,b|z, λ). Its minimiza-
tion is done numerically, by expressing H{f} and ‖Lf‖2

L2
or

‖Lf‖M in terms of a and b. We discuss the strategy to achieve
JR i

(a,b|z, λ) and its minima for the two cases. From now on-
wards, we will use Ji for JR i

where i ∈ {1, 2}.

A. Tikhonov Regularization

For the L2 regularization, given λ > 0, the solution

f ∗
2 = arg min

f ∈X2

(
E(z,H{f}) + λ‖Lf‖2

L2

)
︸ ︷︷ ︸

J2 (f |z,λ)

(26)

can be expressed as

f ∗
2 =

M∑

m=1

am ϕm +
N0∑

n=1

bnpn . (27)

Recall that L∗Lϕm = hm , so that

L∗Lf ∗
2 =

M∑

m=1

am hm . (28)

The corresponding J2(z|λ,a,b) is then found by expressing
H{f ∗

2 } and ‖Lf ∗
2 ‖2

L2
in terms of a and b. Due to the linearity

of the model,

H{f ∗
2 } =

M∑

m=1

am H{ϕm} +
N0∑

n=1

bnH{pn}

= Va + Wb, (29)

where [V]m,n = 〈hm , ϕn 〉 and [W]m,n = 〈hm , pn 〉. Similarly,

〈Lf ∗
2 ,Lf ∗

2 〉 = 〈L∗Lf ∗
2 , f ∗

2 〉 =

〈
M∑

m=1

am hm , f ∗
2

〉
(30)

= aT Va + aT Wb = aT Va, (31)

where (30) uses (28) and where (31) uses the orthogonality prop-
erty (17), which we can restate as aT W = 0. By substituting
these reduced forms in (26), the discretized problem becomes

f ∗
2 = arg min

a,b

(
E(z,Va + Wb) + λaT Va

)
︸ ︷︷ ︸

J2 (a,b|z,λ)=J2 (f ∗
2 |z,λ)

. (32)

Due to Assumption 2, this problem is convex. If E is differen-
tiable with respect to the parameters, the solution can be found
by gradient descent.

When E(z,H{f}) = ‖z − H{f}‖2
2 , the problem is reduced

to

arg min
a,b

(‖z − (Va + Wb)‖2
2 + λaT Va

)
︸ ︷︷ ︸

J2 (a,b|z,λ)

(33)

which is very similar to (2). This criterion is convex with re-
spect to the coefficients a and b. Enforcing that the gradient of
J2 vanishes with respect to a and b and setting the gradient to
0 then yields M linear equations with respect to the M + N0
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variables, while the orthogonality property (17) gives N0 ad-
ditional constraints. The combined equations correspond to the
linear system

[
V + λI W

WT 0

][
a
b

]
=
[
z
0

]
. (34)

The system matrix so obtained can be proven to be positive defi-
nite due to the property of Gram matrices generated in an RKHS
and the admissibility condition of the measurement functional
(Assumption 1). This ensures that the matrix is always invert-
ible. The consequence is that the reconstructed signal can be
obtained by solving a linear system of equation, for instance by
QR decomposition or by simple matrix inversion. The derived
solution is the same as the least-square solution in [20].

B. gTV Regularization

In the case of gTV regularization, the problem to solve is

f ∗
1 = arg min

f ∈X1
(E(z,H{f}) + λ‖Lf‖M)︸ ︷︷ ︸

J1 (f |z,λ)

. (35)

According to Theorem 4, an extreme-point solution of (35) is

f ∗
1 (x) =

K∑

k=1

akρL(x − τk ) +
N0∑

n=1

bnpn (x) (36)

and satisfies

Lf ∗
1 = w1 =

K∑

k=1

akδ(· − τk ) (37)

with K ≤ (M − N0). Theorem 4 implies that we only have to
recover ak , τk , and the null-space component p to recover f ∗

1 .
In our experiments, we shall consider the case of measurement

functionals whose support is limited to [0, T ]. We therefore only
reconstruct the restriction of the signal in this interval. Since we
usually know neither K nor τk beforehand, our solution is to
quantize the x-axis and look for τk in the range [0, T ] on a grid
with N � K points. We control the quantization error with the
grid step Δ = T/N .

The discretized problem is then to find a ∈ RN with fewer
than (M − N0) nonzero coefficients and b ∈ RN0 such that

f ∗
1,Δ(x) =

N −1∑

n=0

anρL(x − nΔ) +
N0∑

n=1

bnpn (x) (38)

with K ≤ (M − N0) � N nonzero coefficients an , satisfies
a computationally feasible variant of (35). In other words, we
solve the restricted version of (35)

min
f ∈X1 , Δ

(E(z,H{f}) + λ‖Lf‖M)︸ ︷︷ ︸
J1 , Δ (z|λ,f )

, (39)

where

X1,Δ =

{
N −1∑

n=0

anρL(· − nΔ) +
N0∑

n=1

bnpn

∣∣∣∣(a,b) ∈ RN +N0

}
.

Similarly to the L2 case, J1,Δ(a,b|z, λ) is found by express-
ing H{f ∗

1,Δ} and ‖Lf ∗
1,Δ‖M in terms of a and b. For this, we

use the properties that LρL = δ, ‖δ‖TV = 1, and Lpn = 0 for
n ∈ [1 . . . N0 ]. This results in

H{f ∗
1,Δ} = Pa + Qb, (40)

‖Lf ∗
1,Δ‖M = ‖a‖1 , (41)

where a = (a0 , . . . , aN −1), [P]m,n = 〈hm , ρL(· − nΔ)〉 for
n ∈ [0 . . . N − 1], [Q]m,n = 〈hm , pn 〉 for n ∈ [1 . . . N0 ],
‖a‖1 =

∑N
n=1 |an |, and where N is the initial number of

Green’s functions of our dictionary. The new discretized ob-
jective functional is

f ∗
1,Δ = arg min

a,b
(E(z, (Pa + Qb)) + λ‖a‖1)︸ ︷︷ ︸

J1 , Δ (a,b|z,λ)=J1 , Δ (f ∗
1 , Δ |z,λ)

. (42)

Note that (42) is the exact discretization of the infinite-
dimensional problem (39). However, additional theories, such
as Γ−convergence [30]–[32], are needed to show that the re-
covered signal f ∗

1,Δ converges (in the weak sense) to one of the
solution of the original problem (35) when the discretization
step Δ goes to 0 (or when N is large enough). We leave this
analysis for the future work.

When E is differentiable with respect to the parameters, a
minimum can be found by using proximal algorithms where
the slope of ‖a‖1 is defined by a Prox operator. We discuss the
two special cases when E is either an indicator function or a
quadratic data-fidelity term.

1) Exact Fit with E = I(z,H{f}): To perfectly recover the
measurements, we impose an infinite penalty when the recov-
ered measurements differ from the given ones. In view of (40)
and (41), this corresponds to solving

(a∗,b∗) = arg min
a,b

‖a‖1 subject to Pa + Qb = z. (43)

We then recast Problem (43) as the linear program

(a∗,u∗,b∗) = min
a,u,b

N∑

n=1

un subject to u + a ≥ 0,

u − a ≥ 0,

Pa + Qb = z, (44)

where the inequality x ≥ y between any 2 vectors x ∈ RN and
y ∈ RN means that xn ≥ yn for n ∈ [1 . . . N ]. This linear
program can be solved by a conventional simplex or a dual-
simplex approach [33], [34].

2) Least Squares Fit with E = ‖z − H{f}‖2
2 : When E is a

quadratic data-fidelity term, the problem becomes

(a∗,b∗) = arg min
a,b

(‖z − (Pa + Qb) ‖2
2 + λ‖a‖1

)
, (45)

which is more suitable when the measurements are noisy. The
discrete version (45) is similar to (3), the fundamental difference
being in the nature of the underlying basis function.

The problem is converted into a LASSO formulation [8] by
decoupling the computation of a∗ and b∗. Suppose that a∗ is
fixed, then b∗ is found by differentiating (45) and equating the
gradient to 0. This leads to

b∗ =
(
QT Q

)−1
QT (z − Pa∗). (46)
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Upon substitution in (45), we get that

a∗ = arg min
a

(‖Q′z − Q′Pa‖2
2 + λ‖a‖1

)
, (47)

where Q′ = (I − Q(QT Q)−1QT ) and I is the (M × M)
identity matrix. Problem (47) can be solved using a variety
of optimization techniques such as interior-point methods or
proximal-gradient methods, among others. We employ the pop-
ular iterative algorithm FISTA [12], which has an O(1/t2) con-
vergence rate with respect to its iteration number t. However, in
our case, the system matrices are formed by the measurements
of the shifted Green’s function on a fine grid. This leads to high
correlations among the columns and introduces two issues.

� If LASSO has multiple solutions, then FISTA can converge
to a solution within the solution set, whose sparsity index
is greater than M . A similar type of limitation has been
discussed in [35].

� If LASSO has a unique solution, then the convergence
to the exact solution can be slow. The convergence rate
is inversely proportional to the Lipschitz constant of the
gradient of a quadratic loss function

(
max Eig

(
HT H

))
,

which is typically high for the system matrix obtained
through our formulation.

We address these issues by using a combination of FISTA and
simplex, governed by the following Lemma 5 and Theorem 6.
The properties of the solution of the LASSO problem have been
discussed in [36], [37], [38]. We quickly recall one of the main
results from [36].

Lemma 5 ([36, Lemma 1 and 11]): Let z ∈ RM and H ∈
RM ×N , where M < N . Then, the solution set

αλ =
{

arg min
a ∈RN

(‖z − Ha‖2
2 + λ‖a‖1

)}
(48)

has the same measurement Ha∗ = z0 for any a∗ ∈ αλ. More-
over, if the solution is not unique, then any two solutions
a(1) ,a(2) ∈ αλ are such that their mth element satisfies {sign
(a(1)

m )sign(a(2)
m ) ≥ 0} for m ∈ [1 . . . M ]. In other words, any

two solutions have the same sign over their common support.
We use Lemma 5 to infer Theorem 6, whose proof is given in

Appendix 6.
Theorem 6: Let z ∈ RM and H ∈ RM ×N , where M < N .

Let z0,λ = Ha∗,∀a∗ ∈ αλ, be the measurement of the solution
set αλ of the LASSO formulation

a∗ = arg min
a ∈RN

(‖z − Ha‖2
2 + λ‖a‖1

)
. (49)

Then, the solution a∗
SLP (obtained using the simplex algorithm)

of the linear program corresponding to the problem

a∗
SLP = arg min ‖a‖1 subject to Ha = z0,λ (50)

is an extreme point of αλ. Moreover, ‖a∗
SLP‖0 ≤ M .

Theorem 6 helps us to find an extreme point of the solution
set αλ of a given LASSO problem in the case when its solution
is non-unique. To that end, we first use FISTA to solve the
LASSO problem until it converges to a solution a∗

F. By setting
z0,λ = Ha∗

F , Lemma 5 then implies that Ha = z0,λ,∀a ∈ αλ.

Fig. 2. Illustration of inability of FISTA to deliver a sparse solution : (a)
comparison of solutions, f ∗

F vs. f ∗
SLP for continuous-domain gTV problem,

(b) signal innovations with sparsity index 64 (> M ) and 21 (< M ), respec-
tively, and (c) derivative of the two solutions. The two signal innovations in (b)
are solutions of the same Lasso problem, but only a∗

SLP is an extreme point of
the solution set. The original signal is a second-order process (L = D2 ) and the
measurements are M = 30 nonuniform noisy samples (SNR = 40 dB). The
parameters are λ = 0.182, N = 400, and grid step Δ = 1

80 .

We then run the simplex algorithm to find

a∗
SLP = arg min ‖a‖1 subject to Ha = HaF,

which yields an extreme point of αλ by Theorem 6.
An example where the LASSO problem has a non-unique

solution is shown in Figure 2(b). In this case, FISTA converges
to a non-sparse solution with ‖a∗

F‖ > M , shown as solid stems.
This implies that it is not an extreme point of the solution set.
The simplex algorithm is then deployed to minimize the �1
norm such that the measurement z0 = Ha∗

F is preserved. The
final solution shown as dashed stems is an extreme point with
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the desirable level of sparsity. The continuous-domain relation
of this example is discussed later.

The solution of the continuous-domain formulation is a con-
vex set whose extreme points are composed of at most M shifted
Green’s functions. To find the position of these Green’s func-
tions, we discretize the continuum into a fine grid and then
run the proposed two-step algorithm. If the discretization is
fine enough, then the continuous-domain function that corre-
sponds to the extreme point of the LASSO formulation is a
good proxy for the actual extreme point of the convex-set solu-
tion of the original continuous-domain problem. This makes the
extreme-point solutions of the LASSO a natural choice among
the solution set.

For the case when there is a unique solution but the con-
vergence is too slow owing to the high value of the Lipschitz
constant of the gradient of the quadratic loss, the simplex al-
gorithm is used after the FISTA iterations are stopped using an
appropriate convergence criterion. For FISTA, the convergence
behavior is ruled by the number of iterations t as

F (at) − F (a∗) ≤ C

(t + 1)2 , (51)

where F is the LASSO functional and

C = 2‖a0 − a∗‖2
2 max Eig

(
HT H

)
(52)

(see [12]). This implies that an ε neighborhood of the minima
of the functional is obtained in at most t =

√
C/ε iterations. To

ensure convergence, it is also advisable to rely on the modified
version of FISTA proposed in [39].

However, there is no direct relation between the functional
value and the sparsity index of the iterative solution. Using the
simplex algorithm as the next step guarantees the upper bound
M on the sparsity index of the solution. Also, F (a∗

SLP) ≤ F (a∗
F).

This implies that an ε-based convergence criterion, in addition
to the sparsity-index-based criterion like a∗

F ≤ M , can be used
to stop FISTA. Then, the simplex scheme is deployed to find an
extreme point of the solution set with a reduced sparsity index.

Note that when E(z, ·) is not strictly convex, the solution
set can have non-unique measurements. In that case, it is still
possible to further sparsify a recovered solution by using the
discussed Simplex approach.

C. Alternative Grid-Free Techniques

Our proposed method relies on a grid based discretization
of the infinite-dimensional problem. For the sake of complete-
ness, we discuss here alternative techniques for reconstructing
continuous-domain sparse signals which employ grid-free op-
timization. Although elegant, these techniques have a more re-
stricted range of applicability. The Taut-string algorithm (see
[40]) can fit L-splines for L = Dn but is devised for ideal sam-
pling only. In [25], [26], [35], [41]–[43] the dual problem is
considered for the optimization with an added emphasis on re-
covering the ground-truth signal. These methods, however, only
deal with L = Id and limited measurement operators.

Recently, in [28], motivated from [11], results for more gen-
eral L and H have been derived. There the optimization is carried
out in two steps; firstly, a finite dimensional dual problem involv-

ing two infinite-dimensional convex-constraints-sets is solved;
secondly, the support of this solution is identified which is finally
used to solve a finite-dimensional primal problem. Remarkably,
for some specific cases, solving each of these steps is feasible
which results in an exact finite-dimensional formulation (see for
example [28, Section 2.4.2 and 2.4.3]).

VI. ILLUSTRATIONS

We discuss the results obtained for the cases when the mea-
surements are random samples either of the signal itself or of its
continuous-domain Fourier transform. The operators of inter-
est are L = D and L = D2 . The ground truth (GT) signal fGT
is solution of the stochastic differential equation LfGT = wGT
[44] for the two cases when wGT is

� Impulsive Noise. Here, the innovation wGT is a compound-
Poisson noise with Gaussian jumps, which corresponds
to a sum of Dirac impulses whose amplitudes follow a
Gaussian distribution. The corresponding process fGT has
then the particularity of being piecewise smooth [45]. This
case is matched to the regularization operator ‖Lf‖M and
is covered by Theorem 4 which states that the minima f ∗

1
for this regularization case is such that

w∗
1 = Lf ∗

1 =
K∑

k=1

akδ(· − xk ), (53)

which is a form compatible with a realization of an impul-
sive white noise.

� Gaussian White Noise. This case is matched to the reg-
ularization operator ‖Lf‖L2 . Unlike the impulsive noise,
w∗

2 = Lf ∗
2 is not localized to finite points and therefore is a

better model for the realization of a Gaussian white noise.
In all experiments, we also constrain the test signals to be

compactly supported. This can be achieved by putting linear
constraints on the innovations of the signal. In Sections VI-A
and VI-C, we confirm experimentally that matched regulariza-
tion recovers the test signals better than non-matched regular-
ization. While reconstructing the Tikhonov and gTV solutions
when the measurements are noisy, the parameter λ in (34) and
(45) is tuned using a grid search to give the best recovered
SNR.

A. Random Sampling

In this experiment, the measurement functionals are Dirac
impulses with the random locations {xm}M

m=1 . The regu-
larization operator is L = D2 . It corresponds to ρD2 (x) =
− 1

2 |x| and ϕD2 (x) = (ρL∗L ∗ hm ) (x) = |x − xm |3/12. The
null space is ND2 = span{1, x} for this operator. This means
that the gTV-regularized solution is piecewise linear and that
the L2-regularized solution is piecewise cubic. We compare in
Figures 3(a) and 3(b) the recovery from noiseless samples of a
second-order process, referred to as ground truth (GT). It is com-
posed of sparse (impulsive Poisson) and non-sparse (Gaussian)
innovations, respectively [46]. The sparsity index—the number
of impulses or non-zero elements—for the original sparse sig-
nal is 9. The solution for the gTV case is recovered with Δ =
0.05 and N = 200. The sparsity index of the gTV solution for
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Fig. 3. Recovery of sparse (a) and Gaussian (b) second-order processes (GT) using L = D2 from their nonuniform samples corrupted with 40 dB measurement
noise.

Fig. 4. Recovery of first-order (first row) and second-order (second row) processes from their random noiseless Fourier samples. In all the cases, M = 41 and
N = 200. In the interest of clarity, (c) and (d) contain the zoomed versions of the actual signals.

the sparse and Gaussian cases are 9 and 16, respectively. As
expected, the recovery of the gTV-regularized reconstruction is
better than that of the L2-regularized solution when the signal
is sparse. For the Gaussian case, the situation is reversed.

B. Multiple Solutions

We discuss the case when the gTV solution is non-unique.
We show in Figure 2(a) examples of solutions of the gTV-
regularized random-sampling problem obtained using FISTA
alone (f ∗

F ) and FISTA + simplex (linear programming, f ∗
SLP). In

this case, M = 30, L = D2 , and λ = 0.182. The continuous-
domain functions f ∗

F and f ∗
SLP have basis functions whose

coefficients are the (non-unique) solutions of a given LASSO
problem, as shown in Figure 2(b). The �1 norms of the corre-
sponding coefficients are the same. Also, it holds that

‖D2f ∗
F‖M = ‖D2f ∗

SLP‖M = ‖Df ∗
F‖TV = ‖Df ∗

SLP‖TV, (54)

which implies that the TV norm of the slope of f ∗
F and f ∗

SLP
are the same. This is evident from Figure 2(c). The arc-length
of the two curves are the same. The signal f ∗

SLP is piecewise
linear (21 < M ), carries a piecewise-constant slope, and is by
definition, a non-uniform spline of degree 1. By contrast, f ∗

F has
many more knots and even sections whose slope appears to be
piecewise-linear.
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TABLE I
COMPARISON OF TV AND L2 RECOVERY FROM THEIR (LEFT TABLE) NOISELESS AND (RIGHT TABLE) NOISY (WITH 40 DB SNR) RANDOM FOURIER SAMPLES

The results have been averaged over 40 realizations.

Theorem 4 asserts that the extreme points of the solution set
of the gTV regularization need to have fewer than M knots. Re-
member that f ∗

SLP is obtained by combining FISTA and simplex;
this ensures that the basis coefficients of f ∗

SLP are the extreme
points of the solution set of the corresponding LASSO problem
(Theorem 6) and guarantees that the number of knots is smaller
than M .

This example shows an intuitive relationship between the
continuous-domain and the discrete-domain formulations of in-
verse problems with gTV and �1 regularization, respectively.
The nature of the continuous-domain solution set and its ex-
treme points resonates with its corresponding discretized ver-
sion. In both cases, the solution set is convex and the extreme
points are sparse.

C. Random Fourier Sampling

Let now the measurement functions be hm (x) = rect( x
T )

e−jωm x , where T is the window size. The samples are thus
random samples of the continuous-domain Fourier transform
of a signal restricted to a window. For the regularization op-
erator L = D, the Green’s function is ρD(x) = 1

2 sign(x) and
the basis is ϕD ,m (x) =

( 1
2 | · | ∗ hm

)
(x). Figure 4(a) and 4(b)

correspond to a first-order process with sparse and Gaussian in-
novations, respectively. The grid step Δ = 0.05, M = 41, and
N = 200. The sparsity index of the gTV solution for the sparse
and Gaussian cases is 36 and 39, respectively. For the original
sparse signal (GT), it is 7. The oscillations of the solution in the
L2-regularized case are induced by the sinusoidal form of the
measurement functionals. This also makes the L2 solution in-
trinsically smoother than its gTV counterpart. Also, the quality
of the recovery depends on the frequency band used to sample.

In Figures 4(c) and 4(d), we show the zoomed version of
the recovered second-order process with sparse and Gaussian
innovations, respectively. The grid step is Δ = 0.05, M = 41
and N = 200. The operator L = D2 is used for the regular-
ization. This corresponds to ρD2 (x) = |x|

2 and ϕD2 ,m (x) =( 1
12 | · |3 ∗ hm

)
(x). The sparsity index of the gTV solution in

the sparse and Gaussian cases is 10 and 36, respectively. For the
original sparse signal (GT), it is 10. Once again, the recovery
by gTV is better than by L2 when the signal is sparse. In the
Gaussian case, the L2 solution is better.

The effect of sparsity on the recovery of signals from their
noiseless and noisy (40 dB SNR) Fourier samples are shown
in Table 1. The sample frequencies are kept the same for all
the cases. Here, M = 41, N = 200, T = 10, and the grid step
Δ = 0.05. We observe that reconstruction performances for ran-

Fig. 5. Summary of the whole scheme. The regularization operator with a
given norm {4.a} defines the search space for the solution{1.a, 4.b}. Repre-
senter theorems then give the parametric representation of the solution {1.b}.
The numerical solution is then recovered by optimizing over the parameters to
minimize JR (f |z) {1.c}.

dom processes based on impulsive noise are comparable to that
of Gaussian processes when the number of impulses increases.
This is reminiscent of the fact that generalized-Poisson pro-
cesses with Gaussian jumps are converging in law to corre-
sponding Gaussian processes [47].

VII. CONCLUSION

We have shown that the formulation of continuous-domain
linear inverse problems with Tikhonov- and total-variation-
based regularizations leads to spline solutions. The nature of
these splines is dependent on the Green’s function of the regu-
larization operator (L∗L) and L for Tikhonov and total variation,
respectively. The former is better to reconstruct smooth signals;
the latter is an attractive choice to reconstruct signals with sparse
innovations. Representer theorems for the two cases come handy
in the numerical reconstruction of the solution. They allow us
to reformulate the infinite-dimensional optimization as a finite-
dimensional parameter search. The formulations and the results
of this paper are summarized in Figure 5. The main aim of this
paper was to compare the solutions of the two regularizations.
We expect that similar results exist in higher dimensions since
the theory can be generalized. However, the computations can
also be expected to be challenging for signals defined over Rd

with d > 1, for example, when considering images rather than
signals.
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APPENDIX A
PROOF OF THEOREM 3

A. Abstract Representer Theorem

The result presented in this section is preparatory to
Theorem 3. It is classical for Hilbert spaces [18, Theorem 16.1].
We give its proof for the sake of completeness.

Theorem 7: LetX be a Hilbert space equipped with the inner
product 〈·, ·〉X and let h1 , . . . , hM ∈ X ′ be linear and continu-
ous functionals. Let C ∈ RM be a feasible convex compact set,
meaning that there exists at least a function f ∈ X such that
H{f} ∈ C. Then, the minimizer

f ∗ = arg min
f∈X

‖f‖2
X s.t. H{f} ∈ C (55)

exists, is unique, and can be written as

f ∗ =
M∑

m=1

am h#
m (56)

for some {am}M
m=1 ∈ R, where h#

m = Πhm and Π : X ′ → X
is the Riesz map of X .

Proof: The feasibility of the set C implies that the set CX =
H−1(C) = {f ∈ X : H{f} ∈ C} ∈ X , is nonempty. Since H
is linear and bounded and since C is convex and compact, its
preimage CX is also convex and closed. By Hilbert’s projection
theorem [48], the solution f ∗ exists and is unique as it is the
projection of the null function onto CX . Let the measurement of
this unique point f ∗ be z0 = H{f ∗}.

The Riesz representation theorem states that 〈hm , f〉 =
〈h#

m , f〉X for every f ∈ X , where h#
m ∈ X is the unique Riesz

conjugate of the functional hm . We then uniquely decompose
f ∗ as f ∗ = f ∗⊥ +

∑M
m=1 am h#

m , where f ∗⊥ is orthogonal to
the span of the h#

m with respect to the inner product on X i.e.,
H{f ∗⊥} = 0. The orthogonality also implies that

‖f ∗‖2
X =
∥∥f ∗⊥∥∥2

X +

∥∥∥∥∥

M∑

m=1

am h#
m

∥∥∥∥∥

2

X
. (57)

This means that the minimum norm is reached when f ∗⊥ =
0 while keeping H{f ∗} = z0 , implying the form (56) of the
solution. �

B. Proof of Theorem 3

The proof of Theorem 3 has two steps. We first show that
if Assumption 2 holds, then there is at least one solution and,
moreover, if Assumption 2’ holds, then the solution is unique.
After this, we use Theorem 7 to deduce the form of the solution.

Existence of the Solution: We use the classical result on
Hilbert spaces which states that a proper, coercive, lsc, and con-
vex objective functional over a Hilbert space has a nonempty
and convex set of minimizers [49].

Properness: By Assumption 2, E(z, ·) is proper. The regular-
ization ‖Lf‖2

L2
is proper by the definition of X2 . This means

that J2(·|z) is proper in X2 .
Lower semi-continuity: E(z, ·) is lsc in RM , and H : X2 →

RM is continuous. Therefore, E(z,H{·}) is lsc over X2 . Simi-
larly, by composition f �→ ‖Lf‖L2 is continuous, hence lsc over

X2 . Since J2(·|z) is the sum of two lsc functionals, it is lsc as
well.

Convexity: E(z, ·) and ‖ · ‖2
L2

are convex, and H and L are
linear. Therefore, J2(·|z) = E(z,H{·}) + ‖L · ‖2

L2
is convex

too.
Coercivity: The measurement operator H is continuous and

linear from X2 to RM ; hence, there exists a constant A such that

‖H{f}‖2 ≤ A‖f‖X2 (58)

for every f ∈ X2 . Likewise, the condition H{p} = H{q} ⇒
p = q for p, q ∈ NL implies the existence of B > 0 such that
[11, Proposition 8]

‖H{p}‖2 ≥ B‖p‖NL (59)

for every p ∈ NL . As presented in the supplementary material
(see [11] for more details), the search spaceX2 is a Hilbert space
for the Hilbertian norm

‖f‖X2 = ‖Lf‖L2 + ‖Pf‖NL (60)

with P being the projector on NL introduced in (74). We set
p = Pf and g = f − p. Then, g ∈ X2 satisfies Lg = Lf and
Pg = 0, and hence

‖g‖X2 = ‖Lg‖L2 + ‖Pg‖NL = ‖Lf‖L2 . (61)

Now consider a sequence of (generalized) functions fm ∈ X2 ,
m ∈ N such that ‖fm‖X2 → ∞. We set pm = Pfm and gm =
fm − pm . Assume by contradiction that J2(fm |z) is bounded.
Then, ‖Lfm‖L2 and ‖H{fm}‖2 are bounded (for the latter, we
use that E(z, ·) is coercive). However, we have

‖H{fm}‖2 ≥ ‖H{pm}‖2 − ‖H{gm}‖2 (62)

≥ B‖pm‖NL − A‖gm‖X2 (63)

= B‖fm‖X2 − (A + B)‖Lfm‖L2 (64)

where we used respectively the triangular inequality in (62), the
inequalities (58) and (59) in (63), and the relations ‖pm‖NL =
‖fm‖X2 − ‖Lfm‖L2 and ‖gm‖X2 = ‖Lfm‖L2 in (64). Since
‖Lfm‖L2 is bounded and ‖fm‖X2 → ∞, we deduce that
‖H{fm}‖2 → ∞, which is known to be false. Finally, we obtain
a contradiction, proving the coercivity.

Since, J2(·|z) is proper, lsc, convex, and coercive on X2 ,
therefore, it has at least one minimizer.

Uniqueness of the Solution: We now prove that if E(z, ·)
satisfies Assumption 2’ then the solution is unique. We first
show this for the case when Assumption 2’.i) is satisfied. We
already know that the solution set is nonempty. It is then clear
that the uniqueness is achieved if J2(·|z) is strictly convex.
We now prove the convex functional J2(·|z) is actually strictly
convex.

For β ∈ (0, 1), fA , fB ∈ X2 , we denote fAB = βfA +
(1 − β)fB . Then, the equality case J2(fAB |z) = βJ2(fA |z) +
(1 − β)J2(fB |z) implies that E(z, fAB ) = βE(z, fA ) + (1 −
β)E(z, fB ) and ‖LfAB ‖L2 = β‖LfB ‖L2 + (1 − β)‖LfB ‖L2 ,
since the two parts of the functional are themselves convex. The
strict convexity of E(z, ·) and the norm ‖ · ‖2 then implies that

LfA = LfB and H{fA} = H{fB } (65)
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and, therefore, (fA − fB ) ∈ NL ∩NH . Since NL ∩NH = 0
by Assumption 1, therefore, fA = fB . This demonstrates that
J2(·|z) is strictly convex.

For Assumption 2’.ii), that is when E(z, ·) = I(z, ·), the so-
lution set can be written as

V2 = arg min
f ∈H−1 {z}

‖Lf‖2
L2

. (66)

where the set H−1{z} = {f ∈ X2 : H{f} = z} is nonempty
since we assumed I(z, ·) to be proper in the range of H.

According to [17, Theorem 1.1 and 1.2] given that the range
of L : X2 → L2 is closed in L2 , V2 in (66) is singleton . As
discussed in the supplementary material, given any w ∈ L2 ,
we can always find an f ∈ X2 such that Lf = w. This means
that the range of L is the whole L2 which is clearly closed in
L2 .

Form of the Minimizer: We first take the case when E satisfies
Assumption 2’. Let f ∗

2 be the unique solution and z0 = H{f ∗
2 }.

One decomposes again X2 as the direct sum X2 = Q⊕NL ,
where

Q = {f ∈ X2 : 〈f, p〉X2 = 0, ∀p ∈ NL}
is the Hilbert space with norm ‖L · ‖L2 . In particular, we have
that f ∗

2 = q∗ + p∗ with q∗ ∈ Q and p∗ ∈ NL .
Consider the optimization problem

min
g∈Q

‖Lg‖2
L2

s.t. H{g} = (z0 − H{p∗}). (67)

According to Theorem 7, this problem admits a unique
minimizer g∗ such that Π−1g∗ ∈ Q′ ∩ Span{hm}M

m=1 where
Π−1 : X → X ′ is the inverse of the Riesz map Π : X ′ → X
and Q′ = Π−1Q. The set Q′ ∩ Span{hm}M

m=1 is represented by∑M
m=1 am hm , where

∑
m am 〈hm , p〉 = 0 for every p ∈ NL .

However, by definition, the function q∗ also satisfies H{q∗} =
(z0 − H{p∗}). Moreover, ‖Lq∗‖2

L2
≤ ‖Lg∗‖2

L2
; otherwise, the

function f̃ = g∗ + p∗ ∈ X2 would satisfy J2(f̃ |z) < J2(f ∗
2 |z),

which is impossible. However, since (67) has a unique solution,
we have q∗ = g∗.

This proves that f ∗
2 = Π{∑M

m=1 am hm} + p∗. For any q′ ∈
Q′ the Riesz map Πq′ = q′ ∗ ρL∗L + pq ′ for some pq ′ ∈ NL
[17], [18]. Here ρL∗L is the Green’s function of the operator
(L∗L) (see Definition 1). Therefore,

f ∗
2 = p0 + ρL∗L ∗

{
M∑

m=1

am hm

}
(68)

where p0 = (pq ′ + p∗) ∈ NL and where
∑

m am 〈hm , p〉 = 0
for every p ∈ NL .

The component ρL∗L ∗ {∑M
m=1 am hm} in (68) can be written

as,
∑M

m=1 am ϕm provided that ϕm = ρL∗L ∗ hm = F−1{ ĥm

|L̂|2 }
is well-defined. To show that this is the case, we decompose
hm = ProjQ′{hm} + ProjN′

L
{hm} where ProjQ′ and ProjN′

L

are the projection operators on Q′ and N′
L , respectively. Since,

ProjQ′{hm} ∈ Q′, as discussed earlier, ρL∗L ∗ ProjQ′{hm} is
well-defined.

Now, one can always select a basis {pn}N0
n=1 such that

N′
L = Span{φn}N0

n=1 with φn = δ(· − xn ) and 〈φm , pn 〉 =
δ[m − n]. The other component ProjN′

L
{hm} =

∑N0
n=1 cnφn

where cn = 〈hm , pn 〉. Therefore, ρL∗L ∗ ProjN′
L
{hm} is a lin-

ear combination of shifted Green’s functions, which proves that

ϕm = F−1{ ĥm

|L̂|2 } is well defined.

For general case, when Assumption 2 is satisfied, we see that
any solution f ∗

2 ∈ V2 also minimizes the following

min
f ∈H−1 {H{f ∗

2 }}
‖Lf‖L2 . (69)

As discussed earlier, the minimizer of (69) is unique so that it
is clearly f ∗

2 . We now use the same reasoning as for the cases
of Assumption 2’ to show that f ∗

2 takes the form (16). This
concludes the proof.

Note that, even in the absence of convexity of E(z, ·), results
on the form of the solution can still be obtained.

APPENDIX B
PROOF OF THEOREM 4

Similarly to the L2 case, the proof has two steps. We first
show that the set of minimizers is nonempty. We then connect
the optimization problem to the one studied in [11, Theorem 2]
to deduce the form of the extreme points. The functional to
minimize is J1(f |z) = E(z,H{f}) + λ‖Lf‖M, defined over
the Banach space X1 .

Existence of Solutions: We first show that V = arg minf∈X1

J1(f |z) is nonempty, convex, and weak*-compact.
We rely on the generalized Weierstrass theorem presented in

[49]: Any proper, lower semi-continuous (lsc) functional over
a compact topological vector space reaches its minimum, from
which we deduce the following result. We recall that the dual
space B′ of a Banach space B can be endowed with the weak*-
topology, and that one can define a norm ‖f‖B′ = sup‖x‖B 〈f, x〉
for which B′ is a Banach space.

Proposition 8: Let B be a Banach space. Then, a functional
J : B′ → R+ ∪ {∞} which is proper, convex, coercive, and
weak*-lsc is lower bounded and reaches its infimum. Moreover,
the set V = arg min J is convex and weak*-compact.

Proof: Let α > inf J. The coercivity implies that there exists
r > 0 such that J(f) ≥ α as soon as ‖f‖B′ > r. The infimum of
J can only be reached on Br = {f ∈ B′, ‖f‖B′ ≤ r}, hence we
restrict our analysis to it. The Banach-Alaoglu theorem implies
that Br is weak*-compact. As a consequence, the functional
J is proper and lsc on the compact space Br endowed with
the weak*-topology. According to the generalized Weierstrass
theorem [49, Theorem 7.3.1], J reaches its infimum on Br ,
hence on X ′.

Let V = arg min J and α0 = min J. The convexity of J di-
rectly implies the one of V . The set V is included in the ball
Bα0 which is weak*-compact. Therefore, it suffices to show
that V is weak*-closed to deduce that it is weak*-compact.
Moreover, the weak*-lower semi-continuity is equivalent to
the weak*-closedness of the level sets {f ∈ B′ : J(f) ≤ α}
are weak*-closed. Applying this to α = α0 , we deduce that
V = {f ∈ B′ : J(f) ≤ α0} is weak*-closed, as expected. �

We apply Proposition 8 to B′ = X1 , which is the dual of the
Banach space B = CL(R) introduced in [11] and recapped in
the supplementary material. One has to show that the functional
J = J1(·|z) is coercive and weak*-lsc over X1 . The coercivity
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is deduced exactly in the same way as for Theorem 3. The
weak*-lower semi-continuity is deduced as follows. First, H
is weak*-continuous by assumption and E(z, ·) is lsc; hence,
the composition f �→ E(z,H{f}) is weak*-lsc. Similarly, the
norm ‖ · ‖M is weak*-lsc onM and L : X1 → M is continuous,
hence f �→ ‖Lf‖M is weak*-continuous, and therefore weak*-
lsc over X1 . Finally, J1(·|z) is weak*-lsc over X1 as it is a sum
of two weak*-lsc functionals.

Form of the Extreme Points: Let fe be an extreme point of the
setV1 and ze =Hfe . Then fe is also a member of the solution set

Ve = arg min
f =H−1 {ze }

‖Lf‖M. (70)

Since ze is convex and compact, and the set H−1{ze} is
nonempty, we can apply Theorem 2 of [11] to deduce that Ve

is convex and weak*-compact, together with the general form
(19) of the extreme-points of Ve .

Since Ve ⊆ V1 , and fe ∈ Ve it can be easily shown that fe is
also an extreme point of Ve . This proves that the extreme points
of V1 admit the form (19).

Measurement of the solution set: We now show that in the case
of Assumption 2’ the measurement of the solution set is unique.
We first prove this for the case of Assumption 2’.i). Let J∗

1 be the
minimum value attained by the solutions. Let f ∗

A and f ∗
B be two

solutions. Let eA , eB be their corresponding E functional value
and let rA , rB be their corresponding regularization functional
value. Since the cost function is convex, any convex combination
fAB = βf ∗

A + (1 − β)f ∗
B is also a solution for β ∈ [0, 1] with

functional value J∗
1 . Let us assume that H{f ∗

A} �= H{f ∗
B }. Since

E(z, ·) is strictly convex and R1(f) = ‖Lf‖M is convex, we
get that

J∗
1 = E(z,H{βf ∗

A + (1 − β)f ∗
B }) + λR1(βf ∗

A + (1 − β)f ∗
B )

< βeA + (1 − β)eB + λβrA + λ(1 − β)rB︸ ︷︷ ︸
J ∗

1

.

This is a contradiction. Therefore, H{f ∗
A}=H{f ∗

B }=H{fAB }.
In the case of Assumption 2’.ii), E(z, ·) is an indicator func-

tion. It is therefore obvious that all the solutions have the same
measurement z.

APPENDIX C
PROOF OF THEOREM 6

We first state two propositions that are needed for the proof.
Their proofs are given in the supplementary material.

Proposition 9 (Adapted from [10, Theorem 5]): Let z∈RM

and H ∈ RM ×N , where M < N . Then, the solution set αλ of

a∗ = arg min
a ∈RN

(‖z − Ha‖2
2 + λ‖a‖1

)
(71)

is a compact convex set and ‖a‖0 ≤ M, ∀a ∈ αE,λ, where
αE,λ is the set of the extreme points of αλ.

Proposition 10: Let the convex compact set αλ be the so-
lution set of Problem (48) and let αE,λ be the set of its
extreme points. Let the operator T : αλ → RN be such that
Ta = u with um = |am |,m ∈ [1, . . . , N ]. Then, the operator
is linear and invertible over the domain αλ and the range Tαλ

is convex compact such that the image of any extreme point
aE ∈ αE,λ is also an extreme point of the set Tαλ.

The linear program corresponding to (50) is

(a∗,u∗) = min
a,u

N∑

n=1

un , subject to u + a ≥ 0,

u − a ≥ 0,

Pa = z. (72)

By putting u + a = s1 and (u − a) = s2 , the standard form of
this linear program is

(s∗1 , s
∗
2) = min

s1 ,s2

(
N∑

n=1

s1n + s2n

)
, s.t. s1 ≥ 0,

s2 ≥ 0,

Ps1 − Ps2 ≤ z

−Ps1 + Ps2 ≤ −z. (73)

Any solution a∗ of (72) is equal to (s∗1 − s∗2) for some solution
pair (73). We denote the concatenation of any two indepen-
dent points sr

1 , s
r
2 ∈ RN by the variable sr = (sr

1 , s
r
2) ∈ R2N .

Then, the concatenation of the feasible pairs sf = (sf
1 , sf

2 ) that
satisfies the constraints of the linear program (73) forms a poly-
tope in R2N . Given that (73) is solvable, it is known that at least
one of the extreme points of this polytope is also a solution.
The simplex algorithm is devised such that its solution s∗SLP =(
s∗1,SLP , s∗2,SLP

)
is an extreme point of this polytope [34]. Our

remaining task is to prove that a∗
SLP =

(
s∗1,SLP − s∗2,SLP

)
is an

extreme point of the set αλ, the solution set of the problem (48).
Proposition 9 claims that the solution set αλ of the LASSO

problem is a convex set with extreme points αE,λ ∈ RN . As αλ

is convex and compact, the concatenated set ζ = {w ∈ R2N :
w = (a∗,u∗),a∗ ∈ αλ} is convex and compact by Proposi-
tion 10. The transformation (a∗,u∗) = (s∗1 − s∗2 , s

∗
1 + s∗2) is

linear and invertible. This means that the solution set of (73)
is convex and compact, too. The simplex solution corresponds
to one of the extreme points of this convex compact set.

Since the map (a∗,u∗) = (s∗1 − s∗2 , s
∗
1 + s∗2) is linear and in-

vertible, it also implies that an extreme point of the solution set
of (73) corresponds to an extreme point of ζ. Proposition 10 then
claims that this extreme point of ζ corresponds to an extreme
point aSLP ∈ αλ,E .
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[27] A. Chambolle, V. Duval, G. Peyré, and C. Poon, “Geometric properties of
solutions to the total variation denoising problem,” Inverse Probl., vol. 33,
no. 1, Dec. 2016, Art. no. 015002.

[28] A. Flinth and P. Weiss, “Exact solutions of infinite dimensional total-
variation regularized problems,” arXiv:1708.02157 [math.OC], 2017.

[29] M. Unser, “A representer theorem for deep neural networks,”
arXiv:1802.09210 [stat.ML], 2018.

[30] A. Braides, Gamma-Convergence for Beginners. Oxford, U.K.: Clarendon
Press, 2002, vol. 22.
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