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On the Existence and Uniqueness of the Eigenvalue
Decomposition of a Parahermitian Matrix

Stephan Weiss

Abstract—This paper addresses the extension of the factoriza-
tion of a Hermitian matrix by an eigenvalue decomposition (EVD)
to the case of a parahermitian matrix that is analytic at least on an
annulus containing the unit circle. Such parahermitian matrices
contain polynomials or rational functions in the complex variable
z and arise, e.g., as cross spectral density matrices in broadband ar-
ray problems. Specifically, conditions for the existence and unique-
ness of eigenvalues and eigenvectors of a parahermitian matrix
EVD are given, such that these can be represented by a power or
Laurent series that is absolutely convergent, at least on the unit cir-
cle, permitting a direct realization in the time domain. Based on an
analysis of the unit circle, we prove that eigenvalues exist as unique
and convergent but likely infinite-length Laurent series. The eigen-
vectors can have an arbitrary phase response and are shown to exist
as convergent Laurent series if eigenvalues are selected as analytic
functions on the unit circle, and if the phase response is selected
such that the eigenvectors are Holder continuous with o > % on
the unit circle. In the case of a discontinuous phase response or if
spectral majorisation is enforced for intersecting eigenvalues, an
absolutely convergent Laurent series solution for the eigenvectors
of a parahermitian EVD does not exist. We provide some examples,
comment on the approximation of a parahermitian matrix EVD
by Laurent polynomial factors, and compare our findings to the
solutions provided by polynomial matrix EVD algorithms.

1. INTRODUCTION

F OR a multi-channel signal x[n] € CM the instantaneous

covariance matrix is R = £{x[n]x"[n]}, where £{-} de-

notes the expectation operator and x™ represents the Hermitian

transpose of x. It captures the correlation and phase informa-
tion on which rests the optimal solution of many narrowband
array processing problems. For broadband signals, explicit de-
lays must be considered instead of phase shifts, and capturing
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the second order statistics can be accomplished via the space-
time covariance matrix R[r] = &{x[n]x"[n — 7]} with a
discrete lag parameter 7. Since R|[7] contains auto- and cross-
correlation terms of x[n] it follows that R[r] = R"[—7]. Tak-
ing the z-transform leads to the cross spectral density (CSD)
matrix' R(z) = Y. R|[r]z"", which is a function of the com-
plex variable z. The CSD matrix satisfies the parahermitian
property R(z) = R"(z), where the parahermitian operation
R"(z) = R"(1/z*) involves Hermitian transposition and time
reversal [1]. We call any R(z) satisfying the parahermitian prop-
erty a parahermitian matrix.

In the narrowband case, many optimal and robust solutions to
signal processing problems rely on matrix decompositions [2],
[3], particularly on the eigenvalue decomposition (EVD) of R.
To extend the utility of the EVD to the broadband case re-
quires an equivalent factorisation of the parahermitian matrix
R(z). Under the restriction of R(z) having Laurent polynomial
entries, a number of algorithms have been reported in the litera-
ture over the past decade [4]-[12] that calculate an approximate
polynomial EVD R(z) ~ U (2)I'(2)U*(z) consisting of Lau-
rent polynomial factors, where U(z) iS a paraunitary matrix,
thatis, U () satisfies U ! (z) = UP(z) [1] and I'(2) is a diago-
nal polynomial matrix containing power spectral density (PSD)
terms.

The above polynomial matrix EVD algorithms have proved
useful in a number of applications, for example in denoising-
type [13] or decorrelating array preprocessors [14], transmit and
receive beamforming across broadband MIMO channels [15]—
[17], broadband angle of arrival estimation [18], [19], optimum
subband partitioning of beamformers [20], filter bank-based
channel coding [21], fixed [22] and adaptive (i.e. minimum
variance distortionless response) broadband beamforming [23],
and blind source separation [24]. The polynomial approach can
enable solutions that otherwise have been unobtainable: e.g. the
design of optimal compaction filter banks beyond the two chan-
nel case [8], the coherent estimation of broadband sources [19]
without side-information, or the decoupling of dimensions and
hence reduction of computational complexities of the quiescent
beamformer, the blocking matrix and the adaptive noise can-
celler in a polynomial generalised sidelobe canceller [23].

'In our notation, boldface upper and lower case font refers to matrices and
vectors, respectively. A bold A generally refers to a time domain quantity, while
A(z) is a transform domain quantity, with A(e’) typically its evaluation on
the unit circle, z = /2.
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Despite the numerous algorithms? and a number of success-
ful applications, the theoretical foundations of the existence and
uniqueness of a polynomial EVD have received little attention.
The book by Gohberg et al. [25] considers the related factori-
sation of a self-adjoint matrix A(x) = A"(zx), z € R, which
can be applied to a parahermitian matrix R(z) on the unit circle
via the reparameterisation z = e/, Decompositions such as the
Smith and Smith-MacMillan forms for matrices of polynomials
and rational functions, respectively, are proven to exist [1], [25],
but do not involve paraunitary and parahermitian factors as re-
quired for the polynomial EVD in [4], [6]. Significantly, Icart
and Comon [26] prove, based on known decompositions and
the Stone-Weierstrass theorem, that the decomposition factors
of a positive semi-definite parahermitian matrix can be approx-
imated by Laurent polynomials. For the polynomial EVD in [9]
and the related problem of a Laurent-polynomial QR decom-
position [27], [28], the authors show that the factor matrices
generally cannot exist as Laurent polynomials because the re-
quired solutions involve divisions and square root operations of
polynomials.

This paper aims to extend the work in [26] and to clarify the
existence and uniqueness of factorising a parahermitian R(z)
into paraunitary and diagonal parahermitian matrices. We gen-
eralise R(z) to include not just polynomials but rational func-
tions in z € C. Since the EVD even for a polynomial R(z) is
not guaranteed to exist with Laurent polynomial factors [26],
we refer to the decomposition R(z) = U (2)T'(2)U"(z), with
absolutely convergent Laurent series® U () and T'(2) as a para-
hermitian matrix EVD (PhEVD). If it exists, the matrix of eigen-
values, I'(z), is parahermitian and a Laurent series; the eigen-
vectors in U (z) may exist as Laurent series, and, if causal, may
even be power series. Absolute convergence—in some cases
analyticity—of these factors will ensure that these Laurent or
power series permit a direct time domain realisation. Our proof
of existence and uniqueness proceeds in two stages. First, we
characterize the PAEVD of R(z) on the unit circle, i.e. in terms
of the normalised angular frequency (2 € R. We next state the
conditions that must be satisfied for the PhEVD factors to be
representable as Laurent or power series. The main thrust of our
analysis rests (i) on the analyticity of R(z) [29] to guarantee
that the CSD matrix is entirely characterised by its evaluation
on the unit circle, (ii) on matrix perturbation theory [30], [31] to
demonstrate the smooth evolution of EVD factors as functions
of €2, and (iii) on complex function analysis [32] to extract con-
vergent Laurent or power series. Throughout we assume that
any eigenvalues of R(z) are non-negative for all |z| =1 and
that R(z) is analytic at least on an annulus containing the unit
circle.

The paper is organised as follows. Section II provides back-
ground on the existence and uniqueness of the EVD of a

“Many of these algorithms have convergence proofs, even though it is not
clear to which matrices they converge.

3The infinite sum E” ¢, 2z~ is a power series for n € N, while for a
Laurent series n € Z. It does not need to converge to be called a series, but con-
vergence criteria will be discussed later. Polynomials and Laurent polynomials
are power and Laurent series, respectively, with a finite number of non-zero
coefficients ¢, .
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Hermitian matrix, and properties of and decomposition
algorithms for parahermitian matrices. The parahermitian EVD
problem is then mapped to the unit circle, ie. |z| =1, in
Section III where we look at the conditions under which a func-
tion of frequency admits a time series representation. We then
apply these results to the frequency domain EVD. This is first
addressed in Section IV for the easier case that R(z) has eigen-
values of algebraic multiplicity one for all |z| = 1, i.e. when the
eigenvalues are viewed in the Fourier domain as PSDs that do
not overlap. Section V considers the case that R(z) has, at least
for some z on the unit circle, eigenvalues of algebraic multi-
plicity greater than one. It generalises the findings of Section IV
and contains the main results of this paper. A numerical example
and a comparison with results obtained by iterative polynomial
EVD algorithms are provided in Section VI, with concluding
remarks in Section VIL

II. BACKGROUND
A. Eigenvalue Decomposition

We restrict R € CM*M to be positive semi-definite—a prop-
erty guaranteed if R is e.g. a covariance matrix or emerges from
a product R = AA", with an arbitrary A € CM*Z_ For any
Hermitian matrix R = RY, its eigenvalue decomposition

R = QAQ! (D

exists, with the diagonal matrix A containing the real-valued,
non-negative eigenvalues \,, € R, m = 1... M, and the eigen-
vectors q,, € C*, which we constrain to be orthonormal so that
they form the columns of a unitary matrix Q.

While the EVD in (1) has unique eigenvalues, their sequence
along the diagonal of A can be arbitrary. This ambiguity w.r.t. a
permutation can be removed by ordering eigenvalues in A in
descending sequence,

ALz A =2 Ay 20, 2

In the case of M distinct eigenvalues, the eigenvectors of R are
unique except for a phase rotation. If q,, is the eigenvector that
corresponds to the mth eigenvalue )\, of R, then

R qm e'W = /\m Am ej(p (3)

holds for an arbitrary phase shift . Therefore, if q,, is an mth
eigenvector, then so is @/, = q,,¢%.

Ambiguity w.r.t. the eigenvectors also arises if eigenval-
ues have an algebraic multiplicity greater than one, i.e. when
the eigenvalues are no longer distinct. If X\, =\, +1 =

.. Am+c—1, these eigenvalues possess an algebraic multiplic-
ity of C' and only the C-dimensional subspace containing the
eigenvectors corresponding to this eigenvalue is uniquely de-

fined, within which the eigenvectors q,,, Qum1s--- An+C-1
can form an arbitrary orthonormal basis: if q,,,... Qu+c-1
are eigenvectors of R, thensoare q),,,... q/, . 1,
/ !
[qmv qm+C—1] = [qm7 q7n+C—1] V» (4)

for any arbitrary unitary matrix V € C“*¢. Note that in the
case of distinct eigenvalues with C' = 1, (4) incorporates the
phase ambiguity of (3) since V will be the scalar /¥ .
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B. Parahermitian Space-Time Covariance Matrix

To understand how a parahermitian matrix may be obtained,
we consider a scenario where L independent sources with non-
negative, real power spectral densities (PSD) Sy(z),¢ =1... L,

contribute to M sensor measurements x,, [n], m = 1... M. If
these are organised in a vector x[n] = [z1[n] ...z [n]]", then
the space-time covariance matrix is

R[r] = E{X[n]xH n—7]}. 5)

If the PSD of the /th source is generated by a stable and causal
innovation filter Fy(z) [33], and H,,(z) describes the transfer
function of the causal and stable system between the (th source
and the mth sensor, then

S1(z)
H"(z)  (6)
SL (Z)

with the element in the mth row and ¢th column of H(z):
C — CM*L given by H,,(2), and Sy(z) = Fy(2)F%(2) the
(th element of the diagonal matrix of source PSDs.

The factorisation (6) can include the source model matrix
F(z) = diag{F1(2),...,Fr(2)} : C — CL>*% such that

R(2) = H(2)F(2)F"(2)H"(z) . (7

The components of H (z) and the source model F(z) are as-
sumed to be causal and stable, and their entries can be either
polynomials or rational functions in z. For the more general lat-
ter case, let the maximum modulus of a pole of any component
of either H(z) or F'(z) be p, where 0 < p < 1. Thus the region
of convergence for H (z)F(z) is |z| > p, while for the anti-
causal term F¥'(2) H"(2) itis |z| < p~'. Overall, therefore, the
CSD matrix R(z) in (7) can be represented as a Laurent series
whose convergence region D is the annulus p < |z| < p~! [29],
[34]. Hence, within this region, all entries of R(z) are analytic
and are therefore continuous and infinitely differentiable [29].

Since the PSDs satisfy S;(z) = S}(z), it is evident from both
(6) and (7) that R(z) = R"(z) and so is parahermitian. The
EVD of Section II-A can only diagonalise R[r]| for one particu-
lar lag value T, typically the Hermitian (narrowband) covariance
matrix R[0]. The next section reviews efforts to diagonalise
R(z) or, equivalently, diagonalise R[] for all lags 7.

C. Polynomial EVD

A self-adjoint matrix A(x), with € R, which satisfies
Az) = Al (x), has an EVD [30], [35] or spectral factorisa-
tion [25], which can therefore describe the EVD of R(z) evalu-
ated on the unit circle, but not an EVD of R(z) itself. The first
mention of a polynomial EVD is in [4], which also proposed
the second order sequential best rotation (SBR2) algorithm for
its iterative approximation using Laurent polynomials. Over the
past decade a number of algorithms have emerged [4], [6]-[12],
[36], which share the restriction of considering the EVD of a
parahermitian matrix R(z) whose elements are Laurent poly-
nomials. In cases where the support is unknown or the source
model in (7) contains rational functions, the auto- and cross-
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correlation sequences in (5) may be estimated or approximated
over a finite window of lags [8].

The polynomial EVD or McWhirter decomposition in [6] is
stated as*

R(z) ~U()P(:)U (2) @®)

where the elements of the matrices on the r.h.s. are Laurent
polynomials, U (z) is paraunitary and I'(z) is diagonal and
spectrally majorised, such that for the PSDs along the main
diagonal,

Ym (eiﬂ) > 'ﬁ’erl(eiQ) va,

for m=1...(M —1). Even though the term ‘polynomial
EVD’ is not mentioned in [37], diagonalisation and spectral
majorisation were introduced there in the context of optimising
filter banks w.r.t. subband coding gain.

The approximation sign in the McWhirter decomposition (8)
has been included in all subsequent algorithm designs over the
past decade. Even though many algorithms can be proven to
converge, in the sense that off-diagonal energy of I'(z) is re-
duced at each iteration, see e.g. [6], [8], [10]-[12], and there is
no practical experience yet where algorithms could not find a
practicable factorisation, the only work towards the existence
of the polynomial EVD has been reported in [26]. However,
this provides limited understanding under which circumstances
existence is guaranteed and does not address the uniqueness or
ambiguity of eigenvalues and eigenvectors.

III. PARAHERMITIAN MATRIX EVD

We first focus on the task of identifying the eigenvalues of a
parahermitian matrix in the Fourier domain, and are particularly
interested in determining how smoothly these vary, before in-
vestigating the corresponding eigenvectors. Our approach rests
on the conditions under which a function on the unit circle (i.e.
a function of frequency) admits an absolutely convergent power
or Laurent series, or even permits an analytic continuation to
z € C, the ultimate aim being to find a suitable representation
in the time domain.

A. EVD on the Unit Circle

We assume that the parahermitian matrix R(z):C —
CM~*M contains Laurent polynomials or rational functions in z,
and is analytic in the annulus D = {2z : 2 € C, p < |z| < p !}
with 0 < p < 1, as motivated in Section II-B. Since the unit
circle is included in D, it follows from Cauchy’s integral for-
mula that every value of R(z) for p < |z| < 11is specified by its
values for |z| = 1 [34]. Because of the parahermitian property
R(z) = R (1/2%), every value of R(z) for 1 > |z| > p~!is
also specified by the values of R(z) for |z| = 1. From a prac-
tical aspect, the inverse z-transform requires evaluation on a
closed path in D, which here can be the unit circle. This inverse
transform leads back to the time domain, which then implies the

4The McWhirter decomposition in [6] is defined with the parahermitian

Up(z) instead of U(z) W.1.g. and for consistency with (1), we use the notation
in (8).
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existence of a Laurent series R(z) = > R[r]z ": thus R(z)
is recovered from R(e). Therefore, in D, R(z) is uniquely
characterised by R(e/) = R(z)._.io and vice versa, where
R(e)) is Hermitian, R(e/?) = R" () v Q.

An EVD of R(e/?) can be evaluated at every point along the
continuous normalised angular frequency variable €2, such that

R() = Q(@")A()Q" (&) . ©

At any arbitrary frequency (2, the properties of the EVD in (1)
apply equally to (9), with the existence and uniqueness of its
eigenvalues and -vectors as discussed in Section II-A. Since a
parahermitian matrix is Hermitian on the unit circle it has real
eigenvalues there.

B. Time-Domain Realisation

We want to form matrix functions U (z) and I'(z) as this will
lead to a time domain representation and hence allow them to
be implemented. The matrix functions U (z) and I'(z) need to
match Q(e/?) and A(e/) in (9) at every frequency. There are
infinitely many ways to do this. However we require a mech-
anism that allows us to extract a direct realisation in the time
domain of these functions on the unit circle i.e. A(e/?) — T'[7]
and Q(¢/}) — Uln], and this restricts the acceptable choices
of U(z) and T'(z). Ideally, we would like to extract analytic
functions I'(z) and U(z), but we will be content if they can be
represented by absolutely convergent power or Laurent series at
least on the unit circle. Within their region of convergence, these
functions T'(z) and U (z) are guaranteed to be unique [38], [39].

If an arbitrary 27-periodic function X (e/?): R — C has
only a finite number of discontinuities, we can write X (¢/}) =
>, x[n]e’ ™. For the Fourier coefficients z[n] to represent an
absolutely convergent Laurent or power series, we require abso-
lute summability, i.e. >, |z[n]| < co. A sufficient condition
for this is to restrict X (e/) to be Holder continuous with
o > £ [40], such that
X() = X ()] < Ol — %

sup (10)

Q1,0:€eR
with some C' € R. A continuous function X (&) is Holder
continuous if it does not behave too ‘wildly’. For the remainder
of the paper, Holder continuity always implies the condition
o > % In this case, the time domain realisation can be obtained
by the inverse Fourier transform

z[n] = %/X(ejﬂ)em”dﬁ. a1

If, moreover, X (¢/) is analytic then we know that we can
apply the inverse z-transform

1 ndz

for C a closed counter-clockwise curve in the region of con-
vergence of X (z). Choosing C to be the unit circle the inverse
z-transform becomes the inverse Fourier transform (11). Hence
in this case the inverse Fourier transform can lead to a Laurent
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series X (z) = >, [n]z " thatis valid in an annulus with non-
empty interior containing the unit circle. More generally, we can
define X (z) = ), [n]z", |z| = 1 from the Fourier series and
attempt to analytically continue this representation. However,
the region of convergence of the resulting series is difficult to
determine.

Throughout, we use the terms “absolutely convergent power
series” and “absolutely convergent Laurent series” to represent
a power (Laurent) series that is absolutely convergent, at least
on the unit circle. While there appears to be no simple necessary
condition for X (¢/?) to yield an absolutely convergent power
or Laurent series x[n], a discontinuous X (e*) is sufficient to
exclude the existence of an absolutely convergent Fourier se-
ries and hence of an absolutely convergent power or Laurent
series x[n] [40]. In general for the case of continuity, Weier-
strass [41], [42] guarantees uniform convergence of a series of
functions. These functions may change with the approximation
order, hence it is neither possible to state a limit for infinite
order using a power series, nor to obtain an approximation by
truncation of that power series. Its use in this context is therefore
limited. Therefore, the arguments in the remainder of this paper
will focus on the Holder continuity and potential smoothness of
the factors Q (&) and A(e/?) in (9).

C. Continuity of Eigenvalues

We now inspect how smoothly eigenvalues \,, (¢/), m =
1...M, of R(¢/?) in (9) evolve with the frequency €. To
quantify the change that is induced in the eigenvalues of
R((H29)) with AQ a small change in frequency, perturba-
tion theory for matrices [30], [31] provides some useful results.
The Hoffman-Wielandt theorem [43] shows that?

Z |)\1‘(ejﬂ) _ )\i<ej(52+AQ))‘ < ||R(e]ﬂ) _ R(ej(52+A£2))||F ,

12)
assuming that the eigenvalues are ordered, with || - ||r the Frobe-
nius norm. Since based on the source model in Section II-B,
R(z) is analytic and hence continuous,

lim [|R(e) = R A p =0, (13)
AQ—0
which also implies continuity of A, (e/*), m = 1... M, be-
cause
: (el ) (o (24AQ)Y
AI(IZI’EO Z |Ai (e7°) — Ai(e ) =0
must also hold on the L.h.s. of (12). Beyond continuity, analytic-
ity of R(z) on an annulus containing the unit circle ensures that
the eigenvalues \; ('), ..., Axr () can be chosen to be an-
alytic for 2 € R [30], [35], and therefore can also be infinitely
differentiable.®

SA regular perturbation of R(z) can lead to either a regular or singular
perturbation of the eigenvalues, but we are here only interested in the continuity
of the latter.

6 A similar frequency-domain approach for arbitrary matrices exists with the
analytic singular value decomposition [44], [45].
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D. Invariant Subspaces and Subspace Distance

Having characterized the eigenvalues of R(z), we now turn to
their corresponding eigenvectors, reviewing the effect of matrix
perturbations on eigenvector subspaces. As highlighted in Sec-
tion II-A, eigenvectors corresponding to multiple eigenvalues
are not unique, and even though eigenvectors corresponding to
tightly clustered eigenvalues are very likely ill-conditioned, the
subspace spanned by these eigenvectors is usually insensitive to
perturbations [31], [46].

Assume a cluster of C' adjacent (potentially multiple) eigen-
values organised in the diagonal matrix A; (/) : R — RE*C,
with Ay (e/?) : R — RM=C)x(M=C) containing the remaining
M — C eigenvalues. The spread of the cluster is assumed to be
small compared to the distance § to the next-nearest eigenvalue
outside this cluster [3], i.e.

max |\ —Aj| < min [\ =X =§>0.
Ay EAL (1) Al € Aq(e?)
Ao € Ay (ejﬂ)

(14)
The parameter 0 in (14) defines the spectral distance between
the eigenvalues in A (¢/}) and in Ay (/). If Q, (/) : R —
CMxC" s a matrix whose columns are formed by the C' eigen-
vectors of R(e/?) corresponding to A (¢/}), and @, (/) holds
the remaining M — C eigenvectors, we re-organise the EVD as

Q" (") R(e)Q(?) = diag{ A1 ('), Az(e)} ., (1)

with Q(e/?) = [@Q,(e'?) , Q,(e/?)]. Note that in accordance
with (4), eigenvectors can have arbitrary phase shifts, which
however does not affect the subspace analysis below.

If R(e) is perturbed by an increment in frequency, A,
then [3], [31]

Q" () (R(ej(sz+mz)) _ R(ejsz)> Q%) =

E; (e9,AQ) E (e1¢,AQ) (16)
Ey (62, AQ) Egy (e, AQ)
c M-C
If the increment A is selected such that [3]
[R5 - (o) < 2 an

— 5 )
i.e. such that the perturbation is small compared to the

spectral distance §, then for the two subspaces O (em) =
range{Q1 (e]Q)} and Ql (e(j£2+AQ)) — range{Q1 (ej(SH-AQ))}

A A 4 A
dist{Q; (1), Q; (AN} < SHEzl(e]Q»AQ)HF . (18)

The distance metric in (18) is defined as

dist{Qi(€?), Qi (/¥ AY)} = I () —IT; (/T2
=0Omax »

where ||-|; is the spectral norm and II;(e/}) =
Q,(")Q1(¢)?) is the projection matrix onto the subspace
Ql (e]Q) with 0 S Omax § 1 [3]

Because of the continuity of R(e/?) (see (13)) and the uni-
tary invariance of the Frobenius norm, from (16) it follows
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that || Ea; (€12, AQ)|lp — 0as AQ — 0. Hence the subspace
evolves continuously. Interestingly, the distance between the
subspaces spanned by Q; (¢/?) and @, (¢/(*+2%)) according to
(18) is limited by the product of the perturbation-related term
B2 (e, AQ)||r and 6" Therefore the subspace distance can
increase as the distance § to the nearest eigenvalue outside the
cluster decreases.

E. FEigenvalue Considerations

The discussion in this section shows that different cases will
arise depending on how we choose A(¢/?) and Q(e/). An ar-
bitrary frequency-dependent and potentially discontinuous per-
mutation P (/) can be introduced into (9), such that

R(¢") = Q@) P () P(¢?) A () P (¢17)-

- P()Q" (1) . (19)
Therefore, the resulting eigenvalues on the diagonal of
P(e)A(?) P (e!?) and eigenvectors in the columns of
Q)P (1) can be discontinuous. The statement of Sec-
tion ITI-C that A(e/*?) can be continuous or even analytic for an
analytic R(z) implies that this permutation matrix is selected
appropriately.’

Based on the argument for at least continuous Q(e¢/!) and
A(¢/}) made in Section ITI-B, we here assume that permutations
are chosen such that eigenvalues are at least continuous on
the unit circle, i.e. that permutations of eigenvalues can only
occur at algebraic multiplicities of those same eigenvalues, and
are applied such that 27-periodicity of all functions in (19) is
retained. In the following we therefore distinguish three cases
as characterised by the examples in Fig. 1:

a) non-overlapping eigenvalues \,, (¢/?), where all eigen-

values have algebraic multiplicity one for all frequencies
€, such as the PSDs shown in Fig. 1(a);

b) overlapping, maximally smooth eigenvalues, such as

shown in Fig. 1(b); and

¢) overlapping, spectrally majorised PSDs as shown in

Fig. 1(c).
Note that cases (a) and (c) are spectrally majorised, while cases
(a) and (b) will be seen to yield analytic eigenvalues for 2 €
R. Note that not all eigenvalues in (c) are differentiable for
every value of €2, but they will later shown to be Lipschitz
continuous. In the rest of this paper we treat the cases of distinct
and overlapping eigenvalues separately.

IV. CASE OF DISTINCT EIGENVALUES

In the case of distinct, non-overlapping eigenvalues \,, (¢/?),
m = 1... M, spectral majorisation in (2) holds with strict in-
equality for all §2. As a result, the power spectra of the eigenval-
ues are smooth and distinct and, as in the example of Fig. 1(a),
do not intersect.

"Recall from Section ITI-B that a discontinuous function of frequency will
not admit an absolutely convergent Laurent or power series.
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Fig. 1. Examples for (a) non-overlapping and overlapping eigenvalues with
(b) smooth and (c) spectrally majorised PSDs. Non-differentiable points are
indicated by black circles.

A. Existence, Uniqueness and Approximation of Eigenvalues

Theorem 1 (Existence and Uniqueness of Distinct Eigenval-
ues): Let R(z) be a parahermitian matrix which is analytic at
least on an annulus containing the unit circle and whose EVD
on the unit circle, as defined in (9), has distinct eigenvalues
A (61), ¥Q and m = 1... M. Then a matrix of eigenvalues
of R(z) exists as a unique analytic Laurent series I'(z) that
matches A(el) = diag{\; (¢ - Aar (€)} on the unit cir-
cle.

Proof: 1f R(z) is analytic in the annulus p < |z| < p~! then
we know from Section III-C that the eigenvalues )\, (),
m =1,..., M can be chosen to be analytic for real €. Since
analytic functions are Holder continuous the discussion in Sec-
tion III-B applies and therefore a potentially infinite order,
matrix-valued Fourier series can be found that converges to
A(e!?). Further since the eigenvalues are analytic on the unit
circle, the Fourier series representation of the eigenvalues can be
analytically continued to an annulus containing the unit circle
via the substitution z = ¢/*. This gives the potentially infinite
Laurent series I'(z) representing the M eigenvalues of R(z).
This matrix of eigenvalues, I'(z), matches A(e?) on the unit
circle, and therefore is unique as discussed. [ |

In order to find an approximation of finite length to a Laurent
or power series, consider that the Fourier series of the mth
M (69), with

eigenvalue takes the form \,, (/) = limy .+ /\

z : Q
C771 [e] + C7n bl

(V> JQ

cme €C L (20)
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<Ay (N), CIN),
With A (61?) = diag{/\i 02, .. A g
convergence implies uniform convergence, such that for every
epn > 0 there exists N > 0 with

}, absolute

sup ‘A (&2 — (eJQ)H <en, @1)
Qel0,2m)
where || - || is any matrix norm. As N — oo, €y — 0 at ev-

ery frequency €2, so that the Fourier series (21) converges to
A(e?). For finite IV, an analytic continuation via the substitu-
tion z = ¢ into (20) is always possible, and yields a Laurent
polynomial approximation f‘(z) Alternatively, a direct approx-
imation of A (&) by Laurent polynomials is available via the
Stone-Weierstrass theorem [41], [42], [47].

When approximating the exact eigenvalues I'(z) by Laurent
polynomials of order 2/V, a truncation error is incurred accord-
ing to (21). Since the region of convergence of I'(z) may be
smaller than D, we cannot make a statement here about how
fast or slow such an approximation converges. The generally
infinite-length nature of the Laurent series representation of the
eigenvalues will be evident when we consider the “simple” case
of a 2 x 2 parahermitian matrix next, followed by an example
problem that was stated but not solved in [26].

B. Eigenvalues of 2 x 2 Parahermitian Matrices

In this section we exemplify the existence and uniqueness
of the eigenvalues of an arbitrary parahermitian matrix R(z):
C — C?**2. These eigenvalues v, »(z) can be directly computed
in the z-domain as the roots of

det{y(2)I = R(2)} = 7*(2) = T(2)7(2) + D(2) = 0

with determinant D(z) = det{R(z
trace{ R(z)}. This leads to

)} and trace T(z) =

T.2(2) = —4D(z) . (22)

\/T )TP(=

The argument under the square root is parahermitian and can be
factored into Y (2)YY(2) = T'(2)T"(z) — 4D(z), where Y (2)
has all zeros and poles inside the unit circle, and Y(z) has
all zeros and poles outside the unit circle. In the rare case that
Y (z) has no poles and all zeros have multiplicity 2N, N € N,
the solution for (22) is a Laurent polynomial. If both poles and
zeros of Y have multiplicity 2V, N € N, the eigenvalues are
rational functions in z.

In general, the square root in (22) will be neither polyno-
mial nor rational, as recognised for a Laurent polynomial QR
decomposition in [27]. Within the convergence region |z| > p,
where p < 1 is the maximum modulus of all poles and zeros of
Y (2), we take the square root of each zero 3 and pole ain Y (2)
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MacLaurin series expansion coefficients for square root of a zero or

separately. Then a Maclaurin series expansion gives

VITET =3 60 (23)
n=0
Nirr= _104,1 = ( y fna”z"’)l (24)
n=0
=3 ot (25)
n=0

with

- ()-SR (209

2

The MacLaurin coefficients &, and yx, for n=0...50 are
shown in Fig. 2.

Thus, a stable causal square root Y (z)'/? is obtained. The
square root of YP(z) with a convergence region |z| < p~! is
given by (YP(z))l/2 = (Y(z)1/2)P. The representation of the
square root is therefore complete, and can be accomplished
by an infinite order rational function in z via (23) and (24),
or by a Laurent series via (23) and (25). The eigenvalues in
(22) therefore exist as convergent but generally infinite Laurent
series [41] but clearly could be approximated by finite order
rational functions or Laurent polynomials.

Example. To demonstrate the calculation of eigenvalues, we
consider the parahermitian matrix

1 1

Rz)=|] 9,16 9,1

(26)
stated in [26], which has poles at z =0 and z — oo but is
analyticin {z : z € C, z # 0, 00}.

Using (23) and (25), the approximate Laurent polynomial
eigenvalues are characterised in Fig. 3 in terms of their PSDs
Am (%), expansion coefficients #,,[r] such that 4, (z) =
> Am[r]z"7, and their log-moduli. The latter in Fig. 3(c)
shows the rapid decay of the Laurent series, justifying a Laurent
polynomial approximation.

This expands on the result in [26], where it was shown that
R(z) in (26) does not have polynomial eigenvalues, but where
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Fig.3. Approximate eigenvalues of R(z) in (26). (a) Power spectral densities.

(b) Laurent polynomial coefficients. (c) Decay of power series.

no polynomial or rational approximation was given. The ex-
ample demonstrates that an approximate solution using Laurent
polynomials exists, which can be arbitrarily accurate for a suf-
ficiently high order of 41 2 (%), as supported by Theorem 1.

C. Existence, Ambiguity and Approximation of Eigenvectors

Recall that the eigenvalues of R(e/) are assumed to possess
non-overlapping PSDs, i.e the eigenvalues for all frequencies
2 have algebraic multiplicity one, i.e. C' = 1. The subspaces
in Section III-D can now all be treated as one-dimensional,
and eigenvectors are therefore uniquely identified, save for the
phase shift in (3). Since this phase shift is arbitrary at every
frequency (2, the polynomial eigenvectors are defined up to an
arbitrary phase response. With this, some of the expressions in
Section III-D simplify, and permit the statement of the following
theorem.

Theorem 2 (Existence and ambiguity of eigenvectors for dis-
tinct eigenvalues): Let R(z) : C — CM>*M be a parahermitian
matrix whose EVD on the unit circle, as defined in (9), has
distinct eigenvalues ), (e/?), VQ and m = 1... M. Each cor-
responding eigenvector q,, (/) can have an arbitrary phase
response. Then for any phase response that creates a Holder
continuous q,, (¢/?), an absolutely convergent vector-valued
series u,, () exists which matches q,, (¢/**) on the unit circle.
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Proof: Considering the mth eigenvalue and -vector, \,, (¢/?)
and q,, (¢/*?), the spectral distance from its nearest neighbour at
frequency € is [31]

O (1) = min |\, (/%) — \,, (¢

n#m

)| >0.

Now, in (16), E5;(e/?) : R — CY~! is a vector, and if (17)
holds, then (18) simplifies to

dISt{qm( ) qm(e’](QJrAQ )} =5 ||]5)21(e]Q AQ)”F :

4
m ( )
As AQ — 0, also dist{q,, (¢/?), q,, (2%} — 0, and
the one-dimensional subspace within which each eigenvector re-
sides must evolve continuously with frequency. It can be further
shown that the eigenvectors can be chosen to be analytic [35].

Because of the phase ambiguity in (3), each eigenvec-
tor can be given an arbitrary phase response ®,, (e/?), with
|®,, (¢})| =1V Q€ [0;27), m=1... M without affecting
the orthonormality of eigenvectors. Only if ®,, (e/?) is selected
such that the M elements of g,, (¢/*) vary Holder-continuously
in €2, then analogously to the proof of Theorem 1, a Holder-
continuous q,, (¢/?) has an absolutely convergent Fourier se-
ries [40]

e]Q § d v 61[97

where d,, ; € CM and | (elQ) —q,, ()] — 0 VQ as
N — o0. According to Section III-B, this admits an absolutely
convergent power or Laurent series u,, (z). If additionally the
phase response does not just create a q,,, (¢’ ) that is Holder con-
tinuous but one that is also analytic in €2, then the continuation
to an analytic u,, (z) exists. [ |
The selection of the phase response does not just cause am-
biguity of the eigenvectors, but also affects the properties of
a Laurent polynomial approximation of these eigenvectors. An
appropriate phase response may e.g. admit a causal, polyno-
mial approximation. Further, we distinguish below between the
selection of a continuous and a discontinuous phase response,
leading to matrices Q(e/?) that are continuous and discontinu-
ous in €2, respectively:
® Holder Continuous Case. This case is covered by Theo-
rem 2, which requires phase responses that are otherwise
arbitrary but constrained for g, (¢/?), m =1...M, to
be Holder continuous for eigenvectors U (z) to exist as
convergent Laurent or power series. Ambiguity w.r.t. the
phase response implies that for any differently selected
continuous phase response, a different U (z) emerges. Ap-
proximations of U (z) by Laurent polynomials U (z) can
be obtained by truncation; this approximation will improve
with the approximation order and smoothness of the phase
response. A special case arises if the phase responses are
selected such that Q(e'?) is analytic, which directly im-
plies a convergent power series U (2).
e Discontinuous Case. If q,,(e?) is piecewise continu-
ous and possesses a discontinuity at {2 = €, then there
does not exist a convergent Laurent or power series

27
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representation of the eigenvector. However since q,, (/)
is periodic in €2, an at least pointwise convergent Fourier
series does exist, and at the point €2y will converge to

1 .
~ lim (qm (e](Qo —Q)) +

li V) (020 —
Aim g (@) = 5 lim

+ g, (@) @8

Since (28) is the mean value between the left- and right
function values at the discontinuity, a Fourier series rep-
resentation will not match q,, (¢/?) at least at €y. An ap-
proximation by a Laurent polynomial U (z) of sufficiently
high order, evaluated on the unit circle, will converge to the
mean values of Q(e/?) according to (28) at the disconti-
nuities, and Gibbs phenomena may occur in the proximity.
For the case where eigenvalues q,, (¢/?) are neither Holder-
continuous nor discontinuous, uniform convergence of the
Fourier series cannot be guaranteed [40]; this case is outwith
the scope of this paper, but we refer the interested reader to
e.g. [40] for the appropriate conditions on convergence.

V. CASE OF EIGENVALUES WITH MULTIPLICITIES

Following the consideration of distinct, non-overlapping
eigenvalues \,, (em), m =1...M,in Section IV, we now ad-
dress the case where the PSDs of eigenvalues intersect or touch,
i.e. there is an algebraic multiplicity of eigenvalues greater than
one at one or more frequencies. Because of an ambiguity of
how to associate eigenvalues across the frequency spectrum,
similar to the permutation problem in broadband blind source
separation, a distinction is made between maximally smooth
and spectrally majorised PSDs, as illustrated by the examples
in Fig. 1(b) and (c), respectively.

A. Existence, Uniqueness and Approximation of Eigenvalues

Section ITI-C indicated that eigenvalues of R(e/*?), that have
an algebraic multiplicity of one, can be chosen to be analytic
(hence continuous and infinitely differentiable) functions on the
unit circle [35]. Therefore if we constrain the eigenvalues to be
continuous, then A(e/?) has to be at the very least piecewise
analytic on the unit circle.

It follows that if any two eigenvalues ), (¢/}) and \,, (e/?),

m,n =1...M, are permuted at an algebraic multiplicity
greater than one, then
sup A (€97) = A, (619)] < L] — &2

Q1,0 eR

holds with m,n = 1... M, the Lipschitz constant

max ‘ i)\m (ejQ )
me{1,2,... M} 149
QeR\M

L= (29)

and M the set of frequency points where eigenvalues have an
algebraic multiplicity greater than one. In between these points,
the r.h.s. of (29) exists because the eigenvalues are piecewise
analytic. Therefore any permutation of eigenvalues is Lipschitz
continuous, which matches with (10) for « =1 and L = C.
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0
Fig.4. Cluster of C' eigenvalues in the neighbourhood of a C'-fold multiplicity
at Q = Q.

Hence, this is a stronger condition than Holder continuity, and
therefore guarantees the representation by an absolutely conver-
gent Fourier series in analogy to the arguments in Section IV-A;
an alternative representation in terms of Laurent series can be
reached via the Stone-Weierstrass theorem. This leads to the
following theorem:

Theorem 3 (Existence and uniqueness of eigenvalues of a
parahermitian matrix EVD): Let R(z) be an analytic paraher-
mitian matrix whose EVD on the unit circle, as defined in (9),
has an eigenvalue matrix A(e’*?), VQ € R. Then the matrix of
eigenvalues I'(z) exists as an absolutely convergent Laurent
series. Uniqueness requires additional constraints on the per-
mutation of eigenvalues on the unit circle, such as maximal
smoothness or spectral majorisation, with consequences for the
order of a Laurent polynomial approximation I'(z) of I'(z).

Proof: This is covered by Theorem 1 for distinct eigenvalues,
and otherwise follows from the above reasoning. |

The approximation of eigenvalues by Laurent polynomials,
here argued in terms of a truncated Fourier series expansion
(see Theorem 1), is guaranteed to be analytic because of the
restriction to a finite order. However, differences in the con-
vergence speed can be noted: we expect faster convergence for
analytic, i.e. maximally smooth eigenvalues than for spectrally
majorised ones, since for the latter A (&) is only piecewise an-
alytic on the unit circle. Therefore generally higher order Lau-
rent polynomials are required when approximating spectrally
majorised eigenvalues as compared to the maximally smooth
case, if eigenvalues have an algebraic multiplicity greater than
one on the unit circle. This outcome of Theorem 3 agrees with
results in [9], as well as with experimental findings in [48] based
on factorisations for different source models—with both distinct
and spectrally majorised sources—of a space-time covariance
matrix.

B. Uniqueness and Ambiguity of Eigenvectors

We now inspect the eigenvectors in the vicinity of a
C-fold algebraic multiplicity of eigenvalues at 2 = (), as
shown in Fig. 4. By assumption R(e/?) is analytic and, from
Section III-C, A(e!?) can be chosen to be analytic for all
Q, including €. In this case, Rellich [35] shows that the
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eigenvectors can be analytic. We want to explore the behaviour
of Q(e/?), and particularly the conditions under which it has a
unique analytic solution. That this is the case seems to be under-
stood in various texts [30], [35], [45] but the authors have not
found a definitive reference. Hence we offer Lemma 1, below,
as an alternative proof.

In rare cases we may find identical eigenvalues. Two
eigenvalues \,, (e/?) and \,(e/?) are identical if ), (/) =
A¢(€¥?) V. In the following we exclude this case; an ambigu-
ity is expected from (4), but the presence of identical eigenvalues
makes the analysis more involved and the case is usually avoided
by estimation and rounding errors in R(z).

Lemma 1 (Existence and uniqueness of analytic eigenspaces
on the unit circle): Under the assumptions of Theorem 3 and
in the absence of identical eigenvalues, there exist unique
1-d subspaces for analytic eigenvectors in Q(e/?) if and only
if eigenvalues in A (e*) are selected to be analytic across alge-
braic multiplicities.

Proof: That it is possible to choose analytic eigenvectors
when the eigenvalues are all chosen to be analytic follows from
Rellich [35]. To see the ‘only if” part, we now assume that the
eigenvectors are chosen to be analytic, and show that this can
only occur if the eigenvalues are also analytic.

By exploiting Theorem 1 between multiplicities, we know
that continuous eigenvalues have to be at the very least piece-
wise analytic on the unit circle. Further, between the points of
multiplicity greater than one, these functions are unique (up
to the order they appear in the matrix A(e/)). If the analytic
eigenvalues from Rellich are A(e/?), then the only alternative
choice for the eigenvalue matrix is

A(e]Q) _ {Ab(ej“) = PbAO(ejH)Pga Q S QO7

30
QZQ[M ( )

A, (1) = P A ()P,
where subscripts ‘a’ and ‘b’ indicate ‘above’ and ‘below’ €,
and P,, P, € RM*M gare permutation matrices. Because we
can arbitrarily order the eigenvalues in A (e/?) and their corre-
sponding eigenvectors in Q (/) without affecting their analyt-
icity, w.l.o.g. we set A, (e/?) = Ag(e/?),ie. P, =1

With reference to (19), we have

R(&®) {Q(eiﬂ)Ab<eJﬂ)QH(eiﬂ), Q<.

31
Q>Q, G

Q) Au(7)Q" (),
where Q(e/?) is assumed to be analytic, and R(e/?) is ana-
lytic by premise. With this, we can define nth order derivatives
approaching )y from above and below,

n

i i) — R(n)
o, 1, | qoy BT = R (32)
d7L . N
g R(E™) =Ry, (33)

O, —Qo — ng

and state R\ = Rf)m V¥n € N. From (30) it is clear that we
can define quantities A and Al()m in analogy to (32) and (33).
In order to investigate if there is ambiguity in the choice of
eigenvectors, and to see how eigenspaces behave in the vicinity
of Qp, we define derivatives Q\" and Ql(f) of Q(e'*?) from
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above and below )y analogously to (32) and (33). Note that
because of the analyticity of Q(e/}), Q" = Qén) vn € N.

For R\" = Réo), we take the EVD on either side, and
with ng) = Q}(jo) and the premise of continuous eigenvalues,
ie. ALY = PHAYP, due to (30), obtain

£0>PEA£O)PbQ1<)O)’H _ Qlio)Aéo)Qf,O)’H . (34)
or
PIAYP, A" 0. (35)

For the first derivative Rg , the product rule can be applied to
the EVD factorisation,

RV = Q'AYQY + QYA QY + QAT QY

Taking the derivative of the r.h.s. of (34) and using a similar
expression for R(1>, and equating Rgl) = ngl), we find that

Q! ( AVp, - 1()0)) Q"
+ Q) (PIAP, - A)") Q"

+ Qb (PH b P 7Ab )QI(JO)’H = 0.

Because of (35), the first two terms are zero, and we obtain

PEAS)Pb - Al(jl) = 0. By induction it can be shown that for
R = R{" indeed PEA"P, — A" =0V¥n € N, or
AP, —PA"Y =0 VneN . (36)

If p, ¢ is the element in the mth row and /th column of Py,
then elementwise, (36) demands

Pm ¢ (A}()”[) - A‘E,T:y)n) =0 Vn € N ,
with Agf}n the mth diagonal entry of A",

In the absence of identical eigenvalues, even if the ¢th and
mth eigenvalues, m, ¢ € {1... M}, m # {, belong to the clus-
ter forming a C-fold algebraic multiplicity at {2, they will differ
in at least one differentiation n, and hence p,,, , = 0. As an ex-
ample, in Fig. 4, the Oth and 1st order derivatives of \,, (em) and
Ama1 (eiQ) match at € = ), but the n = 2nd order derivatives
differ. Therefore, Py, must be a diagonal matrix. Further, uni-
tarity, and the fact that P}, is a permutation matrix enforces the
constraintp,, ,, = 1,m =1... M i.e. Py, = L. Thus from (30),
recalling that P, = I, we must have A(e/?) = Ay(e/). There-
fore analytic eigenvectors are possible if and only if eigenvalues
are analytically continued across 2.

Recall that the eigenvectors in Q (&) can possess arbitrary
phase responses; as long as the latter are analytic, Q(¢/) will
remain analytic. While this permits some ambiguity, under the
exclusion of identical eigenvalues, each eigenvector must how-
ever be orthogonal to the remaining eigenvectors, and hence
there exist unique 1-d subspaces within which analytic eigen-
vectors reside. |

Analyticity or at least Holder continuity of Q(e/) requires
that A(e/) is analytic, and that the arbitrary phase response
of Q(e)) is selected analytic or at least Holder continuous.
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We focus next on extending the eigenvalues and eigenvectors to
functions in z.

Theorem 4 (Existence and ambiguity of eigenvectors of a
parahermitian EVD): If R(z) has no identical eigenvalues, then
there exist unique 1-d subspaces for analytic eigenvectors of a
parahermitian matrix EVD, if and only if the eigenvalues are
analytic across a potential algebraic multiplicity greater than
one on the unit circle. Within this 1-d subspace, an eigenvector
exists as a convergent Laurent or power series if its arbitrary
phase response is selected such that the resulting eigenvectors
are Holder continuous in frequency (2.

Proof: 1t is known that the eigenvectors can be chosen to
be analytic on the unit circle if and only if the eigenvalues are
(e.g. Lemma 1). Each eigenvector q,, (¢/*),m = 1,... , M, can
always be multiplied by an arbitrary phase response ®,, (¢/?),
provided |®,, (¢/*)| = 1 for all Q. If this phase response creates
an elgenvector q,, (¢/?) that is Holder continuous for all €2, then
q,, (/) can be represented by an absolutely convergent Fourier
series as in (27). Analogous to the proof of Theorem 3, therefore
an absolutely convergent power or Laurent series w,, (z) exists
as the eigenvector, which matches g,, (¢/) on the unit circle, i.e.
WU, (2)].—eio = q,, (61}). The selection of the phase response
will have an impact on the causality of w,, (z), i.e. whether it
will be a power or Laurent series. ]

If the phase response is selected more strictly such that
q,,(e"*) is not just Holder continuous but analytic, then an
analytic u,, (z) can be obtained by analytic continuation via
z = e [29], [38], [39].

As a converse to Theorem 4, when eigenvalues are not se-
lected analytic on the unit circle, e.g. by enforcing spectral
majorisation in the case of an algebraic multiplicity of eigen-
values greater than one on the unit circle, or in the case of ana-
Iytic eigenvalues but a discontinuous phase response ®,, (¢/?),
discontinuous eigenvectors q,, (/) arise for which no exact
representation by an absolutely convergent power or Laurent
series exists.

C. Approximation of Eigenvectors

It is clear that if all eigenvectors q,, (e/?), m = 1... M are
Holder continuous by virtue of analytic eigenvalues \,, (¢/?)
and appropriate phase responses, the convergent Laurent or
power series U (z) can be approximated arbitrarily closely by
Laurent polynomials ﬁ(z)—or polynomials in the case that the
phase response admits a causal U (z)—analogously to (21). The
speed of convergence depends on the smoothness of Q(el),
with faster convergence for smoother functions. The fastest
convergence can be expected if Q(e/?) is analytic, the con-
ditions for which are given by Rellich [35] and highlighted in
Lemma 1 (see Section V-B.)

For the following cases, Theorem 4 could not prove the ex-
istence of absolutely convergent power or Laurent series as
eigenvectors U (z). Nevertheless, approximations may still be
found:

® Discontinuous Phase Response. For analytic eigenvalues,

as long as the phase response q,, (/) is piecewise con-
tinuous with a finite number of jump discontinuities, an
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approximation U(z) can be reached via a Fourier series
which on the unit circle converges to Q(e/?) except at
these discontinuities. At discontinuities, the approxima-
tion U (2)|,_.i» will converge to the average values stated
in (28).

e Spectrally Majorised Eigenvalues. If eigenvalues have an
algebraic multiplicity greater than one on the unit circle,
discontinuities arise for the corresponding eigenvectors
q,, (/7). Provided that these, together with any discon-
tinuities introduced by the phase responses, are finite in
number, a polynomial or Laurent polynomial approxima-
tion U(z) via a Fourier series obeying (28) can be found.

VI. NUMERICAL EXAMPLE

We provide results for a numerical example with known
ground truth for a PAEVD with both analytic and spectrally
majorised eigenvalues, as well as for the results obtained by the
SBR2 algorithm [6]. This informs observations on differences
between the theoretical PhEVD established in terms of its exis-
tence and uniqueness in this paper, and what is obtainable via
iterative polynomial EVD algorithms.

Consider R(z) = U (2)T'(2)U"(z) with paraunitary U (z) =
[ (2), ua(2)] and u; »(2) =[1,4£27]T/+/2. With the diagonal
and parahermitian I'(z) =diag{z+3+2"'; —jz+3+jz"'}, the
parahermitian matrix R(z) : C — C?*2 is

e+t L2

2

R(z) = (37)

Analytic / Maximally Smooth Case. When extracting eigen-
values that are analytic on the unit circle, the so-
lution is given by the diagonal elements of T'(z) =
diag{[z + 3+ 2z7'; —jz+ 3+ jz~']}, which are taken from
an example in [26]. The two eigenvalues overlap at 2 = %71’ and
Q= %w, where they have an algebraic multiplicity of two, as
shown in Fig. 5(a).

The two eigenvectors u 5 (2) = [1, iz‘l}T/\/i are of order
one. To show that their evaluation on the unit circle evolves
smoothly with frequency €, we define ,, (¢/?) as the Hermi-
tian subspace angle [49], [50] relative to the arbitrary reference
vector uy (e”),

cos ¢ (/7)) = [u} () u,, (7)) (38)

with m = 1,2 and 0 < ¢, (/) < 5. Similar to the subspace
distance discussed in Section III-D, in the absence of an alge-
braic multiplicity of eigenvalues greater than one, these angles
can be shown to evolve continuously under sufficiently small
perturbations of R(z) [51]-[53].

Fig. 5(b) shows the subspace angles in (38), and indicates
their smooth evolution with frequency. Note that because of
the modulus operation involved in the Hermitian angles, the
latter are reflected at ¢ = 0 and ¢ = %, making ¢(e") non-
differentiable even though the eigenvectors themselves can be
differentiated w.r.t. .

Ideal Spectral Majorisation. To achieve spectral majorisa-
tion, the eigenvalues of the analytic case have to be permuted on
the frequency interval Q = [*m, 2] as shown in Fig. 6(a).
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Fig. 5. (a) PSDs of eigenvalues that are analytic on the unit circle and (b)

subspace angles of corresponding eigenvectors.
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Fig. 6. (a) Ideally spectrally majorised eigenvalues and (b) subspace angle
of corresponding discontinuous eigenvectors, defined on the unit circle; for
the latter, no power series w,, () exists; black circles indicate points of non-
differentiability and discontinuities.

Note that the resulting PSDs are Holder continuous but no
5

longer differentiable at () = iTF and Q = 37. As a conse-
quence, the eigenvectors also must be permuted on the interval
Q = [+, 27], which leads to discontinuous jumps of g, (/)
and subsequently the subspace angles at 2 = 17 and Q = 5,
as depicted in Fig. 6. For the Holder continuous eigenvalues,
unique convergent Laurent series v,, (z), m = 1, 2 exist. How-
ever in contrast to the above maximally smooth case, for the
eigenvectors, no absolutely convergent Laurent or power series
u,, () matches q,, (¢/*) on the unit circle.

Spectral Majorisation via SBR2. Applying the SBR2 algo-
rithm [6] to R(z) in (37) should give polynomial approxima-
tions of the eigenvalues and eigenvectors characterised on the
unit circle in Fig. 6 since SBR2 is proven to converge to a di-

agonal [6] and spectrally majorised parahermitian matrix [54].
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Fig. 7. (a) Approximate Laurent polynomial eigenvalues and (b) subspace
angle of corresponding approximate Laurent polynomial eigenvectors obtained
with the SBR2 algorithm [6] applied to R(z) in (37).

After 200 iterations and truncating small trailing values, SBR2
generates a polynomial approximation f‘(z) of the spectrally
majorised eigenvalues in Fig. 7(a). Of order 24, these spec-
trally majorised eigenvalues approximate the ideal eigenvalues
in Fig. 6(a) reasonably well, but are considerably longer than
the PSDs of order 2 for the case of selecting eigenvalues that
are analytic on the unit circle.

The paraunitary matrix obtained by SBR2 contains the poly-
nomial approximations of the eigenvectors, with their subspace
angles according to (38) shown in Fig. 7(b). Near the algebraic
multiplicities at ) = iﬂ' and ) = gﬂ', the polynomial solu-
tion enforces smoothness, and approximates Q(e/?) as well as
possible, approximately obeying (28) at the discontinuities and
exhibiting Gibbs oscillations in their vicinity. Approximating
these jumps requires a high polynomial order, which in this
case is 84, compared to the simple first order eigenvalues that
are obtained in the maximally smooth case.

VII. DI1SCUSSION AND CONCLUSIONS

For an analytic, positive semi-definite parahermitian ma-
trix R(z) whose entries are Laurent polynomials or ratio-
nal functions in z, this paper has established under which
conditions there exists a parahermitian matrix EVD, R(z) =
U (2)T(2)U"(z), with paraunitary U () and parahermitian di-
agonal T'(z). Based on an EVD on the unit circle, R(¢/}) =
Q) A(e)Q" (), which exists for all frequencies €2, this
paper has investigated whether the frequency domain quantities
Q(e'*?) and A(e?) admit representations by power or Laurent
series that are absolutely convergent (at least on the unit cir-
cle), i.e. whether they can be expressed in the time domain,
such that an exact match is achieved on the unit circle with
I‘(z)‘zzei” = A(eJQ) and U(Z)|z:ej“ = Q(e]Q>

We have constrained A (e/}) to be Hélder continuous in or-
der for an absolutely convergent Fourier series to exist. We
focus in particular on the cases that A(e/®) is analytic and/or
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spectrally majorised. In either case, the eigenvalues in I'(z) ex-
ist as unique, absolutely convergent Laurent series. If A (e/) is
analytic in 2, then additionally I'(2) is also analytic in z within
some region of convergence. If the eigenvalues in A(e/?) pos-
sess an algebraic multiplicity greater than one, i.e. the PSDs of
eigenvalues intersect, then analyticity and spectral majorisation
cannot be reconciled, and one or the other has to be chosen.
Eigenvectors—the columns of U (z)—only exist as convergent
Laurent or power series if the eigenvalues A (e/) are selected
analytic and if an arbitrary phase response is chosen such that
Holder continuous eigenvectors result on the unit circle. If ad-
ditionally phase responses create eigenvectors that are analytic
in Q, U(z) will be analytic in z within some region of con-
vergence. Eigenvectors do not exist as absolutely convergent
power or Laurent series in the case of spectral majorisation
in the presence of an algebraic multiplicity of eigenvalues in
A (1) greater than one, or if their arbitrary phase response is
discontinuous.

Eigenvalues can be arbitrarily closely approximated by Lau-
rent polynomials f‘(z) of sufficiently high order. Faster conver-
gence and therefore lower-order approximations are possible
for analytic A(e*?) compared to a case where differentiabil-
ity of A(e/?) is violated to enforce spectral majorisation. For
eigenvectors, where U (z) exists as an absolutely convergent
power series, polynomial approximations ﬁ(z) can be obtained
by truncating U (z), and the approximation order depends on
the smoothness of the arbitrary phase response: the smoother
the phase that is selected, generally the lower the order of the
polynomial approximation that can satisfy a given limit for the
approximation error. Where an exact U (z) does not exist be-
cause of discontinuities of Q(e/*), a polynomial approximation
is still possible, provided that the discontinuities—due to spec-
tral majorisation in case of overlapping PSDs of eigenvalues and
to discontinuities in the arbitrary phase response—are finite in
number. However, such a polynomial approximation Tj(z) will
require much higher order than in the case of an analytic A (e/?)
and a smooth phase response of Q(e/?).

Almost all current polynomial EVD algorithms produce a fac-
torisation R(z) ~ U (z)T'(z)U"(z) that is spectrally majorised
(or very nearly so) despite there being no explicit algorithmic
step so to do. Recently it has been shown that by construction the
SBR?2 algorithm implicitly produces a spectrally majorised solu-
tion [54]. Spectral majorisation is desirable for a limited number
of applications, where e.g. the coding gain maximisation [8] or
the extraction of MIMO subchannels of ordered quality [15]—
[17] matter. If the subspace decomposition of a parahermitian
matrix is important, such as for angle of arrival estimation [18],
[19] or beamforming applications [13], [14], [22], [23], then
the eigenvectors are central but not guaranteed to exist as con-
vergent power series. Polynomial EVD algorithms converge but
generally obtain solutions with a very high order associated with
high computational complexity; our results show that this is not
an algorithmic problem but associated with the fundamental ex-
istence of a PhEVD. We hope that the findings of this paper
can trigger the development of parahermitian matrix EVD al-
gorithms akin to initial efforts in [9] that target the extraction of
analytic eigenvalues, where eigenvectors can be guaranteed to
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exist as convergent power series and be approximated by much
shorter polynomials than in the case of spectral majorisation.
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