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Sampling Continuous-Time Sparse Signals:
A Frequency-Domain Perspective

Benjamin Béjar Haro

Abstract—We address the problem of sampling and reconstruc-
tion of sparse signals with finite rate of innovation. We derive gen-
eral conditions under which perfect reconstruction is possible for
sampling kernels satisfying Strang-Fix conditions. Previous results
on the subject consider two particular cases; when the kernel is able
to reproduce (complex) exponentials, or when it has the polynomial
reproduction property. In this paper, we extend such analysis to the
case where both properties could be found in the sampling kernel
and show that the former two situations can be regarded as special
cases. As a result of our analysis, we provide general conditions
under which perfect recovery in the noiseless case is possible. In
practice, a given sampling kernel might not satisfy Strang-Fix con-
ditions. When dealing with arbitrary sampling kernels, we propose
a unified view for sampling and reconstruction in the frequency do-
main. Our formulation generalizes previous approaches and pro-
vides new insights for devising optimal reconstruction schemes. We
also propose a novel algorithm for denoising treating the problem
as a particular instance of structured low-rank approximation. Fi-
nally, we provide some numerical experiments and a comparison
between different state-of-the-art methods showing the improved
estimation performance of the proposed approach.

Index Terms—Sampling methods, sparsity, spectral estimation.
I. INTRODUCTION

AMPLING and reconstruction of analog signals is at the
S heart of signal processing and communications. The work
of Claude E. Shannon [1] paved the way for the success of dig-
ital communications by formalizing the sampling theorem for
bandlimited signals. Later, a geometrical viewpoint of sampling
and reconstruction allowed the generalization of the sampling
theorem to more general shift-invariant subspaces [2]. Going
back and forth from the continuous (analog) to the discrete
(digital) domain requires that the signals being sampled can be
predicted provided the sampling rate is above some (finite) crit-
ical value (i.e. signals with Finite Rate of Innovation (FRI) [3]).
This is true for signals living in shift-invariant subspaces such
as bandlimited signals, but it is also true for a broader class of
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signals that admit a parametric representation. A sampling the-
orem for a class of sparse FRI signals was proposed in [3]. More
concretely, the works in [3], [4] focused on sampling and recon-
struction of signals such as streams of (differentiated) Diracs,
piecewise polynomials or non-uniform splines. Later extensions
of the theory also included piecewise sinusoidal signals [5]. Per-
fect reconstruction from lowpass filtered observations of such
signals can be achieved for some classes of sampling kernels
such as ideal lowpass filters and gaussian kernels [3], or kernels
that satisfy Strang-Fix conditions [4], [6]. Kernels such as B-
Splines [7], E-Splines [8], Sum of Sincs (SoS) [9], or E-MOMS
[10] fall within this category. Robust approaches to handle noise
have also been developed in [11]-[13] as well as extensions to
higher dimensions [14]-[16].

We start by considering the situation where the sampling
kernel satisfies Strang-Fix conditions. Under this setup, two sit-
uations have been separately explored in the literature; the case
where the kernel is able to reproduce (complex) exponentials,
and the case where it has the polynomial reproduction property
[31, [4]. However, these situations only cover two subsets of a
more general setup, namely the case where both properties can
be found in the sampling kernel. We analyze such situations and
show that they generalize the previous two cases. As a result
of our analysis, we first provide general conditions for perfect
recovery in the noiseless case.

Since perfect recovery puts restrictions in the choice of the
sampling kernel (e.g. Strang-Fix conditions) it is of interest
to consider the general case of arbitrary sampling kernels. An
extension of the FRI theory to work with arbitrary kernels was
proposed in [10] in what it has been called approximate FRI.
The approximate FRI framework has been developed exploiting
the property of arbitrary kernels to (approximately) reproduce
(complex) exponentials. The method applies not only to those
kernels for which perfect reconstruction is not possible, but also
to kernels such as B-Splines for which perfect reconstruction in
the noiseless case is possible (e.g. using time-domain moments
of the signal) but that suffer from ill-conditioning when noise
is present. The authors in [10] start their derivation considering
the reproduction of general exponentials to end up concluding
that the best strategy is to consider purely imaginary exponents
that are as evenly spaced on the unit circle as possible. In other
words, it is best to consider frequency-domain information as in
the ideal case of perfect reproduction of complex exponentials
(31, [4].

Such an observation motivates us to propose a common sam-
pling and reconstruction framework that suits both the ideal
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and approximate cases. The key idea is precisely to consider
the frequency-domain information about the signal as the quan-
tity of interest. We treat both the locations and amplitudes of
the stream of Diracs as random quantities in our analysis and
show that this point of view simplifies the derivations and pro-
vides a more intuitive explanation of the entire reconstruction
procedure. Furthermore, it also shows that the approximate FRI
framework of [10] is suboptimal in the minimum Mean Squared
Error (MSE) sense. This is so since the latter one focuses on the
problem of approximating deterministic signals (e.g. complex
exponentials) while not taking into account the effect of noise. In
order to make our approach more robust to noise, we also address
the problem of denoising in the context of sparse FRI signals.
As already noted in [13], the denoising problem can be seen as a
particular instance of the Structured Low-Rank Approximation
(SLRA) problem. In [13] an iterative method is proposed for
denoising sparse FRI signals assuming that the sampling kernel
is an ideal lowpass filter. However, the method is restricted to
smooth (differentiable) loss functions and does not consider the
more general setup of arbitrary sampling kernels. Here we pro-
vide a more general formulation of the problem and a solution
that is more flexible in the choice of the loss function. In partic-
ular, we consider in detail the use of weighted ¢, norms. In order
to solve for the structured low-rank approximation problem we
propose to use the Alternating Direction Method of Multipliers
(ADMM) optimization framework [17] that leads to iterative
procedures with closed-form (or easy to compute) updates. In
the last part of the paper we provide numerical experiments and
compare our estimation pipeline with current state-of-the-art
methods showing its improved estimation performance.
In short, our main contributions are:
® A generalization of the conditions for perfect reconstruc-
tion in the noiseless case when the sampling kernel satisfies
Strang-Fix conditions.
® A frequency-domain estimation framework for arbitrary
sampling kernels.
® A novel denoising algorithm using the ADMM optimiza-
tion framework that outperforms the state-of-the-art.

II. ON SPECTRAL ESTIMATION

The problem of sampling and reconstruction of sparse FRI
signals is closely related to that of spectral line estimation [3],
[18]. In fact, under some conditions on the sampling kernel,
these two problems are equivalent [3], [4]. This equivalence
comes as no surprise since spikes are Fourier duals of com-
plex exponentials. Consider then the model problem where we
observe a sequence of the form:

K-1
X, = ok
k — a; u; ,
i=0

where KC C Z is a sequence of consecutive elements, and where
a;,u; € C are some complex numbers with a; # 0and u; # u;
for i # j. Note that for u; = ¢/“ the problem is that of identi-
fying a set of complex exponentials and there is a very rich
literature about the topic [18]. High-resolution line-spectral
estimation methods such as ESPRIT [19], [20] that exploit the
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rotation invariance property of Vandermonde matrices, or meth-
ods based on the eigen-decomposition of the data covariance
matrix such as Pisarenko’s method [21] and MUSIC [22]-[24]
as well as quadratic approximations to the maximum likelihood
estimation problem (IQML) [25], [26] are among the most pop-
ular methods for this task. We shall briefly review here Prony’s
method (a.k.a. annihilating filter method) as basic algorithm
[27], [28].

A. Annihilating Filter Method

The algebraic structure of the sequence X, allows for a de-
coupled estimation of the unknown variables u; and a;, provided
enough measurements are available. In order to see this, consider
a filter with roots at the u; values:

K K1
H(z) = hy 2% = H (1—wuizt). 2)
k=0 i=0

The above filter H(z) annihilates the sequence X, since:

Xk * hk =0. (3)
Letx = [Xo,..., X]" with L > 2K — 1, and rewrite (3) as
Xk Xk Xo
Xk1 Xk oo X
) . . . h =0, “4)
X X X K

Tg (x2)=X=[-bB]

where h = [hg, k1, ..., hxi]? and T (-) is alinear operator that
maps a sequence to a Toeplitz matrix. Equation (4) implies that
X is rank deficient. In fact, it has rank K provided all u; values
are distinct. In such case, X has a non-trivial one-dimensional
nullspace and the annihilating filter h can be uniquely deter-
mined up to a scale factor. Since scaling does not affect the
position of the roots, we can simply fix iy = 1 which results in
the following system of equations:

Bhl:K = ba (5)

where hy.x = [hi,...,hx]?. Note that, for L > 2K — 1 the
above system of equations can be solved exactly in the noise-
less case, and in the least-squares sense in the presence of noise.
Alternatively, we could use a normalization of || k|| = 1. In that
case, the solution to (4) can be obtained from the Singular
Value Decomposition (SVD) of X, and it would correspond to
the left-singular vector associated to the smallest singular value
of X. The two solutions are equivalent provided hy # 0. In the
noisy case, the SVD-based solution corresponds to a Total Least
Squares approach to solve (5).

Once we have the wu; values, the retrieval of the amplitudes
boils down to solving the following linear system of equations:

1 1 ... 1
uy Uy UK 1

. . a=Vi(u)a ==z, (6)
“oL Uf U%@l
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where a = [ag, ..., ax 1]" is the vector of amplitudes and u =
[ug,uy, ..., ux_1]7. Since the u; values are known and distinct,
the Vandermonde structure of V', (u) ensures that the system
of equations in (6) has a unique solution provided L > K — 1.
In the presence of noise, (6) can be solved in the least-squares
sense.

ax
UK

III. SAMPLING SPARSE SIGNALS

In this section we describe the class of sparse FRI signals of
interest and the considered sampling framework (see Fig. 1).
In particular, we will consider both finite and infinite (periodic)
streams of Dirac impulses as an abstraction of some real-world
phenomenon. We will be analyzing both cases separately show-
ing the relationship between them. We will start first by high-
lighting the relationship between our sampling problem and the
model problem in (1).

A. Sparse Signals and Fourier Series

Let x(t) be a finite stream of K weighted Diracs:

a; (S(t—ti), (7)

where t; € [0,1) and a; € C. Sparse signals of the form of
(7) are common in different domains such as biology, commu-
nications, or astronomy, to name a few. Note that a complete
characterization of the signal x(t) requires the knowledge of
2K parameters: those corresponding to the amplitudes a; and
locations ¢; of the spikes. For the case of a periodic stream of
Diracs we will assume that z(t) corresponds to its fundamental
period. In any case, regardless whether the signal is periodic or
not we can always represent it by its Fourier Series (FS) expan-
sion on some interval [0, 7), 7 > 1. The (scaled) FS coefficients
of x(t) are thus given by

K-1
=Y aie T ke 7. (8)
=0

Xi (1) = (2(t), /2T

Note that if we let u; = e 727%/7  then (8) has the form of
our model problem (1) and therefore, a subsequence of 2K FS
coefficients suffices to fully characterize x(t) (e.g. by using the
annihilating filter method [3]).

In all practical situations, we won’t be able to directly observe
the signal of interest. Instead, the acquisition process is usually
modeled as filtering followed by sampling. In that case, the
desired signal goes through some (typically lowpass) filter and
then, the resulting output is recorded at discrete-time locations
as illustrated in Fig. 1. Our goal is then to retrieve the parameters
of the signal from the available set of observations.

B. Periodic Stream of Diracs

Consider the input signal z(t) = ) .z x(t — m7) to be the
periodization of x(t) and, without loss of generality, let the
period be T = 1. Let f(t) denote the output of the lowpass
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filtering operation (see Fig. 1) with the scaled filter ¢*(—t/T):
K-1
Lm—(t—1
EDIMAUCE S

meZ i=0
=T X) ¢"(27kT)e”™,
keZ

€))

(10)

where ¢(w) is the Fourier transform of ¢(t), and where we
have identified X, as the FS coefficients of the periodic stream
of Diracs z(t) whose fundamental period corresponds to z(t).
The second equality in (10) follows from the application of the
Poisson! sum formula together with Fourier transform proper-
ties for shift and scaling. Finally, the samples are thus

yo = f(T) =T Y Xi @*(2nkT) &> e Z. (11)
keZ

Consider now the situation where we observe the signal over
one period with a sampling rate of /N samples per period (i.e.
T=1 /N ). In such case, the sequence of samples is

27k ioni,
L BP0 P

k eZ
(12)
Since we are interested in retrieving the FS coefficients of
the signal it is natural to work in the frequency domain. From
the samples y,, we can compute the Discrete Fourier Transform
(DFT) atw;, = 2% k=0,..., N — 1, to obtain

N-1
Y, = Z Un e—jQﬂnk/N

n=0

270\ 13~ _
= ZX(‘ o* <N> ~ Z ei2min/N —j2mkn/N (14)

13)

ieZ n=0
No(k—lwmoan)
21k 27k
_ Xk ( > Z Xk+m N @ (N + 27T€>
leZ
(#£0
aliasing

5)

Aliasing and the choice of the sampling kernel: From (15)
we can identify the contribution of two different terms: one
corresponding to the desired FS coefficient X}, and an aliasing
term. The presence or not of aliasing will depend on the chosen
sampling kernel as we illustrate in the example below.

Example—Ideal lowpass filter: Assume the sampling ker-
nel is an ideal lowpass filter with cut-off frequency 1/2
that is,

lw] <7

sin(nt)  F " {1 (16)

0 otherwise

In such a case, it is easy to verify from (15) that the DFT of
the measured samples will be free of aliasing, i.e. Y, = Xj.

Poisson sum formula: Z ez f(n)

ZL ez f 27rk)
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@*(—t/T)
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Fig. 1.
apart to produce the output sequence y,.

Therefore, we have access to the FS coefficients X, and hence,
it is possible to retrieve the locations and amplitudes of the
spikes using Prony’s method provided N > 2K.

C. Finite Stream of Diracs and Kernels With Finite Support

Consider now the case where z(t)
Diracs with the additional assumption that the kernel
finite support. The output signal f(t) is thus given by

= x(t) is a finite stream of
©(t) has

f(t) = z(t) * " (—t/T) = Z a; 6(t —t;) * ©* (—t/T).
a7
The discrete-time signal y,, is then:
K1
Yn :f(n n e 7. (18)

T) =Y ai¢ (t;/T —n),
i=0

If we now compute the Discrete-Time Fourier Transform
(DTFT) of the sequence y,, at frequency w we get

K1
Y (e) Z Z a; p*(t; /T —n)e7“n (19)
neZ i=0
K-1
= Z Z a; e WH2mOt /T P (w+2ml),  (20)
teZ i=0

where (20) follows from the Poisson summation formula.

A word on the equivalence of periodic and non-periodic
cases: Since both the kernel and the input signal have finite
support the sampled signal y,, is also supported on a finite in-
terval. Without loss of generality, assume that the samples y,,
are zero for values of n < 0 and n > M, where M, is some
positive integer. In order to highlight the connection between
the periodic and non-periodic cases consider frequencies of the
form wy = 2wk/M, where M > M. Particularizing (20) for
the case of T'= 1/N we end up with

21k
ZXk+1J\I (> <A7; +27 5) 1)

leZ

eJW/.

Note that (21) is analogous to the expression in (15) for the
periodic case. The only difference is that now the signal has an
equivalent period of 7 = M /N rather than 1. Therefore, we can
argue that for frequencies lying on a uniform grid (i.e. take the
M-point DFT of y,,, M > M;) sampling a periodic stream of

Sampling scheme. The input sparse signal z(¢) passes through the filter with impulse response p*(—t/7") and it is then sampled at intervals 7" seconds

Diracs or sampling a finite stream of Diracs with a sampling
kernel with finite support are two equivalent situations.

IV. SAMPLING WITH STRANG-FIX KERNELS

Perfect reconstruction of the original stream of Diracs is pos-
sible for particular choices of the sampling kernel [3], [4], [9],
[10]. In a general setting, sampling and reconstruction of streams
of Diracs fits the framework of sampling in a union of sub-
spaces [29]. Particular choices of kernels that allow for perfect
recovery are kernels such as E-Splines, SoS, or E-MOMS, that
satisfy Strang-Fix conditions [6]. We would like to highlight the
relationship between those kernels and the frequency-domain
information about the signal of interest.

A. Strang-Fix Kernels

Consider kernels of finite support that reproduce (complex)
exponential polynomials of degree P (see Fig. 2), that is

Z cn(wi, P)p(t —n) = tF" edrt
nez

(22)

for some frequency wy, and appropriate choice of the sequence of
coefficients ¢, (w, P) € C.Equation (22) holdsif (¢) satisfies
the so-called Strang-Fix conditions [6], [30]:
-

¥
o p(wk+27r£) =0,
forp=0,...,Pand /¢ € Z — {0}.

Definition 1: (W, P) Strang-Fix conditions) Let W =

and

G(wi) # 0 (23)

{wo,...,wr} denote a set of frequencies with w; # w; + 2m¢
forall i,j=0,...,L and £ € Z — {0}. And let also denote
P ={Py,..., P} as the corresponding set of orders. We say

that a kernel satisfies the (W, P) Strang-Fix conditions if (23)
holds for all (wy, Py, ) pairs, k =0, ..., L.

For the case where the order of polynomial reproduction is
the same for all frequencies (i.e. P, = P) we will simply say
that the kernel satisfies the (W, P) Strang-Fix conditions.

B. Sampling Sparse Signals With Strang-Fix Kernels

When it comes to sampling sparse signals two particular
cases of interest that have appeared in the FRI literature namely,
the (W, 0) (complex exponential reproduction) and the (0, P)
(polynomial reproduction) cases. In this section we will start by
reviewing the former two situations but will also consider the
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Fig. 2. Exponential polynomial reproduction property of a kernel that satisfies the (W ={-n/2,0,7/2},P = 1) Strang-Fix conditions. From left to right,

reproduction of: a constant, ¢, cos (7t/2), t cos (7t/2).

Fig. 3. Regions in the L-P plane that allow for perfect recovery for the case
of K = 2 Diracs. The blue region corresponds to the case where Theorem 1
applies. Likewise, the red region corresponds to Theorem 2. The red and blue
arrows on the L and P axes represent respectively, the (J,0) complex expo-
nential reproduction and the (0, P) polynomial reproduction cases.

more general (W, P) case (see Fig. 3). We will provide condi-
tions under which perfect reconstruction of a stream of Diracs
from the set of samples is possible. In our analysis we will con-
sider the non-periodic case but the results presented naturally
extend to the periodic case, too.

Exponential Reproduction: A kernel that reproduces complex
exponentials satisfies the (W, 0) Strang-Fix conditions:

P(wi) #0

forall w, € W and for ¢ € Z — {0}. An equivalent interpreta-
tion of the Strang-Fix conditions in (24) is that the DTFT of the
sampled kernel is free of aliasing at the set of frequencies WV .
Now, consider the case where the set of frequencies VV follow
a uniform progression, e.g. W = {3Tk}f_,. If we look back
to (21) and because (24) holds, we immediately realize that
we have access to the continuous-time frequency information
of the original signal since Y, = X}, ¢*(wy ). The effect of the
sampling kernel can then be compensated to give back the FS
coefficients of x(t). Having access to a set of 2K consecutive
FS coefficients (i.e. L = 2K — 1) allows the estimation of the
parameters of the signal using Prony’s method. This is precisely
the idea behind E-Splines, SoS, and E-MOMS kernels [3], [4],
[91, [10].

and H(wy + 27l) =0, (24)

Polynomial Reproduction: A kernel that reproduces polyno-
mials of degree P satisfies the ({0}, P) Strang-Fix conditions:
. d’e
2(0) #0 T2 @nt) =0,
forp=0,...,Pandfor? € Z — {0}. This property allows the
computation of the temporal moments of the continuous sig-
nal from the samples [4]. For the case of streams of Diracs,
the sequence of temporal moments has the form of (1) and
hence, perfect reconstruction of the signal’s parameters is pos-
sible using Prony’s method provided at least 2/ moments (i.e.
P = 2K — 1) are available [4]. In the frequency domain we can
think of this situation as having access to P alias-free measure-
ments of the signal and its derivatives up to order P at w = 0.

Exponential Polynomial Reproduction: We have just de-
scribed two situations where it is possible to retrieve the stream
of Diracs: one where we have multiple frequencies but no poly-
nomial reproduction property, and another one where we have
a single frequency (e.g. w = 0) but can reproduce polynomials
of multiple orders. It becomes intuitive that a combination of
these two situations could allow the definition of more general
conditions under which perfect signal reconstruction is possible.
To see this, let us continue our discussion from the polynomial
reproduction case. Note that, in principle, we could have used
any other frequency different from w = 0 and the same prin-
ciple would apply to the modulated signal. Assume then that
the sampling kernel o(t) satisfies the (wp, P) Strang-Fix con-
ditions for some (not necessarily zero) frequency wy. Since the
kernel reproduces exponential polynomials we can compute the
modulated moments of the signal x(t) from the samples y,, as
follows:

and (25)

(W) = ) cnlwo, P) (a(t),0(t/T —n))  (26)
neZ
Yn
= (2(t), > enlwo, PYp(t/T —n))  (27)
nez
= /OO x(t) (%)pe--fw/T dt (28)
K:T t\P .
SN a (%) eIt /T (29)

=0

We can now use the continuous moments to generalize
the sampling results that have appeared in the literature. We
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consider two situations — one where estimation is done using
the polynomial reproduction property and another where esti-
mation exploits the reproduction of complex exponentials.

Assume that ¢(t) satisfies the (W, P) Strang-Fix conditions
and consider the sequences of moments 7, (wy ), p =0,..., P
fork = 0,..., L. The key observation is to realize that for every
wy in the set W, the same filter annihilates the sequence of
moments 7,(wy), p=0,...,P; for all k provided that P, >
K. This can be easily seen by rewriting 7, (wy) as

K1 ENP vt K1 ti\

) = 3o (7) e =3 (7). @o
which is of the same form as our model problem (1). In order
to retrieve the signal parameters we just need to make sure that
we can form a system of equations that uniquely specifies the
annihilating filter up to a scale factor.

Theorem 1: (Temporal moments) Consider a non-periodic
stream of K Diracs z(t) as in (7) and the sampling setup of
Fig. 1. Assume that the sampling kernel o (¢) satisfies the (W, P)
Strang-Fix conditions with

L
> Pi+L(1-K)>2K-1 and P >K, (3l
k=0

then y,, provides a complete characterization of x(t) if
Vi, (t)diag (Bo)
B = : ,
VnL (t)dlag (ﬂL)

has full column rank, where t = %[ty,...,tx_1]" denotes

the vector of normalized locations, n, = P, — K, and ,6{ =
[e*jwktO/T7 el e Wit 71/T].

(32)

Proof: Consider the sequence (vector) of moments 7 (wy, ) =
[70(wk), 71 (Wk), - - - Tp, (wi)]T for some frequency wy, € W.
Form the Toeplitz matrix T (7(wy.)) and express it as:

TK (T(wk)) = Vnk (t)dlag (ﬂk) A7 (33)
where ny = P, — K, IB% = [e*jwkto/T7 o e JwitK 71/T] and
where the matrix A is given by

(to/T)"  (to/T)" !
(t/T)% (/7))
A = diag (a)
(tx 1 /T)% (tg o /T)ET o 1
(34

It is clear that a filter h whose roots correspond to the normal-
ized locations of the spikes (i.e. ¢; /T") annihilates the sequence
of moments {7, (wy,) 5‘:"0 provided that P, > K and therefore
Ah = 0. Since this is true for all frequencies in the set VW we
can form the following system of equations:

Tk (7(wo)) Vi, (t)diag (Bo)

h = Ah = BAh =0,

Ti(rlwn))) LV, (Waiag (3,)

(35)
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where B is defined as in (32). The filter A in (35) is uniquely
determined (up to scale) provided the product B A has full
column rank. Matrix A is a K x (K + 1) matrix and it is of
full rank since it is the product of a full rank diagonal matrix
(since a; # 0)and a K x (K + 1) Vandermonde matrix also of
full row rank. From Sylvester’s rank inequality we have

rank (BA) > rank (B) + rank (A) — K = rank (B),

(36)
where the last equality follows from the fact thatrank (A) = K.
On the other hand, it is clear that rank (B A) < K. Therefore, if
B has full column rank, then rank (BA) = K and the vector h
is uniquely specified. But in order for B to have full column rank
it must have at least the same number of rows than columns (i.e.
K). From its definition, B has dimensions >, (n; + 1) x K
and hence it is required that

L L
Z(nk +1) = Z(Pk ~-K+1)>K. (37)
k=0 k=0

Rearranging terms we require » ., P, + L(1 — K) > 2K — 1

which is true by assumption and the proof is complete. |

From Theorem 1 we see that perfect recovery in the general
case depends on the parameters to be estimated. Nevertheless,
there exist specific configurations for which perfect reconstruc-
tion is always possible regardless of the parameters of the signal.
A simple way to ensure perfectrecovery istohave P, > 2K — 1
for some k. In such case, perfect reconstruction is always pos-
sible [4]. We illustrate this result as a corollary of Theorem 1.

Corollary 1: (Polynomial reproduction) Consider a non-
periodic stream of K Diracs 2(t) as in (7) and the sampling
setup of Fig. 1. Assume that ¢(¢) satisfies the (wy, P) Strang-Fix
conditions. Then for the case of P > 2K — 1 perfect recovery
is always possible.

Proof: Note that in that case, matrix B would be given by

B = VPfK (t)dlag (,30) s (38)

which is of rank K (full rank) and, therefore perfect recovery is
possible. The full rank property of matrix B follows from the
fact that for P > 2K — 1, matrix V p_ is a tall Vandermonde
matrix which is full rank and of rank K since the ¢;s are distinct.
The diagonal matrix is also full rank since the elements of 3
are nonzero. Then, from Sylvester’s rank inequality it can be
shown that B is of full rank K. |

Moreover, if we restrict the set of frequencies to lie on a
uniform grid then perfect recovery is also guaranteed:

Corollary 2: Under the same assumptions as in Theorem 1
and if, in addition, the set of frequencies is of the form W =
{o+2ZEYL | for some a € R and with L > K — 1, then
perfect recovery is always possible.

Proof: From (32) it is clear that

B=V, (u)diag ([e’j“t‘)/T7 .. ,eij”t"”/T]) , (39)

where u? = [e /5 10/T . e~i5tc1/T] s a subset of the
rows of B in (32). Matrix B (hence B) has full column rank
if V1, (u) has also full column rank which, due to the Vander-
monde structure of V' (u), is true for L > K — 1. [ ]
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Theorem 1 establishes conditions under which perfect recon-
struction of a stream of Diracs is possible if we have access to
the modulated (temporal) moments of the original signal at an
arbitrary set of frequencies not necessarily lying on a grid. It also
defines aregion in the L — P plane (blue region in Fig. 3) where
it applies. On the other hand, if we restrict the set of frequen-
cies to be on a uniform grid, then it becomes clear that a similar
condition for perfect reconstruction using frequency-domain in-
formation is possible for the case of L > K by just switching
the roles between complex exponential moments (frequency-
domain information) and temporal moments. The following re-
sult formalizes these ideas and the corresponding region in the
L — P plane is illustrated in red in Fig. 3.

Theorem 2: (Complex moments) Consider a non-periodic
stream of K Diracs x(¢) as in (7) and the sampling setup of
Fig. 1. Without loss of generality assume that ¢; € [0,1), ¢ =
0,...,K — 1. Assume that the sampling kernel o(¢) satisfies
the (W, P) Strang-Fix conditions where the set of frequencies
lie on a uniform progression of the form W = {a + 2ZE}
for some v € R and £~ < 1. Assume also that

MT
(P+1)(L-K+1)>K and L>K. (40)
Then y,, provides a complete characterization of x(t) if
VL _K (u)
) V ik (u)diag ()

VLfK (u)dlag (tp)

has full column rank, where u? = [ug, uy, . .
S 2T
e I3 t/T,
Proof: Without loss of generality, let us assume that
a = 0. Note that the effect of any o can be removed
by considering the modulated sequence y,e *". Consider

now the sequence of moments (indexed by frequency) 7, =

. ,uK,1] withu; =

[7p(wo), Tp(w1), - -+, Tp(wr)]? for some p < P and form the
Toeplitz matrix Tx (7,).
Then it holds that:

Ty (1,) = Vi (u)diag (#) A, 42)
where u” = [ug,u1,. .., ux_1] with u; = eI /T  and the
matrix A is given by

ué( u{f’l e 1

. u{( u{"_l e 1
A = diag (a) (43)

uig g w1

Since L > K and due to the fact that the frequencies lie on a
uniform progression, there exist a filter with roots at the u;s that
annihilates the sequence 7, (i.e. Ah = 0) and thus

Tx ({7, (wi) o) h =0, , P.

p=0,... (44)
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Therefore, the annihilation equation can be written as:

Tk (70) Vi_k(u)
Tk (1) Vi x(u)diag(t) | .

= Ah =0, (45)
Tk (Tp) V -k (u)diag (t")

which will have a unique solution (up to scale) provided B has
full column rank. Matrix B will have full column rank provided
it has more rows than columns:

(P+1)(L-K+1)>K, (46)
which is true by assumption. From the roots of the filter we
can retrieve the locations of the spikes provided (L/M/T) < 1.
This last condition is required since otherwise there will be an
ambiguity in the location of the spikes due to the periodicity
of the complex exponentials. The amplitudes can be computed
using the retrieved locations solving the system in (42).

For the case of complex moments we can also define situations
for which perfect reconstruction is possible regardless of the
signal’s parameters:

Corollary 3: (Complex exponential reproduction) Under the
same assumptions as in Theorem 2 and for the case of L >
2K — 1, perfect recovery is always possible.

Proof: Tt follows from the fact that for L > 2K — 1,
V1 _k (u) is a Vandermonde matrix of full column rank and
thus, the conditions of Theorem 2 are met. |

Corollary 4: Under the same assumptions as in Theorem 2
and for P > K — 1, perfect recovery is always possible.

Proof: Note that B has V p (t) as submatrix and since P >
K — 1itfollows that K linearly-independent (row) vectors can
be found, which makes the rank of B equal to K. ||

If the conditions of Theorem 1 or Theorem 2 (or both) are
met, a general procedure for estimating the parameters of a finite
stream of Diracs is summarized in Algorithm 1.

C. From Discrete to Continuous Moments

The reconstruction method for sparse FRI signals in
Algorithm 1 requires the computation of the modulated mo-
ments of the signal. This can be achieved if we have access to
the sequences ¢, (wy, p) for exponential polynomial reproduc-
tion. Next we describe a procedure that allows the computation
of the modulated moments in a recursive way by using fre-
quency domain information about the kernel and its derivatives
at a given frequency. Define the discrete modulated moments as

my(wo) = ane*j“”"yn, p=0,...,P. 47)
nez
Making use of the following Fourier identities:

, dr

STy T P S () (48)

dwp w=0
nez
Yn e*jWo n  F Y(ej(w+wo))7 (49)
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Algorithm 1: (Reconstruction for Strang-Fix kernels).

1: Compute the modulated moments 7, (wy, ) for all
wr € Wandp=0,..., P
2: Form the (block) Toeplitz matrix

Tg (T(wo)) Tk (T0)

Ty (T(wr)) Tr(T1)
= , or =

T (m(wr)) Tg(Tp)

3: Find the annihilating filter using the SVD
h = argmin | Tx||
l=1

4: Find the roots of the filter H(z) = 31 hpz*

retrieve the locations of the spikes
5: Find the amplitudes solving a linear system based on

and

K-1

NP
Tp(wk) - Z a; (?>Pe jwiti /T

i=0

we immediately realize that

L dry
my(wo) = Z nt e Ion y = P (e/“0).

v 0
nez

Consider again the expression for the DTFT of y,, given in (20).
By successively differentiating (20) and, under the assumptions
made on the sampling kernel, it follows that

DY ey = 3 (p) L ) (=) (1), (5D)

dwP r ) dw"
r=0

By combining (50) and (51) we end up with

my (wo) = i <p>j7’ iﬁ* (wo) Tp—r (wo),

T
r=0

(52)

which gives us an explicit relationship between the continuous
and discrete moments of the signal. Let us rewrite (52) in matrix-
vector form as

mo (wo) Loo (wo) 0 o 0
m (wo) Lio(wo) Ly (w :
_ 10.( 0) Lii(wo) 7(wp),
: ' 0
mp (wo) Lpo(wo) Lpp(wo)
L
(53)
where the nonzero entries of matrix L are given by
B D —
L, (wo) = (p . )] T (wp)- (54)

Note that since matrix L is lower-triangular, the system of
equations in (53) can be solved efficiently using forward sub-
stitution. Note also, that the above system is invertible since,
by assumption (Strang-Fix conditions), the diagonal elements
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L. (wp) = ¢*(wp) are different from zero. Based on these
derivations we can now state the following result:

Lemma 1: (Recursive moments) Let ¢(t) be a finite-support
kernel that satisfies the (W, P) Strang-Fix conditions for some
set of frequencies W = {wy,...,wr_1} and some order P €
Z. . Let x(t) be as in (7) and consider the sampling setup of
Fig. 1. Then, the modulated moments of 2(¢) can be computed
in a recursive way from the discrete moments as

p—1
T (wi) = ¢*(wk)71 (mp (wr) — Z Ly (w) 7—7‘)7 (35)
r=0
where L, (w;) = (pli, )" 'fifff (wi)-

Proof: The result follows directly from (53) and the fact that
L,y (wy) = ¢"(wg) forallr =0, ..., P.

We have derived an expression that allows us to com-
pute the continuous moments of the signal from the samples.
The interesting property of (55) is that it allows us to compute
the moments exactly without the need to compute or approxi-
mate the dual basis of ¢(t). All we need is to evaluate the pth
derivative of the sampling kernel at the set of reproducing fre-
quencies V. This is particularly convenient in situations where
we either have an explicit expression for the derivatives or an
efficient way for their evaluation. Note also that from (55) we
can derive the reproducing sequences:

Lemma 2: (Reproducing sequence) Let ¢(t) be a finite-
support kernel that satisfies the (wy, P) Strang-Fix conditions.
Then the sequence ¢, (wp, p) for exponential polynomial repro-
duction can be computed as

D
C’n(wOap) = ejb-’o’ll ZCPT‘ n?‘) p:07"'7Pa (56)
r=0

where C),, is the (p, r)th element of matrix (L*)~! with (0,0)
denoting the first (top-left) element.
Proof: The result follows directly from inverting the system
in (53) and the definition of m,, (wy ) in (50). [ |
Example - B-Spline: Consider, as an illustration, that o (t)
is a B-Spline [7] of order P = 2, whose frequency response is

H(w) = [%} ? 1Its derivatives at w = 0 are given by

do d*¢
—(0) =0, —(0) =1/4.
) o) =1
Computing L~ it can be easily verified that

. (0,0) =1, ¢,(0,1) = n, ¢,(0,2) =n? — 1/4.

Example - E-Spline: Polynomial exponentials can be repro-
duced by cardinal E-Splines [8]. Following the notation in [8§]
let 54 () denote a centered E-Spline of order K and parameter
vector & = [ay, ..., ax 1] where

ﬁa(t) = ﬁ(!o (t) ook ﬁaj\’ -1 (t)7 ﬁa (t)
fert i <t<y
B { 0  otherwise 7

Consider an E-Spline with o = [—j 5, —75,0,0, 5, j5]. That
is, purely imaginary frequencies (complex exponentials) with
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double multiplicity. Since frequencies appear in complex con-
jugate pairs the resulting kernel is a real function (see Fig. 2).
The double multiplicity of the frequencies gives the kernel the
reproduction property of polynomial (degree one) exponen-
tials at the set of frequencies in ¢, in other words it satisfies
the W = {—n/2,0,7/2}, P = 1) Strang-Fix conditions. For
these parameters, the Fourier transform of 3, (t) is given by

Ga(w) = [Sinc (W_Tm) sinc (%) sinc (“}—’_27T/2)]257

where sinc(w) = sin (w) /w. For the considered sampling ker-
nel, it can be verified that
1 0
= 1)

= [IHEERCY

32
L) = — -
V. ARBITRARY KERNELS AND NOISE

mt it

We have been discussing situations where it is possible to
retrieve the original signal from its samples provided some as-
sumptions on the sampling kernel are met, and for the case of
uncorrupted (noiseless) measurements. But in practice a given
sampling kernel might not satisfy the desired properties. Addi-
tionally, as it is inherent to any real-world measurement system,
there will be some noise during the acquisition process. We
address how to handle such situations.

Assume an additive noise model for the observations y,, as

gn:yn""_vna 7’L=0,...7M0—1, (59)

where v,, is independent and identically distributed (i.i.d.) white
noise with zero mean and variance E [|v, |*] = o2. Note that
(59) holds for both the periodic (M, = N) and non-periodic
cases. From a practical perspective, it is also convenient to do
estimation using complex moments (i.e. Fourier-based informa-
tion) since they yield better conditioned systems [10]. Therefore,
we will restrict our attention to frequencies lying on a uniform
grid when dealing with arbitrary sampling kernels. With all
these considerations, let f’k be the M-point DFT of g,,, where
M = N in the periodic case and M > M, for the non-periodic
case. Making use of (21), we can now write the DFT of y,, as

~ o 2k . 2rk
Y, = X (¢ (M) + ) Xirow O (M + 27T5> + Vi,
(el
10
aliasing
(60)
where 7 = ]]‘\—[ and V}, is the M -point DFT of v,,. We will omit

the dependence of X, w.r.t. 7 to simplify notation.

A. Estimating FS Coefficients

Recall that 2K consecutive FS coefficients X, provide a suf-
ficient characterization of the stream of Diracs z(t). Therefore,
our focus would be on retrieving those FS coefficients from
the set of noisy filtered observations ¥, . We already know that
the ability to recover such coefficients would be intimately re-
lated to the choice of the sampling kernel. In a general setup,
a reasonable strategy would be to estimate those coefficients as
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accurately as possible. This is precisely the approach that we
will follow here which turns out to have a lot of parallelism to
the approximate FRI framework [10]. The proposed estimation
framework can be seen as a general procedure for FRI signal
estimation in the frequency domain.

From (60) we can identify three different components of Y},
— one corresponding to the desired FS coefficient X, a second
term corresponding to aliasing, and the noise term V. A simple
way to estimate the FS coefficients is to completely disregard
the effect of aliasing and noise, and just compensate for the
attenuation introduced by the frequency response of the sam-
pling kernel. In analogy to communication systems we call this
approach zero-forcing estimation and it corresponds to

S7F 1 - 2k
Xit = gZJ*(wk)Yk’ Wk =S

Note that (61) might result in a significant noise amplification
depending on the kernel’s frequency response and noise level.

A more robust estimate can be obtained by minimizing the
mean squared error. In order to derive such an estimate we
treat both the locations and amplitudes of the spikes as random
variables. More concretely, we assume that a; are zero-mean
i.i.d. random variables independent from the locations ¢;. The
locations of the spikes are i.i.d. random variables uniformly dis-
tributed over the unit interval ¢; ~ U ([O, 1)) Both amplitudes
and locations are also independent from the noise v, .

Under these assumptions the FS coefficients X are zero-
mean uncorrelated random variables since:

(61)

K1
E[Xy] =Y Ela]E[e 7] =0, B[X,X[] = 0} 6 ¢,
=
(62)
where we have defined 02 = S°% ' E [|a;*].
Let X ,ﬁ”s E =0 Yk be the linear minimum MSE estimate.
The orthogonality principle states that the error should be or-
thogonal to the signal subspace, that is

E[(X); — CuY3)Yy] =0, (63)
which means that the optimal coefficient is
Cr =E[X:Y{]/E V2 Y] (64)

Since X}, and V}; are zero-mean independent random variables,
and E [ X} X[] = 02 6}, _¢, then it follows that

E [X.Y)] = 02 p(wr). (65)
Similarly, for E [V, Y;] it follows that
B [Vi¥y] = of () + 67, (66)

where 62 = Myo? and a, (/") =", 5 |p(wy, + 2m0)]? is
the DFT of the auto-correlation sequence a, = {©(t — n),
©(t)). Using (65) and (66), we can write the LMMSE estimate
of the FS coefficient X, as

o2 plwr)
0 Gy (eler) + 63

XMSE — . (67)
Not surprisingly, (67) is nothing but a Wiener filtering oper-

ation in the frequency domain. Note also that, as expected, (67)
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simplifies to (61) if we do not consider aliasing and noise. In the
noiseless case (02 = 0) the coefficients in (67) correspond to the
least-squares coefficients in the approximate FRI framework of
[10]. Another interpretation of this result is that, in the noiseless
case, finding the best coefficients that reproduce complex expo-
nentials is equivalent to minimizing the estimation error of the
FS coefficients since we are effectively trying to compensate for
the distortion introduced by the sampling kernel. The procedure
can also be seen (also in the noiseless case) as using the optimal
digital filter for approximating an ideal lowpass filter [31].

B. Denoising—Exploiting Low-Rank Structure

Once we have an estimate of the FS coefficients, we can use
Prony’s method to retrieve the locations of the spikes. However,
it is possible to improve our estimates of the FS coefficients
by exploiting the additional structure present in the estimation
problem. As already noted, the annihilation equation (4) reveals
the low-rank property of matrix X . However, this situation only
holds in the noiseless case. In the presence of noise, the low-
rank property of X is very unlikely to hold. Nevertheless, we
can take advantage of such structure in order to improve the
estimation of the FS coefficients and hence, of the annihilat-
ing polynomial. Then it seems natural to enforce this low-rank
property during the estimation process. In its basic form, the
problem is equivalent to a structured total least squares problem
and it appears in different applications in signal processing and
control [32], [33]. More generally, the problem can be seen as
producing a structured low-rank approximation of the noisy in-
put data matrix. Assume that we have access to a set of L 4 1
noisy FS coefficients given by

X, = X + Ej, k=0,...,L, (68)

where E), is some error. Let & = [Xo, . ,XL]T denote the
vector of estimates and form the general convolution matrix
Xy=Tp (:E),WhereK <B<L—-—K+1landL >2K —1.
Let denote by R the set of matrices of rank at most K, and
by 7 the set of Toeplitz matrices of appropriate dimensions (i.e.
(L— B+ 1) x (B+1)). The problem can be then formulated
as the following structured low-rank approximation problem:

. 1
X = argmin§||X ~XolF +1(X € Rg)+1(X € T)
X

(69)
where I(+) is the indicator function defined as
0 wxistrue
I(x) = 70
() { 400 otherwise 70)

Solving (69) is, in general, NP-hard except for a few special
cases. The problem is then usually solved locally [34], [35].
An alternative strategy would be to simplify the problem and
replace the rank constraint by its convex surrogate using the nu-
clear norm. The work in [36] shows that it is possible to recover
minimum rank solutions subject to linear constraints by min-
imizing the nuclear norm. However, for the problem at hand,
the Toeplitz structure of the matrix and the fact that two spikes
might be arbitrarily close, might result in the rows of the matrix

1419

being very coherent thus, violating the assumptions for perfect
recovery in [36]. The authors in [13] evaluated the convex relax-
ation approach but it resulted in a poor performance compared
to current methods for spike retrieval. A popular method in the
FRI literature is to use Cadzow’s iterative denoising [37]. Given
the noisy Toeplitz matrix X, the method iteratively alternates
two projection steps. The first step is a projection onto the set
of matrices with rank at most K, which can be efficiently com-
puted using the SVD of the input matrix [38]. The second step
projects back to the convex set of Toeplitz matrices and it corre-
sponds to averaging over the diagonals of the input matrix. The
iterative process continues until some convergence criterion is
met. The procedure can be interpreted as a particular instance
of alternating projections and it is closely related to singular
spectrum analysis [39].

A more recent method has been proposed in [13] that is
closely related to the Douglas-Rachford iteration method. The
method works well in practice but it is restricted to differentiable
loss functions such as the f5-norm (or Frobenius norm). We
take a similar approach here but instead of treating the problem
as a matrix approximation problem we keep the focus on the
observed FS sequence. The mapping to a Toeplitz matrix is then
accounted for by the appropriate linear operator. We propose
the following general formulation for the denoising problem:

minimize {(e) +1(X € Ry)
X.e ” : (71)
subjectto X = Ty (& — e)

where £(-) is some convex loss function. The vector e in (71)
represents the error between the true and the estimated FS co-
efficients. Note that the proposed formulation is very general
and that it can be tailored to different setups (e.g. correlated
noise, sparsity) by properly choosing the loss function. Addi-
tionally, one could also use some of the ideas coming from
robust statistics [40] and robust subspace learning (see [41] and
references therein) in order to handle the presence of outliers
and/or missing data.

In order to solve (71) we propose to use the ADMM opti-
mization framework (see [17] for an overview). By doing so,
we end up with iterative schemes with easy-to-compute up-
dates that are of the same complexity as in Cadzow denois-
ing (complexity dominated by SVD). In general, there are no
convergence guarantees for Cadzow’s iterative denoising nor
there are for the approach in [13]. Recent work [42] shows
that ADMM is guaranteed to converge even for non-convex and
non-smooth problems provided some conditions are met. The
particular problem at hand satisfies such conditions when the
loss function is smooth (differentiable) and hence, the iterates
given by ADMM are guaranteed to converge to a stationary
point of the augmented Lagrangian of (71) [42]. In this con-
tribution we restrict our attention to the case where the loss
function is a weighted ¢, norm given by /() = 1z’ Q, for
some positive semi-definite matrix Q. The denoising procedure
is summarized in Algorithm 2. The matrix I' in the algorithm is
a diagonal matrix whose diagonal entries are the number of ele-
ments on each diagonal of the Toeplitz matrix. For the ordering
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Signals in the sampling setup of Fig. 1 for a stream of K = 2 Diracs located at ¢t = [0.42, 0.52]. The left plot correspond to the use of an ideal lowpass

filter as the sampling kernel, while the plot on the right corresponds to filtering with B-Spline of order 5. The sampling rate is N = 1/7 = 11.

we use the convention that the first diagonal corresponds to the
top-right one. The operator T; (+) denotes the adjoint of T (+)
and maps a matrix to a sequence by adding up the elements
along the diagonals. It is then easy to realize that T'~! T7, (X)
results in a sequence that is the average over the diagonals of the
input matrix X. The operator Projy (-) denotes the projection
onto the set of matrices of rank at most K (e.g. using SVD).
The scalar p > 0 is a parameter of the algorithm.

Algorithm 2: (Denoising - {(z) = 127 Q).

1: e =0, X0 =X, U =0

while !Exit condition do

e = (Ar1Q+1) (-1 Tpy (XH+U ™))
X (k1) =Projp,, (X(k) +Tp (e(k+1)) —X(H-U(k))
Uk+) — gt L x(k+1) Ly (e(k'Jrl)) ~ X,

end while

AN AN

Algorithm 3: (Frequency-domain FRI signal estimation).

1: Compute M-point DFT of the noisy input sequence

2: Estimate FS coefficients

3: Denoising using Algorithm 2

4: Annihilating filter for location and amplitude estimation

We have just described a general pipeline for the estimation
of sparse FRI signals using frequency-domain information. We
outline the overall procedure in Algorithm 3.

VI. NUMERICAL EXPERIMENTS

In this section we conduct numerical examples to evaluate
the proposed estimation framework. For the simulations we
use additive zero-mean white Gaussian noise to corrupt our
measurements and define the Signal to Noise Ratio (SNR)
as SNR = 10log), (||y||*/No?), where y is the vector of
noiseless signal samples in the time domain and o2 is the noise
variance. Since the accuracy in the estimation of the amplitudes
depends on the accuracy of the location estimates (recall it
is a linear problem given the locations) we evaluate only the
location estimation error for the estimation methods listed in
Table I. For those methods that are iterative we fix the number
of iterations to 50. For the method in [13] we have used the im-
plementation (with default parameters) provided by the authors.

TABLE I
ESTIMATION METHODS EVALUATED AND PARAMETERS

Method No. Iter. Parameters
Prony [27] 1 -
ESPRIT [19] 1 -
IQML [25] 50 -
Cadzow [37] 50 -
Condat-Hirabayashi [13] 50 pn=0.1v=0.51p
Proposed (ADMM) 50 p=0.5
10° ‘ ‘
—s—Moments
1 —— Frequency—domain
1072

Location MSE
o

10 0 10 20 30

SNRI[dB]

50

Fig. 5. MSE in location estimation for a stream of K = 2 Diracs when the
sampling kernel satisfies the generalized Strang-Fix conditions. The plot com-
pares moment-based reconstruction to the frequency-domain approach.

The code to reproduce the results in this section can be found at
https://infoscience.epfl.ch and in the supplementary material.
Reconstruction With Generalized Strang-Fix Kernels: In this
first experiment we consider the estimation of a non-periodic
stream of K = 2 Diracs located at ¢ = [0.12,0.32] when the
sampling kernel satisfies the generalized Strang-Fix conditions.
For that purpose we use the estimation procedure outlined in
Algorithm 1. The sampling kernel considered is the E-Spline
with parameters o = [—j 5, —j5,0,0,7%, 5] used in previ-
ous examples (see Fig. 2). Under these assumptions, we fall
within the conditions of Theorem 2 and thus, perfect recov-
ery is possible in the noiseless case. Note that the kernel is
not able to reproduce 2K moments in either of the two axis
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Fig. 6.
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MSE in location estimation for a periodic stream of K = 2 spikes with unit amplitude. The results correspond to an average over 10000 noise realizations

for each SNR value. The sampling kernel is an ideal lowpass filter (left) and a B-Spline of order 5 (right). The sampling rate is set to N = 11.
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Fig.7.  MSE in location estimation for a periodic stream of K = 2 spikes with
unit amplitude. The results correspond to an average over 10000 realizations for
each SNR value. The sampling kernel is a B-Spline of order 5 and the sampling
rate is set to N = 22. For estimation 11 frequencies were used.

in the L — P plane separately, which prevents the use of pre-
vious results on FRI signal reconstruction. We run a sim-
ulation for different SNR values and provide a comparison
with the frequency-domain estimation approach described in
Algorithm 3. The sampling rate is set to N = 11 and the number
of realizations per SNR is 10000. The estimation results in terms
of MSE are given in Fig. 5. It can be appreciated that exploiting
the reproduction properties of the kernel gives more accurate
estimates than the general frequency-domain approach for the
same model complexity (i.e.use N, = 2K + 1 = 5 frequencies
for estimation). However, the frequency-domain method can
perform better by increasing the number of frequencies used
for estimation. At some point, the frequency-domain method
saturates due to signal attenuation in the frequency domain
and aliasing. This result suggests that a proper combination of
the two methods could lead to an overall improved reconstruc-
tion. Choosing an optimal subset of moments and frequencies is

going to be kernel-dependent and it is left as an open question
for further research.

Effect of the Sampling Kernel: Let us now compare the es-
timation performance of the proposed frequency-domain es-
timation framework when the sampling kernel deviates from
the ideal scenario. More concretely, we consider the estima-
tion of a periodic stream of K = 2 Diracs with unit ampli-
tude (see Fig. 4) when the sampling kernel () is an ideal
lowpass filter (alias-free, no attenuation in frequency) or a
B-Spline of order 5. We run a simulation for different noise
levels and compute the average localization error for differ-
ent state-of-the-art methods (see Table I). For the estimation
of the FS coefficients we use the zero-forcing estimate as per
(61). For the denoising part we use the weighted /2 -loss function
with Q = diag (|¢(wo)|?, - - ., [(wn—1)]?). The results are dis-
played in Fig. 6. We can appreciate that the proposed scheme
achieves the best performance at all SNR values (except for the
very low-ones) and for both sampling kernels. We can also ob-
serve a saturation state in Fig. 6 (right) due to the presence of
aliasing. Since the error floor is due to aliasing introduced by the
sampling kernel, an obvious strategy to reduce its effect is to in-
crease the sampling rate. We repeat the previous experiment but
now we use twice as many samples per unit time (i.e. N = 22).
For the estimation of the locations of the spikes we use the same
number (N, = 11) of frequencies as in the previous case. In
Fig. 7 we present the results. We can observe now that the error
floor is not present at the considered range of SNR values and
that all methods exhibit a linear error decay in the high SNR
regime.

Random Spike Generation: Instead of considering a fix sepa-
ration as in the previous examples, let us now consider the case
where the spikes are randomly located. For that purpose, we
use again a periodic stream of two spikes sampled using a
B-Spline sampling kernel of order 5 and a sampling rate of
N = 22. The locations of the spikes are now independent ran-
dom variables uniformly distributed over the interval [0, 1).
The amplitudes are also independent random variables that
take the values +1 with equal probability. As in the previous
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TABLE II
MEDIAN PSNR FOR A STREAM OF K = 2 SPIKES GENERATED AT RANDOM, SAMPLED WITH A B-SPLINE KERNEL AND USING MMSE ESTIMATES

Method - SNR [dB] 0 5 10 15 20 25 30 35 40 45 50
Prony [27] 20.70  27.67 31.63 34.09 37.26 4190 46.98 52.04 57.08 62.09 67.09
ESPRIT [19] 2218  29.21 33.17  35.13 3785 4216 47.07 52.08 57.10 62.10 67.09
IQML [25] 1777 22.04 2557 2994 3482 40.04 4526 50.34 55.34 60.34 65.34
Cadzow [37] 24.86 31.01 35,57 3980 44.32  49.39 54.53  59.59  64.61 69.62 74.61
Condat-Hira. [13] 24.52  29.69 3297 36.44 41.03 46.38 51.68 56.82 61.88  66.88  T1.87
Proposed (ADMM) 24.42 30.71  36.08 41.43 46.77 52.07 57.20 62.25 67.27 72.28 77.28
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Fig.8. MSE in location estimation for a periodic stream of K = 2 spikes generated at random from a uniform distribution in [0, 1). The results correspond to an

average over 10° independent realizations for each SNR value. The sampling kernel is a B-Spline of order 5 and the sampling rate is set to N = 22. The number
of frequencies used for estimation is set to 11. The left plot uses ZF estimates for the FS coefficients while the right plot uses MMSE estimates.
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Fig. 9. Reconstruction of K = 15 spikes using a B-Spline sampling kernel
of order 5 and the MMSE FS estimates. The top plot corresponds to the use of
63 frequencies for estimation while the bottom one uses only 2K + 1 = 31.
The sampling rate is N = 76 and the SNR is 30 dB.

experiments we evaluate the error in location estimation for
different SNR values. In this case, the localization error is an
average of 10° independent realizations for each SNR value.
We have considered two different scenarios — one where the
initial estimate of the FS coefficients is obtained using the ZF

method as per (61) and another where the initial estimates are
obtained using the MMSE method as per (67). In both cases
we use a weighted /5-norm where @ is chosen, as before, to
be a diagonal matrix whose main diagonal is proportional to
the squared magnitude of the kernel’s frequency response. The
results are depicted in Fig. 8. We observe that the proposed
estimation scheme provides the best performance at almost all
SNR values. It can also be appreciated that the MMSE esti-
mates consistently outperform the ZF estimates for all tested
methods, particularly at low SNR values. As an additional met-
ric, we also provide Peak Signal to Noise Ratio (PSNR) values
for the case of MMSE estimates. The PSNR is defined in dB as
PSNR = 10log; (K max?(t)/||t — t||*), where ¢ and ¢ are
the vectors of true and estimated locations, respectively. We
report in Table II the median PSNR values over the 10° real-
izatio