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Abstract—Partial differential equations are central to describing
many physical phenomena. In many applications, these phenom-
ena are observed through a sensor network, with the aim of infer-
ring their underlying properties. Leveraging from certain results
in sampling and approximation theory, we present a new frame-
work for solving a class of inverse source problems for physical
fields governed by linear partial differential equations. Specifically,
we demonstrate that the unknown field sources can be recovered
from a sequence of, so called, generalized measurements by using
multidimensional frequency estimation techniques. Next we show
that—for physics-driven fields—this sequence of generalized mea-
surements can be estimated by computing a linear weighted sum of
the sensor measurements; whereby the exact weights (of the sums)
correspond to those that reproduce multidimensional exponentials,
when used to linearly combine translates of a particular prototype
function related to the Green’s function of our underlying field.
Explicit formulas are then derived for the sequence of weights,
which map sensor samples to the exact sequence of generalized
measurements when the Green’s function satisfies the generalized
Strang-Fix condition. Otherwise, the same mapping yields a close
approximation of the generalized measurements. Based on this
new framework, we develop practical, noise robust, sensor net-
work strategies for solving the inverse source problem, and then
present numerical simulation results to verify their performance.

Index Terms—Partial differential equations (PDEs), inverse
problems, universal sampling, sensor networks, diffusion equation,
wave equation, Strang-Fix conditions, Prony’s method.

I. INTRODUCTION

S ENSOR networks, and the use thereof, for sensing and
monitoring physical fields is receiving significant research

attention due, in part, to the significant advances made over the
last few decades in the fields of (wireless) networking, com-
munications and in the fabrication of microprocessors [3], [4].
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During this period many interesting applications in localisation,
tracking and parameter estimation have been considered [5],
[6]. The sensor nodes are deployed over a region of interest
to obtain spatiotemporal samples of some physical phenomena.
Often, these phenomena are driven by natural mechanisms that
typically involve the transportation of matter/particles or the
transportation of energy, from one point to another and thus can
be described by partial differential equations (PDEs). For exam-
ple, the mode of transport governing the dispersion of plumes
in environmental monitoring [7], spreading of fungal diseases
in precision agriculture [8], biochemical and nuclear wastes [9]
is well-known to be diffusion and the corresponding diffusion
field is the variation in concentration of the released substance
over space and time.

Besides diffusion, there exist numerous modes of transport
and corresponding fields, such as wave and potential fields,
that have also received considerable research attention from
the signal processing community. Thus far, such efforts have
focussed on developing robust sensor data fusion schemes that
either infer the sources inducing the measured field or directly
reconstruct the field. Often these physical fields of interest are
spatially non-bandlimited and so require an extremely dense
set of samples in order to achieve a faithful recovery, using the
classical linear bandlimited (BL) reconstruction framework.

In the localisation of neuronal source activities from elec-
troencephalographic (EEG) signals [10], [11]—for bioengineer-
ing applications—the use of Poisson’s equation to model the
brain activity is important, since this PDE accurately describes
the relationship between the measured electrical potentials (the
field) and the current dipoles (the sources). To alleviate some of
the limitations of a BL reconstruction when solving this EEG-
related inverse source problem (ISP), many approaches utilising
least-squares [12], sparsity-based [13], [14] and, more recently,
cosparsity-based [15], [16] regularisation have been proposed.
Moreover, Bayesian modelling [17], beamforming (see [18],
[19] and references therein), as well as subspace techniques
[20] have also been explored.

Wave fields are also prevalent in applications such as acous-
tic tomography [21], speech and sound enhancement [22],
sound/wave source localisation [22] and many more. In such
situations the wave equation provides a physical law that de-
scribes the propagation of such fields. To solve the associated
ISPs, several interesting techniques have been put forward; the
classical and most commonly used techniques are based on max-
imum likelihood estimation and beamforming [23]. Recently
however, Dokmanić et al. [24], [25] proposed an approach that
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exploits certain salient properties of Euclidean distance matri-
ces to solve the simultaneous localisation and mapping problem
for acoustic sources. Kitić et al. [16] also formulated an optimi-
sation problem by using the cosparse regularisation framework,
whilst a finite rate of innovation (FRI) based method is intro-
duced in [26] to solve this acoustic ISP using boundary-only
measurements.

For the diffusion field reconstruction problem, Reise et al.
[27] propose the use of hybrid shift-invariant subspaces, whilst
recovery algorithms based on the use of finite element methods
(FEMs) [28], [29] and compressive sensing (CS) [30], [31] have
also been proposed. Moreover statistical estimation techniques,
based on Bayesian estimation and Kalman filtering, have also
been studied, see [32]–[34] for instance. Meanwhile, Dokmanić
et al. [35] retrieve the single source parameters by approximat-
ing the resulting field using a truncated Fourier series, and Lu
et al. demonstrate that by solving a set of linear equations, the
single diffusion source parameters can be estimated [36]. Fur-
thermore, in [37] we showed that given a proper sequence of
generalised measurements it is possible to recover the unknown
parameters for a specific class of diffusion source distributions.
We will leverage from that concept, in this current work, to
devise a framework for solving a more general class of physics-
driven ISPs. Specifically, the new approach will apply to higher
dimensional ISPs governed by a larger class of PDE models.

The rest of this paper is organised as follows. In
Section II, we give mathematical descriptions of some common
linear, constant coefficient PDEs encountered in many applica-
tions and then state the related ISP and also discuss the sensor
network model. In Section III we outline how to solve the ISP
of interest assuming we have access to a set of generalised mea-
surements. Specifically, we discuss and state explicitly how to
select properly the spatiotemporal sensing functions in order to
be able to solve the d-dimensional ISP. Then we explore a new
approach for computing the desired generalised measurements
in Section IV, based on taking proper linear combinations of the
sensor data. In particular we realise that this leads to the well-
known exponential reproduction problem—using translates of a
prototype function—encountered in approximation theory and
in the FRI framework [38]. Here however, the prototype function
coincides with the space- and time-reversed Green’s function of
the physical field. Then we derive conditions on the Green’s
function, for which this exponential reproduction problem can
be exactly or approximately solved. Section V, discusses how
to adapt this new framework to solving ISPs using sensor net-
works. We develop explicit centralised and distributed estima-
tion strategies whilst considering both uniform and nonuniform
sensor placements. Then in Section VI, we provide numerical
simulation results to validate the new framework, comparing it
against a sparsity-based recovery method; and finally, we con-
clude the paper in Section VII.

II. PHYSICS-DRIVEN INVERSE PROBLEMS:
PROBLEM FORMULATION

The term physics-driven is used in this paper to describe
physical phenomena, specifically physical fields, that propagate

through space and time according to some linear partial differ-
ential equation (PDE). In a more general form, such phenomena
can be written as,

Du(x, t) = f(x, t), (1)

where D denotes a linear differential operator, whilst f(x, t) is
the source of the field u(x, t) propagating through space x ∈
Ω ⊂ Rd and time t ∈ R+ . According to the method of Green’s
functions, under certain boundary conditions, the system (1)
admits the solution

u(x, t) = (g ∗ f)(x, t), (2)

where g(x, t) is the so called Green’s function of the
underlying field. The following fields will be considered in this
paper:

1) Potential fields: these are encountered frequently in many
situations arising in electrostatics. Mathematically, the po-
tential field satisfies

∇2u(x) = f(x). (3)

The Green’s function for this PDE in 2D (i.e. d = 2) is,

g(x) =
1
2π

log(‖x‖) , (4)

whilst for d = 3 the Green’s function becomes

g(x) = − 1
4π‖x‖ . (5)

2) Diffusion fields: refer to physical phenomena such as the
propagation of heat, plumes and leakages that can be de-
scribed mathematically by,

∂

∂t
u(x,t) = μ∇2u(x,t)+f(x,t), (6)

with the following Green’s function, for d ≥ 1:

g(x, t) =
1

(4πμt)d/2 e
− ‖x ‖2

4 μ t H(t), (7)

where H(t) is the unit step and μ is the diffusivity.
3) Wave fields: describe many situations arising for example

in acoustics and electromagnetism. The wave equation is
given by:

∇2u(x, t) − 1
c2

∂2

∂t2
u(x, t) = f(x, t), (8)

where the wave field u(x, t) induced by the source distri-
bution f(x, t) propagates through the medium at a speed
c. The Green’s function for the 2-D wave equation (i.e.
d = 2) is given by:

g(x, t) =
c

2π
√
c2t2 − ‖x‖2

H(ct− ‖x‖). (9)

Moreover, in 3-D (i.e. d = 3), it can be shown that:

g(x, t) =
1

4π‖x‖δ(t− ‖x‖/c). (10)

The Green’s functions above assume a Sommerfeld radiation
condition – i.e. a quiescent condition at an initial time, such
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that u(x, t)|t=0 = ∂
∂ t u(x, t)

∣∣
t=0 = 0 and a convergence condi-

tion at infinity, meaning u(x, t)|‖x‖→∞ = ∂
∂x1

u(x, t)|‖x‖→∞ =
∂
∂x2

u(x, t)|‖x‖→∞ = 0. See for example, [39] for a derivation
of these expressions.

Given the PDE models of such fields, the aim of this paper
is to develop a framework for solving the associated ISP, from
spatiotemporal sensor network measurements of the induced
field1. Precisely, the ISP considered here is the following:

Problem 1: Let S = {xn}Nn=1 denote a network of N sen-
sors, so that the n-th sensor situated at xn collects samples
ϕn (tl) = u(xn , tl) of the field u, at times tl for l = 0, 1, . . . , L.
Given these spatiotemporal samples and knowledge of the
Green’s function of the field, we intend to estimate the unknown
source distribution f(x, t).

A. Sensor Network Model and Assumptions

The sensor networks used to monitor our physics-driven fields
are such that:

1) They comprise N sensor nodes deployed (uniformly or
randomly) over the region of interest (Ω ⊂ Rd ). For ex-
ample in 2-D the sensors all lie in the same plane.

2) The sensor locations xn ∈ Ω are known and each sen-
sor samples the field locally at time instants tl for l =
0, 1, . . . , L. Hence the noiseless field samples are simply
the field (2), evaluated at x = xn and t = tl as follows:

ϕn (tl) = u(xn , tl). (11)

3) The sensor noise can be modelled by a zero mean additive
white Gaussian noise (AWGN) process, so that the noisy
measurements are:

ϕεn,l = ϕn (tl) + εn,l , (12)

where εn,l ∼ N (0, σ2) and the (average) signal-to-noise
ratio (SNR) is

SNR def= 10 log10

(∑N
n=1

∑L
l=0 |ϕn (tl)|2

N(L+ 1)σ2

)

. (13)

4) The sensor nodes are synchronised. Hence the sensors
sample the field at the same instants.

Within this setting, we consider two scenarios: a centralised
scenario where we assume that all sensors’ readings are avail-
able at a fusion centre at which all the processing is performed
and a distributed scenario where sensors can perform processing
locally but can only communicate with neighbouring sensors. In
this distributed setup, the sensors must recover the unknown dis-
tribution f(x, t) through localised/in-network data processing
and communications alone.

To model the network topology, in the distributed setting, we
assume a connected random geometric graph (RGG), denoted
by G(N, rcon), with N sensor nodes and connectivity radius
rcon . To realise this, we place N nodes uniformly at random
over a unit square/cube and then put an edge between a pair of
nodes if their Euclidean distance is at most rcon . An example,

1For instance using a suitable microphone array for audio fields, or an array
of thermal sensors to monitor the temperature of a room.

Fig. 1. Sensor network. A distributed sensor network as modelled by a RGG.

with N = 10 nodes is shown in Figure 1, the shaded circular
region is the communication radius of the red sensor.

III. CHOOSING THE SENSING FUNCTIONS: SOURCE RECOVERY

FROM GENERALISED MEASUREMENTS

The focus of this paper will be predominantly on fields in-
duced by multiple localised and instantaneous sources. This
source distribution f(x, t) admits the parametrisation:

f(x, t) =
M∑

m=1

cmδ(x − ξm , t− τm ), (14)

where M is the total number of sources, cm , τm ∈ R and
ξm = (ξi,m )di=1 ∈ Rd are the intensity, activation time and
location of the m-th source respectively. As a result of this
parametrisation, the ISP becomes one of estimating M triples
{(cm , τm , ξm )}Mm=1 .

The proposed framework will be based on estimating the un-
known source parameters from the following multidimensional
sequence of generalised measurements,

Q(k, r) = 〈f(x, t),Ψk(x)Γr (t)〉x,t , (15)

where {Ψk(x)}k∈Nd and {Γr (t)}r ∈N , are families of properly
chosen spatial and temporal sensing functions respectively. We
will discuss how to choose these in the sequel.

Moreover, observe that when we substitute (14) into the inner
product (15), we obtain:

Q(k, r) =
M∑

m=1

cmΨk(ξm )Γr (τm ). (16)

Hence, our first task will be to select Ψk(x) and Γr (t) so that we
can recover {cm , τm , ξm}Mm=1 from {Q(k, r)}k,r . We then dis-
cuss in Section V how to obtain the measurements (15) from the
sensors’ readings. In the same spirit of [37], we propose the use
of exponentials with purely imaginary exponents as our sensing
functions for two main reasons. The first is that, the sum (16)
becomes a superposition of multidimensional exponentials, i.e.
a multidimensional system of superimposed sinusoids, which
can be efficiently solved by using multidimensional extensions
of Prony’s frequency estimation methods [40]–[42]. The second
reason is because the use of imaginary exponentials improves the
stability of the estimation problem, since in this case the magni-
tude of the terms in the generalised sequence remain bounded.
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We now examine explicitly the d-dimensional source recovery
problem. Note however that, in most natural applications, one
would mostly be interested in two- and three-dimensional fields.

A. Sensing Sources in Space and Time

The temporal sensing function is chosen to be the exponen-
tial Γr (t) = ejrt/T , where T = tL is the instant at which the
sensors measure the last sample of the field. In addition, we

choose Ψk(x) = ejk·x with k
def= (k1 , k2 , . . . , kd) ∈ Nd . Un-

der this particular selection of spatial and temporal sensing
functions, the expression (16) becomes:

Q(k, r) =
M∑

m=1

cme
jrτm /T ejk1 ξ1 , m +jk2 ξ2 , m + ···+jkd ξd ,m . (17)

Notice now that, for some fixed r = 0 (take, for instance, the
particular case r = 1) then expression (17) is of the form:

Q(k, 1) def= Q(k1 , k2 , . . . , kd , 1) =
M∑

m=1

bm

d∏

i=1

vkii,m ,

with bm = cme
jτm /T and vi,m = ejξi ,m . This is a multidimen-

sional Prony-like system which, as described in Appendix A,
can be solved to obtain {(bm , v1,m , v2,m , . . . , vd,m )}Mm=1 si-
multaneously from {Q(k, 1)}k provided ki=0, 1, . . . ,Ki and
Ki ≥ 2M−1 for any i ∈ 1, 2, . . . , d. See also [40], [41], for
more on the topic of multidimensional frequency estimation.
Then it follows immediately that the unknown source param-
eters are given by: cm = |bm |, τm = T arg(bm ) and ξm =
−j (log(v1,m ), log(v2,m ), . . . , log(vd,m )).

Having outlined how to recover the unknown point source
parameters from {Q(k, r)}k, we must now focus on retrieving
these generalised measurements from the spatiotemporal sam-
ples of the field.

In [37], [43] it was shown that for the case of the diffusion
field, the generalised measurements can be found by imposing
that Ψk (x) be analytic. A similar strategy has been used in [26],
[44] for the wave and Poisson equations. The disadvantage of
these approaches is that (i) they cannot be easily extended to
d > 2 and (ii) the constraint that Ψk is analytic leads in some
cases to less stable reconstruction algorithms. Consequently,
in the following section we outline a new and more versatile
approach to compute Q(k, r) from the sensor data.

Notice that if we allow k1 to be imaginary and impose, k1 =
−jk2 = jk we obtain the same Q(k, r) of [37], so this new
approach is a generalisation.

IV. MULTIDIMENSIONAL GENERALISED MEASUREMENTS

FROM SENSOR SAMPLES

To compute the desired set of multidimensional generalised
measurements we consider taking weighted linear combinations
of the spatiotemporal samples:

N∑

n=1

L∑

l=0

wn,l(k, r)ϕn (tl) = Q̂(k, r), (18)

hence the goal is to find the weights {wn,l(k, r)}n,l , such that
the left hand side of (18), that is Q̂(k, r), coincides with the
right hand side of (15) for any k and r. The result below follows
from this consideration.

Proposition 1: Computing the multidimensional sequence
of generalised measurements {Q(k, r)}k, in (15) for any
r ∈ N, by taking weighted linear combinations (18) of the
sensor data ϕn (tl) is equivalent to reproducing the function
Ψk(x)Γr (t) from space- and time-reversed translates of the
Green’s function g(x, t) of the underlying field. Specifically,
imposing Q̂(k, r) = Q(k, r) implies that:

N∑

n=1

L∑

l=0

wn,l(k, r)g(xn − x, tl − t) ≡ Ψk(x)Γr (t).

Furthermore when Ψk(x) and Γr (t) are chosen to be exponen-
tials, this results in a multidimensional exponential reproduction
problem.

Proof: We commence this proof by noting that (2) can be
written as:

u(x, t) = f(x, t) ∗ g(x, t)

=
∫

x ′ ∈Rd

∫

t ′ ∈R
g(x′, t′)f(x − x′, t− t′) dt′dx′

= 〈f(x′, t′), g(x − x′, t− t′)〉x ′,t ′ ,

where x′ = (x′1 , x
′
2 , . . . , x

′
d) ∈ Rd and dx′ =

∏d
i=1 dx′i . Con-

sequently, the discrete measurement obtained by the n-th sensor
(located at xn ) at some time instant tl ≥ 0 is

ϕn (tl) = u(xn , tl) = 〈f(x, t), g(xn − x, tl − t)〉x,t . (19)

Replacing (19) into the left hand side (lhs) of (18) yields:

N∑

n=1

L∑

l=0

wn,l(k, r)ϕn (tl) =
N∑

n=1

L∑

l=0

wn,l(k, r)u(xn , tl)

=
N∑

n=1

L∑

l=0

wn,l(k, r) 〈f(x, t), g(xn − x, tl − t)〉x,t

=

〈

f(x, t),
N∑

n=1

L∑

l=0

wn,l(k, r)g(xn − x, tl − t)

〉

x,t

, (20)

where {wn,l(k, r)}n,l ∈ C denote the specific sequence of
weights we wish to compute2. In particular if we require
this weighted sum of the sensor data to yield the ex-
act multidimensional measurements, i.e. Q̂(k, r) = Q(k, r) =
〈f(x, t),Ψk(x)Γr (t)〉x,t , then by comparing the inner products
in (15) and (20), we realise that we must choose the sequence of
weights {wn,l(k, r)}n,l such that, for each k and r, the identity

N∑

n=1

L∑

l=0

wn,l(k, r)g(xn − x, tl − t) ≡ Ψk(x)Γr (t) (21)

2In the last equality, we are able to pass the summation inside the inner
product because it is finite. If it were infinite then we would require that the sum
converges absolutely; which is ensured if g and its translates form a Riesz basis.
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is satisfied. This proves the first claim of the proposition.
The second statement follows immediately. If we impose the

choice of sensing functions of Section III, wherein Ψk(x) =
ejk·x and Γr (t) = ejrt/T , then (21) becomes

N∑

n=1

L∑

l=0

wn,l(k, r)g(xn − x, tl − t) = ejk·xejrt/T (22)

which can be written in a more compact form as follows:
∑

n,l

wn,l(k, r)g(xn − x, tl − t) = ej(k,r/T )·(x,t) = eκ·(x,t) ,

(23)
where κ = j(k, r/T ) ∈ Rd+1 . Hence we can immediately ob-
serve that the required coefficients are those that reproduce the
(d+ 1)-dimensional (space and time varying) exponentials by
summing translates of g(−x,−t), which is the space- and time-
reversed Green’s function of the underlying field u(x, t). �

With access to the desired coefficients, {wn,l(k, r)}n,l , that
are capable of reproducing exponentials from the translates
of g(x, t), all we would need to do is: evaluate the se-
quence {Q(k, r)}k for a fixed r = 0 using (18) and then from
{Q(k, r)}k extract the unknown source parameters as described
in Section III. Therefore the only missing piece in our frame-
work is how to obtain the exponential reproducing coefficients.
For this, one needs to understand when the exponential repro-
duction problem is exactly or approximately feasible and then
establish appropriate schemes to find the desired coefficients.

We address these questions by leveraging from results in
generalised sampling and approximation theory. Then for both
(exact and approximate reproduction) cases, we derive closed-
form formulae to compute the “best” weights wn,l(k, r), when
the translates of the approximant are assumed to be regu-
lar. In the sensor network setup this is equivalent to hav-
ing uniform spatiotemporal samples with sampling intervals
Δx = (Δx1 ,Δx2 , . . . ,Δxd ) and Δt . Finally in the nonuniform
sampling case, where it is generally not possible to obtain simple
closed-form expressions for the desired exponential reproducing
coefficients wn,l(k, r), we propose two approaches:

1) Formulating and solving the linear system that comes from
discretizing (23).

2) Interpolating and resampling the sensor data uniformly.

A. Function Spaces, Generalised Sampling and
Function Approximation

In the generalised (uniform) sampling paradigm—see
[45]–[47] and references therein—the primary goal is to recon-
struct some functions of a continuous variable from a discrete
set of measurements collected on a uniform grid. Often, this
reconstruction will be an approximation of the original signal in
some function spaces with a further property that the approxi-
mation error decays to zero, in the limit as the “density” of the
sampling grid increases.

Consider the d-dimensional generating function p, whose uni-
form translates generates the space

VΔx (p) = spann∈Zd {p (x/Δx − n)} ,

then any function ĥ(x) ∈ VΔx (p) ⊂ L2 is characterised by the
sequence of coefficients an, such that:

h̃(x) =
∑

n∈Zd

anp (x/Δx − n) , (24)

where L2 denotes the space of square-integrable functions. In
fact for this series to be well posed we require that:

1) For convergence, {an}n must be square-summable.
2) For uniqueness and stability of this discrete representa-

tion, {p(x − n)}n must form a Riesz basis of V1(p).
3) Finally, p(x) must satisfy the partition of unity condition

∑

n∈Z

p(x + n) = 1, (25)

for all x ∈ Rd in order to guarantee that by choosing
Δx in (24) sufficiently small, we can approximate any
function h̃(x) as closely as we want (a detailed proof of
this fact can be found in [46, Appendix B]).

If we instead want to reconstruct some signal h(x) ∈
L2 \VΔx , then the reconstruction h̃(x) in (24) should pro-
duce the best approximation of h(x) in the space VΔx , and
hence minimise the approximation error in the least-squares
sense. This is achieved by computing the orthogonal projec-
tions of h(x) onto VΔx (p) which is obtained by choosing
an = 〈h(x), pdual (x/Δx − n)〉, where pdual is the dual of p
and is given by [48],

p̂dual(ω) =
p̂(ω)

∑
n |p̂(ω + 2πn)|2 .

Here p̂(ω) = Fx{p} =
∫
x p(x)e−jω·xdx denotes the multidi-

mensional Fourier transform of p. Please note also that in the
rest of this paper, it is assumed that all transforms are taken in
the sense of distributions.

Within our proposed framework we are seeking the specific
coefficients {wn,l(k, r)}n,l that reproduce the exponential func-
tion using shifted versions of the Green’s function of the under-
lying physical field. Hence this is a special case of the above,
where:

1) the signal we want to reconstruct is a specific (d+ 1)-
dimensional exponential (i.e. eκ·(x,t)), and

2) the generating function p is precisely the Green’s function
of the underlying PDE.

Under these conditions we want to find the best representation
of the exponentials, in the space spanned by the translates of the
Green’s functions.

B. Exact and Approximate Strang-Fix Theory for Exponential
Reproduction From Uniform Translates

Building on the discussion of the previous section, we now
focus on the approximation of exponentials from uniform
translates of a single prototype function. We begin by prov-
ing the following lemma which is an extension of [49] using a
multidimensional generalisation of the proof given in [38].

Lemma 1 (Generalised multidimensional Strang-Fix con-
ditions [50]): Let p(x) be of compact support and its
multidimensional bilateral Laplace transform be P (s) =
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∫
x ∈Rd g(x, t)e−x·sdx, then the following conditions are

equivalent:
1) For any n ∈ Zd \{0}, where 0 is the zero d-vector,

P (κ) = 0, whilst P (κ + j2πn) = 0. (26)

2) For some coefficients an ∈ C,
∑

n∈Zd

anp(x − n), (27)

is an exponential in x, i.e.
∑

n∈Zd anp(x − n) = Ceκ·x ,
for some C = 0.

Proof: See Appendix C. �
The assumption of compactness here ensures first that the

bilateral Laplace transform exists, so that the conditions (26)
are well-defined and second, that (27) converges. This assump-
tion is sufficient, but not necessary, since for example a suitable
polynomial decay [51], or even milder restriction on p(x) [52],
[53] would still guarantee convergence. For the class of func-
tions satisfying the generalised Strang-Fix conditions above,
the desired coefficients can be computed exactly. To treat our
multidimensional problem, we now extend formally the one-
dimensional formulae obtained in [38] to the multidimensional
case. This new formulae are still valid even when the prototype
function is not separable with respect to its variables – i.e we do
not require that p(x) =

∏d
i=1 pi(xi). The absence of this sepa-

rability property is of paramount importance for us, especially
because the spatial and temporal dimensions for most non-static
fields encountered, in reality, are neither separable nor homo-
geneous. We begin our derivation by recalling that we are after
the coefficients {an}n such that

∑

n∈Zd

anp(x − n) = eκ·x . (28)

According to generalised sampling theory, the sequence of
weights that minimises the approximation error in the least-
squares sense is given by

an = 〈eκ·x , pdual(x − n)〉x =
∫

x ∈Rd

eκ·xpdual(x − n)dx

=
∫

x ′ ∈Rd

eκ·(x ′+n)pdual(x′)dx′

= eκ·n
∫

x ′ ∈Rd

eκ·x ′
pdual(x′)dx′

= eκ·na0 , (29)

where the second line follows from the change of variable x′ =
x − n. Thus finding a0 allows us to compute an for all n ∈ Zd

using (29). To find a0 substitute (29) into (28) to get

a0

∑

n∈Zd

eκ·np(x − n)=eκ·x ⇔ a0

∑

n∈Zd

e−κ·(x−n)p(x − n)=1.

We then apply Poisson summation formula on the lattice to
the l.h.s. of this expression, which if p(x) is well-behaved
reduces to

a0

∑

n∈Zd

P (κ + j2πn)ej2πn ·x = 1.

Finally from the condition (26) we get a0 = 1
P (κ) , since all

terms in the summation vanish for n = 0. Hence for any n ∈
Zd it follows that,

an =
eκ·n

P (κ)
. (30)

1) Approximate Strang-Fix in Multidimensions and the Ap-
proximation Error: In the derivation of (30) we imposed some
regularity conditions on p(x), specifically for the l.h.s of the
Poisson summation formula to converge, the function must de-
cay sufficiently quickly. The strongest constraint on p(x) how-
ever is due to (26), where P (κ + j2πn) = 0 for n ∈ Zd \{0}.

For general physical fields of interest to us, the approximant
p(x) will be replaced by the corresponding Green’s function g
of the field. Whilst these will generally not satisfy the Strang-Fix
condition (26), we still wish to reproduce exponentials approx-
imately with them. To this end, we will extend the approximate
Strang-Fix method introduced in [38], which relaxes the as-
sumptions on the generators (for the 1-D exponential case), so
that we are now after the coefficients that gives the best approx-
imate exponential reproduction, for any p(x). Mathematically
this means that we desire

∑

n∈Zd

anp(x − n) ≈ eκ·x , (31)

where p(x) does not necessarily satisfy the generalised Strang-
Fix conditions (26). There are a few possible choices one
may make for the “best” approximation coefficients. For
any choice, the associated approximation error is, ε(x) =
eκ·x (1 − a0

∑
n P (κ + j2πn)ej2πn·x) which can be min-

imised in the least-squares sense, by computing the orthogonal
projection of eκ·x on the the subspace V1(p). This yields a0 =
P (−κ)
Rp (eκ) , whereRp(eκ) =

∑
�∈Zd rp [�]e−κ·� is the multidimen-

sional z-transform of the autocorrelation sequence rp [�] =
〈p(x − �), p(x)〉x , evaluated at z = eκ = (eκ1 , eκ2 , . . . , eκd )
[38], [53].

Moreover, observe that the square error ε2(x) is minimised
when 1 − a0

∑
n P (κ + j2πn)ej2πn·x = 0; in addition if the

Laplace transform P of the generator decays quickly, i.e. as-
suming P (κ + j2πn) ≈ 0 for any n ∈ Zd \ {0}, then a0 =
1/P (κ) is a good proxy for the minimiser of ε(x) and there-
fore:

an(κ) =
eκ·n

P (κ)
. (32)

These are the coefficients we shall utilise in this work, for
their simplicity and accuracy. Moreover, the approximation error
using (32) is given by:

ε(x) = eκ·x
(

1 − 1
P (κ)

∑

n

P (κ + j2πn)ej2πn·x
)

, (33)

which will be small if P (κ + j2πn) decays quickly to zero as
|n| increases.
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Fig. 2. Exponential reproduction. Reproducing the 2-D sensing function Ψk(x) = ejk 1 x 1 + jk 2 x 2 , assuming N = 16 uniformly placed sensors (grey ‘•’) for
the 2-D potential field. Specifically the translates of the prototype (4), centred at the indicated grey ‘•’ locations, are linearly combined using the exponential
reproducing weights obtained with (35). This gives the approximate Strang-Fix reconstruction (solid surface) of the exponentials (black mesh).

C. Computing the Analysis Coefficients for Space-Time Fields

Equipped with the formulae in Section IV-B, we can now
compute explicitly the weights wn,l(k, r) in (18). We distin-
guish two cases: (i) the case where the sensors are uniformly
spaced and (ii) the case where the location of the sensors are
arbitrary.

1) Uniform Sensor Placement: Denote the sensor mea-
surements by ϕn(tl) = u(nΔx , lΔt), where nΔx = (n1Δx1 ,
n2Δx2 , . . . , ndΔxd ) and ni = 0, 1, . . . , Ni − 1 for i =
1, . . . , d. Note that we can reconcile the vector index sensor
measurement ϕn(tl) with the scalar indexed one ϕn (tl), by
simply taking the lexicographic ordering of the elements of
{nΔx}n∈Nd to give {xn}Nn=1 , where N =

∏d
i=1 Ni .

Consequently for physics-driven fields, it is clear from (23)
that the prototype function is the space- and time-reversed
Green’s function: p = g(−x,−t), with bilateral Laplace trans-
form G(−sx ,−st). Therefore for translates Δx ∈ Rd

+ and
Δt ∈ R+ the corresponding exponential reproducing coeffi-
cients are:

w̄n,l(k, r) =
eκ̄·(n,l)

Ḡ(−jΔxk,−Δt jr/T )
, (34)

where ḡ(x, t) = g(Δxx,Δt t) and κ̄ = j(Δxk,Δtr/T ). Since,
ḡ(x, t) ⇔ Ḡ(sx , st) = 1

Δ t

∏ d
i= 1 Δx i

G( sx
Δx

, stΔ t
), we can find

Ḡ(−jΔxk,−Δt jr/T ) and substitute it into (34), to conclude
that for any Δx ∈ Rd

+ and Δt ∈ R+ ,

wn,l(k, r) = Δt

d∏

i=1

Δxi

ej(Δx k,Δ t r/T )·(n,l)

G(−jk,−jr/T )
. (35)

As an example, we show in Figure 2, the approximation of the
2-D spatial exponentials, ejk1 x1 +jk2 x2 , using the 2-D Green’s
function of Poisson’s equation (4) and the coefficients (35), for
r = 0, k1 = 2, and k2 = 2, 3, 4.

2) Least-Squares Scheme for Nonuniformly Placed Sensors:
For the case of non-uniformly placed sensors, it is generally not
possible to find similar closed-form expressions for the desired
coefficients {wn,l(k, r)}n,l . It is possible however to formulate
a linear system of equations to find {wn,l(k, r)}n,l since the
approximating function g and the exponentials Γr (t)Ψk(x) we
want to approximate are known. One approach is to discretise
(21) as follows. First, for each l, formulate the following linear
system at some fixed time snapshot tj > 0:
⎡

⎢⎢⎢
⎢
⎣

g(x1−x′
1 , tl−tj ) · · · g(xN−x′

1 , tl−tj )
g(x1−x′

2 , tl−tj ) · · · g(xN−x′
2 , tl−tj )

...
. . .

...

g(x1−x′
I , tl−tj ) · · · g(xN−x′

I , tl−tj )

⎤

⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢
⎣

w1,l(k, r)
w2,l(k, r)

...

wN,l(k, r)

⎤

⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

Ψk(x′
1)Γr (tj )

Ψk(x′
2)Γr (tj )
...

Ψk(x′
I )Γr (tj )

⎤

⎥⎥⎥⎥
⎦

⇒ Gl,jwl(k, r) = pj (k, r). (36)
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Solving this system gives the coefficients {wn,l(k, r)}n for a
fixed l. Second, we stack (36) for each l and take several tj ’s,
j = 1, . . . , J to get
⎡

⎢⎢⎢
⎣

G0,1 G1,1 · · · GL,1
G0,2 G1,2 · · · GL,2

...
...

G0,J G1,J · · · GL,J

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

w0(k, r)
w1(k, r)

...
wL (k, r)

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

p1(k, r)
p2(k, r)

...
pJ (k, r)

⎤

⎥⎥⎥
⎦

Gw(k, r) = p(k, r), (37)

where G ∈ RIJ×N (L+1) is a discretisation of g(x, t),
p(k, r) ∈ RIJ are discretisations of the spatiotemporal sensing
functions, whilst w(k, r) ∈ RN (L+1) are the desired weights
for each k and r. Consequently, in order to recover the desired
field analysis coefficients, we would need to solve the system
(37). In general, this system admits a least-squares solution if
IJ ≥ N(L+ 1), where the observation matrix G can be con-
structed from the Green’s function of the problem at hand (i.e.
(4), (5), (7), (9) and so on).

Although straightforward to formulate, the conditioning of
such a system can be poor in some instances. Specifically, the
condition number of G depends directly on the sensor locations
xn , the sampling instants tl and the Green’s function g(x, t) of
the underlying phenomena.

3) Interpolation Scheme for Nonuniform Sampling: Another
simple, yet effective scheme for handling non-uniform sensor
placement is to interpolate the field and resample it on a uniform
grid. In so doing, we can obtain an approach that can still exploit
the closed form expression (35) even when the spatial sampling
is irregular.

Essentially we want to return to the situation where translates
of the Green’s function are on a uniform lattice. To do this,
we assume that the spatial field samples are interpolated, on a
uniform grid, using the interpolator family {γn (x)}, such that
û(x, tl) =

∑N
n=1 ϕn (tl)γn (x − xn ). Then this new approxi-

mation of the underlying field is resampled uniformly at the
new locations {xn̄ = (n̄1Δx1 , n̄2Δx2 , . . . , n̄dΔxd )}n̄∈Nd to
give the corresponding data samples ϕ̂n̄(tl) = û(xn̄, tl). Fi-
nally, since we are back to the uniform case, the correspond-
ing exponential reproducing coefficients can be recovered using
(35). Then weighting the interpolated measurements ϕ̂n̄(tl) by
the obtained coefficients will produce an estimate for the de-
sired sequence of generalised measurements. Besides avoiding
the inversion of poorly-conditioned matrices, the interpolation
approach is less intensive computationally compared to matrix
inversion, particularly when the matrix G (in (37)) is large.
In our experimental results, we have used linear splines as the
interpolator family {γn (x)}.

V. THE SENSOR NETWORK ALGORITHMS: SOURCE

ESTIMATION FROM FIELD SAMPLES

Based on the framework outlined in Sections III and IV, we
now develop practical sensor network algorithms for estimating
the sources of a physical field from its sensor measurements,
and therefore solve the class of ISPs driven by linear PDEs with
constant coefficients. First, we outline a centralised algorithm,

which follows straightforwardly from Proposition 1, then we
consider the distributed case which relies on average consensus
algorithms.

A. Centralised Source Estimation

Assuming the source measurements have been made avail-
able at the fusion centre and that the PDE model—and Green’s
function—of the monitored phenomena are known, then the
point and instantaneous source estimation scheme can be sum-
marised as in Algorithm 1, when the number of field sourcesM
is known.

Remark 1: Notice that Algorithm 1 requires M as input,
however when M is not known, the following interesting phe-
nomenon persists. Let M ′ be our initial guess for the unknown
M , if it is incorrect (i.e. when M ′ = M ), we observe even in
noisy settings, that:

1) IfM ′ < M , the most dominantM ′ sources are recovered
from the field measurements.

2) Otherwise if M ′ > M , all M sources are recovered. In
addition to them however, M ′ −M spurious sources—
which may be attributed to noise and other sources
of model mismatch—are also estimated. These extra
M ′ −M spurious sources will either fall outside of the
monitored region Ω or their estimated intensities will be
very small in comparison to the true sources.

As we will see in Section V-C, this observation can be conve-
niently exploited to develop a suitable estimation scheme even
when M is not known a priori.

Algorithm 1: Simultaneous estimation of M point sources.

Require: {ϕn (tl)}N,Ln=1,l=0 , {xn}n , M , Δt , μ, d.
1: Compute the Laplace transform G(sx , st) of the

Green’s function.
2: Initialise Ki ≥ 2M − 1 for each i = 1, . . . , d and
r = 1.

3: if UniformSampling then
4: From {xn}n compute sensor spacing Δx .
5: Compute coefficients {wn,l(k, 1)}(K 1 ,K 2 )

k=(0,0) using (35).
6: else
7: Use approach in Section IV-C2 or Section IV-C3.
8: endif
9: Compute {Q(k, 1) =

∑
n,l wn,l(k, 1)ϕn(tl)}k.

10: Recover all M pairs of (cme−jτm /T , ξm ) by applying
N -D ESPRIT (Appendix A) to {Q(k, 1)}k.

11: For all m, cm=
∣∣cme−jτm /T

∣∣ and τm=T arg(
cme

−jτm /T
)
.

12: return {cm , τm , ξm}Mm=1 .

B. Distributed Source Estimation

In the distributed set up, we want each node in the network
to first estimate Q(k, r) through localised interactions with its
neighbouring nodes. These localised interactions in our field
estimation setting are based on the use of consensus algorithms.

We assume the same sensor network as described in
Section II-A, comprising of “smart” sensor nodes. In addition
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to knowing the Green’s function of the monitored phenomena3,
these nodes are able to perform mathematical computations and
can also learn the network topology upon deployment. Knowl-
edge of the network topology and the Green’s function of the
underlying phenomena, means that all sensors can compute in-
dependently their sets of exponential reproducing coefficients
{wn,l(k, r)}l by using, either (35) if they are on a uniform grid
or the least-squares scheme described in Section IV-C2 when
they are nonuniformly placed.

They may start to sense the field in time to measure ϕn (tl).
To estimate the unknown sources the sensors must exchange
and aggregate their sensor data, using average consensus as
described in Appendix B. Specifically, gossiping is initiated
when the n-th sensor contacts and exchanges its local measure,

yn (k, r) = N

L∑

l=0

wn,l(k, r)ϕn (tl), (38)

with a neighbour. After several rounds of gossip, each sensor
will converge to the generalised measurements,

1
N

N∑

n=1

yn (k, r) =
1
N

N∑

n=1

N

L∑

l=0

wn,l(k, r)ϕn (tl) = Q(k, r).

Consequently N -D ESPRIT, or a similar Prony-like method, is
then applied by each sensor—independently—on {Q(k, r)}k,
to compute locally the unknown source parameters.

C. Estimation in Presence of Noise and Model Mismatch

Although the sensors actually acquire noisy measurements,
i.e. {ϕεn,l}n,l in (12), of the underlying field the same recovery
schemes outlined in Sections V-A and V-B are still effective.
Specifically mapping the noisy sensor samples, {ϕεn,l}n,l , to
generalised measurements using (18) gives the noisy sequence,

Qε(k, r)=
∑

n,l

wn,l(k, r)ϕεn,l = Q(k, r) +

coloured noise
︷ ︸︸ ︷∑

n,l

wn,l(k, r)εn,l .

Thus to recover the field sources from {Qε(k, r)}(K 1 ,...,Kd )
k=(0,...,0) ,

using N -D ESPRIT, we construct a (noisy) multilevel Hankel
matrix Hε according to (45). If M is known, then choosing
Ki ≥ 2M − 1 for all i = 1, . . . , d, and retaining only those sin-
gular vectors due to the M largest singular values of Hε is
implicitly denoising. Generally, choosing large Ki for all i pro-
motes robustness even in low SNR regimes.

Often however, the multilevel Hankel structure of Hε is lost
when we retain only its M largest singular values (and zero the
rest). Thus, we may choose to restore this structure by averaging
the appropriate elements. These steps can be repeated until con-
vergence. This is the fundamental idea behind Cadzow-like [54]
algorithms common in the FRI literature. Furthermore, these ap-
proaches are most effective when the noise in Hε is white, so
we first need to apply a noise prewhitening transform similar to
the approach in [43].

3This comes for free since the SNs are designed to sense a particular phe-
nomena: i.e. if we are sensing acoustic fields then we use the wave equation, for
temperature and leakages we use the diffusion equation, and so on.

1) Recovering an Unknown Number of Sources: By combin-
ing the observations in Remark 1 with the fact that the singular
value decomposition of the multilevel Hankel matrix H (or Hε)
also encodes information aboutM—i.e. most dominant singular
values are due to the sources—an iterative estimation scheme
similar to those in [37], [43] can be devised. The scheme relies
on finding a time interval over which only a fixed number of field
sources are active. Finding such a window allows us to reliably
estimate these active sources and then adjust the spatiotempo-
ral sensor measurements by removing their contribution to the
sensor measurements. Given {ϕn (tl)}Ll=0 , the strategy (to find
a window with one active source) is as follows:

1) Assume that there are M ′ ≥ 2 sources and approximate
{Q(k, 0)}k where ki = 0, 1, . . . , 2M ′ − 1, using only the
samples {ϕn (tl)}L ′

l=0 with L′ < L from the time window
[0, L′Δt ]. The centralised or distributed approaches (in
Section V) can be used.

2) Proceed to estimate the M ′ source intensities {c′m ′ }M ′
m ′=1

and locations {ξ′
m ′ }M ′

m ′=1 using the multidimensional
ESPRIT method.

3) Check validity of all estimated M ′ sources and let Mvs
be the number valid sources found. In particular, a source
(c′m ′ , ξ′

m ′) is valid if the conditions below are simultane-
ously satisfied:

a) c′m ′ is greater than some predetermined threshold,
and;

b) ξ′
m ′ is within the monitored region.

4) There are three possible outcomes. If,
a) Mvs > 1: Reduce the time widow by reducing L′

and return to step 1).
b) Mvs < 1: Increase the time widow by increasing L′

and return to step 1).
c) Mvs = 1: Estimate the source parameters from the

measurements {ϕn (tl)}L ′
l=0 using Algorithm 1.

5) Synthesise the field due to this source using equation
(2) and adjust the sensor measurements by removing the
contribution of this source. Increment L′ and return to
step 1).

6) Stop when theL′ = L or when the field measurements are
below some predefined threshold.

D. Filtering in the Time-Domain

Using the framework summarised by Proposition 1, we have
been able to devise practical sensor network algorithms to solve
the ISP of interest. During the sensing phase, although spatial
prefiltering is generally not realisable, we are still able to per-
form prefiltering in time. The prefiltered samples obtained by
the n-th sensor, using the filter h(t) are:

φn (tl) = u(xn , t) � h(t)|t=tl
= f(x, t) ∗ g(x, t) � h(t)|x=xn ,t=tl ,

where � is the time-convolution operator. In light of this
new formulation, the generator that will be used to reproduce
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Fig. 3. Centralised estimation of diffusion sources from noisy measure-
ments obtained by randomly placed sensors. The field is sampled at 1 Hz for
T = 25 s using 41 nonuniformly placed sensors, samples have SNR = 15 dB.
(a) Estimated locations, (b) Estimated intensities and (c) Estimated activation
times, using r = 1 and K1 = K2 = 15 for estimation algorithm.

exponentials from its space-time translates is

gf (x, t) =
∫

t ′
g(−x,−t− t′)h(t′)dt′, (39)

with Gf (sx , st) = G(−sx ,−st)H(st).
We now have the freedom to designH(st) in such a way that

Gf (sx , st) has some desirable properties. For our framework
it is favourable to choose H(st) such that Gf (sx , st) decays
quickly, at least in the st-domain. This will reduce the approxi-
mation error (33) as discussed in Section IV-B.

VI. NUMERICAL SIMULATIONS

In this section, we present some numerical results to validate
the proposed framework for solving ISPs driven by linear PDEs.
To investigate several scenarios, we present results for cases
where the measured phenomena have been generated by:

1) the diffusion equation – we simulate a 2-D multiple source
field assuming a nonuniform sensor placement and in-
vestigate the proposed interpolation approach outlined in
Section IV-C3. The results are shown in Figure 3. We also
devote Section VI-D to comparing the performance and
computational complexity of the proposed framework to
a sparse synthesis recovery scheme [16].

2) Poisson’s equation – we consider a single source field in
3-D with nonuniform spatial samples, and utilise the linear
system approach to find the desired analysis coefficients.
Corresponding results are presented in Figure 4.

3) the wave equation – we simulate a single source wave
field in 3-D, sampled using a distributed SN of uniformly
placed sensors. We assume that the sensors filter the field
in time using a cubic spline before sampling. The results
obtained are summarised in Figure 5.

The sensor measurements are simulated numerically and
artificially corrupted by AWGN as defined in (13), using
Matlab. We then apply our estimation algorithms on the mea-
surements. For statistical significance, multiple independent tri-
als are performed within each setup, with both a new noise
process and random sensor placement (for the nonuniform

Fig. 4. Centralised estimation of single localised source for Poisson’s equa-
tion using nonuniformly placed sensors. The field is sampled at 1 Hz for T =
1 s using 27 randomly placed sensors, samples have SNR = 15 dB. (a) Location
estimates (b) Estimated intensities using r = 0 and K1 = K2 = K3 = 2 for
the estimation algorithm.

sampling setups). In Figures 3 to 5, the green ‘•’, red ‘×’ and
blue ‘+’ denote the sensor locations, the estimated and true
source locations, respectively.

A. Inverse Source Problem for the Diffusion Equation

We present numerical results in the nonuniform sampling
scenario, where the diffusion field is induced by three localised
and instantaneous sources. We use the 2-D test function family
{Ψk(x)Γr (t) = ejk1 x1 +jk2 x2 ejrt/T }k,r with r = 1, k1 = k2 =
1, 2, . . . , 15 and present in Figure 3 the source estimation re-
sults obtained by using Algorithm 1 with a linear interpola-
tor and a resampling grid with Δx1 = Δx2 = 1/30. For sta-
tistical significance, we perform 20 independent trials of the
experiment.

Moreover for the 2-D field, with Green’s function (7), we
obtain its Laplace transform as (see Appendix D-A):

G(sx , st) =
1

st − μ‖sx‖2 , (40)

provided�(st − μ‖sx‖2
)
> 0, where�(z) is used to denote the

real part of a complex number z. Hence, by substituting (40) into
(35) with κ = j(k, r/T ), the desired exponential reproducing
coefficients are of the form:

wn,l(k, r) =
Δx1 Δx2 Δt(μ(k2

1 + k2
2 ) + jr/T )

e−j(Δx 1 k1 n1 +Δx 2 k2 n2 +Δ t r l/T ) . (41)

As seen in Figure 3, all source parameters have been recovered
reliably; in particular, the source locations (Figure 3(a)) and
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Fig. 5. Distributed estimation of localised sources for the Wave equation
using uniformly placed sensors. The field is sampled at 1 Hz for T = 20 s
using 27 uniformly placed sensors, samples have SNR = 10 dB. (a) Location
estimates, (b) Estimated activation times. By considering one experiment, the
evolution of the estimates of (c) ξ1 , (d) ξ2 , (e) ξ3 , and (f) τ , for three randomly
chosen sensors are shown. Here we used r = 1 and K1 = K2 = K3 = 5 for
the estimation algorithm.

activation times (Figure 3(b)), which are usually the two main
parameters of interest, vary only marginally around their true
values despite the low measurement SNR.

Remark 2: The requirement that �(st − μ‖sx‖2
)
> 0 is

necessary for the transform integral to converge. By substi-
tuting (sx , st) = −j(k, r/T ) into (40), it is easy to see that this
is satisfied when k = {0}.

B. Inverse Source Problem for Poisson’s Equation

Since the Poisson field is static, we only focus on recovering
the source location and intensity. Specifically, we estimate the
unknown source from a single time-snapshot of the 3-D potential
field measurements by formulating the linear system discussed
in Section IV-C, with r = 0 andK1 = K2 = K3 = 2. Therefore

Fig. 6. Noise robustness. Mean absolute error of the estimated (a) loca-
tions and (b) activation times against SNR, for N = 6 sensors and L + 1 =
{6, 11, 12} temporal samples.

according to (36), we get:
⎡

⎢⎢⎢⎢
⎣

g(x1−x′
1) · · · g(xN−x′

1)
g(x1−x′

2) · · · g(xN−x′
2)

...
. . .

...

g(x1−x′
I ) · · · g(xN−x′

I )

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

w1,l(k, 0)
w2,l(k, 0)

...

wN,l(k, 0)

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

Ψk(x′
1)

Ψk(x′
2)

...

Ψk(x′
I )

⎤

⎥⎥⎥⎥
⎦
,

where I = 1000 and x′
i is obtained from a lexicographic order-

ing of {(i1δx1 + ε, i2δx2 + ε, i3δx3 + ε)}9
i1 ,i2 ,i3 =0 with δx1 =

δx1 = δx1 = 0.03,4 and g(x) = − 1
4π‖x‖ .

The simulation results are shown in Figure 4, with the source
location and intensity estimates obtained over the 20 indepen-
dent trials. All estimates show only small variations around the
ground truth parameters. In particular, the variation in location
estimates is much smaller than the average sensor spacing. Fur-
thermore the condition number for the matrix G is reasonably
small falling in the range 15–38.

C. Distributed Acoustic Source Localisation: Inverse Source
Problem for the Wave Equation

Here the simulated physical phenomena is a 3-D wave field,
obeying (8) and, induced by a single source. We consider the
distributed estimation setup, wherein the SN model is assumed
to be the RGG G(N, 0.4). Each of the N = 27 regularly placed

4The slight shift ε ≥ 0 is used here to avoid the singularity of g(x) at
‖x‖ = 0.
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Fig. 7. Estimation performance. Mean absolute error of the estimated locations (top) and activation times (bottom) against the number of temporal samples
L + 1 for different number of sensors: (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 9; measurement SNR= 20 dB.

sensors acquires the field by filtering it (in time) using a third or-
der B-spline before sampling. We apply the approach described
in Section V-D by first computing the desired coefficients
wn,l(k, r) from the filtered Green’s function gf (x, t), which has
the bilateral Laplace transform, Gf (sx , st) = G(sx , st)H(st),
whereH(st) = (1−e−s t

st
)4 , is the Laplace transform for the third

order B-spline,5 whereas G(sx , st) = 1
‖sx ‖2 −(st /c)2 . A deriva-

tion of this expression is provided in Appendix D-B. Combining
these gives us the desired coefficients,

wn,l(k, r) =
Δt

∏3
i=1 Δxi (r/T )4

(
(r/cT )2 − ‖k‖2

)

(1 − e−jr/T )4e−j(
∑ 3

j = 1 kj nj Δx j
+rlΔ t /T )

, (42)

where Δx1 = Δx2 = Δx3 = 0.1 and Δt = 1. Moreover, we
chooseK1 = K2 = K3 = 5 and r = 1 for the sensing function
family {Ψk(x)Γr (t) = ejk1 x1 +jk2 x2 +jk3 x3 ejrt/T }k,r . Given
these coefficients, the sensor nodes can perform a distributed
estimation of the unknowns via gossiping, as described in Sec-
tion V-B. The estimation results for 20 independent trials in this
uniform sampling case is presented in Figure 5, wherein the
recovered source locations, in (a), and activation times, in (b),
are plotted over the true values. From these plots, we can con-
clude that the estimates are reliable, even when we have noisy
measurements. In addition by considering a single experiment
only, Figure 5(c)–(f) shows the evolution of the location and ac-
tivation time estimates for three randomly chosen sensors (with
each pairwise gossip round). Specifically, Figure 5(c), (d) and
(e) displays the location estimates (in each spatial dimension),
i.e. x1 , x2 and x3 respectively. Similarly, Figure 5(f) shows the
evolution of the activation time estimate. In both cases we no-
tice that the estimates converge to the true value, despite the low
measurement SNR.

5The zero order B-spline is taken as the indicator function on [0,1], from this
we define the n-th order B-spline as the spline generated by convolving (n + 1)
zero order B-splines.

D. Estimation Performance Comparison

We now numerically compare the proposed scheme against
the sparse synthesis (SS) formulation described in [16]. For the
SS method, we formulate the LASSO problem:

min
f

1
2
‖Df − ϕ‖2 + γ‖f‖1 , (43)

where the dictionary D ∈ RN (L+1)×Nx Nt is formed by dis-
cretising the Green’s function appropriately assuming uni-
form spatial and temporal grids with Nx = 51 and Nt = 101
divisions, f ∈ RN (L+1) is the source discretisation, whilst
ϕ ∈ RNx Nt is the vectorised sensor samples. The problem is
then solved using the alternating direction method of multipli-
ers (ADMM) [55]. The sparse synthesis formulation exhibits
the same estimation performance as the sparse analysis formu-
lation, proposed in [15], [16], so we only focus on one of them;
although SS is much more computation intensive. The proposed
sampling-based method uses r = 1 and K = 50. Note that for
both approaches their activation time estimates are further re-
fined by performing a line search in a small neighbourhood of
the initial estimate.

The field used is 1-D diffusion induced by a single source
with parameters c1 = 5, ξ1 = 0.1207m and τ1 = 1.2175s over
x ∈ Ω = [0, 0.3]m and t ∈ [0, 20]s. All reported statistics were
computed from 200 independent trials, each having a new noise
realisation.

Figure 6 shows that for very low SNR combined with low
samples N = 6 and L+ 1 = 6, the sparsity-based recovery
method achieves a lower mean absolute error (MAE) than the
proposed method. However at higher temporal sampling fre-
quency, for e.g. L+ 1 = 21, the current method consistently
outperforms the SS method even at an extremely low SNR
= 0dB. Moreover, for fixed SNR = 20dB we observe, in Fig-
ure 7, that the MAE remains constant even as the number of
temporal samples increases – largely due to the discretisation;
whereas the current approach improves drastically with the
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Fig. 8. Computation time. Average runtime for each method against L + 1 for different number of sensors: (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 9;
measurement SNR= 20 dB.

number of temporal samples, outperforming the SS method for
most values of N and L. Finally by comparing the runtimes of
both schemes in Figure 8, we notice that the complexity of the
present method increases only marginally, whilst the SS method
measures around one to two orders of magnitude slower as the
number of temporal and spatial samples increase.

VII. CONCLUSION

In this work we established a new general framework to
solve ISPs for fields described by linear PDEs with constant
coefficients. This formulation reduced the ISPs, for such
physics-driven fields, to the problem of reproducing exponen-
tials using shifted versions of the space- and time-reversed
Green’s function of the corresponding field, under the as-
sumption that the sources are localised. Consequently, we pro-
posed practical sensor network algorithms for both uniform and
nonuniform sampling setup. Finally, we validated our frame-
work on some popular PDE models encountered in various ap-
plications, and also demonstrated that our method compares
favourably against sparse recovery based methods.

APPENDIX A
ESTIMATING PARAMETERS OF MULTIDIMENSIONAL

SUPERIMPOSED EXPONENTIALS

Consider the sequence (of generalised measurements)

Q(k, r) = Q(k1 , . . . , kd , r) =
M∑

m=1

cm b
r
m

d∏

i=1

(vi,m )ki , (44)

for any r, it is a superposition of M d-dimensional damped
complex sinusoids. Moreover, ki = 0, 1, . . . ,Ki − 1 for each
i = 1, 2, . . . , d. This multidimensional Prony-like system is
prevalent in spectral estimation and array processing applica-
tions for example. Many approaches have been put forward for
recovering the unknown frequencies and amplitudes, particu-
larly for d = 2 [40], [41], [56].

In our framework, discussed in Section III, solving this system
for {bm , cm , (vi,m )di=1}Mm=1 allows us to recover the unknown
source parameters {cm , τm , ξm}Mm=1 . We utilise the N -D
ESPRIT algorithm by Sahnoun et al. [42] (based on the 2-D
ESPRIT algorithm of [56]) to solve this system. The N -D ES-
PRIT algorithm is as follows:

1) Choose L1 , L2 , . . . , Ld ∈ N such that 1 ≤ Li ≤ Ki and
set Ji = Ki − Li + 1.

2) Construct the multilevel Hankel matrix H

H = [q1,...,1 q1,...,1,2 · · · q1,...,1,Jd

q1,...,1,2,1 · · ·
· · · qJ1 ,J2 ,...,Jd−1 qJ1 ,J2 ,...,Jd ],

(45)

where the vectorsqj
def= vec(Q(j − 1 : j + L − 2 · 1, r)),

j = (j1 , j2 , . . . , jd) ∈ Nd
+ , and L = (L1 , L2 , . . . , Ld).

Note that here, j : j + L − 1 def= (j1 : j1 + L1 − 1, j2 :
j2 + L2 − 1, . . . , jd : jd + Ld − 1) is the (MATLAB-
like) notation used for extracting subarrays, and vec(·) is
the vectorisation operator.

3) Retrieve the singular value decomposition (SVD) of H,
and form U ∈ C(L1L2 ···Ld )×M , which is a matrix of the
M most dominant left singular vectors of H.

4) Compute the matrices Fi , using

Fi = (iU)†
(
iU
)
, (46)

where iU = iI U and iU = iI U. Moreover, iI =
I∏ i−1

j = 1 Lj
⊗ ILi

⊗ I∏ d
j = i+ 1 Lj

and iI = I∏ i−1
j = 1 Lj

⊗ ILi
⊗

I∏ d
j = i+ 1 Lj

. The symbol⊗ denotes the Kronecker product,

In is the n× n identity matrix and the overbar (respec-
tively underbar) represents the operation of deleting the
first (respectively last) row of a matrix.

5) For some random choice of β1 , β2 , . . . , βd , compute the
linear combination of matrices:

K =
d∑

i=1

βiFi . (47)

6) Diagonalise the matrix K to find T, such that

K = Tdiag(η)T−1 . (48)

7) Then for each i = 1, 2, . . . , d, transform Fi using the ma-
trix T,

Di = T−1FiT. (49)

8) Compute the unknown frequencies {vi,1 , vi,2 , . . . , vi,M }
as the diagonal of Di , i.e. diag(Di) for each i =
1, 2, . . . , d.
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9) Using {vi,1 , vi,2 , . . . , vi,M }di=1 , solve the least-squares
problem associated with (44) to find {c′m = cm b

r
m}Mm=1 .

APPENDIX B
GOSSIPING FOR DISTRIBUTED AVERAGE CONSENSUS

The problem of achieving consensus or agreement amongst
agents of a network in a distributed fashion, is well-studied.
Gossip algorithms, based on the early works of Tsitsiklis
et al. [57], have been applied to the distributed averaging prob-
lem, as they possess the attractive property of not requiring a
specialised routing strategy. Consider for example pairwise ran-
domised gossip [58], which involves at each time step two ran-
dom but connected nodes updating their values with a weighted
average of their current values.

Let us denote the value at node n after the i-th pairwise gossip
by yn,i , then the initial value is yn,0 . At each iteration, a ran-
dom node nwakes up and contacts a randomly chosen neighbor
n′, they both update their estimates with yn,i+1 = yn ′,i+1 =
(yn,i+yn ′,i)/2. Furthermore, let y(i) = [y1,i , y2,i , . . . , yN ,i ]T

then this pairwise gossip algorithm can be summarised mathe-
matically as:

y(i+ 1) = P(i)y(i) (50)

where P(i)’s are doubly stochastic matrices drawn randomly at
the i-th iteration. Moreover, P(i) is a diagonal identity matrix
everywhere else apart from the elements (n, n), (n, n′), (n′, n)
and (n′, n′) which are all equal to 1/2.

If the network is connected and the nodes communicate using
this scheme, then it can be shown that each node is guaranteed to
converge to the global network average ȳ = 1

N

∑N
n=1 yn,0 , after

enough iterations, i.e. limi→∞ y(i) = 1ȳ. Performance guaran-
tees and convergence results have also been studied (see [58]
and the references therein).

The localised interactions in our inverse source prob-
lem set up will be based on the use of gossip algo-
rithms to compute the generalised measurements {Q(k, r)}k =∑

n,l wn,l(k, r)ϕn (tl), in a distributed manner. Specifically,
we assume each node n knows only its sequence of co-
efficients {wn,l(k, r)}l and senses the field ϕn (tl) in time,
then the sensors communicate their local measures yn (k, r) =
N
∑

l wn,l(k, r)ϕn (tl). On convergence, the nodes will have
Q(k, r) = 1

N

∑N
n=1 yn (k, r), which is the desired generalised

measurements.

APPENDIX C
THE GENERALISED STRANG-FIX CONDITIONS

We first state the classical Strang-Fix condition [49], for mul-
tidimensional polynomial reproduction.

Lemma 2 (Strang-Fix condition [38], [49]): Any compact-
ly supported kernel ψ(x) whose derivatives up to and including
order p are in L2 , is able to reproduce polynomials, i.e.:

xα =
∑

n∈Zd

cα,nψ(x − n),

where α = (α1 , . . . , αd) with
∑

i αi ≤ p, if and only if

ψ̂(0) = 0 and ∇αψ̂(2π�) = 0,

where ψ̂(jω) is the Fourier transform of ψ, and � ∈ Zd \ {0}.
Proof: The proof of this lemma depends on the Poisson sum-

mation formula – which connects the values of a function ψ on
the lattice Zd with its Fourier transform ψ̂ on the lattice 2πZd .
Note that both sides of the summation converge (absolutely)
when ψ and ψ̂ decay sufficiently quickly. The proof is based on
taking the Fourier transform of ψ(n) = nαϕ(x − n) and ap-
plying the frequency differentiation property to it. The reverse
implication follows immediately from this expression, whereas
the forward follows by induction. A complete proof appears
in [49]. �

To demonstrate the multidimensional generalised Strang-Fix
condition, we adapt the proof of [38]. First, we require that the
function ψ(x) = e−κ·xs(x) is able to reproduce the polynomial
xα. Consequently, we obtain

xα =
∑

n

cα,ne
−κ·(x−n)s(x) (51)

⇔ xαeκ·x =
∑

n

cα,ne
κ·ns(x), (52)

such that wn = cα,ne
κ·n|α=0 . Moreover, it follows that (52)

holds true provided ψ(x) satisfies the classical Strang-Fix
condition with α = 0. This is the case when ψ̂(0) = 0 and
ψ̂(2π�) = 0. Consequently, since the Fourier transform of ψ is
by construction related to the Laplace transform of s(x), by
ψ̂(ω) = S(κ + sx)|sx =jω , we obtain the desired conditions:

S(κ) = 0, and S(κ + j2πn) = 0. (53)

APPENDIX D
BILATERAL LAPLACE TRANSFORMS

A. Green’s Function of the Two-Dimensional
Diffusion Equation

Herein, we derive expression (40), i.e. the multidimensional
bilateral Laplace transform of the diffusion Green’s function,

g(x, t) = 1

(4πμt)
d
2
e−

‖x ‖2
4 μ t H(t). Thus,

G(sx , st)=
∫

x ∈Rd

∫

t ∈R

1

(4πμt)
d
2
e−

‖x ‖2
4 μ t H(t)e−(x,t)·(sx,st)dtdx.

(54)
We first consider the spatial integral:
∫

x ∈Rd

e−
‖x ‖2
4 μ t e−x·sx dx =

∫

x ∈R3
e−

‖x ‖2 + 4μ t x ·sx
4 μ t dx

=
∫

x ∈R3
e−

‖x + 2μ t sx ‖2 −4 μ 2 t 2 ‖sx ‖2
4 μ t dx

= eμt‖sx ‖2
∫

x ∈R3
e−

‖x + 2μ t sx ‖2
4 μ t dx

= eμt‖sx ‖2
(4πμt)d/2 , (55)
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where the second equality follows by completing the square and

(55) uses the fact that
∫∞
x=−∞ e−

x 2
a dx =

√
aπ, thus,

∫

x
e−

‖x ‖2
a dx =

d∏

i=1

∫ ∞

xi =−∞
e−

x 2
i
a dxi = (

√
aπ)d ,

with a = 4 μt. We can now substitute (55) back into (54) and
proceed as follows:

G(sx , st)=
∫

t ∈R
eμt‖sx ‖2

H(t)e−st tdt=
∫

t≥0
e−(st−μ‖sx ‖2 )tdt

=
1

st − μ‖sx‖2 , (56)

provided �(st − μ‖sx‖2
)
> 0, as required.

B. Green’s Function of the Three-Dimensional Wave Equation

We now obtain the multidimensional bilateral Laplace trans-
form of the Green’s function for the wave equation (8), which
by definition must satisfy,

∇2g(x, t) − 1
c2

∂2

∂t2
g(x, t) = δ(x, t). (57)

We begin by taking the Laplace transform of the PDE above, as
follows:
∫

x ∈R3

∫

t ∈R

(
∇2g(x, t)− 1

c2
∂2

∂t2
g(x, t)

)
e−(x,t)·(sx ,st )dtdx

=
∫

x ∈R3

∫

t ∈R
δ(x, t)e−(x,t)·(sx ,st )dtdx

∫

x ∈R3

(
∇2 − s2

t

c2

)
g1(x, st)e−x·sx dx =

∫

x ∈R3
δ(x)dx

⇒ (‖sx‖2 − (st/c)2)G(sx , st) = 1.

We can now rearrange to obtain the Laplace transform of g,

G(sx , st) =
1

‖sx‖2 − (st/c)2 .
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[24] I. Dokmanić, L. Daudet, and M. Vetterli, “From acoustic room reconstruc-
tion to SLAM,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2016, pp. 6345–6349.
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