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Abstract—Quantization is a fundamental process in digital sig-
nal processing. ΔΣ modulators are often utilized for quantization,
which can be easily implemented with static uniform quantizers
and error feedback filters. In this paper, we analyze the mean
squared quantization error of the quantizer with error feedback
including the ΔΣ modulators. First, we study the quantizer with
an ideal optimal error feedback filter that minimizes the mean
squared error (MSE) of quantization. We show that the amplitude
response of the optimal error feedback filter can be parameterized
by one parameter. This parameterization enables us to find the
optimal error feedback filter numerically. Second, the relationship
between the number of bits used for the quantizer and the achiev-
able MSE is clarified by using the optimal error feedback filter.
This makes it possible to investigate the efficiency of the quantizer
with the optimal error feedback filter in terms of MSE. Then, ideal
optimal error feedback filters are approximated by practically im-
plementable filters using the Yule-Walker method and the linear
matrix inequality-based method. Numerical examples are provided
for demonstrating our analysis and synthesis.

Index Terms—Quantization, ΔΣ modulator, error feedback,
MSE.

I. INTRODUCTION

QUANTIZATION is a fundamental process in digital sig-
nal processing, wherein, a large set of input values are

mapped onto a smaller set of output values. The simplest
type of quantizer is the uniform quantizer that has fixed-length
code words, i.e., a fixed number of bits per sample. However,
the uniform quantizer is not efficient because it does not con-
sider the statistics of the input and/or the information about the
system connected to the quantizer. Additional information re-
garding the input and/or the connected system can be exploited
to obtain good quantizers. Under the assumption that the quan-
tization error is a white uniformly distributed random sequence,
the Lloyd-Max quantizer is optimal among the quantizers
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having fixed-length code words in the sense that it minimizes
the distortion of the quantization error [1, Ch.9]. However, the
probability density function of the input to the quantizer, that
is often unavailable in practice, is required for constructing the
Lloyd-Max quantizer.

Quantization with error feedback is more efficient than the
conventional uniform quantization. It includes a uniform quan-
tizer and a feedback filter, where the filtered error of the uniform
quantizer is fed back to it for mitigating the error introduced by
quantization. Quantization with error feedback is used for reduc-
ing the effect of the quantized coefficients in fixed-point digital
filters [2], [3]. Finite impulse response (FIR) error feedback fil-
ters have been proposed for recursive digital filters composed
of cascaded second order sections in [4].

Various designs for the feedback filter have been proposed.
Based on the generalized Kalman-Yakubovich-Popov (GKYP)
lemma, an FIR error feedback filter has been designed to min-
imize the worst case gain in the signal passband using convex
optimization [5], whereas an infinite impulse response (IIR)
filter using an iterative algorithm [6]. Under the whiteness as-
sumption for the error of the uniform quantizer, an optimal FIR
feedback filter that minimizes the variance of the error owing to
quantization has been proposed in [7]. On the other hand, IIR
error feedback filters have been presented in [8] for minimizing
the norm of the error in the signal of interest, introduced by the
quantization.

Quantization with error feedback is also adopted in ΔΣ or
ΣΔ modulators that are often utilized to convert real values
into fixed-point numbers and vise versa [9]. ΔΣ modulators are
widely used for several applications, e.g., audio signal process-
ing [10], RF transmitter architectures [11], compressive sensing
[12], and independent source separation [13].

It is known that when a ΔΣ modulator is used to quantize an
analog signal into a digital signal, oversampling can effectively
reduce the error introduced by quantization. However, oversam-
pling increases the number of bits per time, if the same number of
bits are assigned to each output of the quantizer. Whether over-
sampling is effective when the number of bits per time is fixed,
continues to remain unclear. To answer this, we need to show the
relationship between the achievable mean squared quantization
error and the number of bits used for the quantization.

It has been found in [14] that for bandlimited signals, the
variance of the distortion, i.e., the mean squared error (MSE) of
a simple single-loop one-bit ΔΣ modulator decays at a rate of
O(λ−4), where λ is the oversampling ratio. In [15], it is proven
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that for bandlimited bounded signals the squared maximum ab-
solute value, i.e., the squared l∞ norm of the distortion of a
one-bit ΔΣ modulator can decrease at a rate ofO(λ−4); further,
a family of one-bit ΔΣ modulators that attain this rate has been
provided. In [16], optimal filters in this family are designed to
improve the decay rate demonstrating that an exponential rate of
O(2−rλ) for r ≈ 0.102 is achieved by the designed filter. On the
other hand, for bandlimited stationary signals, the MSE of the
optimal one-bit ΔΣ modulator that minimizes the MSE under a
constraint on the variance of the input to the uniform quantizer,
decreases exponentially at a rate ofO(2−rλ) for r ≈ 0.807 [17].
This improvement becomes possible by exploiting the knowl-
edge on the power spectral density function of the input and by
using an additional pre-filter and post-filer with an infinite order.
In this paper, we consider a more practical situation, wherein
the spectrum of the input is unavailable, and investigate the
achievable MSE of the conventional ΔΣ modulators without
pre/post-filters.

The input to the static quantizer in a quantizer with an error
feedback exhibits a larger amplitude than the input to a conven-
tional uniform quantizer without an error feedback. To enable
fair comparisons between quantizers with different input ampli-
tudes, we utilize static uniform quantizers having an identical
signal-to-quantization noise ratio (SQNR). Then, we study the
variance of the error at the output of the system connected to
the quantizer.

After formulating our problem as an optimization problem,
we show that the amplitude response of the optimal error feed-
back filter that minimizes the MSE at the output can be parame-
terized by one parameter. Then, the optimal error feedback filter
can be determined numerically by minimizing the MSE with
respect to the parameter. Using optimal error feedback filter,
we present the relationship between the achievable MSE and
the number of bits used for the quantization. These analytical
results are reported in the conference version [18] of this paper,
which do not have any proofs of the results. Here, in addition
to detailed proofs, further analysis and new synthesis of error
feedback quantizers are provided. Unlike [17], we do not re-
quire the power spectral density function of the input, that is
not always available in practice, nor the additional pre-filter and
post-filer, which are dependent on the system connected to the
quantizer.

Our MSE analysis of the quantizer with the optimal error
feedback filter guarantees that if a fixed number of bits are as-
signed for each quantized signal, the optimal quantizer with
an error feedback always outperforms the uniform quantizer. It
also demonstrates the effect of oversampling on the MSE. If
the number of bits per sample is fixed, oversampling improves
the MSE. On the other hand, if the number of bits per time,
i.e., bit-rate is fixed, oversampling degrades the MSE. Finally,
we present two approximations for ideal optimal filters using
the Yule-Walker method [19] and the linear matrix inequality
(LMI)-based method for obtaining implementable error feed-
back filters. Our LMI-based method enables to design an error
feedback filter having an identical order with the system con-
nected to the quantizer. Numerical examples are provided to
demonstrate our analysis and synthesis.

Fig. 1. Quantizer with an error feedback filter.

Fig. 2. Quantizer and system.

II. QUANTIZER WITH ERROR FEEDBACK

Fig. 1 depicts our quantizer with the error feedback, where x
is the input signal to the quantizer with the error feedback, v is
its output signal, andQ(·) denotes a conventional static uniform
quantizer. All the signals are assumed to be of discrete-time. We
denote the z transform of a discrete-time signal, f = {fk}∞k=0 ,
as F [z] =

∑∞
k=0 fkz

−k .
In Fig. 1, the signalw = v − u is the quantization error signal

of the static uniform quantizer that is filtered by R[z] − 1 and
fed back to x. The first coefficient of the impulse response of
R[z] is assumed to be one, implying that R[z] − 1 is strictly
causal and hence, practically implementable. The minus one in
R[z] − 1 is only for the simplicity of presentation.

Quantization with error feedback has a simple structure that
can be implemented at a relatively low cost. The linearized
model of the ΔΣ modulator can be expressed by a quantizer
with an error feedback filter.

The input signal u to the uniform quantizer is expressed in the
z domain asU [z] = X[z] + (R[z] − 1)W [z]. On the other hand,
the z transform of the output of the quantizer can be expressed
as

V [z] = X[z] +R[z]W [z]. (1)

As R[z] shapes the spectrum of the noise w, it is called a noise
shaping filter or a noise transfer function.

We assume that the output of the quantizer passes through the
system P [z] as depicted in Fig. 2. The z transform of the output
y of P [z] can be expressed as Y [z] = P [z]X[z] + E[z], where
E[z] is the z transform of the error at the output introduced by
the quantization and is given by

E[z] = P [z]R[z]W [z]. (2)

The purpose of this paper is to clarify the achievable mean
squared error (MSE) of the quantizer with an optimal error
feedback, when the input spectrum cannot be used.

III. OPTIMAL ERROR FEEDBACK FILTER FOR QUANTIZATION

First, let us review static uniform quantizers. Although most
of our analysis holds true for the other types of static quantizers
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under the same conditions, we consider the mid-rise quantizer
as an example.

The mid-rise quantizer can be described by two parameters,
the quantization interval d(> 0) and the saturation (or equiva-
lently, overloading) level L(> 0). Its output for a scalar input ξ
is expressed as

Q(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
i+ 1

2

)
d, ξ ∈ [id, (i+ 1)d)

for an integer i and |ξ| ≤ L+ d
2

L, ξ > L+ d
2

−L, ξ < −L− d
2

. (3)

The overload is the saturation owing to the fixed number of
bits representing the binary-values. In the mid-rise quantizer, an
overload occurs if |ξ| > L+ d

2 .
If we assign b bits to the mid-rise quantizer, where b is a

positive integer, the number of quantization levels is 2b that
is related to the saturation level L of the input to the mid-rise
quantizer and the quantization interval d through

2L = (2b − 1)d. (4)

For our analysis, we assume that a sufficient number of bits
are assigned to the output of the uniform quantizer so that:

Assumption 1: There is no overloading in the uniform quan-
tizer.

Suppose that the input x is bounded such that maxk |xx | ≤
Lx for Lx > 0. Then, we have maxk |ux | = maxk |xk +∑∞

l=1 rlwk−l | ≤ Lx +
∑∞

l=1 |rl |d/2. If we set L+ d/2 ≥
Lx +

∑∞
l=1 |rl |d/2, then there is no overloading in the uni-

form quantizer. However, it should be noted that this setting is
often too conservative and a smaller value for L may attain the
no-overloading.

The input x to our quantizer is assumed to be a wide-sense
stationary process with a zero mean and a variance σ2

x . We
also assume that the quantization error signal of the static uni-
form quantizer is a white noise and is uncorrelated with the
input x [20].

Assumption 2: The quantization error signal w of the uni-
form quantizer is a white random signal with a zero mean and
a variance σ2

w and uncorrelated with the input of the uniform
quantizer.

For the uniform quantizer, it is known that Assumption 2
approximately holds true if there is no overloading, the quan-
tization interval d is sufficiently small, and a sufficiently large
number of bits is assigned [21]. On the other hand, Assumption 2
is not always satisfied for the quantization error of the uniform
quantizer in the error feedback quantizer due to the feedback
signal and the oversampling [22]. The feedback signal compli-
cates the theoretical analysis. Except for some specific inputs
and simple error feedback quantizers, there are few theoretical
results on the property of the quantization error [23]. However,
Assumption 2 is usually adopted [9], since it is still a good
approximation for error feedback quantizers having sufficiently
small quantization intervals and error feedback filters with long
impulse responses. For example, it has been demonstrated in
[17] that empirical results are well matched to the theoretical

results under Assumption 2. Moreover, if a white thermal noise
of the analog circuit is present at the input of the uniform quan-
tizer or a dither, that adds a white noise, is used, Assumption 2
is asymptotically met under Assumption 1 [24], [25].

Under Assumptions 1 and 2, the signal-to-quantization-noise
ratio (SQNR) of the static uniform quantizer is defined as

γ =
σ2
u

σ2
w

(5)

where σ2
u is the variance of the input u.

In an error feedback quantizer, the range of the input to the
static uniform quantizer depends on the feedback signal. To deal
with error feedback quantizers having different ranges, let us fix
SQNR of static uniform quantizers. The constraint on SQNR
enables us to analyze and to fairly compare quantizers with
different feedback filters. Now, let us evaluate error feedback
quantizers with static uniform quantizers having an identical
SQNR.

Let us denote the L2 norm of a filter H[z] as ||H[z]|| that is
defined as

||H[z]|| =
(

1
2π

∫ π

−π
H∗[ejω ]H[ejω ]dω

) 1
2

(6)

where c∗ is the complex conjugate of c.
From Assumption 2, the variance of the input u to the uniform

quantizer is expressed as

σ2
u = σ2

x + ||R[z] − 1||2σ2
w . (7)

Then, under Assumption 2, the variance of the quantization error
of the uniform quantizer is expressed from (5) as

σ2
w =

σ2
x

γ − ||R[z] − 1||2 (8)

that requires

γ − ||R[z] − 1||2 > 0. (9)

This implies that the energy of the feedback signal has to be
limited. As the first entry of the impulse response of R[z] is
unity, we have ||R[z] − 1||2 + 1 = ||R[z]||2 and then

σ2
w =

σ2
x

ν − ||R[z]||2 (10)

where

ν = γ + 1. (11)

The variance of the quantization error at the output of the
system is obtained from (2) by

||P [z]R[z]||2σ2
w . (12)

Substituting (10) in (12) results in

||P [z]R[z]||2σ2
w =

||P [z]R[z]||2
ν − ||R[z]||2 σ

2
x . (13)

To observe the performance of our quantizer, we would like to
obtain the optimal error feedback filter R[z] and the minimum
of the mean squared error (MSE). For a given σ2

x and P [z],
we minimize the MSE with respect to R[z]. To stabilize the
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quantizer, R[z] must be stable. Then, as σ2
x in (13) is a constant,

our problem can be formulated as the following minimization:

min
R [z]∈RH∞

||P [z]R[z]||2
ν − ||R[z]||2 (14)

subject to R[∞] = 1 and

||R[z]||2 < ν (15)

where RH∞ is the set of stable proper rational functions with
real coefficients.

To enable theoretical analysis, we relax the stable proper
rational function R[z] to a function r(ω) ∈ L2 belonging to a
more general class of functions that is piece-wise differentiable
on [−π, π], has at most a finite number of discontinuity points,
and satisfies

1
2π

∫ π

−π
ln r(ω)dω = c0 (16)

for 0 ≤ c0 <∞. We note that (16) is imposed by the stability
of the original function R[z].1

The L2 norm of q(ω) ∈ L2 is defined as

||q(ω)|| =
(

1
2π

∫ π

−π
q∗(ω)q(ω)dω

) 1
2

. (17)

We denote the set of L2 functions that satisfy (16) as C0 . We
also define a set C1 of L2 functions as

C1 =
{
r(ω) : ||r(ω)||2 < ν

}
. (18)

Then, we would like to determine r(ω) ∈ C0 ∩ C1 that mini-
mizes

||p(ω)r(ω)||2
ν − ||r(ω)||2 (19)

where

p(ω) = |P [ejω ]|. (20)

Although we extend the class of functions, from Lemma 1 in
[17], we can find a stable proper rational functionR[z] such that
|R[ejω ]| approximates r(ω) arbitrarily well in [−π, π]. Then, the
stable proper rational function that approximates the solution for
the minimization of (19) can be considered as an approximate
solution for the original minimization problem.

Now, our problem is to find the optimal function that mini-
mizes (19) such that

ropt(ω) = arg min
r(ω )∈C0 ∩C1

||p(ω)r(ω)||2
ν − ||r(ω)||2 . (21)

For our analysis, let us introduce the notion of almost constant
functions.

Definition 1: A function ψ : [a, b] → R is said to be almost
constant if and only if

∫ b

a

∣
∣
∣
∣ψ(x) − 1

b− a

∫ b

a

ψ(x)dx
∣
∣
∣
∣ψ(x)dx = 0 (22)

1Since R[z] is stable, R[z] is analytic outside of the unit circle, that is,
R[z−1 ] is analytic on the unit circle as a function of z. Moreover,R[z]|z=∞ = 1
implies R[z−1 ]|z=0 = 1. Then, we can apply Jensen’ formula [26] to obtain
1

2π

∫ π
−π ln |R(ejω )|dω = c0 .

The optimal solution for our problem cannot be expressed in
a closed-form but can be characterized with one parameter as
follows (see Appendix A for proof):

Theorem 1: Suppose that p(ω) is not almost constant. Then,
for any γ > 0, the optimal function that minimizes (19) can be
expressed using a parameter α as

rα (ω) =
θ(α)

√
p2(ω) + α

(23)

where

θ(α) = exp
(

1
4π

∫ π

−π
ln(p2(ω) + α)dω

)

. (24)

If p(ω) is almost constant, then the optimal function is almost
constant.

If we can utilize the pre-filter and post-filter as in [17], the
minimum MSE results in [17]

( 1
2π

∫ π
−π |P (ejω )R(ejω )Ωx(ejω )|dω)2

ν − ||R[z]||2 (25)

where Ωx(ejω ) is the spectrum of the input x. Our MSE (13)
has the L2 norm in its numerator, whereas (25) has the squared
L1 norm in its numerator. This leads to similar yet different
results by similar derivations. For example, if Ωx(ejω ) = 1, the
optimal filter is expressed as [17][Theorem 1]

θ̃(α)
√
p2(ω) + α+ p(ω)

with

θ̃(α) = exp
(

1
2π

∫ π

−π
ln(
√
p2(ω) + α+ p(ω))dω

)

. (26)

It has been shown in [27] that the optimal error feedback fil-
ter R[z] that minimizes ||P [z]R[z]||2σ2

w without any constraint
on the input to the static quantizer has an amplitude response
proportional to 1/p(ω). Theorem 1 reveals that the optimal er-
ror feedback filter under constraint (5) has a similar amplitude
response as the optimal error feedback filter. More importantly,
Theorem 1 assures that a quantizer with an error feedback out-
performs a static uniform quantizer, except for the trivial case
where P [z] is almost constant.

To proceed further, we express our objective function by the
parameter α as

Φ(α) =
N(α)

ν − C(α)
(27)

where

N(α) =
1
2π

∫ π

−π
p2(ω)r2

α (ω)dω (28)

and

C(α) = ||rα ||2 =
θ2(α)
2π

∫ π

−π

1
p2(ω) + α

dω. (29)

We have to determine the global minimizer of Φ(α), i.e.,

αopt = arg min
α

Φ(α). (30)
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Fig. 3. D/C converter and sampling.

In Appendix B, we show that minimizing Φ(α) with respect to
α leads to the following theorem, enabling us to compute the
minimizer numerically.

Theorem 2: For any γ > 0, the optimal α denoted by αopt
that minimizes Φ(α) satisfies αopt > 0 and

ν =
θ2(αopt)
αopt

. (31)

It can be easily discerned that

d

dα

(
θ2(α)
α

)

=−θ
2(α)
α2

(
1
2π

∫ π

−π

p2(ω)
p2(ω) + α

dω

)

< 0. (32)

On the other hand, we have from the definition (24) that
θ2(α)/α = ∞ at α = 0 and θ2(α)/α→ 1 as α→ ∞. Since
θ2(α)/α is a monotonically decreasing function inα and ν > 1,
the solution of (31) always exists and unique. This proves that
the optimization problem (30) can be solved uniquely forα > 0.

In practice, for a given γ, we can obtainαopt that satisfies (31)
numerically by e.g., the bisection algorithm. Once the optimal
αopt is computed, the optimal function is given by

ropt(ω) =
θ(αopt)√

p2(ω) + αopt
. (33)

IV. MSE ANALYSIS OF OPTIMAL ERROR

FEEDBACK QUANTIZERS

Let us suppose that the output of the quantizer is con-
verted by a discrete-time-to-continuous-time (D/C) converter
into a continuous-time signal and the continuous-time signal
passes through the continuous-time system P (s) as shown in
Fig. 3. To evaluate MSE due to the quantization, we sample
the continuous-time output signal of P (s) to obtain a discrete-
time signal y. It is noted that P [z] in Fig. 2 corresponds to the
discrete-time equivalent system from v to y in Fig. 3.

Based on the results of the previous section, we reveal the
relationship between the sampling period and the achievable
MSE of the optimal error feedback quantizer.

We assume that the continuous-time system P (s) is bandlim-
ited as follows:

Assumption 3: The continuous-time system P (s), is band-
limited in [−π/Ts, π/Ts ] and 1/Ts is its Nyquist frequency.

Under Assumption 3, it suffices to sample the output of the
continuous-time system P (s) at the Nyquist rate to reconstruct
the continuous-time output from its sampled discretized out-
put. However, the oversampling is often adopted where error
feedback quantizers are utilized.

Sampling with a sampling period Ts/λ when λ is a positive
integer and λ > 1 is known as oversampling. The integer λ is
called the oversampling ratio and is the sampling frequency
divided by the Nyquist frequency. Then under Assumption 3,

the sampled system with a sampling period Ts/λ satisfies

Pλ[ejω ] = P

(
λω

Ts

)

for |ω| ≤ ωc. (34)

To obtain the relationship between the oversampling ratio and
the achievable MSE of the optimal error feedback quantizer, we
define

pλ(ω) =

{
p(λω) |ω| ≤ ωc

0 ωc < |ω| ≤ π
(35)

and consider the following minimization problem.

min
r(ω )∈C0 ∩C1

||pλ(ω)r(ω)||2
ν − ||r(ω)||2 . (36)

This gives the minimum MSE, or equivalently, the distortion of
the optimal quantizer.

Let us denote the minimum of (36) as D(ν, λ) that is a func-
tion in ν and λ. To designate the dependency of αopt on ν and
λ, we also denote αopt as αopt(ν, λ). Substituting (33) in (36)
and using (31) and (74), we find

D(ν, λ) = αopt(ν, λ). (37)

Using (37), we prove in Appendix C that:
Theorem 3: Let the oversampling rates be λ and ν = γ + 1,

where γ is defined as (5). The MSE of the optimal quantizer
with an error feedback is a function of ν and λ that satisfies

D(ν, λ) = D(νλ, 1). (38)

Theorem 3 enables us to compare error feedback quantizers
for different sampling rate.

Let b be the number of bits per sample in the error feedback
quantizer with oversampling rate λ. We assume that the uniform
quantizer has N = 2b quantization levels and an interval of d.
The loading factor is defined as Lf = L/σu = Nd/(2σu ) [28]
and is the ratio between L and the standard deviation of the
input to the uniform quantizer. The loading factor regulates
the frequency of the overloading. For example, if the input to
the uniform quantizer is Gaussian, then the probability of the
input exceeding the range is approximately 0.045, when the
loading factor is four.

Let us find the number b′ of bits per sample of the error feed-
back quantizer without oversampling whose MSE is identical
with the MSE of the error feedback quantizer with oversampling
rate λ.

If the quantization error of the uniform quantizer is uniformly
distributed, under our Assumptions 1 and 2, γ is given by [29]

γ =
3N 2

L2
f

=
3 · 22b

L2
f

. (39)

If we allow b and b′ to take real values, there exist b and b′ that
satisfy

D

(
3 · 22b

L2
f

+ 1, λ

)

= D

(
3 · 22b ′

L2
f

+ 1, 1

)

. (40)

This means that the MSE of the optimal error feedback quan-
tizer with b bits and oversampling ratio λ is equal to the MSE of
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the optimal error feedback quantizer with b′ bits without over-
sampling. The former consumes λb bits per unit time, whereas
the latter does b′ bits per unit time.

Substituting (39) in (38), we find that

D

⎛

⎝

[
3 · 22b

L2
f

+ 1

]λ

, 1

⎞

⎠ = D

(
3 · 22b ′

L2
f

+ 1, 1

)

. (41)

Thus, we have

[
3 · 22b

L2
f

+ 1

]λ

=
3 · 22b ′

L2
f

+ 1. (42)

For x > 0, f(x) = log2(x+ 1) − log2(x) is monotonically
decreasing and f(1) = 1. There exits a positive δ ≤ 1 such that
log2(x+ 1) = log2(x) + δ. Then, if 3 · 22b/L2

f ≥ 1, we can
express

log2

(
3 · 22b

L2
f

+ 1

)λ

= λ

(

log2
3 · 22b

L2
f

+ δb

)

= λ (2b+ c+ δb) (43)

log2

(
3 · 22b ′

L2
f

+1

)

= log2
3 · 22b ′

L2
f

+δb ′ =2b′+c+δb ′ (44)

where 0 < δb ′ < δb < 1 and

c = log
3
L2
f

. (45)

From (42), (43), and (44), we have

2b′ + c+ δb ′ = λ (2b+ c+ δb) (46)

from which we finally obtain

λ

[

b+
1
2
(c+ δb)

]

− 1
2
(c+ δb) ≤ b′ < λ

[

b+
1
2
(c+ δb)

]

− 1
2
c.

(47)
We note that For Lf ≥ 4, c = log2(3/L2

f ) is less than −1. For
example, it is−1.208 forLf = 4. Then, forLf ≥ 4, c+ δb < 0,
as δb < 1.

If follow from (47) that for a fixed number b of bits per
sample, if 3 · 22b/L2

f ≥ 1, an increase inλ increases b′, implying
that oversampling improves the MSE. On the other hand, if
we fix the number of bits per time, i.e., the bit-rate λb as a
constant, we find from (47) that for Lf ≥ 4, since c+ δb < 0,
an increase in the oversampling decreases the number b′ of bits
of the quantizer without oversampling that achieves the same
MSE as the quantizer with oversampling.

As the static uniform quantizer cannot outperform the quan-
tizer with an error feedback, we have

D(ν, 1) ≤ ||P [z]||2
γ

=
||P [z]||2
ν − 1

. (48)

It follows from (38) and (48) that:
Theorem 4: The MSE of the optimal error feedback quan-

tizer is upper bounded as

D(ν, λ) ≤
(

1
νλ − 1

)

||P [z]||2 . (49)

Theorem 4 shows that the MSE of the optimal error feed-
back quantizer decays at a rate of O(ν−λ). On the other hand,
the decay rate of the optimal error feedback quantizer having
pre/post-filters and designed with a knowledge of the input spec-
trum isO(ν−λ/λ) [17, Theorem 6].2 Thus, we can conclude that
the scalar 1/λ in O(ν−λ/λ) is the benefit we obtain from the
availability of the input spectrum.

V. SYNTHESIS OF ERROR FEEDBACK

FILTERS FOR QUANTIZATION

We only know the amplitude response of the optimal error
feedback filter from the results in Section II. In practice, we
have to implement an error feedback filter with a stable rational
transfer function. This necessitates the acquisition of an imple-
mentable filter approximating the optimal error feedback filter.

For approximating a given spectrum, the Yule-Walker method
[19] is well-known, efficient, and is optimal in the least squares
sense. If we permit the usage of a filter with a sufficiently high
order, then the amplitude response of the approximated filter
can be almost the same as the amplitude response of the ideal
optimal filter. However, the head of the impulse response of
the error feedback filter has to be unity and this is not assured
by the Yule-Walker method in general. Although we may be
able to modify the Yule-Walker method, we only normalize
the approximated filter to have a unity head for its impulse
response.

Let us develop another approximation to obtain an error feed-
back filter with a low order. Once the amplitude response of the
optimal error feedback is obtained, we can compute its norm
by using ropt(ω) in (33). Then, we consider the following opti-
mization problem:

min
R [z]∈RH∞

||P [z]R[z]||2 (50)

subject to R[∞] = 1 and

||R[z]||2 ≤ ||ropt(ω)||2 . (51)

We would like to determine the error feedback filterR[z] that
minimizes the MSE under the norm constraint. If the amplitude
response of the optimal filter for (21) can be expressed as a
rational function, then we can find the error feedback filter that
is close to the optimal error feedback filter. Even if this is not
the case, we may expect the obtainedR[z] to have a comparable
MSE with the optimal error feedback filter.

As shown in Appendix D, the optimization problem is cast
into a convex optimization problem that can be solved numer-
ically and efficiently with a numerical solver such as the CVX

2In [17], the decay rate is given by O(ν−λ), as pλ(ω) in (35) is scaled by√
λ.
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Fig. 4. Amplitude response of the continuous-time system P (s).

[30]. In this case, the order of R[z] could be set to be equal
to the order of P [z] because it is the minimum order that can
achieve a minimum and a higher order for R[z] does not reduce
the minimum [31], [32].

VI. NUMERICAL EXAMPLES

To validate our analysis and synthesis, we utilize a typical
lowpass system and a lowpass input. For a lowpass system, we
consider a continuous-time system of order four whose transfer
function is

P (s) =
1.029s3 + 4.589s2 + 7.146s+ 3.882

s4 + 5.088s3 + 9.789s2 + 8.296s+ 2.548
. (52)

The amplitude response of this system is plotted in Fig. 4. We
discretize this continuous-time system with a sampling period
Ts = 0.1 to obtain the discrete-time system P [z].

We model the continuous-time input signal as a stationary
process with a zero mean and a spectrum given by

S(ω) = c

∣
∣
∣
∣

1
jω + 2.62

∣
∣
∣
∣

2

(53)

where c is a constant. We set the value of c so that the sampled
signal should have a unit variance. The spectrum is depicted in
Fig. 5.

The loading factor is set to be four. For b = 1, 2, . . . , 8, we
obtain γ from (39). Then, for a given γ, we numerically find the
optimal α from (24) and (31) that is the minimum MSE (c.f.
(37)), replacing p(ω) by pλ(ω) in (35).

For the oversampling ratio λ = 1, 2, 3, 4, Fig. 6 compares
the MSEs of the optimal feedback quantizer, the optimal feed-
back quantizer with the pre/post-filters [17] (dotted curve), and
the uniform quantizer (dashed curve), where ◦, ∗, and � cor-
respond to the oversampling ratios λ = 2, λ = 3, and λ = 4,
respectively.

Fig. 5. Input spectrum.

Fig. 6. MSEs of the optimal feedback quantizer without pre/post-filters, the
optimal feedback quantizer with pre/post-filters [17] (dotted curve), and the
uniform quantizer (dashed curve) with different oversampling rates λ, for a
colored input, where ◦, ∗, and � correspond to the oversampling ratios λ = 2,
λ = 3, and λ = 4, respectively.

The feedback quantizer has an approximately 10 dB gain
against the uniform quantizer that is enabled by utilizing the
feedback filter that is optimized based on the system P [z].
A further gain is obtained by exploiting the input spectrum
for the quantizer having an optimized feedback filter and
pre/post-filters. For all quantizers, as the oversampling ratio
increases, the MSE decreases and the increment of the MSE
gain decreases. It can be also observed that if the number
of bits per time is fixed, oversampling degrades the MSE of
the optimal error feedback quantizer without pre/post-filters
as we have analyzed. This also holds true for the optimal er-
ror feedback quantizer with pre/post-filters and the uniform
quantizer.

Fig. 7 shows the MSEs of the optimal feedback quantizer,
the optimal feedback quantizer with the pre/post-filters and the
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Fig. 7. MSEs of the optimal feedback quantizer without pre/post-filters, the
optimal feedback quantizer with pre/post-filters [17] (dotted curve), and the
uniform quantizer (dashed curve) with different oversampling rates, λ, for a
white input, where ◦, ∗, and � correspond to the oversampling ratios λ = 2,
λ = 3, and λ = 4, respectively.

uniform quantizer for a white input signal. The optimal feedback
quantizer and the optimal feedback quantizer with the pre/post-
filters have a gain of more than 10 dB over the uniform quantizer.
As the input has a flat spectrum, the optimal feedback quantizer
has almost the same performance as the optimal feedback quan-
tizer with the pre/post-filters. It should be noted that the latter
requires additional pre/post-filters.

In Figs. 6 and 7, we have utilized ideal feedback filters both
for the feedback quantizer and the feedback quantizer with the
pre/post-filters, which cannot be implemented in practice. We
approximate the ideal feedback filters for the optimal feedback
quantizers using IIR filters of order four by the Yule-Walker
method [19] with a normalization and by the LMI-based method
discussed in Section V.

Fig. 8 illustrates the MSEs of the feedback quantizers with
ideal optimal feedback filters and the feedback quantizers with
feedback filters of order four approximated by the Yule-Walker
method, whereas Fig. 9 presents the MSEs of the feedback quan-
tizers with ideal feedback filters and the feedback quantizers
with feedback filters of order four approximated by the LMI-
based method. The approximation by the Yule-Walker method
suffers a small loss, while the approximation by the LMI-based
method has almost the same MSE as the ideal case.

If the order of the IIR filter is increased, a better performance
can be expected for the Yule-Walker method. On the other hand,
it is known that the minimum of (50) is attained by P [z] having
the same order as R[z] [31], [32]. Therefore, if the order of
P [z] is increased more than the order of R[z], the MSE does
not improve. In this example, as the order of P [z] is four, an
R[z] of order four is sufficient for the LMI-based method. The
performance difference between the Yule-Walker method and
the LMI-based method may be decreased by increasing the filter
order for the Yule-Walker method.

Fig. 8. MSEs of the feedback quantizers with ideal feedback filters and feed-
back quantizers with IIR feedback filters of order four approximated by the
Yule-Walter method for different oversampling rates λ, where ◦, ∗, and �
correspond to the oversampling ratios λ = 2, λ = 3, and λ = 4, respectively.

Fig. 9. MSEs of the feedback quantizers with optimal feedback filters and
feedback quantizers with IIR feedback filters of order four approximated by
the LMI-based method for different oversampling rates λ, where ◦, ∗, and �
correspond to the oversampling ratios λ = 2, λ = 3, and λ = 4, respectively.

VII. CONCLUSION

We have presented the MSE analysis of quantizers with error
feedback. We have shown that the amplitude response of the
optimal error feedback filter that minimizes the MSE can be
parameterized by one parameter and can be found numerically.
With the optimal error feedback filter, the relationship between
the number of bits used for the quantization and the achievable
MSE has been clarified. We have also developed two designs
for the IIR error feedback filters for approximating the ideal
optimal error feedback filters. Numerical examples have been
provided to demonstrate our analysis and synthesis.
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APPENDIX A
PROOF OF THEOREM 1

Suppose that r(ω) is optimal. If c0 > 0, then r′(ω) =
r(ω)e−c0 gives a smaller value for (19) that contradicts the
optimally of r(ω). Thus c0 in (16) has to be zero.

Let us denote the norm of ropt(ω) as copt and define the
set of r(ω) ∈ C0 having the same norm as ropt(ω) by Copt . As
C0 ∩ Copt ⊂ C0 ∩ C1 , the minimization of (19) subject toC0 ∩ C1
is equivalent to the minimization of ||p(ω)r(ω)||2 subject to

||r(ω)||2 = copt (54)

1
2π

∫ π

−π
ln r(ω)dω = 0 (55)

The Lagrangian of this problem is given by

L(r(ω)) := p2(ω)r2(ω) + μ1r
2(ω) + μ2 ln r(ω) (56)

where μ1 and μ2 are the Lagrange multipliers. Then, the optimal
r(ω) has to satisfy

∂

∂r
L(r(ω)) = 2p2(ω)r(ω) + 2μ1r(ω) + μ2

1
r(ω)

= 0

a.e. ω ∈ [−π, π]. (57)

Thus, for a.e. ω ∈ [−π, π], we need

2(p2(ω) + μ1)r2(ω) = −μ2 . (58)

If p(ω) is almost constant, then r(ω) has to be almost con-
stant; from (55) r(ω) = 1, implying that R[z] = 1. Hence, the
error feedback filter R[z] − 1 is not required and the uniform
quantizer is optimal. In the following proof, we only consider
p(ω) that is not almost constant.

As p(ω) is not almost constant, p2(ω) + μ1 cannot be zero
over any interval [−π, π], having a nonzero measure. As r(ω) �=
0, μ2 cannot be zero. Therefore, we obtain

r(ω) =
θ

√
p2(ω) + α

(59)

where θ =
√−μ2 and α = μ1 .

Substituting (59) in (55) results in
∫ π

−π

(

ln θ − 1
2

ln(p2(ω) + α)dω
)

= 0 (60)

from which we obtain (24).

APPENDIX B
PROOF OF THEOREM 2

Differentiating Φ(α) with respect to α, we have

Φ̇(α) =
Ṅ(α)(ν − C(α)) +N(α)Ċ(α)

[ν − C(α)]2
. (61)

With (23), N(α) can be expressed as

N(α) =
θ2(α)
2π

∫ π

−π

p2(ω)
p2(ω) + α

dω. (62)

From

d

dα
θ(α) =

θ(α)
4π

∫ π

−π

1
p2(ω) + α

dω (63)

the derivative of N(α) is found to be

d

dα
N(α)

=
2θ(α)
2π

θ̇(α)
∫ π

−π

p2(ω)
p2(ω) + α

dω

− θ2(α)
2π

∫ π

−π

p2(ω)
(p2(ω) + α)2 dω (64)

=
θ2(α)
2π

{
1
2π

∫ π

−π

1
p2(ω) + α

dω

∫ π

−π

p2(ω)
p2(ω) + α

dω

−
∫ π

−π

p2(ω)
(p2(ω) + α)2 dω

}

(65)

It can be seen that Ṅ(0) = 0. To prove

Ṅ(α) < 0 for α < 0, Ṅ(α) > 0 for α > 0. (66)

we introduce the next definition and theorem given in [17].
Definition 2: We say that two function φ, ψ: [a, b] → R are

similarly functionally related if and only if there exists a mono-
tonically increasing function G(·) such that φ = G(ψ) for all
x ∈ [a, b]. Similarly, if there exists a monotonically decreasing
function such that φ = G(ψ) for all x ∈ [a, b], we say that φ and
ψ are oppositely functionally related.

Theorem 5: If φ, ψ: [a, b] → R are similarly functionally
related, then

[b− a]
∫ b

a

φ(x)ψ(x)dx ≥
∫ b

a

φ(x)dx
∫ b

a

ψ(x)dx. (67)

If φ and ψ are oppositely functionally related, then the equality
in (67) is reversed. In either case, equality is achieved if and
only ψ(x) is almost constant.

We set ψ(ω) = 1
p2 (ω )+α and φ(ω) = p2 (ω )

p2 (ω )+α that are related
to α �= 0 such that

φ(ω) =
p2(ω)

p2(ω) + α
= 1 − α

p2(ω) + α
= 1 − αψ(ω). (68)

Thus, φ(ω) and ψ(ω) are similarly functionally related for α <
0, whereas φ(ω) and ψ(ω) are oppositely functionally related
for α > 0. Then, we can apply theorem 5 to find that

1
2π

∫ π

−π
ψ(ω)dω

∫ π

−π
φ(ω)dω −

∫ π

−π
φ(ω)ψ(ω)dω

is negative for α < 0, whereas it is positive for α > 0, proving
(66).
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On the other hand, differentiating C(α) with respect to α
gives

d

dα
C(α) =

2θ(α)
2π

θ̇(α)
∫ π

−π

1
p2(ω) + α

dω

− θ2(α)
2π

∫ π

−π

1
(p2(ω) + α)2 dω (69)

=
θ2(α)
2π

{
1
2π

(∫ π

−π

1
p2(ω) + α

dω

)2

−
∫ π

−π

1
(p2(ω) + α)2 dω

}

(70)

From the Cauchy-Schwarz inequality, we find that Ċ(α) < 0.
We note that ν − C(α) > 0 andN(α) > 0 in (61). Forα < 0,

from Ṅ(α) < 0 and Ċ(α) < 0 in (61), Φ̇(α) < 0. At α = 0,
from Ṅ(0) = 0, we have

Φ̇(0) =
N(0)Ċ(0)
[ν − C(0)]2

< 0. (71)

As Φ(α) is continuous in α, the minimum of Φ(α) is achieved
at α greater than zero; i.e., we can conclude that αopt > 0.

A necessary condition forαopt is Φ̇(αopt) = 0. As Ṅ(α) �= 0
for α > 0 and αopt > 0, we find from (61) that the numerator
has to be zero, leading to

ν =
Ṅ(αopt)C(αopt) −N(αopt)Ċ(αopt)

Ṅ(αopt)
. (72)

From (65) and (70), we get

(
Ṅ(αopt)C(αopt) −N(αopt)Ċ(αopt)

)/(θ2(αopt)
2π

)2

=
{

1
2π

∫ π

−π

1
p2(ω) + αopt

dω

∫ π

−π

p2(ω)
p2(ω) + αopt

dω

−
∫ π

−π

p2(ω)
(p2(ω) + αopt)2 dω

}∫ π

−π

1
p2(ω) + αopt

dω

−
∫ π

−π

p2(ω)
p2(ω) + αopt

dω

{
1
2π

(∫ π

−π

1
p2(ω) + αopt

dω

)2

−
∫ π

−π

1
(p2(ω) + αopt)2 dω

}

= −
∫ π

−π

p2(ω)
(p2(ω) + αopt)2 dω

∫ π

−π

1
p2(ω) + αopt

dω

+
∫ π

−π

p2(ω)
p2(ω) + αopt

dω

∫ π

−π

1
(p2(ω) + αopt)2 dω. (73)

Substituting

1
p2(ω) + αopt

=
1
αopt

(

1 − p2(ω)
p2(ω) + αopt

)

(74)

in (73) results in

−
∫ π

−π

p2(ω)
(p2(ω) + αopt)2 dω

∫ π

−π

1
αopt

(

1 − p2(ω)
p2(ω) + αopt

)

dω

+
∫ π

−π

p2(ω)
p2(ω) + αopt

dω

∫ π

−π

1
αopt

(

1 − p2(ω)
p2(ω) + αopt

)

· 1
p2(ω) + αopt

dω

= − 2π
αopt

∫ π

−π

p2(ω)
(p2(ω) + αopt)2 dω

+
1
αopt

∫ π

−π

p2(ω)
p2(ω) + αopt

dω

∫ π

−π

1
p2(ω) + αopt

dω

=
2π
αopt

Ṅ(αopt)
/
(
θ2(αopt)

2π

)

(75)

which shows that

Ṅ(αopt)C(αopt) −N(αopt)Ċ(αopt) =
θ2(αopt)
αopt

Ṅ(αopt).

(76)
Substituting this in (72) gives (31).

APPENDIX C
PROOF OF THEOREM 3

From (31), we obtain

ν = exp
(

1
2π

∫ π

−π
ln
[
p2
λ(ω) + αopt(ν, λ)

]
dω

)
/
αopt(ν, λ)

(77)

= exp
(

1
2π

∫ π

−π
ln
p2
λ(ω) + αopt(ν, λ)

αopt(ν, λ)
dω

)

. (78)

Substituting (35) in (78), we have

ν = exp
(

1
2π

∫ ωc

−ωc
ln
p2

1(λω) + αopt(ν, λ)
αopt(ν, λ)

dω

)

. (79)

The change of the variable as ω′ = λω gives

ν = exp
(

1
2πλ

∫ π

−π
ln
p2

1(ω
′) + αopt(ν, λ)
αopt(ν, λ)

dω′
)

. (80)

Then we have

νλ = exp
(

1
2π

∫ π

−π
ln
[
p2

1(ω
′) + αopt(ν, λ)

]
dω′
)
/
αopt(ν, λ)

(81)
that proves

αopt(ν, λ) = αopt(νλ, 1) (82)

hence (38).

APPENDIX D
CONVEX FORMALIZATION

We show that the optimization problem (50) is cast into a
convex. More details could be found in [34].
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We denote μr = ||ropt(ω)||2 . The optimization problem is
equivalent to minimizing με subject to R[∞] = 1 and

||P [z]R[z]||2 ≤ με (83)

||R[z]||2 ≤ μr . (84)

Let the order of P [z] be n and the (A,B,C,D) matrices
of a state-space realization of P [z] be (Ap,Bp, Cp ,Dp). The
state-space realization of P [z]R[z] can be expressed as

xk+1 = Axk + Bwk (85)

εk = Cxk + Dwk (86)

where (Ar ,Br , Cr , 1) are (A,B,C,D) matrices of a state-space
realization of R[z] and

A =

[
Ap BpCr

0 Ar

]

, B =
[
Bp

Br

]

C =
[
Cp DpCr

]
, D = Dp.

It is known that ||P [z]R[z]||22 < με if and only if there exists a
positive definite matrix P such that [33]

⎡

⎢
⎣

P PA PB
AT P P 0

BT P 0 1

⎤

⎥
⎦ � 0 (87)

⎡

⎢
⎣

με C D
CT P 0

DT 0 1

⎤

⎥
⎦ � 0. (88)

On the other hand, ||R[z]||22 < μr if and only if there exists a
positive definite matrix P that satisfies (87) and

[
μr − 1 C̃
C̃T P

]

� 0 (89)

where

C̃ = [0 Cr ]. (90)

Equation (87) is a bilinear matrix inequality (BMI), which
can be converted into an linear matrix inequality (LMI) using a
change of variables [31], [32].

The set of n× n positive definite matrices is denoted as
PD(n). We define the following matrices {Pf , Pg ,Wf ,Wg ,
Wh, L}, where Pf ∈ PD(n), Pg ∈ PD(n), Wf ∈ R1×n , Wg

∈ Rn×1 , Wh ∈ R, L ∈ Rn×n , with Pf and Pg . Let us also de-
fine matrices from {Pf , Pg ,Wf ,Wg ,Wh, L} as

P−1 =

[
Pf Sf

Sf Sf

]

(91)

U =

[
Pf In

Sf 0

]

(92)

Pg = (Pf − Sf )−1 (93)

and the matrices {MA,MB,MC ,MP} as

MA =

[
ApPf +BpWf Ap

L PgAp

]

(94)

MB =

[
Bp

Wg

]

(95)

MC =
[
CpPf +DpWf Cp

]
(96)

MP =

[
Pf In

In Pg

]

(97)

MC̃ =
[
Wf 0

]
. (98)

Then, (87), (88), and (89) can be found to be equivalent to
⎡

⎢
⎣

MP MA MB
MT

A MP 0

MT
B 0 1

⎤

⎥
⎦ � 0, (99)

⎡

⎢
⎣

με MC DT

MT
C MP 0

D 0 1

⎤

⎥
⎦ � 0, (100)

and
[
μr − 1 MC̃
MT

C̃ MP

]

� 0. (101)

Since (99), (100), and (101) are convex LMIs, the minimization
of με subject to (99), (100), and (101) is a convex optimization.

Finally, once the optimal solution is obtained, we reconstruct
(Ar ,Br , Cr ) with the inverse transformation.
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