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Particle Smoothing for Hidden Diffusion Processes:
Adaptive Path Integral Smoother

Hans-Christian Ruiz and Hilbert J. Kappen

Abstract—Smoothing methods are used for inference of stochas-
tic processes given noisy observations. The estimation of the
marginal posterior distribution given all observations is typically
a computationally intensive task. We propose a novel algorithm
based on path integral control theory to efficiently estimate the
smoothing distribution of continuous-time diffusion processes from
partial observations. In particular, we use an adaptive importance
sampling method to improve the effective sampling size of the pos-
terior and the reliability of the estimation of the marginals. This
is achieved by estimating a feedback controller, together with an
adaptive initialization and an annealing scheme to sample effi-
ciently from the joint smoothing distribution. We compare the
results with estimations obtained from the standard Forward Fil-
ter/Backward Simulator (FFBSi) for two diffusion processes of dif-
ferent complexity. We show that the proposed method gives more
accurate estimates than the standard FFBSi.

Index Terms—Adaptive importance sampling, hidden processes,
particle filtering, sequential Monte Carlo, smoothing methods,
state-space models, stochastic optimal control, time series.

I. INTRODUCTION

A. Problem Statement

IN MANY fields of science and engineering access to physi-
cal time varying processes is limited to time series of noisy,

indirect measurements. In order to extract information about the
latent process, one estimates the so-called filtering or smoothing
distributions. It is then possible to estimate the time evolution
of the latent states, or estimate the parameters of a model, for
example using an Expectation-Maximization procedure.

In this paper, we consider the smoothing problem for contin-
uous time diffusion processes given a discrete number of ob-
servations. The latent process Xt is described by the following
n-dimensional stochastic differential equation (SDE)

dXt = F (Xt, t)dt+ σdyn(Xt, t)dWt (1)

where dWt is a m-dimensional Gaussian noise with E [dWt ] =
0 and E

[
dWi

r dW
j
s

]
= dtδi,j δ(r − s) and σdyn(x, t) ∈ Rn×m
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is a matrix that depends on the statex and time t. For given initial
state x0 , (1) defines a distribution over processes p0(X(0,T ]|x0).
When the initial state x0 is drawn from a distribution p0(X0),
this defines a prior distribution over processes p0(X[0,T ])
= p0(X0)p0(X(0,T ]|X0).

We assume an observation model g(y|x) that denotes the
probability of observation y at time t given the latent state
x at time t. Given J observations ytj at times tj , with tj ∈
[0, T ] for all j = 1, . . . , J and tJ = T , this defines a likelihood
p(y0:T |X[0,T ]) =

∏J
j=1 g(ytj |Xtj ). The smoothing problem is

to estimate marginals or statistics of the posterior distribution,
also referred to as the smoothing distribution:

p(X[0,T ]|y0:T ) =
1
Z
p0(X[0,T ]) exp

⎛

⎝
J∑

j=1

log[g(ytj |Xtj )]

⎞

⎠ .

(2)
with Z = p(y0:T ) the likelihood of the data.1

The smoothing problem is in general intractable when the
dynamics (1) is non-linear or when the observation model is
non-Gaussian. In those cases, it is needed to resort to approxi-
mate methods. One class of these methods is the deterministic
approximation methods such as non-linear Kalman filtering [1],
[2] and smoothing [3], or the variational method [4], which ap-
proximate the posterior by a simpler distribution. These methods
are relatively efficient but may be inaccurate in some cases and
will not be considered further in this paper.

In the remaining of this section, we will discuss three al-
ternative classes of smoothing methods, first, particle filtering,
second, adaptive importance sampling, and third, inference as
a control problem. In the latter class, we will introduce our
method “Adaptive Path Integral Smoother”.

B. Particle Filtering Methods

A prominent sampling based method, known as Sequential
Monte Carlo (SMC) sampling or particle filtering is used to
target the smoothing distribution. Particle filtering methods es-
timate the smoothing distribution by computing estimates of the
filtered distribution and subsequently correct for these estimates.
Each particle corresponds to an entire trajectoryX[0,T ] . Among
the various SMC methods for smoothing, one can distinguish
broadly speaking three approaches; first, the bootstrap Filter-
Smoother (FS) by [5], second, the forward-backward smoothers

1We denote time series of discrete observations by y0:T := (yt1 , yt2 ,
. . . , ytJ ) and continuous paths by X[0 ,T ] := (Xs )s∈[0 ,T ]⊂R.
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[6], [7]–with its many variations [8]–and third, the two-filter
smoothers [9]–[11]. All these methods have their particular
strengths and weaknesses. See e.g. [12]–[14] for a review on
various filtering methods.

In naive particle smoothing each particle is sampled from
forward simulation of p0(X[0,T ]) and weighted with w = exp
(
∑J

j=1 log[g(ytj |Xtj )]). With many observations (large J), the
so-called degeneracy problem is introduced, where the weight
w of one particle dominates all other weights. As a result, the
representation of the smoothing distribution is very poor.

One can reduce the degeneracy by resampling the filtering
particles. In its simplest form, the resampling step is done at
each observation, but more sophisticated adaptive schemes exist
[15]. Resampling is an effective way to improve the quality of
the filtered estimates.

The trajectories of the resampled particles can also be used to
estimate the smoothing distribution, as in the bootstrap Filter-
Smoother (FS) [5]. However, the effect of resampling is that all
trajectories arise from a very small number of common trajecto-
ries at early times. As a result of this “path degeneracy”, the re-
sampled trajectories give a poor representation of the smoothed
marginals p(Xt |y0:T ) at early times t� T . The path degen-
eracy increases also exponentially fast as J increases [16]. In
other words, resampling improves the filtered estimates but not
the smoothed estimates.

The degeneracy problem is particularly severe when the ob-
servations deviate significantly from the prior process. In this
case, the smoothing distribution may be very different from the
filtering distribution causing weights with high variance and
low effective sample size. As a result, the number of particles
N needs to be prohibitively large to have moderate accuracy.

The quality of the smoothing estimates can be improved by
adding a backward simulation, known as Forward Filter Back-
ward Simulator (FFBSi) [6] which obtains trajectories approx-
imately from the joint posterior. Applying the backward pass
with M particles has a complexity O(MN). Since typically
M = O(N) backward particles are required, the accuracy of
this method is severely limited in practice by the computa-
tional cost. Several approaches have been developed to lower
the computational effort while maintaining reliable estimates.
For instance, in [17] a rejection sampling approach was sug-
gested to avoid the computational complexity of evaluating all
backward weights, effectively reducing the overall computa-
tional complexity toO(N) provided thatN is sufficiently large.
However in practice, this approach is less efficient than FFBSi
for many problems and does not scale to high dimensions [8].
Recently [18], the rejection sampling approach has been used in
a more efficient forward-only, online algorithm that computes
expectations of additive functionals under the joint smoothing
distribution.

The Forward Filter Backward Smoother [7] aims at approx-
imating the marginal smoothing densities. This is done by
reweighting the forward filter particles to target the posterior
marginals. The computational complexity is O(N 2) due to the
reweighting step.

An additional limitation of the backward methods, aside from
the computational demands of some algorithms, is that they

assume the existence of a non-degenerate backward kernel. In
the case of the process (1), this means that the noise covariance
matrix σdynσ

′
dyn must be non-singular, which limits the appli-

cability, for instance when the dynamics of some components
of Xt is deterministic.

Finally, the forward-backward approaches have a further lim-
itation in continuous time problems. The efficiency of the inte-
gration of SDEs can be increased significantly by replacing the
standard Euler-Maruyama integration by a higher order scheme
[19]. Since higher order schemes cannot be used in the backward
computation step, the overall efficiency of backward methods
can not be improved by these integration methods. See, how-
ever, [20] for some interesting work that allows higher order
integration schemes using kernel density estimation.

Another approach within the SMC methods is the generalized
two-filter smoother [10], which involves sampling from both a
backward information filter and a forward particle filter. The par-
ticles of both filters are combined to obtain an approximation of
the marginal p(xt |y0:T ), which is used to sample approximately
from the joint smoothing distribution. The method requires the
choice of an artificial prior at each time point affecting the effi-
ciency of the sampler. Besides, this method also requiresO(N 2)
samples.

As noted by [11], whenever the forward state transition prob-
ability f(Xt |Xt−dt) is approximately zero for most state pairs
Xj
t−dt ,X

i
t (sparse dynamics), the forward-backward smoother

degenerates to being equivalent to the filter-smoother, albeit with
substantially greater computational cost. The situation is worse
for the two-filter smoother which fails completely as the forward
and backward filter particles are sampled independently. This
problem is particularly relevant for continuous time stochastic
systems. Here, the variance of dXt is proportional to dt thus, the
transition probability from particle j at time t− dt to particle i
at time t is exponentially suppressed for all pairs i �= j.

This issue is addressed in [11] by drawing new particles from
the smoothing marginals directly. Although, the computational
complexity of this approach is linear in the number of particles,
it is not clear how to choose the required artificial densities
in general. As a result, the method suffers from cumbersome
design choices [21] which makes it impractical in many cases.

Other approaches that can ameliorate the particle degeneracy
are developed in [22], [23]. Both methods propose to use
Metropolis-Hastings moves to sample new positions and
generate trajectories of the joint smoothing distribution given
an existing particle system. In principle, this could move
particles to higher density regions of the smoothing distribution
and increase the effective sample size. In [22], the Metropolis-
Hastings Improved Particle Smoother (MH-IPS) uses Gibbs
sampling to sample a new state Xt given the remaining
particle states. However, this method might be subject to
strong dependencies between state variables, resulting in a poor
mixing whenever the discretization time dt of the underlying
SDE is sufficiently small.

Recently, [24] considered so called twisted models based on
the idea of message passing through the Markov representation
of the posterior (2). The messages are positive functions that
need to be approximated iteratively. This is done by sampling
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from a “twisted” auxiliary particle filter and using the particles
to estimate new messages. The disadvantage of this method is
that in practice the transition density and messages are restricted
to certain classes.

All the above methods have a particle filtering step in
common.

C. Adaptive Importance Sampling

Importance sampling is a way of obtaining samples from
a target distribution indirectly. The idea is to sample from a
proposal distribution that is different from the target distribution
and to weight the samples by importance sampling weights.
Adaptive importance sampling [25], [26] adapts the parameters
of the proposal distribution by minimizing some cost criterion,
such as the Kullback-Leibler (KL) divergence or the chi-square
distance between proposal and target distributions.

In [27] an adaptive importance sampling method is proposed
for time-series models. This work uses an auxiliary particle filter
[28] to construct adjustment multiplier weights that minimize
the aforementioned risk criteria for a given proposal kernel.
In addition, optimization techniques are proposed to adjust the
proposal kernels by minimizing the risk criteria. For instance,
the KL divergence is minimized using the cross-entropy method.
To the best of our knowledge, this method has not been applied
to the continuous time smoothing problem.

D. Inference as a Control Problem

A fundamentally different approach to address the smoothing
and the degeneracy problem is to “steer” the particles through
time based on future observations. Steering is optimal when
the degeneracy problem is solved. In this sense, the smoothing
problem can be viewed as a stochastic optimal control problem.
The relationship between control and inference was first estab-
lished by [29]–[31] who showed that the posterior inference for
the smoothing problem (2) can be mapped onto a certain class
of so called path integral control problems. In [32], it was shown
how to compute the optimal control for these problems. Thus
far, few authors have considered the application of this idea for
smoothing. In this paper, we propose such an algorithm.

Nevertheless, we briefly review other approaches to inference
that use ideas from control theory, but not from within the path
integral control theory. In [33], it is shown that for a general
non-linear diffusion with non-Gaussian observations, the opti-
mal (state-dependent) Kalman gain can be computed at each
time as an Euler-Lagrange boundary value problem. However,
the approach is restricted to one-dimensional diffusion processes
only. In [34], it is proposed to improve the posterior estimate by
considering interacting particles. These so-called mean field
game systems describe interacting particles whose density
evolves according to a (forward) Fokker-Planck equation which
is controlled by a (backward) Hamilton-Jacobi-Bellman equa-
tion. The disadvantage of this approach is that one needs to solve
the HJB equation which is intractable for high dimensions.

In [30], the authors showed that the smoothing distribution
(2) can be sampled with (3), which differs from (1) by a con-
trol term u(x, t). The function u(x, t) must be chosen optimally

to minimize a control cost. The optimal control can be esti-
mated for each x, t as a path integral. It can be shown that the
optimal control gives the optimal (zero variance) importance
sampler. In general, we cannot compute the optimal control
function for all x, t. For the smoothing problem, we there-
fore propose a parametrized controller and learn the parame-
ters by an iterative scheme, that was first proposed in [35]. We
call this method Adaptive Path Integral Smoother (APIS). APIS
iteratively reduces the variance of the weights for a given time-
series and thus improves the sampling efficiency in terms of
effective sample size. This improvement is limited mainly by
the class of control functions that is considered. If the correct
parametrization of the optimal control solution is available, the
effective sample size is only limited by the numerical errors
coming from the time discretization and the sample error. As a
result, APIS requires increasing precision to maintain the sam-
pling efficiency for longer time series, i.e. more particles and
smaller integration steps are needed. In this paper, we restrict
ourselves to linear state-feedback controllers and we show that
these yield very reliable smoothing estimates even when used
in non-linear systems.

An additional advantage of APIS for continuous time prob-
lems is that it does not contain a backward step, so it can be
accelerated by using higher order integration schemes. Further-
more, there is not restriction on the degeneracy of the covari-
ance matrix σdynσ

′
dyn . This is particularly useful for problems

with mixed deterministic and stochastic dynamics. Finally, the
variance of the estimates are not increased due to resampling
because APIS does not require this step [12], [16].

In [36], preliminary results were shown on a small problem.
In this paper, we provide the full detailed description of the
implementation of the APIS method, and extend the method
with a novel adaptive initialization of the particles and a novel
annealing/bootstrapping scheme, which are both crucial for the
sampling efficiency, in particular for large time series with many
observations. In addition, we analyze in detail the quality of
APIS in terms of effective sample size, we compare APIS with
the vanilla flavor FFBSi and FS particle filtering algorithms and
we analyze the scalability of APIS for up to 1000 observations.

E. Outline

This paper is organized as follows. In section II we review the
main concepts in path integral (PI) control theory. We show how
computing the joint smoothing distribution in continuous time
is equivalent to a PI control problem. In section III, we discuss
the importance sampling scheme for diffusion processes based
on control. Then, we give an update rule to estimate a feed-
back controller and present the APIS algorithm. In section IV
we present numerical examples. First, we consider the simple
case of a one-dimensional linear diffusion process with Gaus-
sian observations. We compare the accuracy and efficiently of
FFBSi, the Bootstrap Filter-Smoother (FS) and APIS and show
their performance as a function of the (un)likelihood of the ob-
servations. In addition, we demonstrate the benefit of the adap-
tive initialization proposed and examine the scaling of APIS
up to 1000 observations. Then, we consider a 5-dimensional
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non-linear neural network model with multiple Gaussian
observations. We demonstrate that the annealing procedure is
significantly more efficient than the naive bootstrap and show
that even a suboptimal linear feedback controller improves dras-
tically the ESS. Moreover, we show that the estimation of the
smoothing distribution is more reliable with APIS than with
FFBSi and FS. In section V we comment on further consider-
ations for the proposed algorithm. Finally, we outline possible
extensions of this method that will be addressed in future work.

II. PI CONTROL THEORY AND THE SMOOTHING DISTRIBUTION

We introduce the basic concepts regarding a subclass of
stochastic control problems called Path Integral control prob-
lems, for more details see [32], [37], [38].

Stochastic optimal control theory considers systems under
uncertain time evolution. The aim is to compute the optimal
feedback control function to steer the system to a specified future
goal. More formally, we have a continuous time stochastic pro-
cess Xt (t ∈ [0, T ]) described by the following n-dimensional
SDE with the initial condition X0 = x0

dXt = F (Xt, t)dt+ σdyn(Xt, t)[u(Xt, t)dt+ dWt ] (3)

where dWt and σdyn(x, t) are as before in (1). We denote2 the
stochastic variable as X and the state as x. In addition to the
drift F (x, t), the process is driven by a feedback control signal
u(x, t) ∈ Rm .

We call realizations of the above process “particles”. Each
particle is a trajectory that accumulates a state cost V (x, t) and
a quadratic control cost. This accumulated cost is called the
“path cost”. The aim is to find the control function u(x, t) that
minimizes the expectation of the future path cost with respect
to the process (3). The resulting optimal cost J(x, t) at any time
is called optimal cost-to-go,

J(xt, t) = min
u

Eu

[∫ T

t

V (Xs, s) +
1
2
||u(Xs, s)||2ds

]
(4)

where the subscript u denotes the feedback control function3

u(x, s) for all s ∈ [t, T ] and ‖v‖2 :=
∑m

i=1 v
2
i denotes the usual

Euclidean norm squared for a vector v ∈ Rm . The expectation
is defined as

Eu

[
R(X(t,T ])

]
:=
∫
dX(t,T ]pu

(
X(t,T ]

)
R(X(t,T ])

for any function R(X(t,T ]) of continuous trajectories starting
at a fixed xt , X(t,T ] := (Xs)s∈(t,T ]⊂R|xt , and pu

(
X(t,T ]

)
:=

p(X(t,T ]|xt, u). Notice that this density is conditioned on the
control function u(x, s) for all s ∈ [t, T ].

The optimal control

u∗(xt, t) = argminuEu

[∫ T

t

V (Xs, s) +
1
2
||u(Xs, s)||2ds

]

is the solution to this minimization.

2Note that we also distinguish between a deterministic function of state and
time, e.g. σdyn (x, t), and its corresponding stochastic process σdyn (Xt , t).

3To simplify the notation in a formula, we omit the arguments of functions
where the dependency is obvious from the context. Moreover, we some times
write J (xt , t) to emphasize the dependency of a function J (x, t) on the mo-
mentary value xt of the trajectory X[t ,T ] .

We can express the expectation over the trajectories in (4) as
a Kullback-Leibler divergence between a distribution over tra-
jectories under the controlled dynamics (3) and the uncontrolled
dynamics (1). To see this consider the following. In the limit of
ds→ 0, the transition density between time s and s+ ds for
the controlled process is given by a Gaussian

f̂(xs+ds |xs, u) = N
(
xs+ds |xs + F̃ ds, σdynσ

′
dyn

)
,

where F̃=F (xs, s) + σdyn(xs, s)u(xs, s), σdyn=σdyn(xs, s)
and ′ denotes transpose. This density is proportional to (see
e.g. [38, Appendix B])

f̂(xs+ds |xs, u = 0) exp
(

1
2
‖u(xs, s)‖2 ds+ u(xs, s)dWs

)
.

(5)
Multiplying (5) for all times s on the interval (0, T ], the distribu-
tion over controlled dynamics is proportional to the distribution
over the uncontrolled dynamics (both conditioned on the initial
state x0) as

pu
(
X(0,T ]|x0

)
= p0

(
X(0,T ]|x0

)× . . .

exp
(

1
2

∫ T

0
‖u(Xs, s)‖2 ds+

∫ T

0
u(Xs, s)dWs

)
. (6)

From this, we derive that4

Eu

[

log
pu
(
X(0,T ]|x0

)

p0
(
X(0,T ]|x0

)

]

= Eu

[∫ T

0
ds

1
2
||u(Xs, s)||2

]

is the KL divergence between the distribution over trajectories
under the control u(x, t) and the distribution over trajectories
under the uncontrolled dynamics. Thus, the optimal cost-to-go
at t = 0 is

J(x0) = min
u

Eu

[

V (X[0,T ]) + log
pu
(
X(0,T ]|x0

)

p0
(
X(0,T ]|x0

)

]

(7)

where we define V (X[0,T ]) :=
∫ T

0 dsV (Xs, s).
Since the feedback control function u(x, t) determines fully

the distribution pu , we can replace the minimization w.r.t.u(x, t)
with a minimization with respect to pu subject to the normaliza-
tion constraint

∫
dX(0,T ]pu

(
X(0,T ]|x0

)
= 1. The optimal con-

trol distribution conditioned on the initial statex0 that minimizes
(7) is then given by

pu∗(X(0,T ]|x0) =
1

ψ(x0)
p0(X(0,T ]|x0) exp

(−V (X[0,T ])
)

(8)
where the normalization constant is given by ψ(x0) :=
Eu=0

[
exp

(−V (X[0,T ])
)]

; see [38] for details. If we identify
V (X[0,T ]) = − log

[
p(y0:T |X[0,T ])

]
we see that the smoothing

distribution for fixed initial state x0 is identical to the optimal
control distribution (8):

p(X(0,T ]|y0:T , x0) = pu∗(X(0,T ]|x0) (9)

When the initial state X0 is drawn from a prior distribution
p0(X0) the smoothing distribution (2) is related to the optimal

4Note that Eu

[∫ T
t
u(Xs , s)dWs

]
= 0 as a stochastic integral.
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control distribution via

p(X[0,T ]|y0:T ) = pu∗(X(0,T ]|X0)p(X0 |y0:T ) (10)

with

p(X0 |y0:T ) =
ψ(X0)p0(X0)

p(y0:T )
(11)

the posterior over the initial state. Thus, the posterior marginal
at time t = 0 is proportional to the prior weighted with the
expectation of the likelihood over all paths starting at X0 .

III. IMPORTANCE SAMPLING AS CONTROLLED DIFFUSION

In this section, we show how sampling from the posterior can
be done using controlled diffusions. We use a previous result
that shows that when the control approaches the optimal control,
the quality of the sampling, measured as the effective sample
size, increases [35]. In general, we cannot compute the optimal
control. We introduce the APIS method that adapts feedback
controllers to optimize the sampling process.

A. Importance Sampling and the Relation to Optimal Control

Equation (2) suggest that we can sample from the smoothing
distribution by sampling from the prior process and weighting
each trajectory X[0,T ] with p(y0:T |X[0,T ]). We can use the con-
trol theory to improve the efficiency of the sampling. Combining
(6) and (8)–(10) we can write

p(X[0,T ]|y0:T ) ∝ p(X0 |y0:T )pu (X(0,T ]|X0)× . . . exp

×
⎛

⎝
J∑

j=1

log[g(ytj |Xtj )]−
∫ T

0

1
2
||us ||2ds−

∫ T

0
usdWs

⎞

⎠

(12)

where we recall that tJ = T and denote us := u(Xs, s) for sim-
plicity. We can thus sample from pu and correct with the expo-
nential term, i.e. an importance sampling procedure for diffusion
processes [30], [31], [35], [36], [39], [40]. We callu(x, t) the im-
portance sampling control. In addition, we use importance sam-
pling with a proposal distribution q(X0) to sample from (11).

We sample i = 1, . . . , N particle trajectories. For each parti-
cle, we define an importance weight

αu = exp[−Su ] (13)

Su := −
J∑

j=1

log[g(ytj |Xtj )] +
∫ T

0

1
2
||us ||2ds

+
∫ T

0
usdWs + S0

andS0 := − log[ p0 (X 0 )
q(X 0 ) ] and normalize such that

∑N
i=1 α

i
u = 1.

Notice that the weights αu depend on all observations y0:T and
on u(x, t) through Su .

Since the cost assigned to the importance weight targeting
p(X0 |y0:T ) differs from S0 only by a constant shift, we can use
S0 as the importance correction, see (8), (10), (11).

The quality of the sampling can be quantified in terms of the
effective sample size, which we define as [41]

ESS =
Neff

N
=

1
Var(αu) + 1

. (14)

with Var(αu) the empirical variance in the N sample weights.
We see that reducing the variance of the weights increases the
efficiency of the sampling procedure. In [35] upper and lower
bounds for Var(αu) were found. The upper bound

Var(αu) ≤
∫ T

0

Eu

{
‖αu [u∗(Xt , t)− u(Xt , t)]‖2

}
dt (15)

shows that the optimal control function u∗(x, t) is the optimal
importance sampler in the sense that the importance weights
have zero variance and the ESS becomes maximal. Hence, the
better we approximate u∗(x, t), the higher the efficiency of our
importance sampler will be.

B. Adaptive Path Integral Smoother

Clearly, it is difficult to compute the optimal control in gen-
eral. However, we can efficiently estimate a suboptimal control
using the approach introduced in [35]. Assume that the optimal
control can be approximately parametrized as

u∗(x, t) = A∗(t)h(x, t) ∈ Rm (16)

where A∗(t) ∈ Rm×k are time-dependent parameters and h :
Rn ×R→ Rk are the k “basis” functions of the feedback con-
troller. In addition, we choose the importance sampling control
to be parametrized with the same basis functions: u(x, t) =
A(t)h(x, t). The main theorem in [35] implies

A∗(t) 〈ht ⊗ ht〉 = A(t) 〈ht ⊗ ht〉+ lim
δt→0

〈∫ t+δt
t dWs ⊗ hs

〉

δt
(17)

where ht := h(Xt, t), ht ⊗ ht is the outer product (ht ⊗
ht)kk ′ = hk (Xt, t)hk ′(Xt, t) and 〈•〉 = Eu [αu•] is the
weighted average targeting the posterior.

In practice the limit in the right side of (17) may lead to
numerical instability when estimated with a finite number of
particles and time discretization dt > 0. Therefore, one may
consider taking δt ≥ dt which yields a smoothed biased esti-
mate of u(x, t) with less variance. Around observations, the
control may be a sensitive function of time and a small δt is
required. In the reminder of the article we set δt = dt.

Equation (17) describes a procedure to compute an estimate
of the optimal control u∗(x, t) based on an importance sampling
control u(x, t). We can iterate this idea where in iteration r we
estimate Ar (t) as A∗(t) in (17) with samples that we gener-
ate with a control function with parameters Ar−1(t) from the
previous iteration. Then, (17) becomes

Ar+1(t) = Ar (t) + η
dQ(ht)
dt

H−1(t) (18)

where H(t)=〈ht ⊗ ht〉r ∈ Rk×k and dQ(ht) := 〈dWt ⊗ ht〉r
∈ Rm×k . The learning rate η < 1 accounts for sample errors at
the beginning of the learning procedure, when the ESS is low.

We need to estimate H(t) and dQ(ht). Both can be obtained
by sampling N particles via numerical integration of (3) and
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Algorithm 1: Adaptive Path Integral Smoother.

1: Input: Observations y0:T , prior p0(x0), control
parametrization u0(x, t) = A0(t)h(x, t), learning rate
η < 1, particles N , iterations Imax , ESS threshold
θess ≤ 1, annealing factor β > 1 and annealing
threshold γ ≥ 0.

2: Output: Smoothing particle system {xi[0,T ], α
i
u}i=1:N

and importance controller u(x, t).
3: Set n← 0
4: while ESS < θess or n ≤ Imax do
5: if n = 0 then xi0 ∼ p0(x0) for i = 1, . . . , N
6: else
7: xi0 ∼ N (μ̂0 , σ̂

2
0 ) for i = 1, . . . , N

8: Siu = − log(p0(xi0)/N (x0 |μ̂0 , σ̂
2
0 ))

9: end if
10: Generate: {xi[0,T ], α

i
u}i=1:N according to (3) and (13).

11: Estimate ESS from (14)
12: while ESS < γ do
13: Siu ← Siu/β for i = 1, . . . , N
14: Estimate αu from (13)
15: Estimate ESS from (14)
16: end while
17: Compute: μ̂0 , σ̂

2
0 from {xi0 , αiu}i=1:N with (20).

18: for t = 0, . . . , T do
19: Estimate: H(t) and dQ(ht) with (19)
20: Update: At ← At + η dQ(ht )

dt H(t)−1

21: end for
22: n← n+ 1
23: end while

weighting each with its correspondingαu . Then, the expectation
at each time t is a weighted average over the particle system
{Xi

t }i=1,...,N ,

H(t) =
N∑

i=1

αiuh(X
i
t , t)⊗ h(Xi

t , t)dQ(ht)

=
N∑

i=1

αiudW
i
t ⊗ h(Xi

t , t) (19)

where
∑N

i=1 α
i
u = 1 and dWi

t is the noise realization of the i-th
particle at time t.

The posterior initial state p(X0 |y0:T ) is sampled using a
Gaussian adaptive importance sampling distribution q(X0) =
N (X0 |μ̂0 , σ̂

2
0 ) with μ̂0 and σ̂2

0 the mean and covariance of the
marginal posterior at time t = 0. After the first iteration, we
update

μ̂0,l = 〈X0,l〉
(
σ̂2

0
)
j l

= 〈(X0,j − μ̂0,j )(X0,l − μ̂0,l)〉 (20)

for each l, j = 1, . . . ,m.
Sampling from q(X0) ensures that we adapt the initialization

of the particles to stay close to the posterior distribution. Since
we sample from a Gaussian, the initialization procedure is sim-
ple and efficient for many cases. The update rules (20) follow by
maximizing a variational lower bound on the likelihood p(y0:T )
with respect to a Gaussian distribution that describes the prior

distribution at initial time. We call this initialization scheme the
(Gaussian) adaptive initialization.

Equations (18)–(20) define the Adaptive Path Integral
Smoother (APIS) that learns iteratively the feedback controller
defined in (16). This is an adaptive importance sampling pro-
cedure to obtain samples from the joint smoothing distribution
using controlled diffusion. Note that the control parametersA(t)
are estimated for each time t independently.

The APIS algorithm starts by sampling from the uncontrolled
dynamics. We initialize the particles from q(X0) = p0(X0) if
possible, otherwise they are initialized from a proposal distribu-
tion q(X0) of our choice, for instance a Gaussian. In this case,
the cost S0 for the initialization is non-zero also for the fist
iteration. For subsequent iterations, the update rules (18)–(20)
are repeated until the ESS reaches a threshold θess ≤ Neff /N
or a maximal number of iterations I = Imax . Alternatively, one
can check if the variance of the weights or the ESS has changed
significantly in the last l iterations and stop if the change is
small. The resulting weighted particle system gives an estimate
of the smoothing distribution.

The number of particles N is one of the most important pa-
rameters. The variance of the estimates reduces withN . In prac-
tice, we need a large number of particles to ensure sufficiently
good estimates. The complexity of APIS is O(IN), where I
is the number of adaptation iterations and N the number of
particles.

The learning rate η determines the rate at which the control
function u increases from its initial value zero. We observe
poor improvement of the importance sampler in terms of the
ESS for large learning rate η. In our experiments, we find good
results with η ∈ [0.001, 0.05] depending on the variance of the
estimations.

Special attention is required at the initial iterations. Since the
initial importance sampler is very poor, the ESS is extremely
low and the estimates (18) and (19) are very inaccurate. For
this reason we artificially increase the ESS to a predetermined
minimum number of particles N0 by introducing an ’adaptive
annealing procedure’ with a temperature λ > 1 that scales the
cost of each particle i as Siu → Siu/λ. For a given set of particles
we can then estimate the ESS for different values of lambda λ.
The smallest value of λ such that ESS ≈ N0/N is found by
setting λ = βm with m = 0, 1, 2, . . . and β > 1. The annealing
factor β should be chosen not too large to prevent overshoot,
and not too small to restrict the number ofm steps. We find that
values of β ∈ [1.05, 1.15] prove to work well and finding λ is
very fast. The adaptive annealing procedure is done whenever
the ESS is below the threshold γ = N0/N . In our experiments
we use N0 = 100− 150.

IV. RESULTS

In this section, we present numerical results to show the ef-
ficiency and accuracy of APIS compared to FS and FFBSi. We
illustrate the benefits of the adaptive initialization and the an-
nealing scheme. Additionally, we demonstrate the scaling of
APIS to very high number of observations when the importance
control has the correct parametrization.
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Fig. 1. Kalman Smoother solution. Notice the small overlap of the filtering
(green) and smoothing (red) solutions due to the unlikely observation (orange)
at yT = 5. Violin plots (histograms) of particles obtained by FFBSi (black)
and APIS (blue): snapshots every Δt = 0.1 starting at t = 0. Notice the poor
particle representation in FFBSi. For APIS we used the following parameters:
N = 2000 particles, learning rate η = 0.2, no annealing procedure and Im ax =
15 iterations. For FFBSi we used N = M = 2000 forward and backward
particles. Color figures online.

For all numerical experiments, we fix the choice of the basis
functions to a linear feedback term and an open-loop controller
(no state dependence, only time dependence). For details on
this choice and the implementation we refer the reader to the
appendix.

A. Linear Quadratic System

1) Low Likelihood Observation: Consider a Brownian mo-
tion Xs+ds ∼ N (xs, σ2

dyndt) with σdyn = 1, dt = 0.01 and
a Gaussian observation model yt ∼ N (xt, σ2

obs = 1) for t =
0, T . We fix the observations at y0 = 0, yT = 5 and the length
of the series at T = 1. The initial distribution p0(X0) is a Gaus-
sian centered atx0 = 0 with varianceσ2

0 = 4. The exact solution
for this model is given by the Kalman smoother, Fig. 1. Notice
the poor overlap of the filtering and smoothing distributions.

We compare the particle smoothing distribution given by
APIS and FFBSi. In Fig. 1, we show violin plots5 for a par-
ticular realization of the particles at times t = 0, 0.1, 0.2, . . . , 1.
Although N is large, FFBSi poorly represents the Gaussian
posterior marginal distributions. The effect worsens for large
t � T , where filtered and smoothed marginals differ most. The
histograms for the bootstrap filter-smoother (FS) are similar to
those of FFBSi (not shown). On the contrary, APIS histograms
represent much better the Gaussian distribution.

If the filtered particles do not represent the smoothing dis-
tribution well enough, the backward pass will have a low ESS
and therefore the backward particles will mix poorly. Although
we observe an increase in the averaged ESS of the backward
pass from 2% at t � T to 7% for times 0 � t, this is not enough
to improve the estimations, see Fig. 2. For comparison, APIS
increases the ESS of the whole path from 1.5% to 98% in 15
iterations by adapting the trajectories from the initial filtering
distribution to the smoothing distribution.

5We used distributionPlot.m for MATLAB

Fig. 2. MSE of mean μ̂ over time. Estimates averaged over R = 250 runs
to avoid effects of the particular sampling realizations. We used N = 2000
forward particles in all methods and M = 2000 backward particles in FFBSi;
observations at y0 = 0 and yT = 5. Notice the error for APIS (red) at all times;
it is two orders of magnitude lower than FS and FFBSi. In APIS, estimations
are made using the last particle system obtained after Im ax = 15 iterations and
without annealing (γ = 0).

We can use the exact solution to compare the performance of
all methods using the mean squared error (MSE)

Δ̂Eμ(t) =
1
R

R∑

j=1

(μ̂j (t)− μKS(t))2

where μKS is the mean of the ground truth obtained by the
Kalman smoother, μ̂j is the estimated mean of each method in
run j and R the number of runs. In each run, we used the same
parameters as above. Fig. 2 shows Δ̂Eμ versus t. We observe
that APIS has an accuracy two orders of magnitude higher than
FS and FFBSi. The errors of the variance estimates are very
similar to the errors of the mean estimates.

Note the slight increase of the MSE of FFBSi vis-á-vis FS.
This may be due to the small number of observations. In this
example, there is no gain in applying a backward pass. For
larger time series we observe an improvement of the estimates
in FFBSi compared to FS, as is to be expected. However, APIS
was consistently better in all the examples studied.

Fig. 3 shows the error of the mean Êμ = 1
T

∫ T
0 Δ̂Eμ(s)ds

as a function of the unlikely observation yT . Notice how the
performance of both FS and FFBSi are comparable to APIS if
the observation is close to the high density region of the filtering
(yT ∈ [0, 2]) but deteriorates very fast for unlikely observations.
On the contrary, the error in APIS is virtually independent of
the position yT of the observation. This is due the adaptation of
APIS to the likelihood.

To show the importance of the adaptive initialization intro-
duced above, we examine the ESS dependent on both, initial-
izing the particles with the prior distribution–the non-adaptive
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Fig. 3. Error Êμ for yT ∈ {0, 0.75, 1.5, 2.25, 3, 3.75, 4.5, 5.25} and always

y0 = 0: For each yT , we estimate Δ̂Eμ (t) using 100 runs andN = M = 2000
particles. Notice the logarithmic scale in the error-axis. The error in the variance
is similar. APIS has no annealing in this example.

TABLE I
IMPACT OF THE INITIALIZATION OF THE PARTICLES ON THE ESS FOR J = 2

OBSERVATIONS OF A BROWNIAN MOTION

initialization–and with the adaptive initialization. We show that
the adaptive initialization is crucial for the sampling efficiency.

Similar to the experiment above, we consider J = 2 obser-
vations of a Brownian motion with σ2

obs = 0.5. The prior is
defined as a standard Gaussian. We use N = 2000 particles for
a maximum number Imax = 500 of iterations with η = 0.01 and
y0 , yT , γ, T, dt as before.

Table I shows the effect on the ESS for various σ2
dyn using

both initialization schemes. We see that the adaptive initializa-
tion yields significantly higher ESS for all noise levels. The
effect is largest for low noise levels. The reason is that in this
regime the maginal posterior at t = 0 is significantly different
from the prior due to the large influence of the future observa-
tion yT . Hence, sampling from the prior at t = 0 significantly
reduces the ESS of the entire trajectories even if the controller
is successfully learned. The small decrease of the ESS for the
adaptive initialization is due to the increased precision needed
to find the large magnitude control solutions in the high noise
regime.

2) High Number of Observations: Now, we study in more
detail the ESS of APIS for higher number of observations J .
Consider again a Brownian motion with σ2

dyn = 0.75, σ2
obs =

0.9 and a time horizon T = 3. The prior p0(X0) is as before.
We generate a single time series of 300 observations on the time

Fig. 4. ESS estimated for 100, 200 and 300 observations. We use a learning
rate of η = 0.05, N = 300 particles, Im ax = 100 and no annealing (γ = 0).
The ESS decays slowly with the number of observations.

Fig. 5. Mean ESS over the last 20 iterations for a time series of 300 observa-
tions. Left: ESS for increasing precision. While dt decreases, N increases such
that Ndt = 3. Right: ESS for increasing number of particles. The integration
step is fixed at dt = 10−3 . The APIS parameters η, Im ax and γ are the same
as in Fig. 4.

interval [0, T ] and define a posterior estimation problem given
the first 100, 200 and all observations. For each problem we
estimate the ESS after 100 iterations.

In Fig. 4 we observe a slow decay of the ESS when the number
of observations J increases. This decay can be compensated
with an increase in the precision of the estimations. We illustrate
this by increasing the number of samples N while decreasing
the integration step dt such that Ndt remains constant. The
consequence is an increase of the ESS for dt→ 0 as in Fig. 5
left. On the right of the same figure, we show the ESS for
the same time series of 300 observations but with fixed dt and
incrementing N . We observe a fast increase of the ESS and
saturation6 for higher N .

The excellent scaling with the number of observations is due
to the correct parametrization of the importance control func-
tion. However, for small samples sizes N , the variance is too
large to efficiently bootstrap APIS and an increase in ESS is not
guaranteed. The minimum amount of particles needed to boot-
strap APIS is problem dependent. However for a given problem,

6Accordingly, the MSE of both estimators decreased very fast until it saturated
at a much lower value due to estimation errors in the controller (not shown).
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the discretization step dt has a big impact on the choice of N .
As a rule-of-thumb, we find that for a fixed dt, one must choose
at least N > 2/dt to have stable results.

More complex problems require higher number of samplesN .
In this case, the annealing procedure helps to avoid prohibitive
largeN . We considered now J = 1000 for the same system and
parameters as above except that we anneal the weights if the
ESS is below a threshold γ = 0.01 (β = 1.15). This allows us
to use only N = 104 particles. Above γ there is no annealing
anymore and the raw ESS converges to a value around 0.6 in less
than 200 iterations. This is a remarkable increase of 3 orders of
magnitude vis-á-vis the uncontrolled dynamics. After learning,
the absolute error of the mean |μ̂APIS − μKS | stays lower than
0.01 over time and the averaged absolute error is 1.8× 10−3 .
The absolute error in the variance is similar.

We can bootstrap APIS because we obtain a higher ESS from
the annealed particle system. This allows us to estimate a control
that improves the raw ESS incrementally. Without annealing,
the ESS stays at 2× 10−4 even after 1000 iterations. This re-
sult shows the importance of the annealing procedure when the
number of observations is very large or the problem too com-
plex. We refer to the next section for a more detailed illustration
of the benefits of this procedure.

The above analysis shows that the ESS in APIS scales
very well with the number of observations given the correct
parametrization of the controller. Moreover, the error of the
estimates stays small over the whole time interval.

B. A Neural Network Model

We consider a non-linear system and show the efficiency of
bootstrapping with annealing in more detail. In addition, we ex-
amine the performance of APIS, FFBSi and FS. In this example
the linear feedback control is clearly suboptimal. However, we
show that the variance of the estimates is lower for APIS than
for FFBSi and FS.

We consider a 5 dimensional non-linear neural network de-
scribed by

dXt = −Xtdt+ tanh(BXt + θ +A sin(ωt))dt+ σdyndWt

where B ∈ R5×5 and θ ∈ R5 are an antisymmetric connectiv-
ity matrix and a threshold vector respectively. The elements
of the vector A ∈ R5 are the amplitudes of independent sinu-
soidal inputs with frequencies given by ω ∈ R5 . We choose the
values randomly from Gaussian distributions θi � N (0, σθ =
0.75), Ai � N (0, σA = 2), ωi � N (π/5, σω = π) and Bij �
N (0, σB = 2) with Bij = −Bji , for all i, j = 1, . . . , 5. In ad-
dition, we set σ2

dyn = 0.05 and an integration step of dt = 0.01.
Furthermore, we assume a Gaussian observation model with

Yti � N (X1(ti), σobs = 0.1) for i = 1, . . . , J and sample an
observation every Δobs = 10dt. Note that only one of the five
neural states is observed.

First, we examine the annealing procedure and show its bene-
fit compared to the ”raw” bootstrap procedure with no annealing.
We consider several smoothing problems for the above system
with different number of observations J = 20− 42. We fix the
initial condition at x0 = 0 to examine the ESS without the effect

Fig. 6. Exit index for both bootstrapping schemes (blue: annealing with
γ = 0.02; red: no annealing) shows the advantage of annealing. Top: ESS
(15 independent runs) versus number of observations for fixed computational
budget N = 6000, Im ax = 350. Bottom: ESS (10 independent runs) versus
number of particles for fixed number of observations J = 25 and Im ax = 600.
Note: For 39 and 42 observations (top figure), and for 350 and 500 particles
(bottom figure), all runs with γ = 0 failed to bootstrap so there is no exit index
defined. We mark these cases on the figures with an exit index of zero.

of importance sampling at the initial state. We generate a single
time series using a random realization of the neural network and
take the first J observations for each one of the 7 cases con-
sidered. We examine the performance in terms of the iteration
number for which the ESS hits the 10% mark for the first time.
We call this the exit index.

Fig. 6-Top shows the exit index for a fixed computational bud-
get N = 6000, Imax = 350. The sampling efficiency for short
time series is similar in both bootstrapping schemes. Without
annealing (γ = 0) however, the efficiency drops fast and after
a certain number of observations, the raw scheme cannot boot-
strap. In contrast, the annealed scheme allows APIS to bootstrap
within a similar number of iterations, only slightly increasing
for larger time series. Thus, the annealed estimates increase the
ESS more reliably and in less iterations compared to the raw
bootstrapping scheme.

Annealing not only helps bootstrapping for a fixed computa-
tional budget, it also reduces the number of particles needed. To
show this, we examine how the exit index depends on the num-
ber of particles with J = 25 observations. Fig. 6-Bottom shows
that with annealing, we are able to bootstrap with significantly
less particles. In addition, annealing is more reliable and arrives
much faster at the minimum exit index. For a similar perfor-
mance, we would need an order of magnitude more particles for
the raw bootstrap.
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Fig. 7. Left: variance of the mean μ̂ across 10 estimations, scaled by the
variance of the posterior. This is averaged over time and dimensions to give a
single measure for each J . Right: ESS for different number of observations J .
Notice the logarithmic scale. The ESS of FS is taken as the number of unique
trajectories. We use the same amount of forward particles N = 6000 in all 3
methods, and the number of backward particles is set such that the CPU time
spend on FFBSi and APIS is similar. The estimation of the posterior in APIS is
accepted when a predefined threshold of θess = 0.1 is reached. Each algorithm
was repeated R = 10 times to estimate the variance. We used a fixed initial
condition x0 = 0 and γ = 0.02 in APIS.

We see that annealing helps to scale up APIS to longer time
series and reduces the number of particles needed. This effi-
ciency is crucial whenever sampling from the hidden process is
computationally expensive.

We compare now the performance of APIS and FS. The sys-
tem has a fixed initial condition as in the example above. In Fig. 7
right, we compare the ESS of APIS and FS as a function of the
number of observations.7 The ESS is an order of magnitude
higher for APIS than for FS, but the efficiency of both decrease
with the number of observations. The ESS of APIS starts at
around 30% for 60 observations and ends at around 10% for
100 observations. Moreover, the ESS cannot be increased much
further with higher precision. This is the result of a suboptimal
importance control.

Nevertheless, the efficiency and performance of APIS clearly
increases compared to FS. As seen in Fig. 7 left, the variance of
μ̂ in APIS is significantly lower than in FS and FFBSi. We have
similar results for the variance of σ̂2 .

Now, consider a Gaussian prior p0(X0) with mean μ0 = 0
and variance σ2

0 = 1. We study the performance of the three
methods. Fig. 8 left shows the variance of the mean for the
observed neuron. All three methods have reliable estimates but
both FS and FFBSi have higher variance. APIS keeps the vari-
ance of the estimates consistently lower over the entire time
interval.

Fig. 8 right shows that the variance of the mean for the hidden
neurons is up to two orders of magnitude higher for FS and
FFBSi than for APIS. The increased variance towards earlier
times is in part an effect of the importance sampling procedure
at the initialization, which affects all methods. Nevertheless, the
adaptation of the proposal distribution q(X0) in APIS reduces
significantly this effect.

7It is challenging to compute the ESS of the M backward trajectories in
FFBSi, so we do not consider the ESS of FFBSi.

Fig. 8. Variance of mean estimate μ̂ for the partially observed neuron 1 (left)
and for the hidden neuron 5 (right). The variance is obtained from R = 12
estimates. Green: FS; blue: FFBSi; red: APIS. Notice that APIS has a lower
variance up to two orders of magnitude (log-scale). The estimations for all other
neurons 2,3,4 are similar to neuron 5. The setting is similar as in Fig. 7 but with
J = 50. In APIS, we use γ = 0.02 and N = 7500 forward particles. The ESS
threshold is set to θess = 0.2. In FS and FFBSi we use N = 5000 forward
particles and M = 2500 backward particles such that APIS and FFBSi have
again the same CPU time available.

Fig. 9. Effective Sample Size (ESS) for a single run. Black marker symbolizes
accepted samples used for the estimation of the smoothing distribution (θess =
0.2).

Finally in Fig. 9, we show the typical improvement of the ESS
for this example. At the beginning, the ESS is around 2% due
to annealing (blue line, λ > 1) and the raw ESS increases from
0.02% up to 2% (red dotted line, λ = 1). This increase is due
to the control estimations obtained from the annealed particle
system. After the ESS surpasses γ, APIS reaches the stopping
threshold θess in about 80 iterations. The final ESS of 20% is
a remarkable improvement vis-á-vis the ESS of the posterior
marginals in FS, which stays most of the time below 10% and
around 2% for times close to t = 0.

V. DISCUSSION

In this work, we present a new smoothing algorithm for dif-
fusion processes in continuous time. This method estimates
iteratively a feedback controller to target the posterior distri-
bution. We show that having the correct parametrization of the
control, we can sample the posterior with very high efficiency
and observe excellent scaling with the number of observations.
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Furthermore, even with a suboptimal controller for a non-linear
system the ESS increases by several orders of magnitude and
the variance of the estimates is up to two orders of magnitude
lower than the variance of FS and FFBSi.

We are aware of many important developments in particle
methods, some of them having a linear computational com-
plexity in the number of particles, e.g. [11], [22], [23]. How-
ever, we use the standard FFBSi to show the degeneracy of the
backward pass and compare the results with APIS. We think
that a comprehensive comparison of all state-of-the-art methods
goes beyond the scope of this work but deserves to be addressed
in the future.

More efficient proposal distributions are used in practice for
FFBSi, e.g. by linearization of the discretized SDE [7]. How-
ever, in general this is only valid for sufficiently short time
intervals, which might be shorter than the interval between ob-
servations and could lead to errors in the integration of (1) and
the estimations. Also, similar schemes can be used to improve
the efficiency of APIS.

The optimal resampling step at time t− 1 in the O(N)
two-filter algorithm [11] is given by marginals of the form
p(yt:T |Xt−1)wt−1 where wt−1 are the filter weights. This is
approximated by a single observation ”look-ahead” distribution
p(yt |Xt−1)wt−1 . It is interesting to notice that APIS effectively
implements a “look-ahead” transition probability considering
all observations. This makes APIS an attractive alternative to
the O(N) two-filter algorithm.

One can apply the ideas of this paper also to discrete state,
discrete time problems. A discussion on discrete systems in
[38], [42] shows that we can frame discrete HMMs as a control
problem. One can then adapt the uncontrolled dynamics using
the Cross Entropy idea [25]. In addition, the application to con-
tinuous time hidden Markov jump processes is also interesting
and possible. Both problems are equivalent to the optimization
of a KL divergence similar to (7) [43]. But the details are differ-
ent and one would need to work out the details on how a control
theoretic approach would influence the process rates to perform
importance sampling. Furthermore, details on the learning pro-
cedure applied to both types of systems and the parametrization
of the feedback controller need to be worked out.

It is interesting to notice the similarities between the iterated
auxiliary particle filter8 [24] and optimal control solution in
[38], [42]. The computation of the optimal twisted functions in
[24] is related to the backward message passing involved in the
computation of the optimal transition probability. However, the
connection to optimal control was not pointed out in this work.
Recall that, in practice, the functions and transition densities
in [24] have to be restricted. On the contrary, APIS has great
flexibility in the design of the controller. Hence, it may prove
fruitful to explore the similarities between both approaches to
develop better approximation schemes for the iterative auxiliary
particle methods.

Similarly, it is interesting to contrast the ideas of this pa-
per to those in [26], [27], where the aim was to minimize the

8We are grateful to a reviewer for pointing out this work and the similarity
between APIS and this method.

KL divergence between the target density and a parametrized
(mixture) model. These ideas are similar in flavor to the ideas
here9 but it is not obvious how both schemes relate. The dif-
ficulty in the comparison resides in the components learned in
each method. While we aim at learning a parametrized con-
troller to adapt the prior (uncontrolled) dynamics, [27] directly
modifies the adjustment multiplier weights and the proposal
kernels. These modifications may correspond to the importance
control correction term and the introduction of a control term
in the dynamics. However, a detailed comparison may help us
to understand further the relation between adaptive importance
sampling and control for general hidden state processes.

In our experiments we have initialized the importance sampler
with u(x, t) = 0. One can consider better initializations of the
controller using other methods. For instance, one could initialize
a linear feedback controller around the solution to the optimal
trajectory as in [34]. The initialization of the controller will have
an impact on the performance that is not to be taken lightly, for
instance, bad importance control u might decrease the ESS and
result in poor estimates which could lead to a further decrease
in the quality of the controller. Our experience is, however, that
a linear feedback controller initialized with the uncontrolled
dynamics is a robust procedure when combined with annealing.

Naturally, the initialization of the particles at t = 0 has an
impact on the ESS. In this paper we have chosen (axis-aligned)
Gaussians as proposal distributions to target the posterior
marginal at t = 0, but other initializations are possible. For
instance, one can sample from a multivariate Gaussian with
general covariance matrix, a general kernel density estimator to
deal with multi-modal distributions or initialize the particles via
the Cross Entropy method [25].

The choice of the number of particles N and the annealing
threshold γ is an open question. On the one hand, we know that
increasing N influences the efficiency of APIS in a non-linear
way and that a value below some threshold prevents APIS from
bootstrapping. However, it is not obvious how to chooseN in an
efficient way. On the other hand, with the annealing procedure
introduced in this paper, it is possible to bootstrap APIS with-
out increasing N to prohibitive sizes. Thus, it is important to
understand how both, the number of particles and the annealing
procedure, influence the learning of the control.

Unfortunately, there is no proof that APIS converges to the
optimal control within the class of control solutions constrained
by the parametrization. In practice we can use the ESS as a qual-
ity measure, which can be used to asses the “goodness” of the
chosen parametrization. Still, the question of optimality given
a parametrization is a very interesting question that deserves to
be explored.

The efficiency of APIS depends on the choice of basis func-
tions, which is problem dependent. This choice is an open ques-
tion. The linear basis functions that we considered in this paper
are very robust to learn, however, they might lead to problems
whenever the posterior has multiple pronounced modes. Since
the update rule (18) poses no restriction on the basis functions,

9We are grateful to a reviewer for mentioning this approach and its possible
relation to APIS for discrete HMMs.
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more complex functions are possible. Thus, in problems with
multiple modes, locally linear functions such as x exp(−x2)
may be a good choice.

More general strategies to estimate an efficient importance
control are possible. For instance, we can use a nested set of
functions. During the initial iterations a simple function (say
linear) is learned and as soon as the ESS is sufficiently high, non-
linear extensions are learned. In this context the application of
universal function approximations such as deep neural networks
may be promising.

APPENDIX

IMPLEMENTATION DETAILS

The proposed APIS method was discussed in III-B in general
form to remark that in principle any linear parametrization of the
controller can be learned. Here, we discuss the implementation
details for the results in IV.

We use a linear feedback controller standardized w.r.t. the tar-
get distribution, i.e. h(x, t) := (1, z(x, t))′, where z(x, t), x ∈
Rm . Each component zi is defined as

zi(x, t) =
xi − μi(t)
σi(t)

whereμi(t) = 〈Xt,i〉, σ2
i (t) = 〈(Xt,i − μi(t))2〉; i = 1, . . . ,m

are the mean and variance of the state components w.r.t. smooth-
ing marginal at time t. The values are initialized in the first
iteration as μi(t) = 0 and σ2

i (t) = 1 for all times. This choice
of basis functions splits (18) such that the updates for the open-
loop and feedback controllers are independent and numerically
more stable.

For completeness, we give the explicit update rules for the
standardized linear feedback controller. The control has a very
simple form u(x, t) = a(t)z(xt, t) + b(t), where a(t) ∈ Rm×m

is a square matrix of the same dimension as the state and b(t) ∈
Rm is an open-loop controller. Then, the cross-correlation ma-
trix becomes

H(t) =

[
1 0

0 C(t)

]

where C(t) is the correlation matrix of the state variables. We
have component-wise,

C ij(t) =
〈

[Xt,i − μi(t)][Xt,j − μj (t)]
σi(t)σj (t)

〉

r

.

For dQr (ht) we have a matrix in Rm×(m+1) with elements

[dQr (1)]i1 = 〈dWt,i〉r
[dQr (zt)]i(j+1) =

〈
dWt,i

Xt , j −μj (t)
σj (t)

〉

r

for each i, j = 1, . . . ,m.
This gives the explicit update rules,

br+1(t) = br (t) + η
〈dWt〉r
dt

ar+1(t) = ar (t) + η
dQr (zt)
dt

C−1(t)

We use as prior distribution p0(X0) for the state at time
t = 0 a Gaussian with mean and variance μ0 , σ

2
0 , respectively.

In addition, we use an adaptive Gaussian as proposal distribution
q(X0). Thus, we initialize at each iteration of APIS the cost to
correct for this importance sampling step. This initial value is
given for particles l = 1, . . . , N by

S0,l =
m∑

i=1

(Xl
0,i − μ̂0,i)2

2σ̂2
0,i

− (Xl
0,i − μ0,i)2

2σ2
0,i

where μ̂0 = μ(0) and σ̂2
0,i = σi(0)2 are the mean and variance

of the posterior marginal at t = 0.
The control cost over the entire interval [0, T ] is given by the

linear feedback controller and approximated by the discretiza-
tion step dt,
∫ T

0

1
2
‖u(Xs, s)‖2 ds+

∫ T

0
u(Xs, s)′dWs

≈
L∑

i=1

‖a(ti)zti + b(ti)‖2 dt2 + (a(ti)zti + b(ti))
′ dWti

where zti = z(Xti , ti) and dWti the noise realization at time ti
with variance σ2 = dt. The summation goes over the L = T/dt
integration steps.

In general, there is a trade-off between the amount of it-
erations and the number of particles needed, but we observe
that the convergence of the ESS to a maximal value is very
fast once it has bootstrapped, so usually a number of iterations
Imax � N can be chosen and–as a rule of thumb–higher N
allows for less iterations. The particles can be sampled indepen-
dently so this step is parallelizable. Nevertheless, when reducing
the learning rate, it is possible to reduce by at least one order of
magnitude the number of particles needed to bootstrap APIS.
Naturally, this will increase the number of iterations needed. In
addition, we found that an annealing procedure with γ in the
range 0.02− 0.05 works well for low N .

Finally, for FFBSi and FS, we use the algorithms as described
in [8, Algorithm 4] with the numerical integration of the SDE (1)
as proposal distribution for the filtering. We initialized particles
according to p0(X0) unless noted otherwise.
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[27] J. Cornebise, É. Moulines, and J. Olsson, “Adaptive methods for sequen-
tial importance sampling with application to state space models,” Statist.
Comput., vol. 18, no. 4, pp. 461–480, 2008.

[28] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” J. Amer. Statist. Assoc., vol. 94, no. 446, pp. 590–599, 1999.

[29] E. Pardoux, “The solution of the nonlinear filtering equation as a likeli-
hood function.” IEEE, Dec. 1981, pp. 316–319. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4046946

[30] W. H. Fleming and S. K. Mitter, “Optimal control and nonlinear filtering
for nondegenerate diffusion processes,” Stochastics, vol. 8, no. 1, pp. 63–
77, 1982.

[31] S. K. Mitter, Nonlinear Filtering of Diffusion Processes a Guided Tour
(Lecture Notes in Control and Information Sciences 42). New York, NY,
USA: Springer-Verlag, 1982, ch. 23, pp. 256–266. [Online]. Available:
http://www.springerlink.com/index/10.1007/BFb0004544

[32] H. J. Kappen, “Linear theory for control of nonlinear stochastic sys-
tems,” Phys. Rev. Lett., vol. 95, no. 20, Nov. 2005. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.95.200201

[33] T. Yang, P. G. Mehta, and S. P. Meyn, “Feedback particle filter,” IEEE
Trans. Autom. Control, vol. 58, no. 10, pp. 2465–2480, Oct. 2013.

[34] S. Pequito, P. Aguiar, B. Sinopoli, and D. Gomes, “Nonlinear estimation
using mean field games,” in Proc. Int. Conf. NETw. Games, Control Optim.
IEEE, 2011, pp. 1–5.

[35] S. Thijssen and H. J. Kappen, “Path integral control and state-dependent
feedback,” Phys. Rev. E, vol. 91, no. 3, Mar. 2015. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.91.032104

[36] H. J. Kappen and H. C. Ruiz, “Adaptive importance sampling for control
and inference,” J. Statist. Phys., vol. 162, no. 5, pp. 1244–1266, 2016.

[37] H. J. Kappen, “Optimal control theory and the linear Bellman equation,”
in Inference Learning Dynamic Models, pp. 363–387, 2011. [Online].
Available: http://hdl.handle.net/2066/94184
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