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On Demodulation, Ridge Detection, and
Synchrosqueezing for Multicomponent Signals
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Abstract—In this paper, we present a novel technique for the
retrieval of the modes of a multicomponent signal using a time-
frequency (TF) representation of the signal. Our approach is based
on a novel ridge extraction method that takes into account the fact
that the TF representation is both discrete in time and frequency,
followed by a demodulation procedure. Numerical results show
the benefits of the proposed approach for mode reconstruction
in comparison to similar techniques that do not make use of de-
modulation. Furthermore, numerical investigations show that the
proposed approach sharpens the TF representation on which it is
built.

Index Terms—Time-frequency, reassignment, synchrosqueez-
ing, AM/FM demodulation, multicomponent signals.

I. INTRODUCTION

THERE are many physical systems which generate complex
signals that are often modeled as a sum of amplitude and

frequency-modulated (AM–FM) waves. These signals are gen-
erally referred to as multicomponent signals (MCSs). In many
situations, it is often desirable and necessary to decompose these
MCSs into their individual components. As a result of their com-
putational simplicity and efficiency, linear time-frequency (TF)
transforms such as the short-time Fourier transform (STFT) and
the continuous wavelet transform (CWT) have received consid-
erable attention to this end, over the last 40 years. The STFT
of a MCS determines ridges in the TF plane which, once de-
tected, allow for the reconstruction of the different components
based on the TF representation evaluated on these ridges [1].
More recently, it has been shown in [2], [3] that local frequency
integration can improve the robustness to noise of the recon-
struction. An alternative approach to the reconstruction of the
modes, based on the information computed on the ridge, is
known as the synchrosqueezing transform (SST) originally in-
troduced in [4], and theoretically studied in [5]. In essence, the
technique consists of enhancing the time-scale (TS) represen-
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tation, given by a wavelet transform, by reassigning the coef-
ficients using an estimate of the instantaneous frequency (IF).
Such a technique is easily transferable to the TF representation
given by the STFT [6], [7]. However, in their original formula-
tions, these techniques are not well suited for signals made of
non purely harmonic modes, therefore an extension of SST was
recently proposed to better deal with this case, and is known as
second order synchrosqueezing transform [8].

In this present paper, we introduce a novel demodulation tech-
nique, built on the second order synchrosqueezing transform that
leads to an even sharper representation along with better mode
reconstruction results. A previous attempt which involved de-
modulating the signal before applying SST was presented in [9].
In that paper, the demodulation was based on the computation
of the phase of the analytic signal associated with the MCS.
However, it is well known that this phase cannot be related to
the instantaneous frequency (IF) of the modes which the MCS
consists of. Indeed, to demodulate a MCS requires estimates of
the IF of the modes. In relation to this issue, in [10], an estimate
of the IF of a mono-component signal was computed using local
frequency extrema of the spectrogram. An iterative procedure
was proposed to accurately estimate the IFs of the modes, but
mode reconstruction was not discussed.

In this paper, we first introduce a novel ridge estimation
technique, based on the second-order SST method introduced in
[8], followed by demodulation and finally mode reconstruction.
The benefits of using such a procedure is an improvement in
the sharpness of the TF representation obtained and also in the
mode reconstruction performance. The paper is structured as
follows, after this brief introduction, we recall the basics of
STFT-based SST (Section II). Then, we focus on the practical
implementation of ridge estimation in Section III, and move
on to the definition of the demodulation procedure followed by
the reconstruction algorithm based on the demodulated signal
(Section IV). Numerical examples showing the relevance of the
proposed approach on both simulated and real data conclude
the paper.

II. BACKGROUND TO FOURIER SYNCHROSQUEEZING

TRANSFORM

Prior to starting, it is useful to define our notation, and remind
readers of the basic elements of STFT based SST (FSST) and
of the approach to FSST which is better adapted to deal with
modulated modes.

A. Basic Definitions and Notation

Let f be a function in L1(R), the space of integrable func-
tions, we denote by f̂ the Fourier transform of f , defined using
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the following normalization:

f̂(η) =
∫

R
f(x)e−2iπηxdx. (1)

Taking a window g in the Schwartz class, the space of smooth
functions with fast decaying derivatives of any order, the (mod-
ified) STFT of f is defined by

V g
f (η, t) =

∫
R
f(τ)g∗(τ − t)e−i2πη (τ−t) dτ, (2)

where g∗(t) is the complex conjugate of g(t).
In what follows, we investigate the retrieval of the components

fk of a MCS f defined by:

f(t) =
K∑
k=1

Ak (t)e2iπφk (t) =
K∑
k=1

fk (t), (3)

where Ak (t) > 0 and φ′k (t) > 0. The signal f is completely
defined by its so-called ideal TF representation as follows:

TIf (ω, t) =
K∑
k=1

Ak (t)δ(ω − φ′k (t)). (4)

B. The Basics of FSST

The aim of STFT-based SST (FSST) [6], [7] is to retrieve the
ideal TF representation of f from its STFT, based on estimation
of the IF at time t and frequency η:

ω̂f (η, t) =
1
2π
∂t arg V g

f (η, t) = η − Im
{

1
2π

V g ′
f (η, t)
V g
f (η, t)

}
, (5)

where Im{X} denotes the imaginary part of complex number
X . The principle of FSST is to reassign the complex coefficients
V g
f (η, t) according to the following map (η, t) �→ (ω̂f (η, t), t),

by means of the synchrosqueezing operator:

T gf (ω, t)

=
1

g∗(0)

∫
{η , |V g

f (η ,t)|≥γ}
V g
f (η, t)δ (ω − ω̂f (η, t)) dη, (6)

where δ is the Dirac distribution. Knowing φ′k , the kth mode
can then be retrieved by considering:

fk (t) ≈
∫
|ω−φ ′

k (t)|<d
T gf (ω, t)dω. (7)

Essentially, FSST reassigns the information in the TF plane and
then makes use of this sharpened representation to recover the
modes. Previous theoretical investigations [8], [6] have high-
lighted a set of signals on which the performance of FSST can
be evaluated. These are defined as follows:

Definition II.1: Let ε > 0. We define the set BΔ ,ε of MCS
where

� for all k, fk satisfies:Ak ∈ C1(R)
⋂
L∞(R), φk ∈ C2(R),

supt φ′k (t) <∞ and for all t, Ak (t) > 0, φ′k (t) > 0,
|A′

k (t)| ≤ ε and |φ′′k (t)| ≤ ε.
� the fk s are separated with resolution Δ, i.e. for all k ∈
{1, · · · ,K − 1} and for all t,

φ′k+1(t) − φ′k (t) > 2Δ. (8)

The synchrosqueezing operator with threshold γ > 0 and ac-
curacy parameter λ > 0 is then defined, using a function
ρ ∈ D(R), in the space of compactly supported smooth func-
tions, such that

∫
R ρ(x) dx = 1, as:

Tλ,γf (ω, t) =
1
g(0)

∫
{η ,|Vf (η ,t)|>γ}

×V g
f (η, t)

1
λ
ρ

(
ω − ω̂f (η, t)

λ

)
dη. (9)

This definition allows us to state the main approximation result
of FSST [6]:

Theorem II.1: Let f ∈ BΔ ,ε , ε̃3 = ε, and g be a window
in the Schwartz class, such that ĝ is compactly supported in
[−Δ,Δ]. Then, if ε is small enough,

� |V g
f (η, t)| > ε̃ only if there exists k ∈ {1, · · · ,K} s.t.

(η, t) ∈ Zk := {(η, t), s.t. |η − φ′k (t)| < Δ}.
� For all k ∈ {1, · · · ,K} and all pair (η, t) ∈ Zk , s.t.
|V g
f (η, t)| > ε̃, one has

|ω̂f (η, t) − φ′k (t)| ≤ ε̃. (10)

� For all k ∈ {1, · · · ,K} there exists a constant C s.t. for
all t ∈ R,∣∣∣∣∣ limλ→0

(∫
|ω−φ ′

k (t)|<ε̃
Tλ,ε̃f (ω, t) dω

)
− fk (t)

∣∣∣∣∣ ≤ Cε̃.

(11)
A detailed proof is available in [6].

C. Second-Order Synchrosqueezing

One of the limitations of FSST is that it does not allow for the
reconstruction of modes subject to significant frequency mod-
ulation. A method was recently reported to deal with mode
modulation in the FSST context via second order syn-
chrosqueezing (VSST) [8], [11]. This technique uses a second
order approximation of the phase of the modes in the defini-
tion of the synchrosqueezing operator. VSST is based on a new
complex estimate of the second order derivative of the phase of
f , defined as follows:

q̃f (η, t) =
∂t(∂tV

g
f (η, t)/V g

f (η, t))
2iπ − ∂t(∂ηV

g
f (η, t)/V g

f (η, t))
, (12)

which is computable by means of five different STFTs:

q̃f (η, t) =
1

2iπ
V g ′′
f (η, t)V g

f (η, t) − (V g ′
f (η, t))2

V tg
f (η, t)V g ′

f (η, t) − V tg ′
f (η, t)V g

f (η, t)
. (13)

Now, introducing ω̃f (η, t) =
∂t V

g
f (η ,t)

2iπV g
f (η ,t) , and t̃f (η, t) = t−

∂η V
g
f (η ,t)

2iπV g
f (η ,t) , enables the definition of a new IF estimate as [11]:

ω̂
(2)
f (η, t) =
{Re{ω̃f (η, t) + q̃f (η, t)(t− t̃f (η, t))

}
if ∂t t̃f (η, t) �= 0

ω̂f (η, t) otherwise,
(14)

where Re{X} denotes the real part ofX . It is worth noting here
that ω̂f (η, t) = Re{ω̃f (η, t)}. It can be easily shown that, when
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f(t) = A(t)e2iπφ(t) is a linear chirp with Gaussian amplitude,
ω̂

(2)
f (η, t) = φ′(t). For a more general mode with Gaussian am-

plitude, when the IF is estimated by ω̂(2)
f (η, t), the estimation

error involves only derivatives of the phase whose orders are
larger than 3.

VSST then consists of replacing ω̂f by ω̂(2)
f in FSST:

TV g
f (ω, t) =

1
g∗(0)

∫
{η , |V g

f (η ,t)|≥γ}
V g
f (η, t)

× δ(ω − ω̂
(2)
f (η, t))dη. (15)

The reconstruction of the mode fk is subsequently performed
by means of the following formula:

fk (t) ≈
∫
|ω−φ ′

k (t)|<d
TV g

f (ω, t)dω. (16)

D. On the Computation of the STFT and Synchrosqueezed
Transforms

In many practical situations, the signal f is of finite length,
typically defined on the interval [0, T ], and discretized into
f(nTN )n=0,··· ,N−1 . In what follows and without loss of gen-
erality,N is assumed to be a power of 2 to ease the presentation.
Assuming g is supported on [−LT

N , LTN ], with L < N/2 the
STFT is then computed as follows:

V g
f l(η, t) =

∫
R
f(t+ τ)g(τ)e−2iπ τ η dτ

=
∫ L T

N

− L T
N

f(t+ τ)g(τ)e−2iπ τ η dτ

≈ T

N

L∑
n=−L

f

(
t+

nT

N

)
g

(
nT

N

)
e−i2π

n T
N η , (17)

from which we infer that:

V g
f

(
p

T
,
qT

N

)
≈ T

N

L∑
n=−L

f

(
(q + n)T

N

)
g

(
nT

N

)
e−i2π

n p
N

=
Te

2 i π p L
N

N

2L∑
n=0

f

(
(q + (n− L))T

N

)
g

(
(n− L)T

N

)
e−i2π

n p
N

:= e
2 i π p L
N

2L∑
n=0

S(q, n)e−i2π
n p
N , (18)

where the last sum is computed by means of an FFT. It is
common to extend, for each q, the sequence (S(q, n))n into a
sequence of size Nf > N by adding Nf −N zeros to it. This
operation is known as zero-padding. By doing so, one obtains
an increased frequency resolution in the TF grid but not of the

Algorithm 1
for q = 0 to N − 1 do

for k = 0 to Nf /2 − 1 do
T gf ( N

Nf

k
T , tq ) := 0

for p = 0 to Nf /2 − 1 do

ω̂f

(
N
Nf

p
T , tq

)
= N

Nf

p
T − Im

{
1

2π

V g ′
f

(
N
N f

p
T ,tq

)

V g
f

(
N
N f

p
T ,tq

)
}

.

Put k = round(T Nf

N ω̂f ( N
Nf

p
T , tq )).

Reassign |V g
f ( N

Nf

p
T , tq )| > γ as follows:

T gf

(
N

Nf

k

T
, tq

)
=T gf

(
N

Nf

k

T
, tq

)
+

1
g∗(0)

V g
f

(
N

Nf

p

T
, tq

)
.

time resolution, since:

V g
f

(
N

Nf

p

T
,
qT

N

)
≈ T

N

L∑
n=−L

f

(
(q + n)T

N

)
g

(
nT

N

)
e
−i2π n p

N f

=
Te

2 i π p L
N f

N

2L∑
n=0

f

(
(q + (n− L))T

N

)
g

(
(n− L)T

N

)
e
−i2π n p

N f

= e
2 i π p L
N f

2L∑
n=0

S(q, n)e
−i2π n p

N f . (19)

Since V g
f ( N

Nf

p
T ,

qT
N ) is approximated by means of an FFT,

only the first half of the frequency set is meaningful. That
is, V g

f is approximated on the TF grid {0, TN , · · · , (N−1)T
N } ×

{0, N
Nf

1
T , · · · , N

Nf

Nf /2−1
T }. It is worth noting here that the syn-

chrosqueezed TF representations T gf or TV g
f correspond to

reassigned versions of the STFT on the discrete time-frequency
grid defined above. The computation of T gf from V g

f can then

be carried out as explained in Algorithm 1 (putting tq = qT
N )

[8]. The same algorithm is applied to get TV g
f from V g

f , replac-

ing ω̂f by ω̂(2)
f . The role of zero-padding is going to be further

investigated in the sequel.

III. RIDGE ESTIMATION

Any mode reconstruction techniques based on the syn-
chrosqueezing transform requires an estimate of the ridges
(t, φ′k (t)) (mode reconstruction being then either based on for-
mula (7) or (16), depending on the type of TF representation
used). In that context, we are going to introduce a classical
ridge detector that is usually applied to the spectrogram, and
then investigate whether to perform the ridge detection on the
reassigned transform is profitable. The influence of all of the
different parameters on the accuracy of ridge estimation both in
noiseless and noisy contexts will also be studied.

A. Algorithm for Ridge Extraction

To compute an estimate of the ridge (t, φ′k (t)), assuming
knowledge of the number of modes K, we can use the same al-
gorithm as described in [5] or [12], and which was originally pro-
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Algorithm 2
Pick q ∈ {0, · · · , N − 1}
for k = 1 to Kdo

1. tq = qT
N .

2. Define pk,q = argmax
l

|TFf ( N
Nf

l
T , tq )|.

3. Define Ik,q = {max(0, pk,q − Nf

N TΔ), · · · ,
min(pk,q + Nf

N TΔ, Nf /2 − 1)}.
4. Define pk,q−1 = argmax

l∈Ik , q
|TFf ( N

Nf

l
T , tq−1)|.

5. Define pk,q+1 = argmax
p∈Ik , q

|TFf ( N
Nf

p
T , tq+1)|2−

λ(p− pk,q )2 − β(p− 2pk,q + pk,q−1)2

6. Iterate forward in time.
7. Iterate steps 2-6 backward from time tq .
8. (ψk (tq ))q = ( N

Nf

pk , q
T )q

9. TFf = TFf \⋃q [ψk (tq ) − Δ, ψk (tq ) + Δ]

posed in [13]. This computes a local minimum of the functional

Ef (ψ1 , · · · , ψK ) =
K∑
k=1

−
∫

R
|TFf (ψk (t), t)|2dt

+
∫

R
λψ′

k (t)
2dt+ βψ′′

k (t)
2dt, (20)

where TFf is one of the TF representations given by V g
f , T gf or

TV g
f . However, as presented, equation (20) does not offer any

algorithmic means to compute the ridges. Inspired by the above
minimization problem, we derive Algorithm 2, for that purpose.

To improve the robustness of the procedure, several random
initializations are required, leading to the detection of many
different ridge sets (ψk )k=1,··· ,K , and the one retained as the
output corresponds to the one maximizing

K∑
k=1

N−1∑
n=0

|TFf
(
N

Nf

pk,n
T

, tn

)
|2 − λ

N−1∑
n=1

(pk,n − pk,n−1)2

− β
N−2∑
n=1

(pk,n+1 − 2pk,n + pk,n−1)2 .

Note that, at the end of the procedure, the estimated ridges need
to be resorted according to increasing IF.

B. Influence of Zero-Padding on Ridge Estimation

To start the discussion on the influence of zero-padding on
ridge estimation, we recall, for the case of a mono-component
signal, the following estimate of φ′(tn ):

Ψ(tn ) = argmax
η

|V g
f (η, tn )|2 , (21)

which was studied in [14], for a noisy version of the signal
f(t) = A(t)e2iπφ(t) , i.e. f̃(tn ) = f(tn ) + ε(tn ), where ε is a
Gaussian white noise with variance σ2

ε . Selecting

ΔΨ(tn ) := Ψ(tn ) − φ′(tn ), (22)

and assuming g is the Gaussian window, g(x) = 1√
2πσ

e−
x 2

2 σ 2 , it
was proven in [14] that:

Bias{ΔΨ(tn )} ∼N→+∞
+∞∑
k=1

2πφ(2k+1)(tn )σ2k

2kk!

V ar{ΔΨ(tn )} ∼N→+∞
σ2
ε

8
√
π|A(tn )|2

×
[
1 +

σ2
ε T

2N
√
πσ|A(tn )|2

]
T

Nσ3 . (23)

These results are interesting but they do not consider the fact
that |V g

f (η, tn )| is only available on a discrete frequency grid,
since it is computed using an FFT. More precisely, (21) actually
corresponds to the ridge detector we would like to study (when λ
andβ are null), assuming a continuous frequency representation.
To illustrate the impact of the discrete grid associated with fre-
quency resolution, remembering that, as already noted, TF rep-
resentations are evaluated at frequencies ( N

Nf

p
T )p=0,··· ,Nf /2−1 ,

we investigate the quality of IF estimate depending on this dis-
cretization, i.e. the choice for Nf . This can be quantified by
measuring the mean square error (MSE) between the estimated
ridge and the ground truth:

MSE(ψ) =

√
1

N − 1

∑N−1

n=0
(φ′(tn ) − ψ(tn ))2 , (24)

when the frequency resolution varies. To have a better under-
standing of what is at work in this ridge detection, we not only
investigate the influence of zero-padding but also of the noise-
level. Since, the study of a linear chirp is somewhat limiting, we
extend the analysis to three different types of mono-component
signals whose STFT are displayed in Fig. 1, first row (they cor-
respond to a linear chirp, a polynomial chirp and a mode with
sinusoidal phase).

The results, displayed in Fig. 1(d), show that, in a noise-
free context, when STFT or VSST are used for ridge detection,
MSEs are the same for the linear chirp, which corresponds to
the fact that the coefficients are reassigned to a maximum of
the STFT with VSST (this method being based on an exact
IF estimate for linear chirps). For the other two signals, the
detector based on STFT behaves a little bit better than VSST,
but not significantly so. In contrast, since FSST is based on an
inaccurate IF estimate (even for the linear chirp), the results
in terms of ridge estimation are significantly worse when the
former is used as TF representation. For this reason, we do not
consider it in the simulations which follow. Finally, we remark,
that in the noise-free context for the linear and polynomial chirps
of Fig. 1(a) and (b), the MSE error when using STFT or VSST
decreases when the frequency resolution across the sampling
grid is increased. However, this is no longer true with the signal
of Fig. 1(c). In such a case, since the signal modulation is
important, there is no staircase effect even at a low frequency
resolution such asNf = N . The conclusion of this study is that
the frequency resolution, for the purpose of ridge estimation,
has to be tuned depending on the signal modulation: a small
modulation requires a higher frequency resolution.

Now, we would like to understand what happens in noisy
situations, therefore we perform the ridge detection on the linear
and polynomial chirps and also on the mode with sinusoidal
phase but with an SNR equal to 5, 0 or −5 dB. The results
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Fig. 1. (a) STFT of a linear chirp; (b) STFT of a polynomial chirp; (c) STFT of a mode with sinusoidal phase; (d) Computation of the mean square error associated
with the ridge detection for the linear chirp displayed in A, for various frequency resolution (k in abscissa means Nf = kN ), different TF representations and
noise level; (e) same as D but for the polynomial chirp displayed in B; (f) same as D but for the mode with sinusoidal phase displayed in C.

are depicted in Fig. 1(d) to (f) (for the latter type of signals,
and whatever the TF representation used, the ridge detector
does not perform well at −5 dB, therefore the results are not
depicted). It is clear from Fig. 1(d) and (e) that, while a finer
frequency resolution, associated with a larger Nf , leads to a
more accurate IF estimate in the noise-free case,Nf has a much
smaller impact on the quality of the estimation in a noisy context.
Furthermore, the quality of the estimate provided by applying
the ridge detector to VSST rather than to STFT is always better:
the ridge detection operates on a much sharper TF representation
which appears to be less sensitive to noise. Finally, we note that,
from these simulations,Nf = 8N is a good choice for frequency
resolution for ridge detection purpose.

C. Influence of Regularization Parameters

Taking into account the study carried out in the previous
section, the ridge detector applied either to STFT or VSST both
lead to good results when no regularization is used, even though,
as illustrated in Fig. 1 (second row), to perform ridge detection
on VSST rather than STFT is always better in noisy situations.

We now study the behavior of the ridge detector applied to
STFT or VSST when regularization terms vary, both in the
noise-free and noisy cases. To do so, we consider the same lin-
ear chirp as previously either in the noise-free, 0 dB or −5 dB
cases. We remark that the ridge detector is much more sensitive
to regularization parameters when applied to STFT rather than
VSST (see Fig. 2): the reassignment technique enables a more
robust ridge detection even at high noise level, because it cor-
responds to a sharper TF representation. Finally, note that, the
regularization parameters do not offer any improvement in terms
of the accuracy of the ridge estimation, which argues against us-
ing them, (the simulations shown in Fig. 2 were carried out for
Nf = 8N , but the same results could be derived for any rea-
sonable value of Nf ). It is important to note here that the same
conclusions would hold if the simulations were carried out on
the polynomial chirp or on the mode with sinusoidal phase, as
soon the algorithm detects the ridge.

IV. DEMODULATION ALGORITHM AND MODE

RECONSTRUCTION

Once a ridge is detected using an appropriateNf to avoid the
staircase effect mentioned above, we compute a demodulation
operator for each mode which is going to be subsequently used
to extract the corresponding demodulated mode. Inverting the
demodulation operator, we will finally obtain the desired mode.
The modes are extracted in a sequential fashion, i.e. one at
a time, a commonly used technique often referred to as the
peeling method in the literature [15], [16].

It is worth noting here that, in most cases, and in contrast to
our approach, when demodulation problems are considered, it is
often assumed that knowledge of a phase function v(t) is avail-
able and, this is then used to compute the so-called short time
generalized Fourier transform (STGFT). Indeed, the STGFT
corresponds to:

V g,v
f (η, t) =

∫
R
f(t)g∗(t− τ)e−2iπv (t)e−2iπη (t−τ )dt. (25)

This kind of approach has also been used in [17], [18] and
ridge detection can be viewed as a way to estimate this phase
function. Attempts have also been made to estimate the ridges
using parametric models [10]. As will be explained later, our
approach is fully non-parametric.

A. Definition of Demodulation Operator

Based on the ridge estimate defined above, we introduce the
demodulation algorithm for a mono-component signal f(t) =
A(t)e2iπφ(t) , for which we assume the IF estimate ψ(t) is com-
puted. For the case of a linear chirp, i.e. φ(t) = at+ bt2 , ψ(t)
approximatesa+ 2bt. So, by multiplying f(t) by e−2iπ (ψ (t)t/2) ,
and if the IMF estimation is accurate, we should obtain a
demodulated signal fD with constant frequency a/2. How-
ever, it is worth remarking that this demodulation procedure
is only well suited to a linear chirp, because it removes only
second order terms. Therefore, to demodulate a more general
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Fig. 2. (a) MSE corresponding to the ridge estimation for the linear chirp of Fig. 1(a) with V g
f

as TF representation (noise-free case, Nf = 8N ); (b) Same as A

but at a 0 dB noise level; (c) Same as A but at a −5 dB noise level; (d) MSE corresponding to the ridge estimation for the linear chirp of Fig. 1(a) with T V g
f

as TF
representation (noise-free case, Nf = 8N ); E: Same as D but at a 0 dB noise level; H: Same as D but at a −5 dB noise level.

mode f(t) = A(t)ei2πφ(t) , the following demodulation oper-
ator e−i2π (

∫ t
0 ψ (x)dx−ψ0 t) , where ψ0 is some positive constant

frequency, is a better choice since, no assumption is made about
φ. Indeed, by considering the signal

fD (t) = f(t)e−i2π (
∫ t

0 ψ (x)dx−ψ0 t) , (26)

one should get a signal with constant frequency ψ0 . An illus-
tration of this is shown in Fig. 3, for three different types of
mode, where ψ0 is equal to 100 Hz. In that figure, we dis-
play the VSST of the considered modes in the noise-free (resp.
0 dB) case, in the first (resp. second) row. In the bottom row of
that figure, we display the VSSTs of the demodulated signals
associated with the three modes represented in the second row
(Nf being taken equal to 8N in the ridge detection). Despite the
high noise level, the demodulation performs well.

Now, let us consider how this procedure works in the multi-
component case. We will illustrate this by adopting a signal con-
sisting of the three different modes, displayed in Fig. 4(a). Then
by applying Algorithm 2 to the VSST computed withNf = 8N ,
we obtain the estimates (ψ1 , ψ2 , ψ3), which are subsequently
used to compute three demodulated signals, as follows:

fD,k (t) = f(t)e−i2π (
∫ t

0 ψk (x)dx−ψ0 t) , k = 1, 2, 3. (27)

The VSST of the three signals (fD,k )k=1,2,3 are shown in
Fig. 4(b) to (d), where the SNR in the original signal equals
0 dB. It is worth noting that, in fD,k , only the kth mode is
demodulated.

B. Algorithm for Mode Extraction Based on Demodulation

The previous section has provided us with a means to demod-
ulate any of the modes of the signal f , the number, K, of which
is assumed to be known. With that in mind, the algorithm for
mode extraction can then be summarized as follows:

Algorithm 3
Compute the ridge estimates (ψ1 , · · · , ψK ) with
Algorithm 2 applied to VSST.
for k = 1 to K do

1. Compute fD,k (t) = f(t)e−i2π (
∫ t

0 ψk (x)dx−ψ0 t) .
2. From TVfD , k

, extract the ridge ψD,k corresponding to
mode k of fD,k , by considering single ridge detection in
the frequency range [ψ0 − Δ, ψ0 + Δ].

3. Reconstruct the kth mode of fD,k and then multiply it
by the inverse of demodulation operator to recover
fk : fk (t) ≈ (

∫
|ω−ψD , k (t)|<d TVfD , k

(ω, t)dω)

ei2π (
∫ t

0 ψk (x)dx−ψ0 t) .

Note here that the TF representation used to compute the
ridge of fD,k and then mode k could alternatively be T gf since
the mode sought is demodulated, there is no need to take into
account the modulation at this stage. Indeed, the kth mode of
signal fD,k should be a purely harmonic signal at frequency
ψ0 (see Fig. 4(b) to (d) for illustrations). Furthermore, while
it is important to fix the frequency resolution parameter Nf

according to mode modulation for ridge estimation, to compute
TVfD , k

,Nf = N is used because the mode k, extracted at step 3
of Algorithm 3, is a purely harmonic one.

V. EVALUATION OF THE PERFORMANCE OF THE

RECONSTRUCTION ALGORITHM

Before we assess the reconstruction technique proposed, we
discuss how an optimal window length, (which is crucial in
all TF representations), might be determined. The emphasis is
placed on the difficulty of estimating this window length in a
noisy context.
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Fig. 3. (a) VSST of a linear chirp (noise-free case); (b) VSST of a polynomial chirp (noise-free case); (c) VSST of a mode with sinusoidal phase (noise-free
case); (d) VSST of a linear chirp (noise level 0 dB case); (e) VSST of a polynomial chirp (0 dB case); (f) VSST of a mode with sinusoidal phase (0 dB case);
(g) demodulated signal D; (h) demodulated signal E; (i) demodulated signal F.

Fig. 4. (a) Three modes signal (noise level 0 dB); (b) VSST of fD ,1 ; (c) VSST of fD ,2 ; (d) VSST of fD ,3 .

Fig. 5. (a) Rényi entropy associated with the VSST of Fig. 4(a) (but with no noise) as a function of parameter σ, and with various frequency resolutions;
(b) same as A but with a SNR equal to 5 dB; (c) same as A but with a SNR equal to 0 dB; (d) same as A but with a SNR equal to −5 dB.
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A. Automatic Window Length Determination

To determine an optimal window length, we consider that g

is Gaussian, i.e. g(x) = 1√
2πσ

e−
x 2

2 σ 2 , so that its length is con-
trolled by parameter σ. In our framework, we seek the value of
that parameter leading to the most concentrated representation.
Following [19], [20], this concentration can be measured on the
VSST by means of the Shannon entropy:

HS (σ) = −
Nf /2−1∑
p=0

N−1∑
n=0

|TV g
f ( N

Nf

p
T , tn )|

‖TV g
f ‖1

× log2

( |TV g
f ( N

Nf

p
T , tn )|

‖TV g
f ‖1

)
, (28)

or the Rényi entropy:

HR (σ) =
1

1 − α
log2

⎛
⎝
Nf /2−1∑
p=0

N−1∑
n=0

( |TV g
f ( N

Nf

p
T , tn )|

‖TV g
f ‖1

)α
⎞
⎠,

(29)

whose behaviors are reported to be very similar [19], and in
which ‖TV g

f ‖1 =
∑Nf /2−1

p=0
∑N−1

n=0 |TV g
f ( N

Nf

p
T , tn )|. To deter-

mine σ in this manner is particularly relevant, but only when
the noise level is relatively low. Indeed, looking at Fig. 5(a)
to (c), representing the Rényi entropy (with α equal to 3)
of the VSST of the signal f displayed in Fig. 4(a), one no-
tices that it exhibits a local minimum at a specific value for
σ at noise level lower than 0 dB, and the optimal value is
relatively stable for these cases. Note also that, in such a
case, the result is not dependent on the frequency resolution.
We note here that the Rényi entropy is computed by consid-
ering that the second order reassignment operator reassigns
only the coefficients V g

f (η, t) such that |Re{V g
f (η, t)}| > γ1

or |Im{V g
f (η, t)}| > γ2 , where γ1 (resp. γ2) is the standard de-

viation of Re{V g
f (η, t)} (resp.Im{V g

f (η, t)}). The choice for
such a threshold is motivated by the fact that the STFT of a
zero mean white Gaussian noise is also a zero mean Gaussian
process.

However, the technique based on Rényi entropy to determine
the optimal σ no longer works in a very noisy context, see
Fig. 5(d), in particular because it does not take into account the
number K of modes. Since Algorithm 3 performs better when
the ridge detection is efficient, it is natural to define the optimal
value σ as the one that concentrates the most the information on
the K detected ridges. This could be measured by introducing
the following quantity:

ER (σ) =

∑K
k=1

∑N−1
n=0 |TV g

f (ψk (tn ), tn )|2∑Nf /2−1
p=0

∑N−1
n=0 |TV g

f ( N
Nf

p
T , tn )|2

, (30)

where ER stands for “energy on the ridge”, bearing in mind the
dependence on σ is contained in g. ER actually corresponds to
the proportion of the total energy located on the ridges. We depict
ER (σ) for the same signal as before, for different noise levels,
and for Nf = N in Fig. 6. We notice, first, that the optimal
value is close to that given by the Rényi entropy for noise levels
lower than 0 dB, and that the information located on the ridge
becomes less and less significant as the noise level increases.
What is interesting with this technique is that, in contrast to

Fig. 6. Computation of ER , corresponding to the proportion of the energy
contained in VSST computed on the ridges, with respect to σ, and in either the
noise-free, 5 dB, 0 dB or −5 dB cases.

the Rényi entropy, it offers us a means to find a relevant σ at
noise levels as high as −5 dB. Such a technique will thus be
used to determine the optimal σ in very noisy situations. Finally,
note that similar results can be obtained by considering different
values of Nf .

B. Reconstruction Procedure: Noise-Free Case

In this section, we illustrate the improvement offered by
Algorithm 3 in terms of the quality of the reconstructed modes
in the noise free case to enable the impact of parameter selec-
tion to be considered. Our test signals are displayed in Fig. 7(a)
and 8(a). The window used to build the TF representation is
Gaussian and its length is optimized as explained in the previ-
ous subsection. Then, ridge detection and mode reconstruction
are performed using a small value for γ in the definition of
the reassignment operator (typically γ = 10−3), since in such a
case, all the non zero coefficients are related to the signal.

Since the ridge computation is influenced by the frequency
resolution, we investigate the impact of Nf used in ridge com-
putation on mode reconstruction. Also, to show that to use de-
modulation results in a more compact TF representation than
by the original VSST method, the role of d, used both in re-
construction formula (16) and Algorithm 3, is investigated. To
assess how the ridge detection impacts mode reconstruction, we
also compute the mode reconstruction assuming the IFs of the
modes are known.

We study two types of signals which are depicted in Fig. 7(a)
and 8(a). The results for the first type are depicted in Fig. 7(b)
to (d) and represent the output SNR defined, for mode i, as
20 log10(

‖fi ‖2

‖fi−f̂i ‖2
), where the norm is the l2 norm and f̂i is

the ith mode reconstructed using Algorithm 3, and when the
frequency resolution used in the ridge detection varies (in the
different figures we use the term “demod”). In each case,
we also display the reconstruction results using the true IFs
of the modes in Algorithm 3 (in the figures we use the term
“optimal demod”). We note that, as expected, for Nf = 8N the
results are very close to those obtained assuming knowledge of
the IFs of the modes, as illustrated in Fig. 7(d). We also dis-
play the results obtained by reconstructing the modes directly
using formula (16): whatever the value of d the reconstruction is
better when using Algorithm 3. Also, since the signal studied is
slightly modulated, to choose a sufficiently large Nf for ridge
estimation is crucial. Similar conclusions can be drawn from the
study of the signal whose VSST is displayed in Fig. 8(a): first,
to increase Nf clearly improves the reconstruction results, and,
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Fig. 7. (a) VSST of a two mode signal; (b) mode reconstruction (“rec fi ” corresponds to reconstructed mode fi ) when ridges used in Algorithm 3 computed
with Nf = N , along with the reconstruction when the IFs of the mode are assumed to be known in Algorithm 3 (“optimal demod” in the figure); (c) Same as B,
but when Nf = 4N in the ridge computation; (d) Same as B, but when Nf = 8N in the ridge computation.

Fig. 8. (a) VSST of a two mode signal; (b) mode reconstruction (“rec fi ” corresponds to reconstructed mode fi ) when ridges used in Algorithm 3 are computed
with Nf = N , along with the reconstruction when the IFs of the mode are assumed to be known in Algorithm 3 (“optimal demod” in the figure); (c) Same as B,
but when Nf = 4N in the ridge computation; (d) Same as B, but when Nf = 8N in the ridge computation.

Fig. 9. (a) SNR after reconstruction for mode f1 of the signal whose VSST is depicted in Fig. 7(a) using either the direct reconstruction (direct) or Algorithm 3
(demod), and for d = 0 or d = 5 in both cases; (b) Same as A but for mode f2 of the same signal; (c) SNR after reconstruction for mode f1 of the signal whose
VSST is depicted in Fig. 8(a) using either the direct reconstruction (direct) or Algorithm 3 (demod), and for d = 0 or d = 5 in both cases; of the same signal;
(d) Same as C but for mode f2 of that signal.

then, when Nf = 8N , the results are close to those that would
be obtained if the IFs of the modes were known. Also, we again
remark that the results are far better than direct reconstruction.
In this case however, and since the modes are more modulated
than those of Fig. 7(a), the impact of Nf on ridge computation
and then mode reconstruction is less important.

C. Reconstruction Procedure: Noisy Case

In this section, we investigate the sensitivity to noise of our
new method for mode retrieval, considering again the two types
of signals displayed in Fig. 7(a) and 8(a). From the study of
the noise-free case, ridge computation leads to good reconstruc-
tion when Nf = 8N , so we retain this value in the simulations
that follow. Again we use a Gaussian window with the opti-
mal window length σ computed as before, and with threshold
γ = 10−3 .

Fig. 10. (a) VSST of a bat echolocation call along with the corresponding
ridges, (b) reconstructed signal based on VSST and assuming the number of
modes equals 3.

The results displayed in the first row of Fig. 9, represent the
output SNR associated with mode reconstruction, when d = 0
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Fig. 11. (a) VSST of the first IMF obtained corresponding to signal whose VSST is depicted on Fig. 10 (a); (b) second IMF; (c) third IMF.

or d = 5, respectively for the first and second mode of Fig. 7(a),
with respect to global input SNR. We note the following based
on these observations: whatever the noise level, the mode re-
construction is improved by using Algorithm 3 rather than
direct reconstruction; the discrepancy in terms of reconstruc-
tion performance between the two types of techniques increases
when the noise level is decreasing; the gain of demodulating
first is not that important because VSST is optimized for linear
chirps.

Switching to the study of the signal of Fig. 8(a), the benefit of
using the demodulation procedure is much clearer: when a mode
is very different from a linear chirp, the demodulation procedure
greatly improve the reconstruction results. Finally, we remark
that, as in the noise-free case, the parameter d plays a crucial role
in the quality of the reconstruction, and that by demodulating
first, we obtain a more concentrated representation since, for a
given d, the reconstruction is always better using demodulation
than without.

D. Application to Real Data: VSST Versus EMD and
Limitations

Here we consider the reconstruction of a bat echolocation
signal whose VSST is shown in Fig. 10(a). Assuming the number
of modes is three, which is consistent with the representation
in the aforementioned figure (there is actually a fourth mode
but due to aliasing effect we do not take it into account), we
perform ridge extraction on the VSST (the extracted ridges are
also depicted in the figure) and then compute the different modes
by either using VSST or by demodulating first. In this regard,
we study the influence of parameter d and frequency resolution
on the reconstruction.

Since the signal studied is real, and as Algorithm 3 applies
to complex signal, we first consider the Hilbert transform of the
signal before applying that algorithm. Then, the length of the
signal N not being a power of 2, we use N1 = 2�log2 (N )�+1 ,
and its multiples, to define the different frequency resolutions
subsequently used in the ridge detection. As previously, we in-
vestigate the impact of the frequency resolution used in the ridge
estimation, on signal reconstruction. For this purpose, we com-
pute the output SNR associated with the reconstruction of the
signal by summing the first three modes. The results depicted in
Fig. 10(b), again show the benefit of demodulating first the sig-
nal compared to direct computation, the improvement brought
by using a higher frequency resolution being much less obvious
than in controlled situations such as those studied before. In spite
of this reconstruction results are satisfactory, some information
is lost when considering the reconstructed signal obtained us-

ing only the first three modes. This problem arises because for
real-world signals, such as the bat signal considered here, the
number of modes is not constant over time: i.e. some modes van-
ish but the ridge estimation assumes that the modes will persist
throughout the data record. This is a failing of many methods
and is topic of current research. For comparison purposes we
depict the VSST of the first three intrinsic mode functions (IMF)
obtained with the empirical mode decomposition (EMD) [21],
which is an alternative technique to extract the modes of a multi-
component signal, on Fig. 11(a), (b) and (c). From these figures,
we note that the modes obtained are not related to the TF content
of the signal depicted in Fig. 10(a) since the TF structure based
on modes corresponding to TF ridges is completely broken.

VI. CONCLUSION

In this paper, we have introduced a new algorithm for the
retrieval of the modes of a multicomponent signal from the
study of some time-frequency representations. It is based on
a novel technique for ridge estimation followed by a demod-
ulation procedure. By using an appropriate frequency resolu-
tion, it is possible to compensate for the discretization of the
frequencies induced by the use of FFTs in the computation
of the TF representations, and thus obtained reliable IF esti-
mates. The simulation carried out on test signals show that, by
demodulating the signal first using these IF estimates, the asso-
ciated time-frequency representation is sharpened and that the
accuracy of the reconstruction is much better than when direct
reconstruction is performed, both in noiseless and noisy situa-
tions. Simulations performed on real signals where the number
of modes may vary with time however show the limits of signal
reconstruction based on ridge extraction, and is a challenging
issue we will address in the near future.
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