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Robust Multilinear Tensor Rank Estimation Using
Higher Order Singular Value Decomposition and
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Abstract—Model selection in tensor decomposition is important
for real applications if the rank of the original data tensor is un-
known and the observed tensor is noisy. In the Tucker model, the
minimum description length (MDL) or Bayesian information cri-
teria have been applied to tensors via matrix unfolding, but these
methods are sensitive to noise when the tensors have a multilinear
low rank structure given by the Tucker model. In this study, we
propose new methods for improving the MDL so it is more robust
to noise. The proposed methods are justified theoretically by ana-
lyzing the “multilinear low-rank structure” of tensors. Extensive
experiments including numerical simulations and a real applica-
tion to image denoising are provided to illustrate the advantages of
the proposed methods.

Index Terms—Bayesian information criterion (BIC), higher
order singular value decomposition (HOSVD), minimum
description length (MDL), model selection, multilinear tensor
rank, Tucker decomposition.

I. INTRODUCTION

RANK estimation is an important problem when determin-
ing the appropriate model order from a given data ma-

trix/tensor. We consider the following general model for matrix
rank estimation:

Y = Y 0 + E, (1)

where Y ∈ RI×J is a noisy data matrix, Y 0 ∈ RI×J is a rank-
R latent matrix, and E ∈ RI×J is an additive noise matrix,
the individual entries of which eij are i.i.d. based on a zero-
mean normal distribution with variance σ2 . The objective of
rank estimation is to find the appropriate R from a noisy full
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rank matrix Y . Rank estimation methods have several impor-
tant applications depending on the objectives of the analysis.
For example, the estimated rank may be the number of clusters
in clustering tasks, the number of latent signals in blind source
separations, and the appropriate dimension in dimensionality re-
duction (typically, principal component analysis) [5], [12], [22],
[25], [36]–[38]. In order to solve this problem, many methods
have been studied since the 1970s, such as Akaike’s informa-
tion criterion [1], [35], Bayesian information criterion (BIC)
[30], minimum description length (MDL) [29], [35], general-
ized information criterion [20], the quotient of differences in
additional values (QDA) measure [25], exponential fitting test
[10], [27], Laplace’s method (LAP) [24], cross-validation based
method [4], and a method for simultaneously estimating the
rank and noise level [21].

In this study, we consider how to extend the problem of ma-
trix rank estimation to a “tensor” (multi-way array). In tensors,
a straightforward and natural extension of the matrix rank is the
CANDECOMP/PARAFAC (CP) rank, where the CP rank of a
tensor is defined as the minimum number of rank-one tensors
required to yield its exact CP decomposition [11], [14]. How-
ever, computing the CP rank of a tensor is known to be NP-hard
[13]. The problem of estimating the CP rank of a latent low-rank
tensor from an observed noisy tensor may be very difficult, but
there are several methods for estimating the CP rank from noisy
observations [3], [8], [12], [23], [26].

In the present study, we do not focus on the CP rank, but
instead we consider another type of tensor rank: the multilin-
ear tensor rank. In contrast to the CP rank, which is based
on CP decomposition, the multilinear tensor rank is based on
Tucker decomposition [34]. Tucker decomposition plays impor-
tant roles in tensor data analysis [2], [15]–[18], [33], [39] and it
is described as

X 0 = G ×1 U (1) ×2 U (2) ×3 · · · ×N U (N ) ∈ RI1 ×I2 ×···×IN ,
(2)

where G ∈ RR1 ×R2 ×···×RN is a core tensor, U (n) ∈
RIn ×Rn for n ∈ {1, 2, ..., N} are factor matrices with Rn ≤
In for all n ∈ {1, 2, ..., N}, and ×n denotes the n-th
mode tensor-matrix product: [G ×n U (n) ]r1 ···rn −1 in rn + 1 ···rN

=
∑Rn

rn =1 gr1 ···rn −1 rn rn + 1 ···rN
u

(n)
in rn

. A multilinear tensor rank of
X 0 , which is also referred to as the Tucker rank, can be defined
as

rankn (X 0) := min(Rn ) = rank([X0 ](n)), (3)

1053-587X © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



YOKOTA et al.: ROBUST MULTILINEAR TENSOR RANK ESTIMATION USING HOSVD AND INFORMATION CRITERIA 1197

where [X0 ](n) ∈ RIn ×
∏

k �= n Ik is a matrix that is unfolded from
X 0 with respect to n-th mode and it is referred to as “n-th mode
unfolding matrix” [19]. If the observed tensor is contaminated
by additive noise as: X = X 0 + E , the multilinear tensor ranks
of X and X 0 can be different. Estimating the multilinear tensor
rank of the original tensor X 0 from a noisy tensor X is con-
sidered to be an important and challenging problem for model
selection in tensor data analysis research.

Considering the definition of a multilinear tensor rank in
(3), any matrix rank estimation method can be employed for
multilinear tensor rank estimation via matrix rank estimation
for the n-th mode unfolding matrix X(n) . For example, MDL
[29], [35] can be applied simply as

R̂n = MDL(X(n)), (4)

for each n ∈ {1, 2, ..., N}.
Moreover, several methods specifically for multilinear ten-

sor rank estimation have been proposed such as DIFFIT [32],
TDA-SORTE [40], and MLREST [31]. In [32], all of the N -
tuple (R1 , R2 , ..., RN ) candidates were considered and eval-
uated based on the fitting rate, and an appropriate rank was
selected from these candidates. In the tensor decomposition
toolbox “TDALAB” [40], an estimation strategy is implemented
using the SORTE algorithm [12], which was originally proposed
for CP rank estimation. In TDALAB, the SORTE algorithm is
applied to the n-th mode unfolding matrix X(n) . In another
tensor decomposition toolbox called “Tensorlab” [31], an es-
timation function is available as “mlrankest,” which uses an
L-curve to evaluate the multilinear rank candidates. According
to [31], an L-curve is useful for finding a good point with the
optimal trade-off between accuracy and compression.

Roughly speaking, the number of multilinear tensor rank
combinations is

∏N
n=1 In for N -th order tensors. It is com-

putationally demanding to select one optimal value from all
of these combinations, so DIFFIT and MLREST require a rel-
atively long time to obtain estimates. Cross-validation-based
methods also require a long computational time for their train-
ing and testing procedures. By contrast, matrix-based “mode-
wise” rank estimation methods that use an information criterion
(such as MDL, QDA, and SORTE) are quite convenient and
practical from a computational perspective. However, when we
consider how to apply matrix-based rank estimation methods to
low multilinear rank tensors, the gap between low-rank matrix
and low-rank tensor models causes a weakness in the presence
of noise. The objective of this study is to investigate the differ-
ence between low-rank matrix and low-rank tensor models by
theoretically analyzing the covariance matrices and eigenvalues
for both models. Based on this analysis, we propose two new
multilinear tensor (Tucker) rank estimation methods, which use
the informative part of the core tensor selectively to modify
eigenvalues. The proposed algorithms are robust to noise, but
they are also relatively simple and computationally fast. The
proposed algorithms are justified and compared competitively
in numerical simulations with state-of-the-art methods.

The remainder of this paper is organized as follows. In
Section II, we review a matrix-based rank estimation method

and its direct application to tensors. Section III considers the
difference in the covariance matrices and eigenvalues between
matrix and tensor models. In Sections IV and V, we pro-
pose two methods for robust multilinear tensor rank estima-
tion. In Section VI, we investigate the performance and appli-
cations of our algorithms, as well as comparing them with some
state-of-the-art methods. Finally, we present our conclusions
in Section VII.

II. PRELIMINARIES: APPLYING A MATRIX MODEL TO TENSORS

A. Review of the MDL Method

In this section, we first review a (basic) matrix rank estima-
tion method called MDL. We assume that: (a) a noisy observed
matrix is given by Y = [y1 ,y2 , ...,yJ ] = Y 0 + E ∈ RI×J ,
where the matrix Y 0 is rank R and I ≤ J ; and (b) each ele-
ment in a noise matrix E follows an i.i.d. Gaussian distribution
N(0, σ2) and it is independent of Y 0 .

The eigenvalues of its covariance matrix ΣY provide useful
information about the original rank estimation because it can be
decomposed as

ΣY = ΣY 0 + σ2II ,

=

(
R∑

r=1

λ(0)
r uru

T
r

)

+ σ2II , (5)

where λ
(0)
1 , λ(0)

2 , ..., λ(0)
R are the eigenvalues of ΣY 0 , and ur are

the corresponding eigenvectors. Thus, the eigenvalues of ΣY

can be expressed as

λi =

{
λ

(0)
i + σ2 (1 ≤ i ≤ R)

σ2 (R + 1 ≤ i ≤ I)
. (6)

Plotting the eigenvalues with an ordering of λ1 ≥ λ2 ≥ · · · ≥
λI obtains an “L”-type curve, which allows us to recognize some
threshold between the signal and noise spaces. In practice, when
J is a finite number, the covariance matrix ΣY can be estimated
by the sample covariance matrix SY := 1

J Y Y T → ΣY , and
its eigenvalue decomposition gives the estimators for the eigen-
values λi . Finally, the matrix rank of Y 0 can be estimated by
the MDL (which is equivalent to the BIC) criterion [29], [35]:

R̂ = argmin
r

−2 log

{∏I
i=r+1 λ

1/(I−r)
i

1
I−r

∑I
i=r+1 λi

}J (I−r)

+ r(2I − r) log(J). (7)

The MDL criterion usually works well [22], [29], [35], [36]
when the number of samples J is sufficiently large, even if the
variance σ2 is unknown and the noise level is relatively high.

B. Application of MDL to Tensors

Now, we discuss how to apply the MDL to tensors. In the form
of the n-th mode unfolding, we assume that: (a) the observed
tensor can be decomposed by X(n) = [X0 ](n) + E(n) (n =
1, 2, ..., N ); and (b) each element of a noise matrix E(n) follows
an i.i.d. Gaussian distribution N(0, σ2) and it is independent of
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[X0 ](n) . Based only on the assumptions given above, the MDL
can be applied to tensors, almost directly.

The n-th mode empirical covariance matrix and its eigenval-
ues can be derived by

SX(n ) =
1

∏
n �=k Ik

X(n)X
T
(n) , (8)

Λ(n) = V (n)T SX(n ) V
(n) , (9)

where Λ(n) = diag(λ(n)
1 , λ

(n)
2 , ..., λ

(n)
In

) ∈ RIn ×In is a diago-

nal matrix of eigenvalues in descending ordering and V (n) ∈
RIn ×In is a factor matrix comprising the orthonormal column
eigenvectors of SX(n ) . Using all of the mode factor matrices, a
data tensor X can be decomposed exactly by

X = H ×1 V (1) ×2 V (2) ×3 · · · ×N V (N ) , (10)

where a core tensor is given by H = X ×1 V (1)T ×2 V (2)T ×3
· · · ×N V (N )T . This decomposition (10) is referred to as higher
order singular value decomposition (HOSVD) [9]. The diagonal
matrix Λ(n) of eigenvalues can be expressed as follows:

Λ(n) =
In

∏N
n=1 In

H (n)H
T
(n) . (11)

The n-th mode multilinear tensor rank Rn can be estimated by
using the MDL criterion (7) and the distribution of the n-th
mode eigenvalues Λ(n) .

In a similar manner, most of the matrix-based rank estima-
tion methods can be applied to tensors via n-th mode unfolding.
MDL and other matrix-based methods often work well for ten-
sors, and they are competitive with some methods designed
specifically for tensors when the noise level is sufficiently low.
However, these methods are quite sensitive to strong noise, es-
pecially because this direct approach completely ignores the
multilinear low-rank structure of tensors. In this study, we de-
rive some modified estimators of eigenvalues by considering the
multilinear low-rank structure of tensors and we propose new
robust methods for multilinear tensor rank estimation.

III. MODIFIED EIGENVALUES FOR THE TUCKER MODEL

In this section, we consider a third order tensor to simplify the
notation, but our method can be applied to any order of tensor.

A. Modified Form of Tensor Decomposition

The Tucker decomposition model of a noisy tensor is
given by

X = G ×1 U (1) ×2 U (2) ×3 U (3) + E, (12)

where X ∈ RI1 ×I2 ×I3 is a noisy observed data tensor, E ∈
RI1 ×I2 ×I3 is an additive Gaussian noise tensor, G ∈
RR1 ×R2 ×R3 is a core tensor, and U (n) ∈ RIn ×Rn is an n-th
mode factor matrix of orthonormal columns. It should be noted
that the Tucker decomposition is not unique because we have
G ×1 U (1) ×2 U (2) ×3 U (3) = G ×1 U (1) Q(1)T Q(1) ×2

U (2) Q(2)T Q(2) ×3 U (3) Q(3)T Q(3) = GQ ×1 U
(1)
Q ×2

U
(2)
Q ×3 U

(3)
Q for any orthogonal matrices Q(n) ∈ RRn ×Rn ,

where U
(n)
Q = U (n)Q(n)T is a new orthogonal factor matrix

and GQ = G ×1 Q(1) ×2 Q(2) ×3 Q(3) is a new core tensor.
However, the minimum size of the core tensor (R1 , R2 ,
R3) is unique. The minimum size of the individual modes
of the core tensor (R1 , R2 , R3) is equivalent to the multi-
linear tensor rank. A matrix representation of the Tucker
model obtained via the n-th mode unfolding of (12) is
given by

X(1) = U (1)G(1)(U (3) ⊗ U (2))T + E(1) ∈ RI1 ×I2 I3 , (13)

where ⊗ denotes the Kronecker product. Now, we assume that:
(a) the observed tensor is generated by X = X 0 + E; (b) each
element in E follows an i.i.d. Gaussian distribution N(0, σ2) and
it is independent of X 0 = G ×1 U (1) ×2 U (2) ×3 U (3) ; and (c)
the rows of G(1) are orthogonal, i.e., Λ(1)

0 = 1
R2 R3

G(1)G
T
(1) is

a diagonal matrix. It should be noted that that any core ten-
sor G can be transformed into a core tensor with the prop-
erty in (c) via singular value decomposition, (UG,DG,V G ) =
svd(G(1)), and by modifying the factors as U (1) ← U (1)UG ,
and G(1) ← DGV T

G . We note that assumption (c) does not
impose any special restriction on tensor decomposition and
it is only used to simplify some of the formulations in this
study.

In our approach, we consider a transformation of Eq. (13) by
multiplying the orthogonal matrix (U (3) ⊗ U (2)), as follows:

Y (1) : = X(1)(U (3) ⊗ U (2))

= U (1)G(1) + F (1) ∈ RI1 ×R2 R3 , (14)

where F (1) := E(1)(U (3) ⊗ U (2)). Eq. (14) can be rewritten
in equivalent vectorized form as

y
(1)
i = U (1)g

(1)
i + f

(1)
i for all i ∈ {1, 2, ..., R2R3}, (15)

where Y (1) = [y(1)
1 ,y

(1)
2 , ...,y

(1)
R2 R3

], G(1) = [g(1)
1 , g

(1)
2 , ...,

g
(1)
R2 R3

] ∈ RR1 ×R2 R3 , and F (1) = [f (1)
1 , f

(1)
2 , ...,f

(1)
R2 R3

]. It

should be remarked that (U (3) ⊗ U (2))T is a mapping opera-
tor onto a signal subspace spanned by orthonormal bases with
respect to the second and third modes of the tensor. Thus, we
can see that Eq. (15) is equivalent to the matrix rank estima-
tion problem (1), which is the problem of separating the whole
space into a signal subspace (spanned by basis matrix U (1)) and
a noise subspace (orthogonal complement of the signal space)
with respect to only the first mode of the tensor. E(1) follows
an i.i.d. Gaussian distribution, so the matrix F (1) obtained by
mapping E(1) onto its subspace spanned by orthonormal bases
also follows an i.i.d. Gaussian distribution. Hence, F (1) and
G(1) are assumed to be statistically independent.

B. Modified Eigenvalues

In this section, we analyze the covariance matrices of the
signals in two different forms: (13) and (14). First, the empirical
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covariance matrix for X(1) = [x(1)
1 ,x

(1)
2 , ...,x

(1)
I2 I3

] is given by

SX( 1 ) =
1

I2I3

I2 I3∑

i=1

x
(1)
i x

(1)T
i

=
1

I2I3

(
U (1)G(1)(U (3) ⊗ U (2))T + E(1)

)

·
(
U (1)G(1)(U (3) ⊗ U (2))T + E(1)

)T

=
1

I2I3

(
U (1)G(1)G

T
(1)U

(1)T

+ U (1)G(1)(U (3) ⊗ U (2))T ET
(1)

+ E(1)(U (3) ⊗ U (2))GT
(1)U

(1)T

+ E(1)E
T
(1)

)

→ R2R3

I2I3
U (1)Λ(1)

0 U (1)T + σ2II1 , (16)

where → denotes the convergence in probability based on the
weak law of large numbers. In addition, the covariance matrix
of Y (1) can be expressed as

SY ( 1 ) =
1

R2R3

R2 R3∑

i=1

y
(1)
i y

(1)T
i

=
1

R2R3

(
U (1)G(1) + F (1)

)(
U (1)G(1) + F (1)

)T

=
1

R2R3

(
U (1)G(1)G

T
(1)U

(1)T + U (1)G(1)F
T
(1)

+ F (1)G
T
(1)U

(1)T + F (1)F
T
(1)

)

→ U (1)Λ(1)
0 U (1)T + σ2II1 . (17)

A derivation of 1
R2 R3

F (1)F
T
(1) → σ2II1 was partly provided

by [6], [7]. Let us put ρ := R2 R3
I2 I3

, and considering that I2I3
and R2R3 tend to infinity while keeping the ratio ρ constant,
we obtain the following relationship between both covariance
matrices:

SX( 1 ) 	 ρSY ( 1 ) + (1 − ρ)σ2II1 . (18)

In a strict sense, (18) holds at infinity. Thus, it does not hold
generally in practice, however, it is meaningful to understand
the behavior of mode-eigenvalues of Tucker model, and de-
sign the approach for improvement. It should be noted that
there is a special case of SX( 1 ) = SY ( 1 ) for ρ = 1 and SX( 1 )

is usually more noisy than SY ( 1 ) for ρ < 1. In the case of
R2R3 < I2I3 (i.e., ρ < 1), the dimensions (I2I3 − R2R3) cor-
responds to the noise subspaces. The model (13) includes the
noise subspaces and the model (14) does not. Thus, the MDL
obtained via SX( 1 ) based on the model (13), as introduced
in Section II-B, would be more sensitive to noise than that
based on the model (14) if ρ is small. Therefore, when we ap-
ply MDL to the unfolded and matricized Tucker model with
a small ρ, the model (14) would be better. In general, SY ( 1 )

is unknown but the eigenvalue decomposition of SY ( 1 ) can

be approximated from (18) as SY ( 1 ) 	 1
ρ SX( 1 ) −

1−ρ
ρ σ2II1 =

V (1)( 1
ρ Λ

(1) − 1−ρ
ρ σ2II1 )V

(1)T . Thus, the effect of ρ can be
reduced by using the following modification:

Λ(1)
mod = diag

(
λ

(1)mod
1 , λ

(1)mod
2 , ..., λ

(1)mod
I1

)

=
1
ρ̂
Λ(1) − 1 − ρ̂

ρ̂
σ̂2II1 , (19)

where Λ(1) ∈ RI1 ×I1 is the eigenvalue matrix of SX( 1 ) , σ̂2 is
an estimator of noise variance, and ρ̂ is an estimator of ρ. The
remaining problem comprises how to choose the values of σ̂2

and ρ̂. In Section IV, we discuss an estimation method for σ̂2

and ρ̂ by exploiting the core tensor in HOSVD.

IV. NOISE VARIANCE ESTIMATOR

Next, we discuss how to estimate the noise variance σ̂2 by
considering a Tucker model with noise (12). Since i.i.d. Gaus-
sian noise does not change the eigenvectors of the covariance

matrix, then we have V (n) 	 [U (n) , Ũ
(n)

], where Ũ
(n)

is a set
of basis vectors spanning the orthogonal complement space of
U (n) . A permutation matrix P ∈ RI2 I3 ×I2 I3 exists such that
(U (3) ⊗ U (2))T (V (3) ⊗ V (2))P = [I,0]. Hence, we have

H (1)P = V (1)T X(1)(V (3) ⊗ V (2))P

= V (1)T
{

U (1)G(1)(U (3) ⊗ U (2))T + E(1)

}

· (V (3) ⊗ V (2))P

=
(

G(1) 0
0 0

)

+ E′
(1) =

(
G(1) + E1 E2

E3 E4

)

,

(20)

where E′
(1) := V (1)T E(1)(V (3) ⊗ V (2))P , and E1 ∈

RR1 ×R2 R3 , E2 ∈ RR1 ×(I2 I3 −R2 R3 ) , E3 ∈ R(I1 −R1 )×R2 R3 ,
and E4 ∈ R(I1 −R1 )×(I2 I3 −R2 R3 ) are block matrices of E′

(1) .
We note the orthonormal transform and permutation preserva-
tion properties of i.i.d. Gaussian noise: [E′

(1) ]ij ∼ N(0, σ2).
Let H (1) = [h1 ,h2 , ...,hI1 ]

T , hi for i = 1, ..., R1 correspond
to the block [G(1) + E1 ,E2 ], and hi for i = R1 + 1, ..., I1
correspond to the noise block [E3 ,E4 ]. The relationship
between an estimated core tensor H (1) and a true core tensor
G(1) = [g1 , g2 , ..., gR1

]T can be expressed as

〈hi ,hi〉 ≈ (〈gi , gi〉 + R2R3σ
2) + (I2I3 − R2R3)σ2 , (21)

where 〈gi , gi〉 = 0 for i ∈ {R1 + 1, R1 + 2, ..., I1}. The noise
terms R2R3σ

2 and (I2I3 − R2R3)σ2 have different interpreta-
tions. The former noise term corresponds to F (1) in Eq. (14)
and it is the same noise level in the low rank matrix model. By
contrast, the latter noise term is removed in Eq. (14) and it ap-
pears only in the multilinear low-rank tensor model. The noise in
Eq. (18) also corresponds to the latter noise (I2I3 − R2R3)σ2 ,
so we focus on the latter noise term (I2I3 − R2R3)σ2 to es-
timate σ2 . Note that the noise term (I2I3 − R2R3)σ2 corre-
sponds to E2 and E4 . The permutation matrix can be split into
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Fig. 1. Visual illustrations of the computation of λ(1)
i , σ̂2 , and λ(1)sp

i . (a) The eigenvalues λ(1)
i for i ∈ {1, 2, ..., I1} are computed by the MDL-based matrix

rank estimation methods using the whole unfolding matrix H(1) of the HOSVD core tensor, as described in (11). Using the permutation matrix P = [PG , PE ],
(b) the noise variance estimator σ̂2 is computed by the modified eigenvalues estimator for Tucker rank determination (MEET) method using the selected columns

H(1)PE of H(1) , and (c) the modified eigenvalues λ(1)sp
i for i ∈ {1, 2, ..., I1} are computed by the SCORE method using the selected columns H(1)PG of

H(1) .

two matrices: P = [P G,P E ], where P G ∈ RI2 I3 ×R2 R3 , and
P E ∈ RI2 I3 ×(I2 I3 −R2 R3 ) ; hence from (20), we have

σ2 ≈ 1
I1(I2I3 − R2R3)

{
tr(E2E

T
2 ) + tr(E4E

T
4 )

}

=
1

I1(I2I3 − R2R3)
tr(H (1)P E P T

E HT
(1))

=
1

I1(I2I3 − R2R3)

I2 I3∑

k=R2 R3 +1

(μT P )k , (22)

where μk := (HT
(1)H (1))kk for k ∈ {1, 2, ..., I2I3}. R2R3 =

ρI2I3 , so the problem can be converted into estimating P
and ρ.

We have

(μT P )k ≈
{∑R1

i=1[G(1) ]2ik + I1σ
2 k ≤ R2R3

I1σ
2 otherwise

, (23)

and thus the latent factor entries are approximately larger than
the noise factor entries in μ. Therefore, we propose that P can be
obtained by sorting μ. The sorting procedure for μ in descending
order outputs the sorted array ν, where ν1 ≥ ν2 ≥ · · · ≥ νI2 I3 ,
and μT P̂ = νT . Finally, we can estimate ρ and σ2 by applying
the following criterion:

σ̂2 =
1

I1I2I3(1 − ρ̂)

I2 I3∑

k= ρ̂I2 I3 +1

νk , (24)

ρ̂ = argmin
ρ

{
ρ ∈ Sρ

∣
∣
∣ λ

(1)mod
I1

> 0
}

, (25)

where Sρ is a set of candidates for ρ with 0 < ρ < 1. Figure 1(b)
shows a visual illustration of the computation of the noise vari-
ance estimator σ̂2 . The parameter ρ̂ indicates how the whole
matrix H (1)P is divided into left-hand side and right-hand side
matrices. The noise variance estimator σ̂2 is computed based on
the average of the squares for all entries in the right-hand side

matrix. According to (19), the modified eigenvalues could be
negative when the noise variance estimator is excessively large.
λ

(1)mod
I1

is the minimum of the modified eigenvalues, so we con-
strain it to being positive in (25). By substituting (24) into (19),
the condition that λ

(1)mod
I1

> 0 can be transformed into

λ
(1)mod
I1

=
1
ρ̂
λ

(1)
I1

− 1
ρ̂I1I2I3

I2 I3∑

k= ρ̂I2 I3 +1

νk > 0,

⇐⇒ I1I2I3λ
(1)
I1

>

I2 I3∑

k= ρ̂I2 I3 +1

νk . (26)

(25) can be solved easily by line-search because
∑I2 I3

k= ρ̂I2 I3 +1 νk

increases monotonically as ρ̂ decreases.
Finally, the rank is estimated by the MDL:

argmin
r

− 2 log

{∏In

i=r+1(λ
(n)mod
i )1/(In −r)

1
In −r

∑In

i=r+1 λ
(n)mod
i

}ρ̂In̄ (In −r)

+ r(2In − r) log(ρ̂In̄ ), (27)

where In̄ =
∏

k �=n Ik .
We summarize the generalized procedure of the proposed

method in Algorithm 1 for any N ≥ 3. We refer to the proposed
method as MEET.

V. SCORE ALGORITHM

In the previous section, we proposed an improved method
for modified eigenvalue estimation given by Eq. (19). The pro-
posed modified eigenvalue estimator is based on the selective
estimation of the noise level using P̂ E . In this section, we con-
sider another efficient approach for reconstructing eigenvalues
from H (n) using P̂ G , as follows:

λ
(1)sp
i ← 1

ρ̂I2I3

(
H (1)P̂ G P̂

T

GHT
(1)

)
ii
, (28)
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Algorithm 1: Modified eigenvalues estimator for Tucker
rank determination (MEET).

1: input: X ∈ RI1 ×I2 ×···×IN

2: Ī =
∏N

n=1 In ;
3: In̄ =

∏
k �=n Ik for n ∈ {1, 2, ..., N};

4: for n = 1, 2, ..., N do
5: V (n) ← a set of all eigenvectors of I−1

n̄ X(n)X
T
(n) ;

6: end for
7: H = X ×1 V (1)T ×2 V (2)T ×3 · · · ×N V (N )T ;
8: for n = 1, 2, ..., N do
9: λ

(n)
i ← 1

In̄
(H (n)H

T
(n))ii for i ∈ {1, 2, ..., In};

10: μj ← (HT
(n)H (n))jj for j ∈ {1, 2, ..., In̄};

11: ν ← sorted array of μ in descending order;

12: ρ̂ ← argminρ

{
ρ ∈ Sρ

∣
∣
∣ λ

(n)mod
In

> 0
}

;

13: σ̂2 = 1
Ī (1−ρ̂)

∑In̄

k= ρ̂In̄ +1 νk ;

14: λ
(n)mod
i ← 1

ρ̂ λ
(n)
i − (1−ρ̂)

ρ̂ σ̂2 for i ∈ {1, 2, ..., In};

15: Estimate Rn via the MDL criterion with λ
(n)mod
i ;

16: end for
17: output: (R1 , R2 , ..., RN )

for i ∈ {1, 2, ..., In}, where P̂ G ∈ RI2 I3 ×ρ̂I2 I3 and λsp
1 ≥ λsp

2
≥ · · · ≥ λsp

In
. Figure 1(c) shows a visual illustration of the com-

putation of λ
(1)sp
i . The use of several columns in the unfolding

matrix H (1) of the core tensor can be regarded as an approxima-
tion of Tucker decomposition by HOSVD with a block-sparse
core tensor. Thus, we refer to the proposed method as “SCORE”
(sparse core). We note that the permutation matrix P̂ plays a
key role for both the MEET and SCORE algorithms (e.g., see
Eqs. (23), (24), (25), and (28)). In contrast to MEET, the SCORE
estimator is always positive for any ρ̂ > 0. The SCORE algo-
rithm is simply developed by replacing λ

(1)mod
i by λ

(1)sp
i in

Algorithm 1. In contrast to MEET, SCORE does not need to
estimate the unknown noise variance σ2 and the ratio parameter
ρ̂ can be chosen from a wider range of 0 < ρ̂ < 1. Empirically,
the SCORE algorithm is quite robust to high noise by choos-
ing a smaller value of ρ̂ and thus ρ̂ is typically in the range of
0.0001–0.01. In Section VI-A3, we discuss the relationship be-
tween ρ̂ and the noise level based on extensive experiments. We
demonstrate that a sufficiently small value of ρ̂ provides very
good performance with almost any noise level. The SCORE
algorithm for general N ≥ 3 is summarized in Algorithm 2.

VI. EXPERIMENTAL RESULTS

A. Synthetic Simulations

First, we generated a data tensor for the Tucker model
(12) with using several different settings of (I1 , I2 , I3) and
(R1 , R2 , R3). All of the elements of G ∈ RR1 ×R2 ×R3 and
U (n) ∈ RIn ×Rn were generated according to a normal distri-
bution. The noise tensor E ∈ RI1 ×I2 ×I3 was generated based
on a normal distribution with a mean of zero and variance
of σ2 . A noise-free tensor was given by X 0 = G ×1 U (1) ×2
U (2) ×3 U (3) , and a noisy tensor by X = X 0 + E . We

Algorithm 2: SCORE algorithm.

1: input: X ∈ RI1 ×I2 ×···×IN , and ρ̂ (typically,
0.0001-0.01);

2: Ī =
∏N

n=1 In ;
3: In̄ =

∏
k �=n Ik for n ∈ {1, 2, ..., N};

4: for n = 1, 2, ..., N do
5: V (n) ← a set of all eigenvectors of I−1

n̄ X(n)X
T
(n) ;

6: end for
7: H = X ×1 V (1)T ×2 V (2)T ×3 · · · ×N V (N )T ;
8: for n = 1, 2, ..., N do
9: μj ← (HT

(n)H (n))jj for j ∈ {1, 2, ..., In̄};

10: Obtain the permutation matrix P̂ = [P̂ G, P̂ E ] by
sorting μ in descending order;

11: λ
(n)sp
i ← 1

ρ̂In̄
(H (n)P̂ G P̂

T

GHT
(n))ii for

i ∈ {1, 2, ..., In};
12: Sort λ

(n)sp
i to satisfy λ

(n)sp
1 ≥ λ

(n)sp
2 ≥ · · · ≥ λ

(n)sp
In

;

13: Estimate Rn via the MDL criterion with λ
(n)sp
i ;

14: end for
15: output: (R1 , R2 , ..., RN )

TABLE I
ESTIMATORS OF ρ AND σ

calculated the noise level as the signal-to-noise ratio (SNR). The
HOSVDs for X 0 and X were given by X 0 = H0 ×1 V

(1)
0 ×2

V
(2)
0 ×3 V

(3)
0 , and X = H ×1 V (1) ×2 V (2) ×3 V (3) . Each

entry of E follows an i.i.d. normal distribution, so V
(n)
0 and

V (n) are theoretically equivalent. We considered H0 and H
as the true and observed core tensors, respectively. We note
that H0 does not contain any corresponding noise compo-
nents. According to Eq. (17), the true eigenvalues can be simu-
lated by (λideal)i = 1

R2 R3
([H0 ](1) [H0 ]T(1))ii + σ2 . In addition,

the eigenvalues of the observed data X(1) were calculated by
(λobs)i = 1

I2 I3
(H (1)H

T
(1))ii .

1) Evaluations of the Estimates of ρ and σ: For the
first simulation, we evaluated the accuracy of the esti-
mators of ρ and σ2 by Eqs. (25) and (24). We fixed
I1 = I2 = I3 = 100 and varied the ranks (R1 , R2 , R3) in
{(20, 20, 20), (50, 50, 50), (70, 70, 70)}, which corresponded to
variations of ρ ∈ {0.04, 0.25, 0.49}. The noise variance was also
changed based on the SNR. Table I shows the results obtained
for the estimators of ρ and σ. We can see that ρ̂ estimators were
not very accurate, whereas the σ̂ estimators were accurate.

The robustness of the estimated noise variance is explained
based on Figure 1(b). We note that the accuracy of the
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Fig. 2. Eigenvalues and MDL curves of the ideal, observed, MEET, and
SCORE estimators with the noisy Tucker model (SNR = –10.7 dB) obtained
using the true values for ρ̂ = ρ = 0.04 and σ = 0.3. The true rank is 20.

Fig. 3. Eigenvalues and MDL curves of the ideal, observed, MEET, and
SCORE estimators with the noisy Tucker model (SNR = –10.7 dB) obtained
using the estimators ρ̂ = 0.15 and σ̂ = 0.29. The true rank is 20, ρ = 0.04,
and σ = 0.3.

estimation of σ̂2 depends on the number of entries and the pro-
portion of entries corresponding to noise in the matrix H (1)P E .
When ρ̂ < ρ, the proportion of noise entries decreases but the
number of total entries in H (1)P E increases. When ρ̂ > ρ, the
proportion of noise entries is 100% but the total number of
entries in H (1)P E decreases. Thus, the accuracy of σ̂2 is rela-
tively robust with respect to the estimation error in ρ̂. Precisely
estimating ρ̂ as the ratio (R2R3/I2I3) is considered to be as
difficult as rank estimation.

2) Evaluations of the Estimated Eigenvalues and Multilin-
ear Ranks: In this experiment, the sizes of the data tensor and
core tensor were set at I1 = I2 = I3 = 100, and R1 = R2 =
R3 = 20, respectively, and we applied the MDL, MEET, and
SCORE algorithms with two different values of ρ̂. Figure 2
shows the results for the eigenvalue estimators and the MDL
curves for MEET and SCORE obtained using the true ρ and σ.
When ρ̂ = ρ, the eigenvalues estimated by SCORE were quite
similar to the ground truth. Using the MEET algorithm, the es-
timated eigenvalues were accurate for the first to 20th values,
but not accurate for the 21st to 100th and they included nega-
tive values. Thus, the MDL curve obtained by SCORE matched
well with the ground truth, whereas the MDL curve obtained
by MEET was not suitable because of the negative eigenvalues.
Figure 3 shows the results for the eigenvalue estimators and the
MDL curves for MEET and SCORE with the values of ρ̂ and σ̂

Fig. 4. Accuracy of multilinear rank estimation for various noise levels σ and
the parameter ρ̂. The true ratio ρ is 0.04. (a) MDL. (b) MEET. (c) SCORE.

estimated by Eqs. (25) and (24). The eigenvalues were not esti-
mated accurately, but the ranks selected from the MDL curves
obtained by MEET and SCORE were much more accurate than
those produced by standard MDL.

3) Evaluation of the Robustness for σ and ρ̂: In this simu-
lation, we evaluated the accuracy of multilinear rank estimation
using various settings for the noise level σ. The basic settings
were the same as those used in the experiment above: In = 100,
Rn = 20 for n ∈ {1, 2, 3}, etc. The rank estimation accuracy is
defined by

α(R̂1 , R̂2 , ..., R̂N ) := 1 −
∑N

n=1 min(ΔRn, |Rn − R̂n |)
∑N

n=1 ΔRn

,

(29)

where ΔRn = min(In − Rn,Rn − 1). Obviously, α(R̂1 , R̂2 ,

..., R̂N ) = 1 if Rn = R̂n for n ∈ {1, 2, ..., N}, and thus we
have 0 ≤ α ≤ 1.

We tested the rank estimation performance of the MDL,
MEET, and SCORE algorithms using various values of ρ̂.
Figure 4 shows the rank estimation accuracy with various
values of σ and ρ̂ for each method. MDL failed to estimate
the multilinear ranks for larger values of σ, regardless of ρ̂.
MEET performed very well for small values of ρ̂, but it could
not obtain good results for ρ̂ smaller than a threshold due to the
negative eigenvalues. SCORE performed very well for smaller
values of ρ̂. Furthermore, SCORE usually performed very well
with smaller values of ρ̂ regardless of the noise level. These re-
sult suggest that the precise selection of ρ̂ is not important for the
SCORE algorithm if we choose a sufficiently small value for ρ̂.
In addition, accurate estimation of the noise variance might not
be necessary for the rank estimation problem. Essentially, the
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TABLE II
AVERAGE COMPUTATIONAL TIME REQUIREMENTS

rank estimation problem may be related to the behavior as the
eigenvalue changes rather than the exact values. The problem
is that the behavior of the eigenvalue changes was often de-
formed by noise and the multilinear low-rank structure. Thus,
the SCORE algorithm can be interpreted as a type of restoration
for the behavior of the eigenvalue changes.

4) Comparison of the Proposed Algorithm with State-of-the-
art Methods: In these simulations, we compared the proposed
SCORE algorithm with existing state-of-the-art methods: DIF-
FIT [32], MLREST [31], TDA-SORTE [40], BIC/MDL [29],
[30], [35], QDA [25], and LAP [24]. To evaluate the perfor-
mance of these methods, we calculated the accuracy (29) by
changing the noise variance σ2 over a very wide range. The
basic settings were the same as those used in the experiments
described above. DIFFIT and MLREST can be regarded as
tensor-based methods because these methods evaluate each
combination of multilinear ranks (R1 , R2 , ..., RN ) as one unit.
By contrast, SORTE, QDA, MDL, LAP, and SCORE are matrix-
based methods because these methods estimate each Rn in-
dependently. In computational terms, matrix based methods
are more practical because the number of all combinations
of multilinear ranks (R1 , R2 , ..., RN ) increases exponentially
with N . In this set of experiments, we set ρ̂ = 0.001 for the
SCORE algorithm.

We compared three sets of tensor and core tensor sizes:
(I1 = I2 = I3 = 100, R1 = R2 = R3 = 20), (I1 = I2 = I3 =
100, R1 = R2 = 5, R3 = 25), and (I1 = I2 = 20, I3 = 500,
R1 = R2 = 10, R3 = 50). Furthermore, we varied the noise
variance σ2 based on the SNR. We evaluated the computational
time and estimated accuracy of rank based on the average and
standard deviation over 10 trials. A noisy tensor was generated
randomly for each trial.

Table II shows the average computational times for 10 tri-
als in the first setting (i.e., I1 = I2 = I3 = 100 and R1 = R2 =
R3 = 20). The matrix-based methods were obviously faster than
the tensor-based methods. Figure 5 shows the results in terms
of accuracy for all of the methods, where the lengths of the
bars denote the average accuracy and the error bars represent
the standard deviation of accuracy. We can see that MLREST
and DIFFIT worked well only for very small noise levels, but
SORTE and QDA had low accuracy for high noise levels. LAP
and SCORE were quite robust with high noise levels. In particu-
lar, the SCORE algorithm outperformed all of the other methods
for almost any noise level.

B. Real-world Application: Image Denoising

In this experiment, we applied the proposed multilinear tensor
rank estimation method to a denoising problem as an illustrative
example. The denoising scheme based on HOSVD was proposed
by [28], so we refer to this method as the “HOSVD denoiser”

Fig. 5. Comparison of the proposed algorithm with other state-of-the-art
methods.

and the concept is illustrated in Figure 6. The HOSVD denoiser
is regarded as a patch-based image processing method. In this al-
gorithm, we selected a patch image, (p, p)-matrix, as a reference
patch from the noisy image and we then found K similar patches
in the peripheral regions. A (p, p,K)-tensor Z ∈ Rp×p×K was
constructed using the K similar patches and we factorized this
tensor with the HOSVD: Z = H ×1 V (1) ×2 V (2) ×3 V (3) ,
where H ∈ Rp×p×K , V (1) ∈ Rp×p , V (2) ∈ Rp×p , and V (3) ∈
RK×K . Using hard thresholding [28], we obtained a modified
core tensor by

Ĥ(i, j, k) ←
{

H(i, j, k) H(i, j, k) > τ
0 otherwise

, (30)

where τ = σ̂
√

2 log p2K. Hence, Ẑ was reconstructed by
Ĥ ×1 V (1) ×2 V (2) ×3 V (3) , and the denoised patches are re-
turned to their original positions. We repeated these procedures
for all of the reference patches and the overlapping pixels were
filled based on their average. A key procedure in HOSVD de-
noising is hard thresholding of the core tensor, where its thresh-
old τ depends on the noise variance parameter σ̂. The noise
variance parameter σ̂ is considered to be a known parameter in
[28], whereas we note that it is an unknown parameter in prac-
tical applications. The estimation of σ̂ is a challenging problem
for the HOSVD.

Next, we propose an alternative HOSVD denoising method.
We estimate the ranks (R1 , R2 , R3) using SCORE and recon-
struct a patch tensor Ẑ with the truncated HOSVD model:
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Fig. 6. Scheme for HOSVD denoising: (a) to estimate the multilinear rank by SCORE and to reconstruct patches using the truncated HOSVD; and (b) to remove
some entries of the core tensor by hard thresholding (HT) and to reconstruct patches by HOSVD.

Fig. 7. Selected images in denoising experiments.

Ẑ = G ×1 U (1) × U (2) × U (3) , where G ∈ RR1 ×R2 ×R3 ,
U (1) ∈ Rp×R1 , U (2) ∈ Rp×R2 , and U (3) ∈ RK×R3 . Core
tensor is given by G(i, j, k) = H(i, j, k) for i ∈ {1, 2, ..., R1},
j ∈ {1, 2, ..., R2}, and k ∈ {1, 2, ..., R3}. The factor matrices
U (1) , U (2) , and U (3) are given as the left R1 , R2 , and R3
column vectors of V (1) , V (2) , and V (3) , respectively. We refer
to this method as the “SCORE denoiser”. During the denoising
of image data, overestimating the rank still provides noisy
signals (Fig. 7(g)) and underestimating the rank yields distorted
signals (Fig. 7(f)). Thus, the appropriate rank estimation is
required in its denoising task.

In fact, both hard thresholding with HOSVD and low rank
approximation via SCORE produce sparse core tensors. How-
ever, the SCORE denoiser performs slice-wise thresholding in

contrast to the element-wise thresholding with the HOSVD de-
noiser. Thus, the low rank approximation in the SCORE denoiser
can be interpreted as the hard thresholding of “factor matrices.”

In this set of experiments, we used gray-scale images of
“Lena” (512 × 512), “Mandrill” (512 × 512), and “Peppers”
(256 × 256) for comparison, which were corrupted by additive
Gaussian noise with σ ∈ {20, 40, 60}. The general parameters
were set as p = 8 and K = 30, where the correct value of σ̂
was used for the HOSVD denoiser and ρ̂ = 0.01 was used for
the SCORE denoiser. Table III shows the peak SNR (PSNR)
results and structural similarity (SSIM) measures for the im-
ages denoised by the HOSVD, MDL, and SCORE denoisers,
where the MDL denoiser used the low-rank HOSVD with rank
estimation by MDL. The performance of the SCORE denoiser
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TABLE III
RESULTS OBTAINED AFTER DENOISING “LENA” USING THREE METHODS

Fig. 8. Comparison of the HOSVD denoising and SCORE denoising perfor-
mance with various values for the parameters σ̂ and ρ̂. The true noise variance
was σ = 40. (a) HOSVD denoiser with various values of σ̂. (b) SCORE denoiser
with various values of ρ̂.

was very similar to that of the HOSVD denoiser for all im-
ages and noise levels although the correct σ̂ (which is unknown
in practice) was used for the HOSVD denoiser. This suggests
that the rank estimation obtained by SCORE was accurate and
suitable for a wide range of images and noise levels. Figure 7
shows a noisy image obtained with σ = 40 as well as the results
obtained by the HOSVD denoiser with incorrect and correct
values of σ̂, the MDL denoiser, and the SCORE denoiser with
ρ̂ = 0.01. We can see that the results obtained by the HOSVD
denoiser with incorrect σ̂ were still quite noisy, the results pro-
duced by the MDL denoiser were blurred, but the results were
very clear using the HOSVD denoiser with the correct σ̂ and the
SCORE denoiser. Figure 8 shows the PSNR and SSIM results
obtained by the HOSVD and SCORE denoisers for various val-
ues of σ̂ and ρ̂. The HOSVD denoiser was quite sensitive to the
hyper-parameter σ̂, but SCORE denoiser was quite robust to the
parameter ρ̂. Therefore, the SCORE denoiser is more suitable
in practice, especially when σ̂ is unknown.

VII. CONCLUSION

Multilinear tensor rank estimation is an important problem
that affects the practical applications of tensor decomposition
techniques. In this study, we greatly improved the performance
of matrix-based multilinear tensor rank estimation methods for
large noise by considering the multilinear low-rank structure
of tensors from both theoretical and practical perspectives. We
demonstrated the robustness of the SCORE algorithm in terms
of the noise level based on extensive experiments. As a real-
world application, we considered a denoising problem in this
study, but the SCORE algorithm can also be applied to a wide
range of applications such as multi-way blind source separation,
dimensionality reduction, and the clustering of low-rank tensor
data. The extension or improvement of the proposed methods to
CP rank selection or other information theoretic criteria can be
investigated in future research.
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