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Abstract—We present a sampling theory for a class of binary im-
ages with finite rate of innovation (FRI). Every image in our model
is the restriction of 1{p≤0} to the image plane, where 1 denotes the
indicator function and p is some real bivariate polynomial. This
particularly means that the boundaries in the image form a subset
of an algebraic curve with the implicit polynomial p. We show that
the image parameters—i.e., the polynomial coefficients’satisfy a
set of linear annihilation equations with the coefficients being the
image moments. The inherent sensitivity of the moments to noise
makes the reconstruction process numerically unstable and nar-
rows the choice of the sampling kernels to polynomial reproducing
kernels. As a remedy to these problems, we replace conventional
moments with more stable generalized moments that are adjusted
to the given sampling kernel. The benefits are threefold: 1) it re-
laxes the requirements on the sampling kernels; 2) produces an-
nihilation equations that are robust at numerical precision; and
3) extends the results to images with unbounded boundaries. We
further reduce the sensitivity of the reconstruction process to noise
by taking into account the sign of the polynomial at certain points,
and sequentially enforcing measurement consistency. We consider
various numerical experiments to demonstrate the performance of
our algorithm in reconstructing binary images, including low to
moderate noise levels and a range of realistic sampling kernels.

Index Terms—Algebraic curves, generalized moments, image
sampling, signals with finite rate of innovation (FRI).

I. INTRODUCTION

IN today’s digital world, sampling is a key block of any
signal acquisition device: the device senses and stores ana-

log signals at certain points and uses the samples later for the
representation of the analog signal (possibly after some post-
processing). The main concern here is whether and how the
collected samples provide a fair representation of the original
signal. Hence, as a first step in the design of acquisition de-
vices, we should develop suitable sampling and reconstruction
techniques for the target class of signals.

The classical Shannon sampling theory and its variations
present sampling strategies for bandlimited signals and more
generally the class of signals living in a shift-invariant space
[1]–[4]. Still many crucial signals stay out of reach of this class.
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Among them are signals which can be described with a finite
number of parameters, hence called signals with finite rate of
innovation (FRI). In [5], a study of one-dimensional (1D) FRI
signals was presented. This work then evolved to include more
general FRI signals such as piecewise polynomials [5], [6],
streams of Diracs [5]–[7] and piecewise sinusoids [8].

Extension of sampling schemes to images is an essential but
challenging problem. Because of the sharp intensity transitions
along edges, images are non-bandlimited. Also, the diverse ge-
ometry of the edges in typical images excludes them from the
known shift-invariant spaces. Some preliminary efforts to gener-
alize the FRI framework to images led to the sampling schemes
with adequate sampling kernels for step-edge images and poly-
gons [9]–[11]. In a recent work, an FRI-based sampling scheme
is presented for images with more versatile edge geometries
[12]. The curves in this model are zero level sets of a mask
function that is a linear combination of a finite number of two-
dimensional (2D) exponentials. The curve parameters are shown
to satisfy an annihilation system of equations which could be
solved directly, or more robustly as a minimization problem.

The curve model introduced in [12] is novel and further inves-
tigation is needed to reveal its descriptive power—i.e., the range
of shape geometries and the number of free parameters required
for generating a given shape in the range. On the other hand, a
rich parametric model for 2D curves already exists in the litera-
ture: algebraic curves [13]–[15]. An algebraic curve is the zero
level set of a bivariate polynomial of a finite degree. Algebraic
curves can be decomposed into a finite number of smooth arcs.
Nevertheless, they are dense, in the Hausdorff metric, among all
smooth curves. Hence, every curve can be approximated by a
sequence of algebraic curves arbitrarily closely [16]. This char-
acteristic makes them an excellent candidate in modeling the
general image boundaries.

We call a subset of the 2D plane with an algebraic boundary
curve an algebraic domain and the restriction of it to the image
plane an algebraic shape. According to a classical result [17],
an algebraic domain of degree n can be uniquely determined
from its set of 2D moments of order less than or equal to n. But
as stated in [18], “there has been so far no constructive way of
passing from the given moments to the unique algebraic domain,
or equivalently to the defining polynomial”. In [18] and [19], the
authors present an algorithm for the reconstruction of a subset of
bounded algebraic domains—called quadrature domains—from
their moments. But, moments are inherently very sensitive to
noise and consequently, the suggested algorithm (as noted by the
authors) suffers from severe numerical instabilities. Recovery
of general bounded algebraic domains from their moments has
been recently addressed in [20], where the use of roughly 8
times more 2D moments is proposed to improve the sensitivity
of the recovery towards additive noise in the moments.
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Moments have been used as the standard descriptors of 2D
shapes in [21]–[23]. Also, there are some works on the exact
calculation of moments of the shapes with parametric bound-
ary curves in terms of the curve parameters, through nonlinear
equations. Examples are [24] for polygonal shapes and [25] for
shapes with wavelet and spline curves.

A. Contribution

In this paper, we propose sampling and reconstruction tech-
niques for algebraic shapes. We first derive a set of linear anni-
hilation equations for the shape parameters with the coefficients
being factors of 2D moments of the image. We prove that any so-
lution of these equations will lead to a polynomial that vanishes
on the boundaries of the original shape. By employing sam-
pling kernels that reproduce polynomials like the well-known
B-splines [26], we are able to calculate the shape moments from
the samples.

A major difference of our work with [20] is in the nature of
the available data. The focus of [20] is on extracting the alge-
braic curve from the 2D moments; hence, direct access to the
moments is a given. In our problem, however, we need to ap-
proximate the moments based on the available noisy samples
(pixels). We shall show that the process of converting samples
into the conventional moments is very sensitive to noise and
the reason is that noise in the image or the samples is boosted
by polynomial factors before it contaminates the moments. To
overcome this difficulty, we replace moments with some gener-
alized moments that are still reproducible from the samples but
do not amplify the noise. This is achieved by multiplying the
monomials in the conventional moments with a function that
is adjusted to the sampling kernel and decays at the image bor-
ders. The advantages are threefold: we get more stable moments
that can be reproduced by a wider range of sampling kernels.
Furthermore, we can extend our model to algebraic shapes with
unbounded boundaries.

In any sampling problem, consistency of the reconstruction
with noiseless samples is a crucial constraint [27]–[29]. It is
also proved to be a strong tool for recovering binary images
in the absence of a parametric model [30]. In this paper, we
further improve the stability of our reconstruction by enforcing
measurement (or sample) consistency to the recovered algebraic
shape. This results in a reconstruction algorithm that is robust
to moderate noise levels in the samples.

B. Organization of the Paper

The paper is organized as follows. In Section II, we first
define the image model and study algebraic curves in details.
Then, we explicitly define the sampling problem. We derive the
annihilation equations for the shape parameters in Section III
and present a perfect reconstruction algorithm for the noiseless
scenario. In Section IV, we develop a stable reconstruction algo-
rithm. For this purpose, we introduce the notion of generalized
moments and present an algorithm for generating the adequate
generalized moments corresponding to the given sampling ker-
nel. Also, we prove that any solution of the annihilation equa-
tions formed from (generalized) moments generates the original
shape boundaries. We present some experimental results with
different curves in the noiseless and noisy scenarios in Section V
and conclude in Section VI.

Fig. 1. Algebraic domains of degree 4.

II. SAMPLING OF ALGEBRAIC SHAPES

A. Image Model

Consider a bivariate polynomial of degree n with real coeffi-
cients ai,j

p(x, y) =
∑

0≤i,j,i+j≤n

ai,j x
iyj . (1)

The set of points {(x, y) ∈ R2 : p(x, y) ≤ 0} defines an al-
gebraic domain. The boundary of this domain, defined by the
zero level set of p, is an algebraic curve of degree n,

C = {(x, y) ∈ R2 : p(x, y) = 0}.
Let Ω denote a closed domain in R2 modeling the image

plane. Without loss of generality, we take Ω = [−L,L]2 for
some L ∈ Z+ . We define an algebraic shape in Ω as the binary
image

I(x, y) = 1{(p(x,y )≤0}, (x, y) ∈ Ω, (2)

where 1 denotes the indicator function. This means that the
edges of I are contained in the algebraic curve C.

An algebraic shape of degree n is specified with
(
n+2

2

)
pa-

rameters (the coefficients in (1)). In developing the annihilation
equations of Section III, we assume that the algebraic shapes
have closed boundaries. This restricts the polynomial degree to
the even integers. We later remove this assumption by introduc-
ing generalized moments in Section IV.

Typical examples of algebraic domains of degree 2 are circles
and ellipses. Fig. 1 displays two algebraic domains of degree
4. We see in this figure that an algebraic domain of degree 4
can have four disconnected components. The following remark
asserts that this is an upper bound.

Remark 1 [31]: An algebraic domain of degree n cannot
have more than n disconnected closed components.

This remark is a consequence of Bezout’s theorem [13]. We
will also make use of this theorem in Section IV to prove our
result.

Theorem 1 (Bezout): Two algebraic curves of degree n and
m that do not share a common component intersect in at most
mn points.

Bezout’s theorem also provides us a handy tool to roughly
estimate the degree of an algebraic shape. Consider a shape
image I with boundary C. C should have a degree of at least n
if it intersects a line (a first-degree polynomial) at n points or if
it intersects an ellipse (a polynomial of degree 2) at 2n points.
This is illustrated with an example in Fig. 2.
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Fig. 2. An algebraic shape of degree at least 4.

Fig. 3. In a typical sampling scenario, the image goes through convolution
with a 2D kernel and spacial sampling to generate the measurements.

Algebraic curves have been studied and applied to data fitting
in computer vision (e.g. [31], [32]). This rather long history of
application has revealed that polynomials of modest degree (e.g.
degree 4 with 15 parameters) have enough descriptive power to
generate a diverse range of curve geometries. Hence, in the rest
of this paper, we mostly consider n ≤ 4. Nevertheless, all results
remain valid for higher degree polynomials.

B. Sampling

In a typical sampling setup (Fig. 3), the image is first con-
volved with a 2D kernel and then sampled at a uniform grid to
generate the samples

dk,l =
1

T 2

∫∫

Ω
I(x, y)ϕ

( x

T
− k,

y

T
− l

)
dx dy.

In a noisy setup, the noise vector will be added to the mea-
surements after spacial sampling. The sampling kernel ϕ(x, y)
is determined by the physics of the sampling device but in most
cases it can be considered as a separable kernel ϕ(x)ϕ(y). In
the first part of this paper, we consider separable kernels that can
reproduce polynomials up to some degree. ϕ(x) is a polynomial
reproducing kernel of degree N if there exist coefficients c

(i)
k

such that [33]
∑

k∈Z
c
(i)
k ϕ(x − k) = xi, i = 0, . . . ,N .

B-splines are well-known examples of polynomial reproduc-
ing kernels [26]. A zero order B-spline β(0)(x) is defined as

β(0)(x) =

⎧
⎪⎨

⎪⎩

1, −0.5 < x < 0.5

0.5, |x| = 0.5

0, otherwise.

A B-spline of order m is obtained by convolving m + 1 kernel
β(0)(x)

β(m )(x) = β(0) ∗ β(0) ∗ . . . ∗ β(0)
︸ ︷︷ ︸

m+1 times

.

Fig. 4. (a) An algebraic shape. (b) Samples generated with the tensor product
of B-spline kernels of order 6.

The B-spline kernel β(m ) can reproduce monomials up to
degree m and the corresponding coefficients are obtained as

c
(i)
k = 〈xi, β̃(m )(x − k)〉,

where β̃(m )(.) is the dual of β(m )(.) [26].

C. Problem statement:

The sampling setup in Fig. 3 provides a discretization of
the continuous-domain image (Fig. 4 illustrates this concept).
The addressed problem in this paper is whether and how we
can reconstruct the original image I(x, y) from a finite set of
samples dk,l , given the sampling kernel ϕ and the sampling
density 1/T . In the sequel, we present a technique to reconstruct
the boundary curve C and hence the algebraic shape I(x, y) from
an adequately rich set of noiseless or noisy samples dk,l .

III. RECONSTRUCTION FROM MOMENTS

For an exact reconstruction of an algebraic shape image, we
should estimate its boundary—the algebraic curve C—from the
samples. In the sequel, we first derive some annihilating equa-
tions for the curve parameters based on the shape moments.
Then, we use the existing FRI techniques [33] to calculate shape
moments from the samples. The overall procedure is summa-
rized in Algorithm 1.

A. Annihilation Equations

Consider a closed algebraic curve C inside the domain Ω and
the corresponding shape image I . We can rewrite I in equation
(2) as

I(x, y) =

{
1, (x, y) ∈ Int(C)

0, otherwise,

where Int(C) denotes the closure of the interior of C. This
equation explains that the partial derivatives ∂I (x,y )

∂x and ∂I (x,y )
∂y

vanish everywhere in Ω except possibly on C, where they behave
like the Dirac δ function. So, similar to the equation xδ(x) = 0,
we conclude that

p(x, y)
∂I(x, y)

∂x
≡ 0, (3)

p(x, y)
∂I(x, y)

∂y
≡ 0, (4)
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Algorithm 1: Algebraic shape reconstruction from noiseless
samples.

Input: noiseless samples dk,l , degree n of the algebraic

shape, polynomial reproducing coefficients c
(i)
k of the

sampling kernel.
Output: boundary curve C.

1: Calculate shape moments Mi,j from samples for any
0 ≤ i, j ≤ 3n/2, according to equation (11).

2: Form the annihilation equations (8) and (9) for any
0 ≤ r, s ≤ n/2 and put them into a linear system of the
form Ma = 0.

3: Solve Ma = 0 for the polynomial coefficients a with the
constraint a0,0 = 1.

4: Form the polynomial p(x, y) from the coefficients in a
according to (1).

5: Set C equal to the zero level set of p(x, y) inside Ω.

inside Ω.
We can multiply the above equations with xrys for any r, s ∈

Z≥0 and integrate over the domain to obtain the equations
∫∫

Ω
xrysp(x, y)

∂I(x, y)
∂x

dx dy = 0, (5)

∫∫

Ω
xrysp(x, y)

∂I(x, y)
∂y

dx dy = 0. (6)

By substituting p(x, y) from equation (1) in (5) and using
integration by parts, we get

∑

0≤i , j

i+j≤n

(i + r) ai,j

∫∫

Ω
x(i+r−1)y(j+s) I(x, y) dx dy = 0. (7)

In the derivation of (7), we also used the fact that C is a closed
curve inside Ω and hence, I is zero at the domain borders.

The integrals in equation (7) represent 2D moments of the
image I

Mi,j =
∫∫

Ω
xiyj I(x, y) dx dy.

Hence, we can rewrite equation (7) as
∑

0≤i,j, i+j≤n

(i + r)Mi+r−1,j+s ai,j = 0. (8)

We can similarly modify equation (6) to derive the additional
equation

∑

0≤i,j,i+j≤n

(j + s)Mi+r,j+s−1 ai,j = 0. (9)

For any pair of (r, s), equations (8) and (9) give us two lin-
ear annihilation equations in terms of the vector of polynomial
coefficients

a =

⎡

⎢⎢⎢⎢⎣

a0,0
a1,0
a0,1

...
a0,n

⎤

⎥⎥⎥⎥⎦

(n + 2
2 )×1

We get enough equations to build a linear system of the form

Ma = 0 (10)

and derive the curve parameters, if we consider all pairs
(r, s), 0 ≤ r, s ≤ 	n/2
. Here, M is of the size 2(	n/2
 +
1)2 ×

(
n+2

2

)
. This implies that we require all image moments

of degree up to 	3n/2
, i.e., Mi,j , 0 ≤ i, j ≤ 	3n/2
.
To avoid the trivial solution a = 0, we set the term corre-

sponding to x0y0 to 1. We recall that a scaling of the polyno-
mial coefficients does not change its level sets. In Theorem 2,
we prove that the zero level set of the polynomial q(x, y) formed
by any solution of (10) contains C. This specifically means that
although the system of equations in (10) might have a null space
with dimension larger than 1, any vector a in this null space gen-
erates a polynomial that vanishes on the boundary of I . Hence,
we can recover the boundary curve C and the algebraic shape I
from any solution of (10).

Finally, it remains to retrieve moments from the samples.
Suppose that the kernel ϕ(x) can reproduce polynomials up to
degree 	3n/2
, with the corresponding coefficients c

(i)
k , i =

0, . . . , 	3n/2
. The 2D moments of the image can be calculated
as

Mi,j =
∫∫

Ω
xiyj I(x, y) dx dy

=
∫∫

Ω

∑

k∈Z
c
(i)
k ϕ(x − k)

∑

l∈Z
c
(j )
l ϕ(y − l) I(x, y) dx dy

=
∑

k∈Z

∑

l∈Z
c
(i)
k c

(j )
l

∫∫

Ω
ϕ(x − k)ϕ(y − l) I(x, y) dx dy

=
∑

k∈Z

∑

l∈Z
c
(i)
k c

(j )
l dk,l =

∑

k∈K

∑

l∈L
c
(i)
k c

(j )
l dk,l , (11)

where K and L indicate the set of indices k and l such that
ϕ(x − k)ϕ(y − l) is nonzero over Ω.

B. Stability

Algorithm 1 restores the exact algebraic curve when it has
access to the noiseless samples. But it breaks down in the pres-
ence of noise. The reason is that the polynomial reproducing
coefficients c

(i)
k have the same growth rate as the polynomials,

i.e., they grow like |k|i . (To illustrate this, we show the poly-
nomial reproducing coefficients c

(i)
k of a 1D 6th order B-spline

kernel for i = 0, . . . , 6 in Fig. 5.) This specially implies that
in equation (11), the weight of samples that are away from the
image center are considerably larger than the weight of the cen-
tral samples. But for images in our model, samples at the image
borders mostly contain noise. This transfers an amplified noise
to the moments and results in severely degraded moments SNR.
The noise boosting effect becomes more critical as the order
of moments grow. This makes Algorithm 1 unstable even at a
sample SNR as high as 100 dB.

We recall that in the related works of [34] and [11], only the
first order moment are required as they focus on first degree poly-
nomials (step edges). Hence, the aforementioned noise boosting
effect is not an issue.

In the next section, we introduce some generalized moments
that have slower growth rates and discard the noise at the image
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Fig. 5. The exponential growth rate of polynomial reproducing coefficients
of the B-spline kernel β(6) (x).

borders. Above all, they are still reproducible from the samples
generated with a wider range of sampling kernels.

IV. STABLE RECOVERY

The sampling scheme of Section III has some limitations:
(i) the reconstruction algorithm succeeds only in the absence
of noise; (ii) the acceptable sampling kernels ϕ(·) are limited
to the ones that exactly reproduce polynomials; and (iii) the
algebraic shapes should have closed boundary curves. In this
section, we modify Algorithm 1 in three steps to resolve these
limitations:

First and foremost, we introduce a fast decaying (or even
compact-support) function g(x, y) in the integrands of equations
(5) and (6) to reduce the growth rate of polynomials, especially
at the borders of Ω. This translates into the annihilation equa-
tions as replacing moments with some generalized moments.
We prove in Theorem 2 that under noiseless samples, the re-
sulting annihilation equations restore the exact boundary curve
of any algebraic shape. Our proof is general and includes the
case g(x, y) = 1 which leads to conventional moments. Next,
we describe the requirements for g(x, y) to ensure stable gener-
alized moments and we propose an optimization procedure for
finding the best candidate g that pairs with a given sampling
kernel. Interestingly, the inclusion of g allows for extension of
the image model to algebraic shapes with open boundaries.

For our second step, we note that the image moments do
not take full advantage of the available samples. For instance,
the samples allow for prediction of the sign of the implicit
polynomial on a subset of the sampling grid points and this
prediction is fairly robust against noise. To further improve the
reconstruction, we enforce sign consistency of the polynomial
with the prediction of the available samples.

In our last step, we encourage full measurement consistency
(not just sign) through bounded changes in the coefficients of
the implicit polynomial.

A. Annihilation Equations With Generalized Moments

We developed the annihilation equations of Section III-A
by multiplying equations (3) and (4) with xrys . This caused the

image moments to appear in the equations. To control the growth
rate of the polynomials and hence the moments, we replace xrys

with g(x, y)xrys for an appropriate function g.
Definition 1: For any bivariate function g(., .) and integers

i, j ≥ 0, we call

M
g(x,y )
i,j =

∫ +∞

−∞

∫ +∞

−∞
xiyj g(x, y)I(x, y) dx dy. (12)

a 2D generalized moment of I , associated with g.
Having separable sampling kernels, we also take g(x, y) to be

separable of the form g(x, y) = g(x)g(y). Though, the results
can be similarly extended to the non-separable kernels. In the
following, we derive the new annihilation equations and discuss
the requirements on g afterwards.

We multiply equations (3) and (4) with g(x)g(y)xrys and
repeat similar steps as in Section III-A to obtain

∑

0≤i , j

i+j≤n

ai,j

∫∫

Ω

∂xr+ig(x)
∂x

ys+j g(y)I(x, y) dx dy = 0, (13)

∑

0≤i , j

i+j≤n

ai,j

∫∫

Ω
xr+ig(x)

∂ys+j g(y)
∂y

I(x, y) dx dy = 0. (14)

In Section III, we had to assume that I is zero at the borders
of the image plane in order to use integration by parts. Here,
we assume that g(·) is either zero outside (−L,L) or decays
so fast that the integral outside of this interval becomes negligi-
ble. This allows I to take non-zero values at the borders of Ω;
consequently, I can represent an unbounded shape.

We can further simplify equations (13) and (14) and sub-
stitute the integrals with generalized moments to get the new
annihilation equations

∑

0≤i , j

i+j≤n

(
(i + r)Mg(x)g(y )

i+r−1,j+s + M
ġ(x)g(y )
i+r,j+s

)
ai,j = 0, (15)

∑

0≤i , j

i+j≤n

(
(j + s)Mg(x)g(y )

i+r,j+s−1 + M
g(x)ġ(y )
i+r,j+s

)
ai,j = 0, (16)

where ġ stands for the derivative of g. The above equations are
valid for any 0 ≤ r, s. Note that g = 1 restores the annihilation
equations (8) and (9) when I represents a closed shape. In
Theorem 2 we state a unified result for recovery of algebraic
shapes either from conventional annihilation equations or the
generalizations in (15) and (16).

Theorem 2: Let I denote an algebraic shape of degree n

defined on Ω without singular edges.1 Also, let M
g (x)g(y )
i,j ,

M
g(x)g ′(y )
i,j and M

g ′(x)g(y )
i,j denote the generalized moments of

I (Definition 1) corresponding to a function g(·) for which
I(x, y)g(x)g(y) vanishes outside Int(Ω) and g(x)g(y) remains
strictly positive inside Ω. If ã = [ãi,j ]i+j≤n = 0 satisfies the
annihilation equations (15) and (16) for all 0 ≤ r, s, r + s ≤

1We call an edge singular if the image color does not change on either of its
sides; for instance the image associated with 1{(x−y )2 ≤0} has a singular edge
at points with equal coordinates.
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2n − 1, then, the zero level set of the polynomial

p̃(x, y) =
∑

0≤i,j, i+j≤n

ãi,j x
iyj

contains the boundaries (edges) of I .
Proof: Proof: See the Appendix.
Remark 2: Unique recovery of p(x, y) is not generally pos-

sible. Obviously, the zero level sets of p(x, y) and 2p(x, y)
are the same, leading to the same algebraic shapes. However,
there are less obvious examples that prevent unique recovery:
the zero level sets of both (x2 + y2 − 1)(x2 − 2x + 2) and
(x2 + y2 − 1)(x2 + y2 + 2xy + 1) coincide with the unit cir-
cle, while the two bivariate polynomials have the same degree.
The important point in Theorem 2 is that the curve C is uniquely
determined, but possibly with a different implicit polynomial.

Remark 3: Theorem 2 requires that the coefficients of p̃(x, y)
satisfy the annihilation equations (15) and (16) for every 0 ≤
r + s ≤ 2n − 1. This generates an over-determined system of
the form Ma = 0 with about 8 times more rows than columns.
In our experiments, we have confirmed successful recovery of
algebraic curves from the annihilation equations corresponding
to 0 ≤ r, s ≤ 	n/2
 (yielding an almost balanced system). Our
proof technique, however, falls short of this stronger result.

1) Optimal Generalized Moments: The primary reason of
introducing g(x)g(y) to the equations is to control the growth
rate of the monomials xrys , especially at the image borders.
Ideally, the g(·) function in (13) and (14) should be set such that
g and ġ both vanish outside (−L,L). The faster they decay near
the borders of [−L,L], the more stable will be the annihilation
equations (15) and (16). However, the bottleneck in setting g(·)
is the reproduction of moments from the samples. That is the
functions xig(x) and xiġ(x), i = 0, . . . , 3n

2 should be repro-
ducible by the sampling kernel ϕ(x), i.e., we need coefficients
{c(i)

k } and {c̃(i)
k } that satisfy

∑

k∈I
c
(i)
k ϕ(x − k) ≈ xig(x), (17)

∑

k∈I
c̃
(i)
k ϕ(x − k) ≈ xiġ(x). (18)

Here, I represents k values for which ϕ(x − k) has an effec-
tive support in [−L,L]; this ensures that g(x) and ġ(x) vanish
outside [−L,L].

For recovering an algebraic curve (domain) from samples
using the generalized moment technique, we need to linearly
combine the samples in correspondence to the coefficients {c(i)

k }
and {c̃(i)

k }. In other words, we never require the function g
explicitly in practice. Consequently, instead of looking for the
best g function, we can search for coefficients {c(i)

k } and {c̃(i)
k }

such that
∑

k∈I
c
(i)
k ϕ(x − k) ≈ x

∑

k∈I
c
(i−1)
k ϕ(x − k), i ≥ 1,

∑

k∈I
c̃
(i)
k ϕ(x − k) ≈ x

∑

k∈I
c̃
(i−1)
k ϕ(x − k), i ≥ 1,

d
dx

∑

k∈I
c
(i)
k ϕ(x − k) ≈

∑

k∈I

(
i c

(i−1)
k + c̃

(i)
k

)
ϕ(x − k). (19)

To find such coefficients, we introduce the following objective
function

G
(
{c(i)

k }, {c̃(i)
k }

)
=

3n/2∑

i=1

∥∥∥∥∥
∑

k∈I

(
c
(i)
k − xc

(i−1)
k

)
ϕ(x − k)

∥∥∥∥∥

2

+
3n/2∑

i=1

∥∥∥∥∥
∑

k∈I

(
c̃
(i)
k − xc̃

(i−1)
k

)
ϕ(x − k)

∥∥∥∥∥

2

+
3n/2∑

i=0

∥∥∥∥∥
∑

k∈I
c
(i)
k ϕ̇(x − k) −

∑

k∈I

(
ic

(i−1)
k + c̃

(i)
k

)
ϕ(x − k)

∥∥∥∥∥

2

.

Next, we solve the quadratic program

min
c

( i )
k ,c̃

( i )
k

G
(
{c(i)

k }, {c̃(i)
k }

)
(20)

s.t.

{∑
k∈Ic

(0)
k ϕ(x − k) ≥ 0,

c
(0)
0 = 1.

The equality constraint in the above minimization is to avoid
the trivial zero solution and the inequalities guarantee that g is
non-negative. Although solving a quadratic program is compu-
tationally manageable, we have frequently observed that (20) is
ill-conditioned2 in the sense that iterative methods are very slow
in achieving the global solution, and usually terminate much ear-
lier than desired. This shortcoming could be improved by using
a sufficiently good initialization. Furthermore, any set of coef-
ficients which result in a small cost according to the objective
function could be used.

We recall that an implicit parameter in this problem is the
size of the index set I. This parameter also affects the modeling
of Ω = [−L,L]2 and the minimum required sampling density
for this sampling kernel. In fact, by increasing the index set I
the global cost in (20) can only reduce. Thus, the larger the I
the lower the cost. However, larger I translates into more image
samples, and consequently more complexity.

For the B-spline kernels, we found surprisingly good can-
didates g that make the objective function almost zero. Fig. 6
shows the kernels β(6)(x), β(4)(x), β(2)(x) and their associated
g’s that reproduce stable generalized moments of order 6 or
less. This implies that we can form the annihilation equations
and recover algebraic shapes of degree 4 even when the sam-
pling kernel is the tensor product of 2nd order B-splines. The
cost is a larger number of required samples.

Our final remark concerns using an asymmetric function
g(x, y) in the form f(x)h(y), when satisfying (17) and (18)
is not possible simultaneously for a single g(x). One can verify
that the annihilation equations can still be obtained if

∑

k∈I
c
(i)
k ϕ(x − k) ≈ xih(x),

∑

k∈I
c̃
(i)
k ϕ(x − k) ≈ d

dx

(
xif(x)

)
.

2Essentially, the source is the same as the one causing instability in Algo-
rithm 1 except there is no noise here: the error terms corresponding to different
i’s in the objective function grow polynomially and this makes the problem
ill-conditioned.
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Fig. 6. B-spline kernels and their associated g’s for reproducing stable generalized moments of order lass than or equal to 6. The indices (I) of the contributing
kernels in equations (17) and (18) and the minimum number of required samples (m) are (a) I = {−13,−12, . . . , 13} and m = 27, (b) I = {−14,−13, . . . , 14}
and m = 29, (c) I = {−20,−19, . . . , 20} and m = 41, respectively.

Fig. 7. A compact support function g(x, y) facilitates the calculation of 2D
generalized moments and the annihilation equations for different windows of
the image samples. However, the coordinate shifts between different windows
should be compensated before concatenating the equations in one system.

For finding {c(i)
k } and {c̃(i)

k }, (20) needs to be divided into

two quadratic programs that accommodate {c(i)
k } and {c̃(i)

k }
separately.

2) Patch-Based Recovery: Equations (17) and (18) show
that g(x) and consequently g(x)g(y) have compact support.
This indicates that the generalized moments are computed from
a finite window of the image samples—namely, of size m × m,
where m amounts to the number of contributing kernels in I.
Having access to more samples, we can slide a m × m window
over the image samples, calculate 2D moments and form the
annihilation equations for each window. This results in a linear
system with more equations and improves the noise stability of
the reconstruction.

There is only one issue requiring further attention: in the an-
nihilation equations of each window, the coordinates origin is
taken at the window’s center (Fig. 7). This means that the vari-
ables of each set of annihilation equations are the coefficients
of the polynomial in those coordinates. Hence, we should com-
pensate for the shifts in the coordinates before concatenating the
equations of different windows. For this purpose, we choose the

reference coordinates as the symmetry axes of the image plane.
When the coordinates are shifted by (x0 , y0), the polynomial
p(x, y) =

∑
0≤i,j,i+j≤n ai,j x

iyj in the original system shall be
mapped to the polynomial

p̃(x, y) = p(x + x0 , y + y0)

=
∑

0≤i,j,i+j≤n

ai,j (x + x0)i(y + y0)j

=
∑

0≤i,j,i+j≤n

ai,j

i∑

k=0

(
i

k

)
x

(i−k)
0

j∑

l=0

(
j

l

)
y

(j−l)
0 xkyl .

This reveals the mapping between the coefficients of p̃(x, y),
denoted by bk,l , and ai,j ’s as

bk,l =
∑

k ≤i , l≤j

i+j≤n

(
i

k

)(
j

l

)
x

(i−k)
0 y

(j−l)
0 ai,j ,

for any 0 ≤ k, l, k + l ≤ n. We can represent the above rela-
tions for all polynomial coefficients simultaneously as

b = B(x0 ,y0 )a, (21)

where B(x0 ,y0 ) is an upper triangular square matrix with diag-
onal entries equal to 1. This allows us to relate the annihilation
equations of a window centered at (x0 , y0) to the polynomial
coefficients a in the reference coordinate system through the
equation

M(x0 ,y0 )b = M(x0 ,y0 )B(x0 ,y0 )a = 0.

In a nutshell, we should multiply the annihilation equations
of different windows with the corresponding matrix B(x0 ,y0 ) in
equation (21) before concatenating them in a bigger system.

B. Constraints on the Sign of the Polynomial

So far, we have built a system of equations in terms of the
image parameters that is stable at numerical precision. In the
presence of noise, the annihilation equations are only approxi-
mately singular. In this case, as a common practice, we consider



5814 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 22, NOVEMBER 15, 2016

the solution of the least squares minimization problem

min
a

‖Ma‖2
2 (22)

s.t. a[0] = a0,0 = 1.

The least squares denoising works well at low noise levels,
especially when M is a tall matrix. Nevertheless, since algebraic
curves are dense among continuous curves, distortion in the
image moments (originated from moderate noise levels in the
samples) can lead to substantially different solutions.

Recently, the Cadzow’s denoising algorithm [35] has been
used for denoising of the annihilation equations of 1D [7]
and 2D [12] FRI signals. The common feature in these works
that makes denoising successful is having annihilation equa-
tions with a Toeplitz structure. Our system of annihilation
equations—although almost each element in M has a few
duplicates—is not Toeplitz and the Cadzow’s denoising algo-
rithm does not help.3

In our problem, the best reconstruction is an algebraic shape
that is as consistent as possible with the image samples (i.e.,
up to the samples SNR). Theoretically, this can be achieved
with a brute-force search over the space of image parameters.
But this problem is nonconvex with many parameters and hence,
computationally intractable. In the rest of this section, we exploit
the local information provided by the samples to improve the
reconstruction in the presence of noise.

Sample values represent the area of the intersection of the cor-
responding kernels with the interior of the shape in a weighted
form. For example, dk,l = 1 (0) indicates that I(x, y) = 1 (0)
everywhere in the support of ϕ(x − k, y − l).4 We further in-
corporate the samples in our reconstruction by interpreting
them as the central points of the corresponding kernels lying
inside or outside the shape. More precisely, if dk,l is above
1 − ε for an ε < 0.5, we assume its center to be inside the
shape, i.e., I(k, l) = 1 or equivalently p(k, l) ≤ 0. Also, we
take I(k, l) = 0 or p(k, l) > 0, if dk,l < ε. Eventually, we con-
strain the solution of the least squares problem with the inferred
signs:

min
a

‖Ma‖2
2 , (23)

s.t.
Aina ≤ 0,

Aouta < 0,

where Ain and Aout encode respectively, the normal and sign-
negated polynomial evaluation matrices at central locations of
the sampling kernels; Ain corresponds to locations with large
sample values, while Aout corresponds to locations with small
sample values. The minimization problem (23) can be solved
with quadratic programming algorithms.

C. Measurement Consistency

At moderate noise levels (sample SNRs around 25 dBs),
the recovered curves from (23) are close enough to the orig-
inal boundaries to let us approximate the function mapping the

3In our implementation of Cadzow’s algorithm, we observed that it converges
to a rank deficient matrix with the expected structure which stays very close to
the noisy matrix M.

4We assume that T = 1 and ϕ(x, y) has a unit integral.

polynomial coefficients to the image samples with a 1st order
Taylor expansion around the correct coefficients. We exploit
this assumption to improve the measurement consistency of the
reconstruction.

Let D denote the mapping from the polynomial coefficients
into the samples of the algebraic shape. For instance, if a∗

stands for the polynomial coefficients associated with an al-
gebraic curve, d∗ = D(a∗) represents the vector of noiseless
image samples via the sampling kernel.

For a given set of noisy samples d̃∗, let acur be the solution
to the sign consistency technique in (23), which corresponds
to dcur = D(acur). For moderate to low noise levels, we know
that acur is a good approximation of a∗. Thus, we use the lin-
earization ofD around acur (1st order Taylor expansion) to write
that

d∗ ≈ dcur +
( ∂

∂a
D(acur)

)
(a∗ − acur),

where ∂
∂aD(acur) is a matrix that relates the small input vari-

ations in D to its output around the point acur . In practice, we
find ∂

∂aD(acur) by numerically varying acur in all directions
and observing the corresponding d’s. Finally, we improve our
current estimate of a∗ by

anew = acur +
( ∂

∂a
D(acur)

)−1
(d̃∗ − dcur). (24)

In our algorithm, we apply few iterations of the above update
rule. Each time we evaluate the associated d vector and continue
the iterations as long as this vector gets closer to d̃∗.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm in dif-
ferent scenarios. We select bounded algebraic shapes for most
of the experiments. For this purpose, we restrict the polynomial
degree to even integers. But a randomly generated even degree
polynomial very likely has unbounded level sets. A full char-
acterization as well as a model for the generation of bivariate
polynomials of degree 4 with bounded level sets was presented
in [31] and [32]. We adopt this model to generate shapes for our
experiments.

A. Noiseless Recovery

In the first experiment, we study reconstruction of algebraic
shapes from noiseless samples. Recalling the results of the last
section, we expect to recover the exact image by solving the least
squares problem (22). Fig. 8 displays perfect reconstruction of
an algebraic shape of degree 4, when the sampling kernel is the
tensor product of the 6th order B-splines.

B. Recovery in the Presence of Noise

In this experiment, we aim at studying the effect of each
step of the algorithm on the reconstructed image from noisy
samples. For this purpose, we consider two distinct algebraic
shapes of degree 4 with different levels of noise in their samples
and we plot each stage of the reconstruction (Figs. 9 and 10).
The samples of both images are generated with the sampling
kernel ϕ(x, y) = β(6)(x)β(6)(y) and the annihilation equations
involve generalized moments corresponding to the function g(x)
in Fig. 6(a). We see that although the least squares solution might
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Fig. 8. Exact reconstruction of algebraic shapes from noiseless samples.
(a) An algebraic shape of degree 4. (b) Noiseless samples (size 11 × 11),
when the sampling kernel is ϕ(x, y) = β(6) (x)β(6) (y). (c) Absolute differ-
ence between the original shape and the least squares solution.

Fig. 9. Reconstruction from noisy samples. (a) Noisy samples of the shape
in Fig. 8(a) with size 29 × 29 and SNR = 17 dB. (b) Absolute error of the
least squares solution (PSNR = 13.7 dB). (c) Ablsoute error of the quadratic
programming (equation (23)) recontsruction (PSNR = 20.4 dB). (d) Abso-
lute error of the output of the consistency improvement algorithm (PSNR =
21.3 dB). SNR between the samples of the final reconstruction and the noisy
samples (a) is 15.4 dB.

Fig. 10. Reconstruction from noisy samples. (a) Original image. (b) Noisy
samples of size 29 × 29 with SNR = 22 dB. (c) Absolute error of the least
squares solution. (d) Absolute error of the quadratic programming solution
(PSNR = 21.0 dB). (e) Absolute error of the output of the consistency im-
provement algorithm (PSNR = 22.8 dB). SNR between the samples of the final
reconstruction and the noisy samples (b) is 20.9 dB.

Fig. 11. Sensitivity of the reconstruction to the choice of the sampling kernel.
(a) Algberaic shape of degree 4. (b), (c), (d) Noisy samples (SNR = 27 dB) of
size 33 × 33, 31 × 31 and 29 × 29, generated with B-spline kernels of degree
2, 4, and 6, respectively. (e), (f), (g) Absolute error of the reconstructions from
samples in (b), (c) and (d) with reconstruction PSNRs 22.2 dB, 23.2 dB and
21.3 dB, respectively.

be offbeat in presence of noise, the constraints on the sign of
the polynomial substantially restrain the solution and lead to
satisfactory reconstructions at moderate signal to noise ratios
(SNRs).

C. Sampling Kernel Sensitivity

Earlier, we mentioned that a consequence of replacing con-
ventional moments with generalized moments is relaxing the re-
strictive polynomial-reproducing requirement on the sampling
kernel. Specifically, we worked out the reproducing coefficients
for the B-spline kernels of order 2, 4, and 6 that generate sta-
ble generalized moments of order less than or equal to 6 (see
Fig. 6). This, for example, allows us to recover algebraic shapes
of degree 4 from samples generated with the sampling kernel
ϕ(x, y) = β(2)(x)β(2)(y). In this experiment, we study the sen-
sitivity of the reconstruction to the choice of the kernel. Fig. 11
displays the absolute difference between an image and its re-
constructions from samples generated with different sampling
kernels and similar signal-to-noise-ratios. The results are com-
parable irrespective of the choice of the sampling kernel (note
the expected difference in the sample sizes that calls for different
noise realizations for the three samples).

D. Unbounded Algebraic Shapes

Introducing generalized moments to the annihilation equa-
tions facilitated sampling and reconstruction of algebraic shapes
with open boundaries (also referred as unbounded algebraic
shapes). This additionally allows the reconstruction to enjoy
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Fig. 12. (a) Unbounded algebraic shape of degree 4. (b) Noisy samples of size
39 × 39 with SNR = 25 dB. (c) Absolute reconstruction error.

Fig. 13. Approximation of an ellipse with algebraic shapes of degree 4.
(a) Original ellipse. (b) Noiseless samples of size 27 × 27, generated with
B-splines of degree 2. (c) Least squares solution for noiseless samples. (d) Ab-
solute error of the final reconstruction of the algorithm. (e) Noisy samples with
SNR = 22 dB. (f) Least squares solution for noisy samples. (g) Absolute error
of the final reconstruction from noisy samples.

oversampling by forming annihilation equations for each sam-
ple window, without caring about the image content of the win-
dow. Fig. 12 shows the reconstruction of an unbounded image
from its noisy samples, where the sampling kernel is the tensor
product of 2nd order B-splines. The peak signal-to-noise ratio
(PSNR) of the reconstructed image is 20.1 dB and SNR between
its samples and the original noisy samples (sample consistency)
is equal to 23.1 dB. These numbers clearly indicate the success
of our proposed algorithm for reconstructing unbounded shapes.

E. Overfitting

In the last two experiments, we address uncertainties in the
image model. First, we study the situation where we overes-
timate degree of an algebraic shape. Recalling Theorem 2 of
the previous section, we expect the recovered polynomial from
the annihilation equations to vanish on the boundaries of the
original shape in the noiseless scenario. Fig. 13 displays the
results when we approximate an ellipse with algebraic shapes
of degree 4 from its noiseless and noisy samples. Figs. 13(c)
and (f) show the least squares solutions for noiseless and noisy

Fig. 14. Approximation of non-annihilable curves with algebraic curves.
(a) A shape with a Bézier curve boundery. (b) 15 × 15 noiseless samples.
(c) The absolute error between the original shape and its approximation with an
algebraic shape of degree 4. The reconstruction PSNR is 19.8 dB.

samples, respectively. Both figures indicate that the boundaries
of the recovered images contain the boundary of the original el-
lipse. Equivalently, the recovered polynomials are factors of the
original polynomial of degree 2. The extra factors are resolved in
the next steps of the algorithm, resulting in exact reconstructions
in both scenarios.

F. Algebraic Shape Approximation

Another type of uncertainty in the image model happens when
the image boundary is not an algebraic curve. Regarding the de-
scriptive power of algebraic curves, we still expect to find a
good approximation of the image. To investigate this, we gen-
erated a shape with a Bézier curve boundary with four control
points and generated its 15 × 15-samples with 2nd order B-
spline sampling kernels. Then, we obtained the approximate
algebraic shape from the noiseless samples. The original image
and the absolute error of its algebraic approximation are de-
picted in Fig. 14. We observe that the reconstructed curve is a
rather accurate descriptor of the original Bézier curve.

VI. CONCLUSION

Designing sampling schemes for images with arbitrary edge
geometries is still a challenging research problem. In this paper,
we proposed a sampling and reconstruction algorithm for bi-
nary images with boundary curves that are zeros of an implicit
bivariate polynomial. We developed a set of linear annihilation
equations from the image samples and proved that every so-
lution of the equations restores the image boundaries, in the
noiseless scenario. The primary equations involve 2D moments
of the image. To make the reconstruction robust against noise,
we replaced conventional moments with generalized moments
associated with a compact-support 2D function that is paired
with the given sampling kernel. This leads to a reconstruction
algorithm from more realistic samples and extends the model to
images with open boundaries.

The image model we considered in this paper is very rich and
may be used for the approximation of general shapes from their
samples. Also, the idea of replacing conventional moments with
generalized moments might find applications in other image
processing tasks which use moments as the image descriptors.

APPENDIX

PROOF OF THEOREM 2

We prove by contradiction. Assume the zero level set of p̃
does not fully include C; thus, p(x, y) can be factorized as

p(x, y) = ζ(x, y)h(x, y),
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where h(x, y) is coprime with p̃ and ζ, and has a non-trivial
zero level set Ch . Meanwhile, the zero level set Cζ of ζ(x, y) is
included in that of p̃. Roughly speaking, h and ζ stand for parts
of C that are excluded and included in the zero level set of p̃,
respectively. Further, let r(x, y) be a polynomial with minimum
degree such that 1h(x,y )≤0 = 1r(x,y )≤0 . If h is irreducible, we
shall have r(x, y) = h(x, y), otherwise, r might be different
from h. In either case, we have deg r ≤ deg h.

The validity of annihilation equations (15) and (16) imply
∫∫

Ω
g(x)g(y)xrys p̃(x, y)

∂I(x, y)
∂x

dxdy = 0

for all 0 ≤ r, s, r + s ≤ 2n − 1. By linearly combining these
equalities, we conclude that

∫∫

Ω
g(x)g(y)q(x, y)p̃(x, y)

∂I(x, y)
∂x

dxdy = 0 (25)

holds for any polynomial q(x, y) of degree no higher than
2n − 1. From this point on, we set q as

q(x, y) = p̃(x, y)
∂

∂x

(
ζ(x, y)r(x, y)

)
. (26)

Because deg q ≤ deg p̃ + deg p − 1 = 2n − 1, this choice of
q fulfills the degree constraint.

Let y∗ be such that the line y = y∗ intersects C. According
to Bezout’s theorem, the number of intersections m∗ shall be
limited to n. We assume the intersections are at x ∈ {x∗

i }m ∗
i=1

and conclude that

∂

∂x
I(x, y∗) =

m ∗∑

i=1

si δ(x − x∗
i ), (27)

where δ(·) is the Dirac’s delta function and {si}i are sign values;
si = 1 (si = −1) if p(x, y∗

i ) is positive (negative) at x = x∗
i − ε

and negative (positive) at x = x∗
i + ε for small enough 0 < ε.

Hence,

−si = lim
ε→0+

sign

(
p(x∗

i + ε, y∗) − p(x∗
i − ε, y∗)

2ε

)

= lim
ε→0+

sign

((
ζ · r

)
(x∗

i + ε, y∗) −
(
ζ · r

)
(x∗

i − ε, y∗)
2ε

)
.

This shows that the value of ∂
∂x

(
ζ · r

)
(x, y) at (x∗

i , y
∗) is

either 0 or has the opposite sign as si . This implies that

si
∂

∂x

(
ζ · r

)
(x∗

i , y
∗) ≤ 0, (28)

where equality happens only if ∂
∂x

(
ζ · r

)
(x∗

i , y
∗) = 0. By taking

advantage of (27), we can rewrite the inner integral in (25) as
∫

g(x)g(y∗)q(x, y∗)p̃(x, y∗)
∂I(x, y∗)

∂x
dx

=
m ∗∑

i=1

sig(x∗
i )g(y∗)q(x∗

i , y
∗)p̃(x∗

i , y
∗)

=
m ∗∑

i=1

sig(x∗
i )g(y∗)

(
p̃(x∗

i , y
∗)

)2 ∂
∂x

(
ζ · r

)
(x∗

i , y
∗) ≤ 0.

(29)

Thus, for (25) to hold, q(x, y) needs to vanish at all points on
C, and in particular, at points on Ch . As h and p̃ are coprime,
p̃(x, y) can vanish only on a finite number of points on Ch

(Bezout’s theorem). This forces the zero level set of ∂
∂x

(
ζ · r

)

to includeCh (inclusion ofCh except finitely many points implies
inclusion of the whole Ch ).

For any (x∗, y∗) ∈ Ch , because of r(x∗, y∗) = h(x∗, y∗) = 0
we have that

∂

∂x

(
ζ · r

)
(x∗, y∗) = ζ(x∗, y∗)

∂

∂x
r(x∗, y∗). (30)

Again, since h and ζ are coprime, ζ(x∗, y∗) = 0 can happen
only for a finite number of points (x∗, y∗) ∈ Ch . Therefore,
∂
∂x r(x∗, y∗) = 0 should hold for all (x∗, y∗) ∈ Ch ; i.e., the zero
level set of ∂

∂x r(x, y) includes the zero level set of r(x, y). This,
however, contradicts our initial assumption that r is a polynomial
with minimum degree that satisfies this property. �
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degree from EPF Lausanne (EPFL), Switzerland, in
1986.

He was a research assistant at Stanford and EPFL,
and has worked for Siemens and AT&T Bell Labo-
ratories. In 1986 he joined Columbia University in
New York, where he was last an Associate Professor
of Electrical Engineering and co-director of the Im-

age and Advanced Television Laboratory. In 1993, he joined the University of
California at Berkeley, where he was a Professor in the Department of Electri-
cal Engineering and Computer Sciences until 1997, and has held an Adjunct
Professor position until June 2010.

Since 1995 he is a Professor of Communication Systems at EPF Lausanne,
Switzerland, where he chaired the Communications Systems Division (1996–
1997), and heads the Audiovisual Communications Laboratory. From 2001 to
2004 he directed the National Competence Center in Research on mobile in-
formation and communication systems. He also was a Vice-President at EPFL
from October 2004 to February 2011 in charge, among others, of international
affairs and computing services. He has held visiting positions at ETHZ (1990)
and Stanford (1998). From March 2011 on, he is Dean of the School of Com-
puter and Communication Sciences of EPFL. Since January 2013, he leads the
Swiss National Science Foundation. He has been nominated to the Presidency
of EPFL as of January 2017.

He is a fellow of ACM, a fellow of EURASIP, and a member of SIAM and
NAE. He is on the editorial boards of Applied and Computational Harmonic
Analysis, the Journal of Fourier Analysis and Application and the IEEE JOUR-
NAL ON SELECTED TOPICS IN SIGNAL PROCESSING and has been elected Foreign
Member of the NAE in 2015.

He received the Best Paper Award of EURASIP in 1984, the Research Prize
of the Brown Bovery Corporation (Switzerland) in 1986, the IEEE Signal Pro-
cessing Society’s Senior Paper Awards in 1991, in 1996 and in 2006 (for papers
with D. LeGall, K. Ramchandran, and Marziliano and Blu, respectively). He
won the Swiss National Latsis Prize in 1996, the SPIE Presidential award in
1999, the IEEE Signal Processing Technical Achievement Award in 2001, the
IEEE Signal Processing Society Award in 2010 for fundamental contributions
to signal processing theory, technology and education and is an ISI highly cited
researcher in engineering. He was a member of the Swiss Council on Science
and Technology from 2000 to 2003.

He was a plenary speaker at various conferences (e.g. IEEE ICIP, ICASSP,
ISIT) and is the co-author of three books with J. Kovacevic, Wavelets and Sub-
band Coding, 1995, with P. Prandoni Signal Processing for Communications,
2008 and with J. Kovacevic and V. K. Goyal, Foundations of Signal Processing,
2015.

He has published about 170 journal papers on a variety of topics in sig-
nal/image processing and communications and holds about 50 patents and patent
applications.

His research interests include sampling, wavelets, multirate signal process-
ing, computational complexity, signal processing for communications, digital
image/video processing, joint source/channel coding, signal processing for sen-
sor networks and inverse problems like acoustic tomography.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


