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A Unified Approach for Multi-Object Triangulation,
Tracking and Camera Calibration

Jeremie Houssineau, Daniel E. Clark, Spela Ivekovic, Chee Sing Lee, and Jose Franco

Abstract—Object triangulation, 3-D object tracking, feature cor-
respondence, and camera calibration are key problems for esti-
mation from camera networks. This paper addresses these prob-
lems within a unified Bayesian framework for joint multi-object
tracking and camera calibration, based on the finite set statistics
methodology. In contrast to the mainstream approaches, an alter-
native parametrization is investigated for triangulation, called dis-
parity space. The approach for feature correspondence is based
on the probability hypothesis density (PHD) filter, and hence in-
herits the ability to handle the initialization of new tracks as well as
the discrimination between targets and clutter within a Bayesian
paradigm. The PHD filtering approach then forms the basis of a
camera calibration method from static or moving objects. Results
are shown on simulated and real data.

Index Terms—Camera calibration, disparity space, finite set
statistics.

INTRODUCTION

D ETECTION, localization and tracking of an object's state
from active sensors, such as, e.g., radar, range-finding

laser and sonar, are usually determined from the sensor mea-
surements using a stochastic filter, such as the Kalman filter
[26], to provide statistically optimal estimates. When the use of
active sensors is not possible, passive sensors, such as cameras,
are the alternative.
Calculating the distance of objects from cameras requires tri-

angulation. The traditional means of triangulation from a pair of
image observations are well known if the observations of the ob-
ject are perfect, in which case the triangulated position can be
calculated using knowledge of the sensor geometry [15], also
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known as the camera projection matrix, obtained through the
process of camera calibration.
The objective of this paper is to describe a statistical frame-

work for joint 3-D object state estimation and camera calibra-
tion, which considers both the geometry and the observation
characteristics of the cameras. The framework presented makes
use of a proxy state space, called disparity space, which allows
for parts of the estimation process to be expressed in linear
Gaussian form, thereby enabling the use of the Kalman filter
methodology.
The proposed framework encompasses a logical hierarchy

of algorithms for estimation from noisy image measurements
and addresses the following research problems: single-object
triangulation, single-object tracking, multi-object triangulation,
multi-object tracking, and camera calibration. It builds on two
existing approaches: localization from non-rectified cameras
[19] and sensor calibration based on the Probability Hypoth-
esis Density (PHD) filter [40]. The novel contribution is the
generalization of [19] to the estimation of moving objects from
non-rectified cameras and the use of this approach within the
existing sensor calibration technique [40], which has not been
applied to the case of camera networks, to obtain a unified
Bayesian framework for joint multi-object tracking and camera
calibration, applicable to an arbitrary camera setup and an
arbitrary number of objects.
The statistical framework is presented in a series of steps, as

follows. First, the problem of triangulation from cameras and
the concept of disparity space are described in Section I, fol-
lowed by a discussion on the representation of object-state and
object-measurement uncertainty in Section II. The simplest and
most constrained case of a single-object state estimation from
calibrated cameras is then considered in Section III, followed by
the case ofmulti-object state estimation from calibrated cameras
in Section IV, and finally joint multi-object state estimation and
camera calibration in Section V. Experimental results on simu-
lated and real data are shown in Section VI.

I. TRIANGULATION FROM CAMERAS

Triangulation is of importance in various engineering ap-
plications, e.g., surveying, navigation, metrology, astrometry,
binocular vision and target tracking, and is the fundamental
estimation problem underlying all of the algorithms presented
in this paper. The principle of triangulation from a pair of
cameras is shown in Fig. 1, where a point in the real world

is projected onto the left and right camera image
planes, and , and its respective projections are denoted
and . Triangulation can then be formulated as the process of
recovering the point from its projections and . For this
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Fig. 1. Two Cameras and observing the same point .

purpose, the relation between and the image planes must be
formulated. Such a formulation can be made easier by using
the concepts of projective geometry [11], as described next.

A. Triangulation and Projective Geometry

A point in is represented by any triple
with , and any such triple is re-

ferred to as the homogeneous coordinates of the point . A
general perspective projection is a linear transformation in ho-
mogeneous coordinates, represented by an ma-
trix, where is the dimension of the original projective space.
Henceforth, projective equivalents of spaces and points will be
denoted with a bar. A perspective projection matrix relates the
homogeneous point in with a homogeneous
point in any of the image planes and
through a matrix-vector product:

(1)

where is a 3 4 matrix and where “ ” refers to equality
up to a scaling factor. Homogeneous coordinates simplify the
notation needed to describe perspective projections and allow
for projective-geometric concepts such as points and lines at in-
finity [15]. For the purposes of Bayesian estimation, however,
the perspective projection must be expressed in Euclidean co-
ordinates, in order to allow for a meaningful definition of a dis-
tance between points, namely the Euclidean distance. The point
is then expressed in Euclidean coordinates as

, which is thus a nonlinear function of the coordi-
nates of the real-world point . If is the projection onto the
left (resp. right) image plane, then will be the point (resp.
).
Triangulation is typically performed in 3-D directly, since we

are generally interested in the object's state expressed with re-
spect to the world coordinate system. However, Bayesian esti-
mation requires the modelling of uncertainties, as described in
Section II, and in 3-D, due to the nonlinear nature of the perspec-
tive projection, uncertainties will tend to be highly range-depen-
dent [42] and the possible distance of the object from the cam-
eras might become unbounded. These aspects make the integra-
tion of uncertainties difficult in the world coordinate system, and
a re-parametrization is required. One of the most well-known
methods for tackling this problem is referred to as the inverse

depth approach [34], [7], and has been successfully used for Si-
multaneous Localization and Mapping (SLAM) problems. It re-
lies on a parametrization in which the uncertainty is more easily
quantified as a Gaussian distribution. Although it is applicable
to most reasonable SLAM configurations, the performance of the
inverse depth approach degrades as the baseline becomes larger
[19]. We thus investigate an alternative parametrization, called
disparity space, and assess performance against inverse depth in
Section VI-A for triangulation from cameras. The principle of
disparity space is described in the next section.

B. Disparity Space

The notion of binocular disparity, defined by the difference in
the location of an object in two images, arose from research into
mammalian visual systems to reflect the horizontal separation
of the left and right eyes [24]. Perception of depth is obtained
in stereopsis as a consequence of this binocular disparity. The
same concept is applied to problems in computer vision for ex-
tracting depth information from stereo cameras and researchers
have designed algorithms for 3-D estimation from cameras by
considering the disparity space as a state space [2], [13], [14],
[21], [22].
The concept of disparity space is closely linked to the idea of

a rectified camera setup, as shown in Fig. 2 (cf. Fig. 1, showing a
more general, non-rectified camera setup). Formally, assuming
that the projection matrix of the left camera is of the
form , then the pair is called horizontally
(resp. vertically) rectified if the projection matrix of the right
camera is of the form where
(resp. ); the parameter is called the baseline.
Henceforth, we will consider rectified cameras to be horizon-
tally rectified, as in Fig. 2. Let be the rectified camera
pair, let and be the respective camera image planes, and
let the projections of a real-world point be denoted with

in and in . The point is
represented in the disparity space associated with the
rectified camera pair by a point of the form

where is referred to as the disparity, as it measures
the difference in the camera views of the point . The point
characterizes both the left and right projections, and , as
depicted in Fig. 2.
In the context of projective geometry, it is possible to relate

the points and through a linear transformation as

(2)

where and denote, as in the previous section, the projective
equivalents of the points and .
It is useful to express the transformation in terms of the

elements of the camera projection matrices and . As a con-
sequence of the fact that the camera pair is horizontally rectified,
it holds that
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Fig. 2. A rectified camera pair and the related disparity space .

for , where is the th row of the matrix . The
matrix can then be expressed as

(3)

The existence of transformation means that the disparity
space can be used as a proxy space for triangulation from
cameras and any point in can be converted to its equivalent
in via the inverse transform of .
To allow for triangulation, a link between the disparity space

and the image planes must also be established. With the rec-
tified camera setup, the point is projected onto the left- and
right-camera image plane, and , by applying the respec-
tive orthographic projections, and , defined as

(4)

In summary, the disparity space associated with a pair of rec-
tified cameras allows for expressing the process of observation
(1) as a linear mapping (4), while maintaining a one-to-one cor-
respondence with the real world , as shown in (2). As the
concept of disparity is related to the concept of inverse depth,
the disparity space inherits from the advantages of the in-
verse-depth parametrization [7], [34], but the fact that it also en-
ables a linear projection onto the image planes and makes
it particularly suitable for Bayesian tracking.

II. REPRESENTING UNCERTAINTY

The purpose of this section is to describe the sources of un-
certainty in an object's 3-D state when observed from cameras,
for a static object in Section II-A and for a moving object in
Section II-B.

A. Static Object
The most common approach in Bayesian tracking is to as-

sume that objects are point-like. This is justified in radar appli-
cations by the relatively small extent of the objects in the scene,
when compared to the radar resolution. In such a case, if an ob-

Fig. 3. Modeling of uncertainty in triangulated camera observations. The solid
lines show the actual uncertainty in 3-D, defined by the camera's field of view.
When the Gaussian uncertainty in camera observations is mapped from the
image space, via disparity space (4), into the 3-D space (3), it takes on
a distinctly non-Gaussian nature, as shown by the dotted curve. In contrast, the
corresponding Gaussian uncertainty in 3-D is shown by the dashed ellipse and
the difference between the Gaussian and non-Gaussian representation is high-
lighted in red.

ject of interest is static, its state can be described by its position,
represented by a point state in [39].
When the sensor is a camera, the extent of the objects is often

observable, so that the shape of the objects can be estimated
[27]. Yet, in the context of camera calibration, the estimation of
the extent, or of the shape, of the objects is not always desirable,
as it significantly increases the difficulty of the problem without
directly contributing to the convergence of the estimation of cal-
ibration parameters.We approach this problem bymodelling the
extended observation of an object on the camera image planes
as an uncertainty on the point-like object state, which affects the
estimation in a similar way to a point spread function.
Even if an object is actually point-like, an important source

of uncertainty stems from the observation process itself, namely
the camera observations. The fact that image measurements are
inherently noisy, and hence estimation from them requires sta-
tistical methodology, has been recognized by many researchers.
The observation errors in and are modelled as Gaussian,
which is generally a reasonable assumption [42]. It follows that
the corresponding uncertainty in the space is non-Gaussian,
as illustrated in Fig. 3. This raises the question of how to char-
acterise the distribution describing the state of the object in .
Although the Gaussian distribution is very popular, it is clearly
not appropriate in this context. The choice of a good model for
is further complicated by the fact that the uncertainty in the tri-
angulated object state is range-dependent, i.e., heteroscedastic.
In this situation, one typically resorts to particle representations
[3] to approximate .
However, the particle representation of also has its limita-

tions. One of the most serious limitations is its inability to rep-
resent objects that are infinitely far away from the camera. In
this case, the support of the distribution is not bounded and
infinitely many particles are required to represent it fairly.
The inapplicability of the usual representations to modelling

the distribution in motivates the use of another state space,
the disparity space, in which this can be achieved more easily.
As shown in the previous section, the disparity space is

related to the camera image planes and via a linear trans-
formation (4). It follows directly that a Gaussian uncertainty in
these image planes back-transforms into a Gaussian distribu-
tion on . The fact that is also in one-to-one relation with
through (2) makes the disparity space a suitable space for the
representation of the uncertainty for purposes of 3-D estima-
tion. Estimating the position of the object of interest can then
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be achieved via a Kalman filter update, as demonstrated in [8]
and [21].

B. Dynamic Object

If the object of interest is dynamic, its state will include its
position in , as well as parameters modelling its dynamics.
The dimensionality of the state space depends on the type of
dynamics required to model the motion of the object. For in-
stance, if the object is assumed to have a constant, but unknown,
velocity, then the state of the object is a vector in , where the
2 3 coordinates represent the object's position and velocity in
. Therefore, let be the space of vectors of the form

, where and
. The disparity space also has to be extended to

model velocity, and we define as the space of vectors
of the form , with and defined
as time derivatives of and .
Let be the set of time steps. The dynamics of the

object of interest are usually uncertain and are modelled by a
Markov transition from to , such that if the object
is at point at time , then the probability for it to be
at point at time is .
The uncertainty associated with the object's dynamic transi-

tion from to is often assumed to be Gaussian in . As
discussed in Section II-A, however, the uncertainty in the posi-
tion of the object is more naturally represented as a Gaussian in
. This raises the following question: how to relate these two

types of uncertainty in the estimation process?
Denoting with the Gaussian distribution on representing

the state of the object at time , the proposed solution to this
question can be divided into 6 steps:
a) Sample a particle representation of in ;
b) Map this representation into ;
c) Apply the Markov transition in ;
d) Map the resulting particle representation back into ;
e) Recover the Gaussian distribution by computing

the statistics of the resulting representation in ;
f) Compute by applying the Kalman update in .
This approximation will be consistent with the proposed

update method as long as propagating the particles through
the Markov transition kernel in 3-D preserves the shape of the
distribution in disparity space, which is required for the basic
Kalman update of step f). This can be shown experimentally by
testing statistically whether the particle cloud in disparity space
is Gaussian after prediction. A robust test to verify whether
an empirical distribution is multivariate normal is the BHEP
test [16], which compares the empirical characteristic function
of the sample residuals with the theoretical characteristic
function of the multivariate normal distribution. To perform
this test, a particle cloud was initialized in from a simulated
measurement, with velocity initialized in 3-D with a Gaussian
distribution. The Gaussianity of the sample was tested using
the BHEP test to evaluate multivariate normality for increasing
lengths of prediction time. The resulting p-values averaged over
100 Monte Carlo (MC) runs can be seen in Fig. 4(a). As it can be
seen, the distribution can still be considered Gaussian after over
a second (at 24 fps), which suggests that the approximation is

Fig. 4. Averaged p-values of the BHEP test over 100 MC runs for (a) different
lengths of prediction time and (b) different relative angles between the camera
pair ( radians). The red line is the 5% confidence threshold, under
which the test fails to assert Gaussianity.

suitable for the estimation process as long as observations are
relatively frequent. The same test was carried out on the point
clouds in 3-D, but these yielded p-values of near zero every
time and are not displayed.
Although the approach described above (see also Algorithm

1) bears some similarity with the Unscented Kalman Filter
(UKF) [25], in the sense that we are approximating a Gaussian
distribution with particles, the important difference is that sam-
ples are drawn randomly from the posterior, which enables us
to maintain the nonlinearity when re-parametrizing. The reason
for not using the UKF itself, or even the Extended Kalman Filter
(EKF) [23], is that the non-linearity in the observation model is
too pronounced to be fairly represented by a point (EKF) or by a
set of -points (UKF). The approximation that is applied in step
e) above, by recovering a Gaussian distribution from the par-
ticle representation, might be very optimistic, yet the objective
is to be explicitly aware of the uncertainty, which might not be
the case with the UKF and EKF. This aspect is exemplified in
Fig. 5, where the distribution before and after prediction in the
- and - planes is displayed for several prediction methods.

In the case depicted, the EKF manages to capture the overall
motion, as the mean of the associated Gaussian distribution
and the mean of the set of particles seem to match, yet, it
fails to understand the evolution of the uncertainty and clearly
underestimates it in the - plane. In the case of UKF, it appears
that even though the shift of the mean and the general evolution
of the uncertainty is better captured than with the EKF, there is
still a non-negligible error in the estimation of the covariance.
This is mainly due to the noise on the motion model in ,
which becomes non-linear in the disparity space . The particle
prediction, which relies on 500 particles, manages to capture
both the non-linearity of the motion and of the associated noise.

III. SINGLE-OBJECT ESTIMATION

3-D object tracking refers to the problem of estimating the
position and dynamics of the object at each point in time, based
on a sequence of noisy measurements which originates from one
or several sensors. This definition coincides with the mathemat-
ical theory of stochastic or Bayes filtering and these terms have
become synonymous in the sensor fusion community due to the
widespread deployment of filtering techniques in practical ap-
plications. The importance of fusing the estimates in the case
where the considered sensors are cameras is recognized as an
instrumental way of reducing the uncertainty in triangulated es-
timates [1], [12].
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Fig. 5. Transformation of a Gaussian prior (green) for the prediction of a dy-
namical object. The model is constant velocity with cm s and

cm s and a noise with variance 0.08 cm s . (a) - plane in ,
(b) - plane in .

Statistical methods for estimating the uncertainty in 3-D, such
as finding the Cramer-Rao Lower Bound (CRLB), have previ-
ously been investigated [5], [6], [51], though researchers often
transform the measurement or linearize the system before esti-
mating the uncertainty, thereby losing the underlying statistical
sensor characteristics in the process. Indeed, like in the case of
triangulation, it is usual to express the tracking problem in the
3-D Euclidean space, since the operator is ultimately interested
in knowing the state of the object, such as position and velocity,
in the world coordinate system. There is a long history of using
Kalman filters and their extensions to non-linear systems, such
as EKF, for solving 3-D motion estimation from images ([31],
p. 437). Unfortunately, in the presence of the nonlinear obser-
vation model and range-dependent uncertainty in 3-D estimates,
the usual assumption of Gaussianity in the Kalman filter leads to
a poor characterisation of the posterior distribution in 3-D, par-
ticularly in the depth estimate, and hence the use of the Kalman
filter and its non-linear variants will almost inevitably lead to
filter divergence and poor tracking performance. This is partic-
ularly acute for targets in long-range stereo applications [42].
Because of the aforementioned disadvantages of dynamic es-

timation in 3-D space, we instead turn to dynamic estimation
in disparity space. Estimation in disparity space has three key
advantages over estimation in 3-D Euclidean space: (i) the pro-
jections into the observation space (the two image planes) are
linear, (ii) the noise in the state estimate is range-independent,
and (iii) the range of the estimated variable is bounded by the
image size. Consequently, in disparity space, the position of an
object can be estimated with the linear-Gaussian assumptions
required for the Kalman filter update, and hence optimally and in
closed form. This allows for a straightforward error analysis, for
example, the computation of the Fisher information and CRLB
[10]. A solution for the estimation of moving objects from a
rectified camera pair is introduced in Section III-A, and an ex-
tension to non-rectified cameras is proposed in Section III-B.

A. Rectified Camera Pair

As mentioned in the previous section, the estimation of a
single static object can be handled via a Kalman filter update in
. A particle prediction between two time steps is used when

the object is dynamic (i.e., when its state lives in ). Let
be themean and covariance of an observation at time from
the camera , with . The likelihood can be
expressed as

where is a normal distribution with mean and
covariance matrix , evaluated at point . If the object is dy-
namic, the observation matrices (4) have to be suitably aug-
mented. For example,

is the observation matrix from to the left camera image plane
. Note that the velocity is assumed to be unobserved.
In order to completely specify an estimation algorithm for the

object of interest, the initialization has to be described as well.
As we do not assume that the camera pair is synchro-
nised, initialization has to be dealt with using a single camera,
say the left camera . Consider that we receive the first obser-
vation with covariance at time . This
observation can be used directly to initialise the first two com-
ponents of the Gaussian distribution in . However, the dis-
parity, and possibly the velocity, are not known a priori and have
to be initialized in some other way. The mean of the disparity
can be computed by considering the expected distance between
the left camera and the object. The variance has to be taken
sufficiently large for the disparity 0 to be likely enough, when-
ever the object is possibly infinitely far away from the camera.
As a consequence, negative disparity, which represents objects
behind the camera pair, must be included. This is necessary in
order to maintain a Gaussian distribution in and does not rep-
resent an issue in general. The mean and covariance and
of the Gaussian distribution can now be determined, and the
estimation carried out, as described in Algorithm 1. In this algo-
rithm, a hat is used to refer to the predicted mean and covariance
in order to underline that prediction is necessary in the space
only, where moving objects are modelled.

B. Non-Rectified Camera Pair
Estimating the state of an object from a non-rectified camera

pair is a challenging problem, as the linear observa-
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Fig. 6. Illustration of the non-linearity of one of the components of the ob-
servation function with respect to inverse-depth , as the camera pair becomes
non-rectified. Starting from a rectified configuration with baseline , the right
camera is rotated by an angle of radians. (a) m. (b) m.

tion model obtained from the rectified camera geometry is not
available anymore. This aspect is illustrated in Fig. 6, where the
nonlinearity of the observation function is shown for two dif-
ferent non-rectified camera pairs. Yet, taking advantage of the
approach which applies in the rectified case, and has been de-
tailed in the previous sections, is still beneficial. This idea is de-
scribed in detail and assessed against the standard inverse-depth
parametrization in [19], so that only the underlying principles
are restated here.
In the previous section, a particle-based prediction has been

used in order to handle the possible motion of the object of in-
terest. In the case of a non-rectified camera pair, a similar idea
can be used tomap the distribution from a disparity space specif-
ically constructed for the left camera to another disparity
space, constructed for the right camera .
The properties of disparity spaces are still strong assets, even

when considering a single camera. Yet, a disparity space re-
quires two cameras in order to be defined. The idea is then to in-
troduce two abstract cameras and that are rectified with
respect to the left and right cameras, respectively. These cam-
eras are said to be abstract as they do not exist physically, and
hence never produce observations. Two disparity spaces and

are thus defined based on the rectified camera pairs
and and are related to via the projective transforma-
tions and , as shown in Fig. 7. The process of predicting a
probability distribution while starting from the disparity space

(resp. ) and arriving into the disparity space (resp. )
will be called a particle move. Indeed, the principle of this ap-
proach is to use particle representations in order to perform the
mapping of the Gaussian distribution representing the object of
interest from one disparity space to another. Following the same
conventions as in Algorithm 1, the principle of the proposed
single-object estimation from non-rectified cameras is detailed
in Algorithm 2, where the prediction and update of a distribu-
tion in the space is performed for an observation provided
by camera , for any indices .
When the pair of cameras are rectified with respect to one an-

other, the mapping between and is linear, and so the par-
ticle move preserves the Gaussian shape of distributions in each
space. If the cameras are not rectified, the transformation is non-
linear, and so Gaussianity is not guaranteed after mapping from
one space to the other. However, it is reasonable to assume that

Fig. 7. Projection of a point in onto the disparity spaces and and
onto the image planes of the two rectified camera pairs and .

the resulting distribution is Gaussian if the extent of non-rec-
tification is not too extreme. To show this, a simulated pair of
cameras at a distance of 30 centimeters was used to evaluate
the Gaussianity of a cloud of particles after transforming from

to . Fig. 4(b) shows the resulting p-values of the BHEP
test [16] for the transformed particle cloud as the relative angle
between the cameras increases from to radians, av-
eraged over 100 MC runs. It can be seen that the approximation
preserves Gaussianity for non-rectified cameras for a range of
angles from to , which is a useful working range in ev-
eryday applications. Although the distribution is not Gaussian
outside of this interval, a Gaussian approximation might still
be sufficiently accurate to allow for localizing and tracking the
target. For instance, in Section VI-D, calibration is successfully
performed with an initial uncertainty on the rotation ranging
from to .
As mentioned before, this approach for a static object has

been assessed in [19]. However, its use for a moving object, as
in Algorithm 2, is novel. The performance of this extension will
be evaluated, together with other generalizations, in Section VI.
Fig. 8 illustrates the form of the distributions obtained when

handling the mapping from to with different methods.
500 particles have been used to represent the actual distribution
in . Once again, the UKF shows inaccuracies in its representa-
tion of the objective distribution, even though the noise on the
motion is lower than for the example shown in Fig. 5. This can
be explained by the non-linearity of the mapping between
and , which makes the representation of the uncertainty even
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Fig. 8. Transformation of a Gaussian prior in the disparity space to the
disparity space for the prediction of a dynamical object. The two cameras
have the same intrinsic parameters, with a resolution of 800 600 and a focal
length of 8 mm. The distance between the two cameras is 200 cm and the yaw is

for the left camera and for the right camera. The velocity has mean
0 and variance 0.03 cm s . (a) - plane in , (b) - plane in .

more difficult. Note that, in Fig. 8(a), the range on the axis is
much larger than on the axis , and actually extends outside of
the field of view of the right camera.
When estimating a single object, we can assume that the ob-

ject is detected and hence the particles outside of the field of
view can be discarded before fitting a Gaussian distribution. The
result of this operation is represented as an indication by the
green ellipse in Fig. 8. This can be justified by the use of a func-
tion describing the probability of detection together with the
likelihood function, as described in Section IV-C in a multi-ob-
ject context.
Although we have described the procedure for two cameras,

the approach can be straightforwardly extended to more cam-
eras by introducing a disparity space for each camera.

IV. MULTI-OBJECT ESTIMATION

Multi-camera multi-object estimation, in computer vision
also referred to as the feature correspondence [15] and feature
tracking problem, is a fundamental problem in estimation
from images, the solution of which has a wide range of appli-
cations from object recognition, camera calibration and 3-D
reconstruction to mosaicing, motion segmentation, and image
morphing. It is related to the data association [4] problem in
the sensor fusion literature: both relate to the problem of finding
the measurements which correspond to the same object that
have come from different sensors, or in dynamical systems,
from the same sensor at different times.
In a multi-object environment, this is a challenging task, since

we may not know how many objects are in the scene, there may
be many false alarms from the sensor, and there may not always
be a measurement at each time-step or in each sensor. Methods
for reducing the complexity of the problem in the sensor com-
munity usually rely on gating [4] around the object or measure-
ment to identify possible matches, or using the epipolar con-
straint [15], in the computer vision literature.
Recent developments in the sensor fusion community have

enabled practitioners to overcome the computational limitations
of combinatorial data association approaches by modelling

the system as an integrated multi-object Bayesian estimation
problem. A Bayesian solution to the multi-object filtering and
estimation problem can be found with Finite Set Statistics
(FISST) [33], a set of mathematical tools developed from point
process theory, random finite sets, and stochastic geometry.
There are a number of advantages in developing an inte-

grated mathematical framework for multi-object detection and
tracking: (i) the number of objects and their locations can
both be optimally estimated from multiple sensors; (ii) false
alarms/outliers do not need to be explicitly discarded since they
will not be confirmed by the model; (iii) the sensors are not
required to provide measurements of the objects in each image
and the sensor characteristics and frame rates are not required
to be the same; and (iv) advance matching of the measure-
ments from each object is not necessary. The FISST approach
to multi-sensor multi-object tracking has attracted significant
international attention in the sensor fusion community due
to the success of practical implementations of first-moment
multi-object approximation filters, known as Probability Hy-
pothesis Density (PHD) filters [33], [37], [9].
The advantage of viewing this problem as a multi-object sta-

tistical estimation problem and using the PHD filter means that,
in addition to providing a rigorous mathematical foundation for
multi-object estimation, (i) there is no explicit data association
for assigning measurements to targets, (ii) the PHD filter has a
linear complexity in the number of targets and the number of
measurements. Furthermore, given a video sequence of a static
scene, we can recursively apply the multi-object Bayes update
on image measurements, using disparity space, and re-param-
etrize the state estimates into 3-D, which makes the proposed
approach directly extendible to the stochastic triangulation of
multiple objects in cluttered environments.
The choice of the PHD filter as the underlying multi-object

estimation algorithm is motivated by a) its simple formulation
which enables an accessible proof of concept for joint multi-ob-
ject and camera calibration, and b) its principled foundations
which allow for the derivation of the corresponding inference
for the camera parameters. Moreover, the tracking problems
considered in this article are sufficiently simple in terms of de-
tectability to be well handled by the PHD filter. Other multi-ob-
ject filters could be used in a similar fashion and would allow for
handling more sophisticated scenarios. Filters that can be con-
sidered include the cardinalized PHD filter [33], the generalized
labeled multi-Bernoulli filter [50] or the hypothesized filter for
independent stochastic populations [17].
The method presented in this section will underpin the

method for camera calibration in the next section, since it
provides the likelihood to update the probability density on the
sensor parameters. Throughout this section, objects will be con-
sidered to be moving according to a constant velocity model,
so that the spaces and are augmented with velocity and
respectively denoted with and .

A. General Solution
We consider a population , defined as the set of objects of

interest in the scene, at time . Most often, the size of the
population is not known and might vary in time. Addition-
ally, the correspondences between the estimated population and
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the received observations are not generally known. As a con-
sequence, a sufficiently general model has to be constructed in
order to allow for the estimation of the population for any
time .
The most popular estimation framework applicable in this

context is the FISST framework [33]. In the following, we pro-
vide a brief summary of this framework, necessary to motivate
the remainder of the paper, and refer the interested reader to
[18], [33] for a more exhaustive description.
Denoting with and the probability of survival

and the probability of detection from camera at state
, the FISST framework allows for modelling that:
1) a new set of objects might appear a each time ,

so that ,
2) every object's motion is independent of the other objects,
3) an object in with state might disappear from

the scene with probability ,
4) an object in with state can be either non de-

tected with probability or detected through the
observation with probability , with

, and
5) the set of observations in at time contains inde-

pendent object-originated observations, as well as indepen-
dent spurious observations, spatially distributed according
to the probability density on , and the number of which
is driven by a Poisson distribution with parameter .

We assume that only depends on the coordinates
in the image plane , so that the choice of state space has no
consequence on the probability of detection.
As the correspondences between objects and observations are

not assumed to be known, we introduce association functions of
the form , where is the empty observation.
Denoting with the inverse image of through , we assume
that the restriction of the function is a bijec-
tion. The set of such association functions is denoted with .
With these models and assumptions, and following [33], we

can proceed to the estimation of the population via the following
prediction and update steps:

where refers to the set integral [33], and
are the predicted and updated multi-object densities describing
the probability for the objects in to be at given points in the
set of points in , and and are the conditional
multi-object densities describing prediction and update, with
expressed as

The evaluation of every possible association in is
extremely costly in practice and the complexity becomes
exponential in time. It is therefore useful to avoid resorting ex-
plicitly to . This is made possible by reducing the multi-object
densities and to their first moment densities and .
With additional assumptions, the estimation can be performed
using only these first moment densities, and the resulting filter
is the PHD filter [32].

B. The PHD Filter
As stated in the previous section, it is possible, with some

assumptions, to propagate only the first moment of the multi-
object densities of interest. These assumptions are as follows.

A.1 At any time , all the objects in have the same
probability density on .
A.2 The cardinality distribution of the set follows a
Poisson distribution.

Under these two assumptions, and following [32], the first-
moment density describing the population of interest can be
propagated as follows

.

where is the first-moment density representing the appearing
set of individuals .
Two implementations of the PHD filter are available, the

Gaussian Mixture PHD filter [48], or GM-PHD filter, and the
sequential Monte Carlo PHD filter [49].
As the objective is to incorporate the single-object filter, de-

signed in the previous sections, into a multi-object framework,
the choice of a Gaussian mixture implementation of the PHD
filter is the most appropriate. The transition is then the
particlemove between the disparity spaces and , from time

to time . Note that the use of the Gaussian mixture imple-
mentation requires additional assumptions:

A.3 The probability of survival is state-independent.
A.4 The probability of detection is state-independent.

With these assumptions it can be demonstrated [48] that the
equations of the PHD filter propagate in closed form a Gaussian
mixture of the form:

Note that the weight of the th term in the mixture does
not depend on the space in which the Gaussian distribution is
expressed.
However, Assumption A.4 is too strong when considering a

pair of cameras, as their field of view might, and will, signif-
icantly differ. It is then necessary to relax such an assumption
and we discuss this in detail in the next section.
Following the choice of initializing the probability density

with the first observation available, we adopt the observation-
driven birth, detailed in [20]. Note that previous attempts to use
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Fig. 9. Gaussian fitting for a state-dependent probability of detection in the 1-D
case. for and for . Solid line: detection
term—Dashed line: missed-detection term.

the PHD filter with cameras, e.g., [38] or [28], required the scene
to be bounded and/or the use of at least 3 cameras. These re-
strictions limit the impact of the error made when representing
the uncertainty by a Gaussian distribution in and increase the
observability of the objects as the problem of triangulation from
3 points of view is better constrained than from only 2.

C. State-Dependent Probability of Detection
As opposed to radar applications, the estimation of multiple

objects from a camera pair requires the fields of view to be prop-
erly modelled. For this reason, AssumptionA.4must be relaxed.
Once again, we can resort to a solution similar to the particle
move, introduced in the previous sections, in order to consider
a state-dependent probability of detection.
Formally, the following two Gaussian distributions can be

computed for each original Gaussian term in the mixture :
• one corresponding to the missed detection term:

• one corresponding to the detection term:

where the subscripts “ ” and “ ” indicate missed detection and
detection respectively. This is achieved by sampling particles
according to the predicted law and then applying the state-de-
pendent probability of detection before computing the mean and
covariance of the obtainedweighted set of particles. An example
of such an approach is depicted in Fig. 9. Denoting by and

the modified missed detection and detection first-moment
densities, the PHD update can be expressed as

(5)

Note that the Gaussian distributions which depict objects that
are almost surely inside or outside of the field of view can be
kept as they are, so that only the weight changes. For in-
stance, if the object is almost surely inside the field of view,

and , where is the
constant probability of detection within the field of view of the
camera .
Equipped with a suitable way of estimating multiple objects

from a non-rectified camera pair, we now proceed to describe
a solution for the problem of camera calibration in the next
section.

V. CAMERA CALIBRATION FROM MOVING OBJECTS

Camera calibration refers to the estimation of the parameters
of the imaging process, such that when two or more views of
the same scene are available, the original 3-D scene and its di-
mensions can be reconstructed by solving an inverse problem.
How accurately the original scene can be reconstructed depends
on the number of parameters that can be estimated and con-
sequently different calibration methods exist. If some ground-
truth knowledge about the scene is provided, e.g., a calibration
object with known Euclidean 3-D coordinates, the Euclidean
calibration can be performed directly [47]. Alternatively, the so
called stratified approach is used [43], which gradually refines
the calibration from projective to Euclidean.
In practice, a calibration object is not always available and

hence the stratified approach, which relies only on the informa-
tion extracted from the images, is more appropriate. Projective
calibration is usually achieved by structure-from-motion tech-
niques [46] which unrealistically assume perfect knowledge
of measurement correspondences as an input to the calibration
process. This in turn means that such projective calibration
implicitly assumes that the estimated correspondences were
updated with the correct measurements and the corresponding
points are known in at least a certain number of images. The
possibility of incorrect data association or correspondence is
not considered as such cases are pruned from the input data and
similarly, the possibility of incorrect estimation of the number
of correspondences is also not considered. As a consequence,
useful information is removed from the input data before the
calibration process even begins.
To remove the dependency of the calibration method on per-

fect input data, the calibration can instead be formulated as an
extension of themulti-object stochastic estimation problem, dis-
cussed in the previous section. In fact, given that the projec-
tive camera calibration relies on information obtained from the
multi-object state estimation, estimating the multi-object state
of an uncalibrated dynamic system is inherently suboptimal if
the camera parameters are not estimated as a part of the same
process.
We propose to address this problem as a doubly-stochastic in-

ference problem [45], where the measurements are conditioned
on the multiple object locations, that are in turn conditioned on
the relative camera orientation. A similar method using random
finite sets has been developed for the related problem of simul-
taneous localization and mapping for autonomous robot naviga-
tion [36], [29], [30], where each object measurement contributes
both to a feature in the world and self-localization of the vehicle.
Reliable estimation requires reliable knowledge of the sensor

parameters, and thus sensor calibration has been a central
problem in multi-object multi-sensor tracking. In the context
of FISST, solutions to this problem have been derived recently
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[29], [35], [40]. However, these solutions have not been used
for calibrating cameras. The objective of this section is to
extend the multi-object estimation framework, described in
the previous section, and present a method for calibrating a
non-rectified camera pair by formulating a joint multi-object
tracking and camera calibration algorithm.

A. Model Parameters

The origin of the coordinate system is assumed to be aligned
with the left camera position and orientation, so that only the
right camera has to be calibrated in order to define the camera
pair . Let , be the space in which the
state of the right camera is described. In general, the components
of a given state vector in can be
• the camera's position and orientation in (6-D),
• the velocity and rotation rates (6-D),
• the focal length (1-D),
• the coordinates of the principal point (2-D), and
• the image distortion (1-D) for a non-pinhole camera,

so that the dimension of the right-camera's state space can be
as high as 16.
The objective is to jointly estimate the state of the multiple

objects in the scene, as well as the state of the right camera,
, relative to the left camera, . We thus introduce the joint

probability distribution which encompasses the right camera
state , as well as the multi-object state

where is a probability distribution over .
For the same reasons as the ones discussed in Section IV-A, it

continues to be impractical to work with multi-object densities
directly, and the first-moment density

(6)

is preferred. This relation holds as the first-moment density cor-
responding to a single-variate distribution is the distribution it-
self. Equation (6) indicates that the use of the PHD filter for prop-
agating the first-moment density can be considered. We de-
scribe this approach in the next section.

B. Conditional PHD Filtering

Due to the conditional nature of (6), the derivation of the PHD
filter results in an expression that is different to the usual PHD
filter equations. The result of this derivation, detailed in [40],
can be expressed as

where is found via the PHD update (5), where
and might be dependent on , and where re-
lates to the probability for the sensor state to generate a suc-
cessful multi-object update, expressed as

where , with “c” standing from “calibration”, is in-
terpreted as the likelihood of the observation set , given the
camera state , defined as

.

The expression of contains a product over the observations,
assessing the probability for each of these to be either a spurious
observation or to come from an object in . This form confirms
the status of a multi-object likelihood for .
Interestingly, the structure of the joint multi-object tracking

and camera calibration is similar to the one derived for group
tracking, see, e.g., [44] and [45]. This similarity can be ex-
plained by the hierarchical structure shared by the two estima-
tion problems.
As the single-object likelihood exhibits the same kind of

non-linearity as the mapping from to or , we can readily
conclude that the distribution is likely to be non-Gaussian in
. However, we do not wish to model the possibility for the

right camera to be infinitely far from the left camera, and thus a
particle representation is now suitable.
For these reasons, we select a particle representation of the

camera distribution , composed of particles , ex-
pressed as

where is the Dirac function at point . The updated joint
first-moment density can then be rewritten as

so that each possible camera predicted state is associated
with a specific conditional first-moment density , prop-
agated with a GM-PHD filter.
In practice, particle implementations are known to be sen-

sitive to the curse of dimensionality. The number of particles
needed to maintain a certain approximation error grows expo-
nentially with the number of state dimensions. Therefore, every
effort should be made to decrease the number of calibration pa-
rameters being estimated. Rather than estimate all of the above
mentioned parameters in one pass in a 16-dimensional state
space, we suggest the following approach:
1) Assume that the camera pair is in a static configuration, in

order to temporarily ignore the 6 dimensions required for
the motion estimation. The intrinsic parameters can then
be estimated within a 10-dimensional state space.

2) Once the intrinsic parameters are known, the estimation
of the position and velocity can then take place within a
12-dimensional state space.

VI. RESULTS ON SIMULATED AND REAL DATA

The proposed approach was validated with several simulated
scenarios and one real dataset, depicting interesting examples
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Fig. 10. Performance of the estimation in disparity space compared with in-
verse depth for the localization of a static object with a non-rectified pair of
cameras.

Fig. 11. Performance of the proposed single-object tracking algorithm (dis-
parity space) compared against a particle filter with 250, 500 and 1000 particles
(PF:250, PF:500 and PF:1000).

of use. The basic experimental configuration is a pair of non-
rectified cameras that observe a scene with objects that behave
in different ways:
A. Single-object localization: the disparity space approach is

compared with inverse-depth (Fig. 10)
B. Single-object tracking: the proposed method for single-

object tracking, detailed in Algorithm 1, is compared with
a particle filter (Fig. 11)

C. Multi-object tracking: the approach of joint calibration
and tracking is assessed for random camera configurations
(Fig. 12)

D. Camera calibration: the approach is assessed in simula-
tions in order to show the convergence of the extrinsic
camera-parameter estimates (Fig. 13) and the tracking
performance of the underlying multi-object estimation
(Fig. 12)

E. Real Data: the proposed framework is tested on real data
and results are presented in Figs. 14 to 17 and in the sup-
plementary material

Fig. 12. Average performance over 50 MC runs for the multi-object tracking
algorithm with and without calibration. Parameters of the OSPA distance with
cutoff and 1-norm.

Fig. 13. Average performance over 50 MC runs for the estimation of the
extrinsic parameters of the right camera for the proposed joint multi-object
tracking and camera calibration algorithm.

Fig. 14. Measurements (green crosses) and tracks (red dots) projected on the
left and right camera planes. (a) Paper planes, left view, (b) Paper planes, right
view.

These examples are presented in the following sections.

A. Single-Object Localization

One of the strengths of the disparity space representation is
that it allows for the definition of prior distributions, where a
large range of distance values are taken into account, using a
single Gaussian representation. This is advantageous for trian-
gulation, since it limits the amount of resources that are neces-
sary to define a prior distribution for a newly observed object,
and then localise it using a Bayes update.
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Fig. 15. 3-D views of the estimation of the intrinsic parameters view 2500
particles. Particles are displayed with a color ranging from white to black, de-
pending on their weight - the higher, the darker.

Fig. 16. Estimated 3-D trajectories of the paper planes (blue lines) with the
back wall and the ground of the auditorium indicated in black.

Fig. 17. Mean and covariance of the Maximum A Posteriori (MAP) for the ex-
trinsic parameters over 15 MC runs (small ellipsoid) compared to the initial un-
certainty (large ellipsoid). (a) Position, (b) Orientation.

In this scenario, the localization performance of the disparity
space-based solution is compared against inverse depth, as in
[19]. Two cameras are set up as follows: the first camera is at
the centre of the coordinate system and the second camera is
translated by 80 cm along the axis with respect to the first,
and rotated radians around the axis, i.e., the setup is
non-rectified. The object is located along the axis, 150 cm

TABLE I
SIMULATED CAMERA PARAMETERS

away from the left camera, and is observed by the modelled pin-
hole cameras. The camera parameters are given in Table I. The
initialization of the inverse depth component is made equivalent
to the one used for disparity, with mean and standard
deviation .
The average performance over 100 MC runs for the two lo-

calization algorithms is shown in Fig. 10. It appears that the in-
verse depth approach does not cope well with the non-linearity
of the observation function and makes a significant error at the
second time step, whereas the disparity space approach man-
ages to localise the target almost instantly. This result can be
explained by the limitations of the EKF, which is used for the
inverse-depth approach, as originally published in [34], when
dealing with non-linear functions such as the one depicted in
Fig. 6. This example corroborates the fact that the proposed so-
lution does manage to propagate the uncertainty between the left
and right disparity spaces, and , as already suggested in
Fig. 8.

B. Single-Object Tracking
The suitability of the disparity space parametrization for

tracking was evaluated through an experiment where an
object moves away from the left camera with a nearly-con-
stant velocity. This was done to analyze how capable the
parametrization is to deal with smooth changes in distance. The
configuration of the camera pair is as follows: the left camera

is at and is rotated by an angle of about
the axis, while the right camera is at (20, 0, 0) and is
rotated by an angle of about the axis. As before, the
filter was initialized with a prior distribution in disparity space,
and then it was successively updated with measurements that
were acquired synchronously from both cameras. Even though
synchronicity of the camera pair is not a necessary assumption
in our algorithm, it is shown here that this special case can be
treated equally well. The experiments consisted of tracking an
object with an initial velocity of 6 cm s along the axis.
The performance of the proposed solution is compared

against a particle filter. The objective is to demonstrate that the
approximation made when fitting a Gaussian distribution after
the particle move is compensated for by the gain in accuracy ob-
tained during the observation update. The average performance
over 100 MC runs for the disparity space approach is shown in
Fig. 11, together with the performance of a particle filter for
different numbers of particles. It appears that the particle filter
struggles at the initialization, both in the estimation of position
and of velocity of the target. This can be explained by the
degeneracy of the set of particles when the prior distribution
is updated by the observation from the right camera. Towards
the end of the experiment, the target is up to 10 m away from
the camera pair, and the estimation is once again made difficult



2946 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 11, JUNE 1, 2016

for the particle filter, as resampling is needed more and more
frequently to cope with the noise in the observations. The
disparity space approach only uses 250 particles for the particle
move and does not require resampling to be applied. As a
consequence, the computational time is equivalent to a particle
filter with 250 particles, while the performance is better than
that of a particle filter with 1000 particles.

C. Multi-Object Tracking

Having assessed the performance of the disparity space rep-
resentation for tracking a single target, an experiment was done
to evaluate the performance of a PHD filter equipped with the
disparity space representation for simultaneously tracking mul-
tiple objects. To evaluate the performance of the multiple target
tracker, the OSPA metric [41] was utilized. This metric is com-
monly employed to measure the performance of multi-object
tracking filters. It gives the distance between two sets of points
by first solving the optimal assignment problem and returning
a weighted combination of the average distance between the
matched points and the difference in cardinality between the two
sets.
For this experiment, the basic camera configuration is similar

to the one considered in Section VI-B, i.e., the cameras were
located on the plane at cm and 20 cm along
the axis, and rotated and radians around the
axis, respectively. In order to test the robustness of the proposed
method, the right camera position and orientation are changed
randomly for each Monte Carlo run, with the following respec-
tive standard deviations: 0.2 cm, 0.5 cm and 0.2 cm on
and as well as rad, rad and rad for the
rotations about and . The model parameters used for the
GM-PHD filter are as follows: the merging distance is equal to 7,
the pruning threshold is set to , the false alarm Poisson pa-
rameter is and the probability of detection is equal
to 0.95. Seven objects moving according to a constant velocity
model were observed by the two cameras. In Fig. 12, the evolu-
tion of the OSPA metric is displayed with the label “Known reg-
istration”, showing good agreement between the ground truth
and the obtained estimates.

D. Camera Calibration

Following the assessment of the proposed method for
tracking one to many targets in Sections VI-A to VI-C, the
objective in this section is to demonstrate that the extrinsic
parameters of the right camera can additionally be estimated by
tracking 7 non-cooperative moving targets.
For this experiment, the cameras were set up in a configura-

tion similar to the one considered in Section VI-C. Fig. 13 shows
the convergence of the estimation in position and orientation for
a 6-D calibration problem with 2500 particles for the calibration
and the following values for the uncertainty:
• Prior position: cm,
• Prior orientation: and .
Fig. 13 demonstrates that the proposed solution enables the

calibration of non-rectified cameras from multiple, non-cooper-
ative, moving objects, when the data association is not known.
The considered scenario is the same as in Section VI-C, so that

the two OSPA distances can be compared. The average OSPA dis-
tance can also be found in Fig. 12 with the label “Unknown reg-
istration”. It first appears that the difference between the two is
larger before the initialization of the second set of tracks around
the 7th time step, and then stabilizes for the rest of the scenario.
This shows that the first appearing targets bring more informa-
tion than the ones appearing later on in the scenario. A sur-
prising result is that the OSPA distance for unknown registration
becomes smaller for one or two time steps when new objects
appear. This phenomenon can be explained by the fact that be-
fore convergence, the objects tend to be seen at a closer range
than their true position, which, because of the greater localiza-
tion accuracy at shorter ranges, causes the early confirmation of
the tracks.
Note that the values of the standard deviation in position are

large enough to set up the initial value by the naked eye, as
it covers a 12 cm error in each direction, whereas the actual
distance between the two cameras is 40 cm. The uncertainty
for the orientation around the -axis is also relatively large,
as it covers up to 45 . The orientations and around the
and axis, respectively, are assumed to be better known, with
only 22.5 of coverage for these components. A higher number
of particles would be required to allow for a larger uncertainty
interval for extrinsic parameters.

E. Results on Real Data
In this section, the solution detailed in Section VI-D for non-

rectified camera calibration is tested on real data. This section
focuses on testing the proposed methodology on practical ex-
amples, rather than evaluating its performance with respect to a
known ground truth, which was the topic of Section VI-D. The
devices used for the test are two Point Grey Flea®3 cameras,
equipped with 8 mm lenses. As these lenses have a very low
distortion, this parameter is considered negligible and will not
be estimated. The two cameras are plugged in through FireWire
800 cables to a MAGMA® PCI Express box, which is connected
to a laptop computer.
In the considered dataset, the objects of interest are paper

planes of different colors and shapes. The paper planes are
thrown through an auditorium and sustain their flight for
several time steps, thus exhibiting sufficient observability for
their state to be estimated. They are observed by two cameras
located at the back of the auditorium, with views as shown in
Figs. 14(a) and (b). Most of the time, the motion of the paper
planes is well represented by a simple constant velocity model
with small random accelerations modelled by additive noise.
An example of estimation of the intrinsic parameters is given
in Fig. 15, where it appears that the convergence of orientation
parameters happens faster than the convergence of the position
parameters. The estimation of the state of the planes has also
been achieved, and the resulting 3-D trajectories of all the
paper planes are displayed in Fig. 16. Finally, in Fig. 17, the
variability of the MAP estimate for the extrinsic parameters is
displayed as an ellipsoid and is compared to the initial uncer-
tainty on these parameters, displayed as the larger ellipsoid.
The variability of the position parameters can be explained by
their limited observability when compared to the orientation
parameters.
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This data set demonstrates the applicability of the proposed
solution to a realistic case, where the prior knowledge on the
position and orientation of the cameras is highly uncertain (up to
1 m uncertainty on the axis), and where the observations come
from moving, non-cooperative targets. A video of the results is
available as supplementary material.

VII. CONCLUSION

A parametrization based on the concept of disparity space
has been presented for non-rectified camera networks, extended
to moving objects, and integrated into a Bayesian multi-object
tracking and sensor calibration technique. The proposed single-
object filter relies on approximations that have been shown to be
valid for a suitably large spectrum of camera setups and object
motions. The performance of the obtained framework has been
demonstrated, not only for camera calibration on simulated and
real data, but also for the underlying problems of single-object
localization and tracking, as well as for multi-object tracking.
This framework can therefore be described as a unified Bayesian
multi-object tracking and camera calibration method that only
requires the presence of non-cooperative moving objects.
Future work will cover the extension of the proposed method

to other multi-object filters and a comparative study of these
approaches for camera-based tracking as well as for camera
calibration.
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