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Abstract—In multi-function phased array radar (MFPAR) sys-
tems, time and energy resources are allocated for different tasks
so that the radar can perform various missions simultaneously.
An effective scheduling algorithm is crucial to optimizing the
overall performance of the MFPAR. There are various existing
adaptive resource scheduling methods for the allocation of radar
resources, but none of them consider the mission of imaging, a
very important task. In this paper, an adaptive ISAR-imaging-
considered task scheduling algorithm is proposed. Based on
the sparse-aperture ISAR Compressive Sensing (CS) cognitive
imaging techniques, the required resources for target imaging
can be calculated from the online cognition of the target charac-
teristics. Then the imaging mission is considered in the resource
scheduling optimization model to realize adaptive allocation of
radar resources and high-resolution imaging of multi targets.
With the proposed algorithm, different tasks, such as tracking,
searching and imaging, etc. can be implemented simultaneously,
thus the radar efficiency is significantly improved. The effective-
ness of the proposed method will be demonstrated by simulation
experiments.

Index Terms—Adaptive task scheduling algorithm, compressed
sensing, inverse synthetic aperture radar imaging, phased array
radar.
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I. INTRODUCTION

W ITH the beam agile ability, multifunction phased array
radar (MFPAR) can serve different activities such as

surveillance and tracking multiple targets simultaneously [1].
Reasonable and effective resource scheduling algorithms are
important for exploiting the high adaptive potential of MFPARs
[2]. Among existing studies, there are mainly two ways to im-
plement the resource management of phased array radar: tem-
plate-based scheduling and adaptive scheduling [3]. Although
template-based scheduling has addressed many issues in radar
task scheduling, they still have some limitations in application
since the templates are constructed of?ine while the resource is
under-utilization [4]. Different from template-based scheduling
algorithms, adaptive schedulingmethods can adjust the resource
scheduling strategy according to the working environment and
task requirements and thus received extensive attentions. In [5],
an adaptive resource management based on quality-aware was
proposed to optimize the system utility. A simple but predic-
tive heuristic algorithm proposed in [2] can reduce latency in
the schedules of lateness-sensitive tasks and lessen probability
of target losses.
High-resolution ISAR imaging techniques have been widely

applied in military and civilian areas, such as target classi-
fication and recognition, aircraft traffic control, etc. [2], [6].
However, in almost all existing adaptive resource scheduling
methods for MFPAR, the imaging mission isn't taken into
account. In fact, existing MFPARs need to allocate a fixed
and continuous part of time resources to implement imaging
function, rather than achieve it simultaneously with tracking
and searching tasks in adaptive ways. This non-adaptive al-
location mode leads to the contradiction between tracking,
searching tasks allocation and imaging tasks allocation. In
the case of multi-target imaging, this allocation contradiction
of radar resources becomes more serious. To overcome this
drawback, we attempted to seek a way which can adaptively
allocate radar resources for imaging without affecting the
resources allocation of tracking and searching tasks as much
as possible. However, achieving ISAR imaging with adaptive
resource scheduling methods is not that straightforward. It
will lead to discontinuousness in slow time domain of the
target echoes, namely, sparse aperture, which brings trouble
to traditional ISAR imaging. Linear-prediction extrapolation
or modern spectral estimation can be used to approximate the
complete echo information of a target, but these methods will
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introduce large errors when the aperture loss is large [7], so
it is required to seek a novel solution for ISAR imaging with
adaptive resource scheduling methods.
An emerging theory called Compressive Sensing (CS) pro-

vides a new method for sparse-aperture ISAR imaging. Com-
pressed Sensing was proposed byD. Donoho, E. Candès, T. Tao,
et al. [8], [9]. It can recover a sparse or compressible signal from
far fewer measurements than what the Nyquist sampling theory
claimed with high probability, by exploiting the signal spar-
sity [8]–[11]. The work in [10] introduced CS into high resolu-
tion range profile (HRRP) synthesis through sparse stepped-fre-
quency waveforms and reconstructed full-resolution image. An
ISAR imaging algorithm based on CS is proposed in [12] to
estimate the locations of the scattering centers from a very lim-
ited number of measurements. These methods leave open the
possibility that ISAR images can be accomplished with adap-
tive resource scheduling algorithm. By inserting imaging pulses
into the interval between tracking and searching tasks, ISAR
imaging can be realized without affecting target tracking and
searching. Apparently, the efficiency of the radar can be im-
proved significantly.
In this paper, we propose an adaptive ISAR-imaging-

considered task scheduling algorithm based on the sparse-
aperture ISAR CS imaging techniques. In the proposed algo-
rithm, the cognitive imaging technology proposed in [13], [14]
is utilized to realize high-resolution imaging of multi targets
and adaptive allocation of radar resources. Based on the online
cognition of the target characteristics, the radar resource is
allocated according to different priorities, required azimuth
observation dimension and observation time calculated by
the feedback information from the cognition. As a result,
the high-quality ISAR imagery is obtained without affecting
tracking and searching tasks, thus the overall efficiency of the
radar is improved significantly.
This paper is organized as follows. The CS theory and

sparse-aperture ISAR imaging based on CS are introduced
in Section II. The adaptive scheduling algorithm based
on sparse-aperture cognitive ISAR imaging is proposed in
Section III. Simulations are presented in Section IV to validate
the effectiveness of the proposed algorithm, followed by some
discussions and conclusions in Section V.

II. SPARSE-APERTURE ISAR IMAGING BASED ON
COMPRESSED SENSING

The sparse-aperture ISAR imaging method based on com-
pressed sensing have been discussed comprehensively in ex-
isting literatures [12], [15]. For completeness of the content, we
briefly introduce the CS-based sparse-aperture ISAR imaging
algorithm in this section.
The basic idea of the compressed sensing theory is that a

sparse signal can be exactly recovered from a very limited
number of measurements with high probability by exploiting
the sparsity of the signal via solving a sparsity-constrained
optimization problem [9], [16]. The CS theory mainly in-
cludes three contents, sparse representation of the signal [17],
measurement matrix design [18], and signal reconstruction
algorithm [19]–[22].
The CS has been successfully used for ISAR imaging with

the advantage of data quantity decrement. The sparse aperture

ISAR imaging algorithm based on CS can be described as fol-
lows. Scatterer model is usually employed to describe a radar
target in radar imaging [14]. Without loss of generality, we as-
sume the ISAR target contains scatterers. The radar transmits
linear frequency modulated (LFM) signals, and it requires az-
imuthal coherent accumulation time to obtain the desired az-
imuthal resolution, then pulses are transmitted
during the imaging time, where denotes the pulse repeti-
tion frequency. The full aperture echo signal can be written as

(1)

where is fast time, is the sampling sequence of slow time
and there are sampling points. , , and are the pulse
duration, the carrier frequency, the chirp rate and the scattering
coefficient of the -th scattering points, respectively. is
the distance between the -th scattering point and radar at .
Due to the change in work status or practical application, the

radar only launches sub-pulses to the target,
thus the sparse aperture signal can be written as:

(2)

After performing range compression and neglecting the mi-
gration through the range cell, we have the sparse aperture signal
as follows:

(3)

where , is the dis-
tance between the reference point and the radar at , is
the distance between the reference point and the -th scattering
point at the beginning of imaging.
Traditional imaging algorithms for full aperture of ISAR usu-

ally apply the Fourier transform with respect to to obtain
the 2D target image. Usually, the ISAR image is mainly deter-
mined by some dominant scatterers, so the echo of the target can
be regarded as sparse in the azimuthal (Doppler) domain. Thus,
the CS theory can be used to implement sparse-aperture ISAR
imaging. Choose -dimensional inverse DFT matrix as ,
and design a matrix according to the sub-aperture
allocation:

(4)

It can be readily proved that and are incoherent [13],
therefore the azimuthal information can be reconstructed by the
optimization algorithm

(5)
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Fig. 1. Radar resource scheduling diagram. (a) Scenario. (b) Time sequence.

The object function is the expected azimuthal image of
the target, and we can obtain the 2D ISAR image by using the
method above for each range cell to get the azimuthal image and
then arranging them into a matrix.

III. ISAR-IMAGING-CONSIDERED ADAPTIVE RADAR
RESOURCE SCHEDULING STRATEGY

As mentioned before, in a MFPAR system, radar serves dif-
ferent activities in its surveillance space [4]. Therefore, an ef-
fective scheduling strategy is required to allocate the radar re-
sources in a way that the global utility of MFPAR is maximized.
And the radar resource scheduling diagram is shown in Fig. 1.
Fig. 1(a) shows the process that the radar implements

searching task in the searching area at searching update rate.
With the beam agile ability, the tracking and imaging of the
detected targets can be implemented at any required time. The
red wave beam in Fig. 1(a) denotes the current position of
the radar wave which is tracking the target. The blue wave
beams represent that the radar will implement the tracking and
imaging for other targets soon.
Obviously, there is conflict of radar resource allocation be-

tween different tasks. The goal of the adaptive task scheduling
algorithm is to avoid the conflict and achieve the maximized
global utility of MFPAR. For the sake of simplicity, we only
consider searching, tracking and imaging tasks in this subsec-
tion, and the time sequence of task scheduling is shown as in
Fig. 1(b), where the scheduling interval is set as .
In Part A of Fig. 1(b), is the expected execution time of
the -th task, the black vertical bar represents the dwell time

, and the yellow region denotes the time window (the
range of back-and-forth motion between the expected execu-
tion time and the actual execution time), respectively. Part B of
Fig. 1(b) shows the conflict between the tracking and searching
tasks. To implement both tasks at their expected execution time,
the time slot shown as red vertical bar is needed by both two
tasks, so the task with lower priority can't be implemented at
its expected execution time , and its actual execution time

should be moved in the time window. In practice, when

the searching and tracking task request is not too large, there
will be a small amount of unoccupied time slots in a sched-
uling interval. These vacant time slot can be allocated for target
imaging with sparse observations, and then the 2D high-reso-
lution ISAR image can be obtained using the sparse-aperture
imaging method based on the CS. And the imaging resources
allocation is shown in Part C of Fig. 1(c), in which the red ver-
tical bar represents the vacant time slot and be used for target
imaging.
However, almost all existing adaptive resource scheduling

methods did not consider the imaging function. Based on the
CS-ISAR, an adaptive radar resource scheduling strategy is pro-
posed in this section. We will first briefly introduce the tradi-
tional adaptive scheduling strategy for MFPAR, and then ex-
patiate the proposed ISAR-imaging-considered adaptive radar
resource scheduling strategy in detail.

A. Traditional Adaptive Scheduling Strategy For MFPAR
First, consider the traditional time-window-based task sched-

uling approach for MFPARs. Assume is the length of the
scheduling interval, set depicts
tasks including high-priority search (HS), precision track (PT),
normal track (NT) and low-priority search (LS) during the
scheduling interval . is the priority of the -th
task, and other symbols (such as , , and ) are
the same as in Fig. 1. The scheduling optimization model can
be written as follows [23]:

(6)

where .
We can get the tasks implement sequence by solving the op-

timization problem.
Generally, in ascending order of priority, the sequence of

these tasks is: low-priority search, normal track, precision track
and high-priority search [24].

B. ISAR-Imaging-Considered Adaptive Radar Resource
Scheduling
The time-window-based task scheduling approach described

in the previous section does not consider the impact of the
imaging function on the resources scheduling strategy and
needs a fixed and continuous part of resource for imaging while
accomplishing the searching and tracking activities. As a result,
the working efficiency of radar is not high.
In practice, when the searching and tracking task request

is not too large, there will be a small amount of unoccupied
time slots in a scheduling interval after the adaptive resource
scheduling. These vacant time slot can be allocated for target
imaging with sparse observations, and then the 2D high-reso-
lution ISAR image can be obtained using the sparse-aperture
imaging method based on the CS.
As we know, azimuthal coherent accumulation time is abso-

lutely necessary for ISAR imaging, and the coherent accumu-
lation time depends on the relative rotation angle of the radar
and the target as well as the desired azimuthal resolution. In
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other words, target characteristics will constraint to the allo-
cation of resources. Therefore, the ideal way to allocate the
resources effectively for realizing sparse-aperture imaging of
targets is to do it adaptively according to the target character-
istics. Therefore, the cognitive imaging technology proposed
in [11], [12] is introduced into the adaptive resource sched-
uling strategy. First, radar cognizes the target characteristics
(distance, speed, heading, size, sparsity of echo in Doppler do-
main, etc.) by transmitting a small amount of pulses, and then
calculates the imaging priority and the measurement dimen-
sions (i.e., the number of sampling points in slow-time domain)
according to the feedback information. For example, a target
which is closer and moving toward the radar at high speed is
considered more threatening, thus has higher priority. Further-
more, the measurement dimension can be determined according
to the estimation of the sparsity of the echo in Doppler domain.
On this basis, a rational time resource allocation strategy can
implement searching, tracking and imaging at the same time.
The distance , speed and heading can be measured

using conventional tracking algorithms. Evaluation of the size
, sparsity of echo in Doppler domain, priority , the

desired measurement dimension and the ending time of
each imaging task will be explained one by one in the following
paragraphs.
(1) To estimate the target size of the -th imaging task.

For the sake of simplicity, we assume there is only a single
non-maneuvering target for ISAR imaging in each imaging task.
The coarse-resolution ISAR image of the -th imaging task

can be obtained by transmitting a small amount of
pulses with uniform intervals. The normalization of the ISAR
image can be written as

(7)

Setting a proper threshold and letting
,

, we can get the range size of the -th target based
on the linear relation between the frequency and distance:

, where
is the range resolution. Similarly we can get the azimuthal size

, where is the azimuthal
resolution, and it can be determined from the estimation of
distance , speed and heading according to the equation

. Therefore, the size of the -th target is
.

(2) To estimate the sparsity of Doppler-domain echo in
-th scheduling interval of the -th imaging task. The initial es-
timation of can be obtained by normalizing as
follows:

(8)

Setting a proper threshold and letting vector be the dis-
crete representation of , is defined as the number
of elements which are greater than in .

However, the estimation of is not precise enough
and needs to be updated in the imaging process. Assume

denote the complex ISAR image of the -th
imaging task obtained by all the transmitted pulses until the
end of the -th scheduling interval. Normalize as
follows:

(9)

Letting vector be the discrete representation of ,
the is defined as the number of elements which are greater
than in .
Based on the estimation of , , and , the priority

and required measurement dimension can be determined by the
following steps.
(3) To determine the priority in the -th scheduling in-

terval of the -th imaging task. Without loss of generality, the
target with closer distance, higher speed and moving toward the
radar is more threatening and requires a higher priority, thus the
initial priority of each target can be given by

(10)

where

and , , and are the adjustment factors representing the
impact degree of different characteristics on the priority. Obvi-
ously, the initial priority of imaging task is , which
is ensured to be lower than the priority of high-priority search
tasks (with priority of 4), precision track tasks (with priority
of 3), normal track tasks (with priority of 2) and low-priority
search tasks (with priority of 1). However, due to the azimuthal
coherent accumulation time is much bigger than the scheduling
interval , several scheduling intervals are usually required to
accomplish an imaging task. To avoid waste of the pulses trans-
mitted for imaging, we adopt a dynamic priority adjustment
strategy for imaging tasks. In this strategy, if the -th imaging
task is implemented in the -th scheduling interval, the priority
of this task will be improved appropriately in the next sched-
uling interval:

(11)

where is the step of the priority. It should be noted that the
number of searching and tracking tasks in the working area of
MFPAR almost keep stable during a short time period. How-
ever, for imaging task, as the azimuthal coherent accumulation
time increases, the resolution of ISAR image and the estima-
tion accuracy of sparsity increase accordingly, and the required
measurement dimensions decrease. In a word, if an imaging task
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is implemented in the -th scheduling interval, it can be imple-
mented in the next scheduling interval with high probability.
Therefore, the radar resource will not be wasted.
(4) To determine the measurement dimension in the -th

scheduling interval of the -th imaging task. According to the
CS theory, OMP algorithm can reconstruct the original signal
with high probability when the measurement dimension meets
the constraint , where is a coefficient be-
tween 0.5 and 2 [12], thus the required measurement dimension
in a single scheduling interval of each target is determined by

(12)

where , is the azimuthal coherent ac-
cumulation time of the -th imaging task to obtain the desired
azimuthal resolution. Generally speaking, larger targets require
lower resolution while smaller targets need higher resolution for
precise imaging, so the azimuthal coherent accumulation time

of the -th imaging task is determined by

(13)

where is the desired azimuthal resolution of the target with
datum azimuthal size of . What should be pointed out is
that according to the sparse-aperture ISAR imaging algorithm
based on CS, the launching time of these pulses for
imaging should be a multiple of .
(5) To determine the ending time of each imaging task.
For multiple imaging tasks, the required coherent accumula-

tion time for each target is different. Therefore the utilization
rate of the radar time resource can be improved by making use
of the closed feedback loop between the receiver and transmitter
to adjust the imaging accumulation time for each target.
Generally, as the azimuthal coherent accumulation time in-

creases, the quality of ISAR imagewill increase accordingly and
gradually comes to a standstill. After reaching the standstill, the
quality of ISAR image will be worse if the azimuthal coherent
accumulation time continues to increase. Therefore, we can de-
termine the ending time of each imaging task by measuring the
correlation coefficients of two adjacent reconstructed ISAR im-
ages, and , which can be given by

(14)

If the correlation coefficient is relatively small, the similarity
of ISAR images from the adjacent scheduling intervals is rela-
tively low. In this case, the image quality need to be improved by
going on transmitting pulses in the next scheduling interval. On
the contrary, if the correlation coefficient is relatively large, the
image quality can be hardly improved by going on transmitting
pulses. Therefore, we need to select an appropriate threshold to
control this procedure. When the correlation coefficient of the
ISAR images between the adjacent two scheduling intervals is
less than the threshold, the imaging task will continue to be ex-
ecuted in the next scheduling interval. Otherwise, we think the
image quality has reached the expected standard and the task
finishes.

On this basis, three performance metrics are used to evaluate
the effectiveness of the resource scheduling algorithm:
(1) The sum of the priority of the implemented tasks (SPI) in

each scheduling interval, defined by

(15)

where is the number of implemented searching and
tracking tasks in the scheduling interval, is the number of
implemented imaging task in the scheduling interval.
(2) The ratio of the implemented tasks to the total tasks (ROI)

in each scheduling interval, defined by

(16)

where is the number of the total tasks in the scheduling
interval.
(3) Time utilization rate (TUR) of each scheduling interval,

defined by

(17)

In view of the above performance metrics, the resource
scheduling optimization model based on sparse-aperture ISAR
imaging is proposed as:

(18)

Where , , and are the adjustment factors representing
the impact degree of different performancemetrics on the sched-
uling algorithm. Other parameters are the same as in (6) and
(12).
The concrete steps of the adaptive scheduling algorithm for

radar resource based on sparse-aperture ISAR imaging can be
summarized as follows:
Step 1) Transmit a small amount of pulses to the imaging tar-

gets that have been scanned by radar, and initially
cognize the characteristics of the targets (distance

, speed , size and initial sparsity ) ac-
cording to the echo signal, then initialize the mea-
surement matrix ;

Step 2) Calculate the sparsity, priority and the required mea-
surement dimension of the targets in a certain sched-
uling interval according to (9)–(13);

Step 3) Step 3: Allocate the time resource of radar for the
-th scheduling interval according to the scheduling
optimization model in (18), the concrete method is
described as follows:
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The implemented benefit of each task (i.e., the obtained ben-
efit of implementing each task) is defined as:

(19)

where

Because the dwell time of searching and tracking tasks is a
multiple of and the imaging tasks are not restricted to
the time window, we can only reserve apertures for the imaging
tasks instead of arranging the actual execution time for them.
Then the reserved vacant apertures are used for implementing
imaging tasks after the actual execution time of searching and
tracking tasks are determined. The concrete approach of allo-
cating the time resources according to the scheduling optimiza-
tion model (18) is depicted as follows.
Calculating the implemented benefit of each task in

the -th scheduling interval, the waiting task set
can be obtained by sorting the benefit from

high to low. Each task can be analyzed
to judge whether it is to be implemented and what the actual
execution time is if it is to be implemented.
Assume that there are searching and tracking tasks

confirmed to be implemented before the analysis of .
is the implemented tasks set by

sorting these searching and tracking tasks according to the
execution time.
Case 1) If is a searching task or tracking task, first we

need to find and (in the set of ) whose
execution time and are closest (before
or after) to the expected execution time of .
The necessary and sufficient condition that can
be implemented is:

(20)

where is the sum of the required dwell
time of all imaging tasks which have been con-
firmed to be implemented.

represents the earliest ex-
ecution time of , on the contrary,

stands
for the latest execution time of .
When satisfies (20), we think it can be imple-
mented. The actual execution time of can
be determined as follows.
a. Assume the actual execution time and

of and are fixed at first, the
actual execution time of can be calcu-
lated by:

(21)

b. If a satisfying (21) does not exist when
and are fixed, we can bring for-

ward the actual execution time and post-
pone the actual execution time grad-
ually until a satisfying (21) exists. The
value of is then determined according to
(21).

Case 2) If is an imaging task, we only judge whether
or not it is to be implemented and do not arrange
the actual execution time for it. The task will
be implemented when the condition

is satisfied. Oth-
erwise, will not be implemented. If is con-
firmed to be implemented, should be up-
dated as .

After analyzing all waiting tasks, the sub-pulses of all the
imaging tasks confirmed to be implemented are randomly ar-
ranged in the reserved vacant apertures. Thus, the time resource
allocation of the -th scheduling interval is completed. It should
be noted that the process above just use one-step backtracking.
Two or more step backtracking can be used when required but
will lead to more computation load.
Step 4: Structure the measurement matrix according to the

distribution of the allocated sub-aperture, and then the measure-
ment matrix under the framework of compressed sensing after
the -th scheduling interval can be written as ;
Step 5: Use the sparse-aperture ISAR imaging method based

on CS for target imaging and calculate the correlation coefficient
of the ISAR images from the two adjacent scheduling intervals.
When the correlation coefficient is more than the predefined
threshold, set the implemented benefit of the imaging task to
zero and this task is no longer scheduled in the next scheduling
interval. Otherwise, put the imaging task into the next sched-
uling interval for analysis.
Step 6: Repeat from Step 2 and allocate the radar resource for

the next scheduling interval.

C. Probability Analysis of ROI=1 in a Certain Scheduling
Interval
Assume that there are high-priority searching

tasks , precision tracking
tasks , normal tracking
tasks ( ), low-priority searching
tasks and imaging tasks

to be scheduled during the -th sched-
uling interval . The dwell time of high-priority
searching, precision tracking, normal tracking and low-priority
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TABLE I
PROBABILITY-LAW DISTRIBUTION OF TASK DURATION

searching are , , and , respectively. And
the corresponding time window are , , and ,
respectively. , , and are random variables that
denote the expected execution time of the -th high-priority
searching task, precision tracking task, normal tracking task
and low-priority searching task, respectively.
Obviously, the probability of in -th scheduling

interval is zero when
. On the contrary, when

the tasks satisfy
, the probability of in

-th scheduling interval can be calculated as:

(22)

where the 11 conditions (as shown in the Appendix) guarantee
there is no conflict between any tasks.
Solving (22) involves a multiple integral and is very compli-

cated. Here we introduce the queuing theory to obtain .
Without loss of generality, suppose that task arrival is a

Poisson process having rate ,
and the probability-law distribution of the task duration is
shown as Table I.
Because imaging tasks just make use of the vacant aperture

and is not restricted to time window, when it satisfies

, we can only queue the searching and tracking tasks.
Assume is the number of tasks in the queue after the -th

task accomplished, and is the number of arrival tasks during
the -th task.
Define

(23)

where

When the number of waiting tasks is larger than , there must
be a task can't be implemented and departed, so the state room
of is .
It can be proved that is a Markov chain,

are independent and identically distributed.
Assuming

(24)

Since task arrival is a Poisson process having rate , can
be calculated as:

(25)

Define

(26)

Then we have

(27)
(28)

(29)

(30)

(31)

Because is independent of , is a homo-
geneous Markov chain, the matrix of one-step transition proba-
bilities is

...
...

...
...

...

(32)

Suppose repre-
sent the limiting probability of being in state after a large
number of transitions, it can be given by

(33)

We can calculate by using the fact that
.
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TABLE II
PARAMETERS OF TRACKING AND SEARCHING ACTIVITIES

TABLE III
PARAMETERS OF TARGETS FOR IMAGING

In the above case, all tasks can only be implemented back-
wards in the time window of , the calculated probability of

in -th scheduling interval is very few smaller than
the true value, therefore, the minimum probability is

(34)

IV. EXPERIMENTS

Next, we will show some simulation experiments to verify
the efficiency of the proposed algorithm. In our examples,
we only consider high-priority searching, precision tracking,
normal tracking, low-priority searching and imaging activi-
ties although the algorithm is not restricted to these tasks. In
Table II, the priority, dwell time, time window and update rate
(frequency of radar request) of the mentioned searching and
tracking activities are presented. Table III shows the target
parameters of imaging activities. To be intuitively clear, the
time sequence of task scheduling with the given parameters is
shown in Fig. 2. The goal of the adaptive task scheduling algo-
rithm is to avoid the resources conflict between different tasks
and achieve the maximized global utility of MFPAR by imple-
menting each task at the most suitable time. For tracking and
searching tasks, the pulse duration , center frequency

, signal bandwidth , and pulse repe-
tition frequency . For imaging tasks, the pulse
duration , center frequency , signal
bandwidth , and pulse repetition frequency

.
A small amount (100 in this paper) of pulses are transmitted

to the imaging targets, we can reconstruct the ISAR image of
targets with coarse resolution in the way of filling the missing
data zeros to (identical to ) and using
two-dimensional matched filtering. The scattering model and
the coarse resolution ISAR image of targets are represented in
Table IV.
After processing the coarse resolution ISAR images using

(7)–(9), and setting the threshold , , we
can estimate the target size and sparsity . Setting

, which is the desired azimuthal resolution of the target
with datum azimuthal size of . Supposing the

Fig. 2. Time sequence of task scheduling with the given parameters.

TABLE IV
SCATTERING MODEL AND COARSE RESOLUTION ISAR IMAGE OF TARGETS

scheduling interval of radar resource is , the imaging
priority and the required observation dimension can be calcu-
lated according to (10)–(13), where the adjustment coefficient

, , and . The results are shown in
Table V.
From Table V, we can see that since Target 3 is of small size,

high speed and moving toward to the radar, it has the highest
imaging priority. On the contrary, Target 2 is of large size, low
speed and moving away from the radar, therefore its priority
is the lowest. There are 8 targets for the precision tracking, 25
targets for normal tracking and 3 targets shown in Table III for
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Fig. 3. Scheduling timing diagram. (a) Scheduling timing diagram of Interval 1. (b) Scheduling timing diagram of Interval 2. (c) Scheduling timing diagram of
Interval 12. (d) Scheduling timing diagram of Interval 13. (e) Scheduling timing diagram of Interval 14. The meanings of the numbers in the figures are: 1—LS,
2—CT, 3—PT, 4—HS, 1—Imaging for Target 1, 2—Imaging for Target 2, 3—Imaging for Target 3.

Fig. 4. Adaptive update process of the sparsity estimation and change of correlation coefficient of ISAR images for Target 1. (a) Adaptive update process of the
sparsity estimation. (b) Change of correlation coefficient of ISAR images.

TABLE V
PRIORITY, REQUIRED OBSERVATION DIMENSIONS IN UNIT SCHEDULING

INTERVAL AND OBSERVING TIME

imaging in the working area of the multifunction phased array
radar. Based on the initial cognitive results in Table V and
choosing the threshold of the correlation coefficient of ISAR
images from the adjacent scheduling intervals as , the
time resources are allocated according to the scheduling opti-
mization model, where the adjustment coefficient are ,

, and . Finally the resource scheduling
sequence diagram can be acquired as shown in Fig. 3 and the
adaptive update process of the sparsity estimation is shown in
Fig. 4–6.
The implemented benefit of HS, PT, NT, LS and the three

imaging tasks are 0.9000, 0.7222, 0.4944, 0.3222, 0.2379,
0.2053 and 0.2974, respectively.
From Fig. 3–6, we can see that Target 3 is of the highest

implemented benefit among all the imaging tasks, so the radar
will use the vacant aperture between tracking and searching
in the 1st scheduling interval to carry out its observation and
imaging. After the 12th scheduling interval, the correlation co-
efficient of ISAR images from the adjacent scheduling intervals
is larger than the threshold implying that the task reaches the

image quality requirements. Then the priority is set to zero and
the task is no longer scheduled in the next scheduling interval.
Similarly, the implemented benefit of Target 1 is higher than
Target 2, so the vacant aperture in the 2nd scheduling interval is
used for its observation and imaging. After the 13th scheduling
interval, the correlation coefficient is larger than the threshold
and the task is accomplished. Furthermore, from Fig. 4–6 we
can see that as the scheduling times increases, the observation
time accumulates constantly, and the estimated value of sparsity
decreases accordingly and gradually reach a standstill, while the
correlation coefficient of ISAR images increases and achieves
to the required image quality finally. This is because as the az-
imuthal coherent accumulation time increases, the resolution
of ISAR imaging improves correspondingly, which makes the
sparsity estimation more and more accurate, and the correlation
coefficient of ISAR images from the adjacent scheduling inter-
vals higher and higher.
To evaluate the quality of ISAR image by this algorithm, we

made a comparison of the proposed algorithm with the tradi-
tional ISAR imaging algorithm (continuous full aperture ob-
servation for targets with coherent time ). The results are
shown in Table VI, and the correlation coefficient of ISAR im-
ages of each targets from the two algorithms reached to 0.9155,
0.9033 and 0.9426, respectively.
The performance metrics of the traditional scheduling al-

gorithm for phased array radar described in Section III and
the adaptive scheduling algorithm based on cognitive ISAR
imaging proposed in this paper are compared in Table VII.
It is observed that the proposed method can improve each
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Fig. 5. Adaptive update process of the sparsity estimation and change of correlation coefficient of ISAR images for Target 2. (a) Adaptive update process of the
sparsity estimation. (b) Change of correlation coefficient of ISAR images.

Fig. 6. Adaptive update process of the sparsity estimation and change of correlation coefficient of ISAR images for Target 3. (a) Adaptive update process of the
sparsity estimation. (b) Change of correlation coefficient of ISAR images.

TABLE VI
OMPARISON OF IMAGE QUALITY BY DIFFERENT ALGORITHM

TABLE VII
PARAMETERS OF PERFORMANCE METRICS

performance metric, obtaining high quality ISAR image while
accomplishing trackinging and searching task, which improves
the working efficiency of MFPAR significantly.

TABLE VIII
PROBABILITY OF IMPLEMENTING ALL TASKS

Next, we discuss the probability of under several
different conditions as follows:

Scene 1:

Scene 2:

Scene 3:

Scene 4:
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where is the sum of the required aperture number for all
the imaging tasks. The probability of obtained by
experiments and calculated according to (33) and (34)

are both shown in Table VIII.
From Table VIII, we can see that the probability de-

pends on the number of task requests, the dwell time and the
time window. Comparison of Scene 1 and Scene 2 shows that
as the time window increases, the probability enhances corre-
spondingly. Further, when the number of tasks and the dwell
time increases, the probability decreases accordingly as indi-
cated by the comparison of Scene 1 and Scene 3, Scene 1 and
Scene 4, respectively.
When the radar echo contains noise, the noise will make the

ISAR image worse, which leads to the increase of sparsity es-
timation value and the required observation dimension. As a
result, more resources are required to allocate for the target
imaging. Also, the increase of correlation coefficient of ISAR
images becomes slower and the correlation coefficient is hard
to reach a high value. Therefore, decreasing the threshold of the
correlation coefficient of ISAR images is a feasible way when
the echo signal contains noise.
It should be noted that the noise only makes the sparsity esti-

mation value larger and the increasing of correlation coefficients
slower, which slightly downgrades the performance metrics.
But it does not affect the effectiveness of the proposed method
and the correctness of the probability analysis of in a
certain scheduling interval.

V. DISCUSSIONS AND CONCLUSIONS
In this paper, a novel adaptive scheduling algorithm have

been proposed based on the cognitive imaging method for the

sparse aperture ISAR, and the performance metrics have been
demonstrated. Based on the cognition of the target features,
the imaging function is considered in the resource scheduling
strategy so that imaging, trackinging and searching tasks can be
implemented simultaneously. The simulation results show that
the algorithm can accomplish trackinging and searching task ef-
fectively as well as obtain high quality ISAR image, thus im-
proving the radar working efficiency significantly. It should be
noted that in this paper, we assume that the target is non-maneu-
vering, in fact, imaging for maneuvering target needs to select
optimal imaging time. The smooth time of flight can be selected
from the tracing information and be used for target imaging. Due
to the lack of real data, we examined the performance of the al-
gorithm using simulation data in this paper. In our future work,
we will introduce the algorithm to real data processing and an-
alyze the threshold selection.

APPENDIX

Conditions1–11 are shown at the bottom of the following
pages.
In these conditions,

represents the

occupied time of within the time window .

and

stand for the overlap area of the time

window of and , where . Other

symbols follow the same definition criteria.

Condition1:

Condition2:
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Condition3:

Condition4:

Condition5:
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Condition6:

Condition7:

Condition8:
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Condition9:

Condition10:

Condition11:
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