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An Efficient Approach to Graphical
Modeling of Time Series

R. J. Wolstenholme and A. T. Walden, Senior Member, IEEE

Abstract—A method for selecting a graphical model for
-vector-valued stationary Gaussian time series was recently

proposed by Matsuda and uses the Kullback–Leibler divergence
measure to define a test statistic. This statistic was used in a
backward selection procedure, but the algorithm is prohibitively
expensive for large . A high degree of sparsity is not assumed.
We show that reformulation in terms of a multiple hypothesis test
reduces computation time by and simulations support the
assertion that power levels are attained at least as good as those
achieved by Matsuda’s much slower approach. Moreover, the new
scheme is readily parallelizable for even greater speed gains.

Index Terms—Undirected graph, Kullback–Leibler divergence,
multiple hypothesis test, vector-valued time series.

I. INTRODUCTION

T HERE has been much interest in recent years in the
construction of graphical models from -vector-valued

(or multivariate) stationary time series where
, and denotes transpo-

sition. The purpose of graphical models is to aid visualization
of connections between multiple time series: each of the time
series is represented by one vertex and it is wished to define
connections via edges between the vertices of the graph. The
lack of an edge indicates the lack of a connection between the
corresponding series.
Formally, a graph consists of vertices and

edges , where . (We are con-
sidering simple graphs where there are no loops from a vertex
to itself, nor multiple edges between two vertices.) To represent

the vertices of the graph correspond to the individual
series , so . Edges connect ordered pairs
of distinct vertices. Edges for which both
and are called undirected edges. An undirected graph
is one with only undirected edges and it only represents inter-
action between the series. An edge is called directed if

, with . A directed graph is one in which
all edges are directed and it typically encodes directions of in-
fluence or of causation between series.
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In this paper we will consider the modelling only of undi-
rected graphs. There are unordered pairs of vertices
for the graph and possible distinct graph structures.
A high degree of sparsity of edges is not assumed. We are in-
terested in both moderate and large both are practically im-
portant and present a challenge to graphical modelling when a
high degree of sparsity is not assumed.
The statistical framework for graphical modelling of vector-

valued time series was begun by Brillinger [3] who considered
both directed and undirected graphs. Two different nonpara-
metric approaches were subsequently developed, by Dahlhaus
[4] for undirected graphs, and by Bach and Jordan [1] for di-
rected graphs. Recent work for directed graphs includes copula-
Granger methodology [2].
In the approach of [4] the absence of an edge in the graphical

model between series and is indicated by the corresponding
partial coherence, being zero at all frequencies . The partial
coherence is a frequency domain version of the partial correla-
tion coefficient and measures, at a frequency , the correlation
between series and when all other series involved are held
constant. The partial coherence is denoted , where

, and the terminology
indicates that these series are held constant. The assessment of
the interaction between series and thus discounts the indirect
effects of the other series. Estimated partial coherencies will in-
clude sampling variability and will never be exactly zero, so that
hypothesis testing is required to test edge to see if it should
be declared to be missing. The problem here is that the par-
tial coherence for edge must be zero-tested for every fre-
quency computed: Dahlhaus [4] suggested a test based simply
on the maximum of the nonparametrically-estimated partial co-
herence over the frequency range, but the exact asymptotic null
distribution of his test statistic is not known and only approxi-
mations have been used in practice. Nevertheless, this nonpara-
metric approach has seen considerable use [10], [11], [26] and
some variants have been developed and applied in the context
of connectivity of brain signals [8], [18], [19].
The approach of [1] for directed graphs, while inapplicable

here, had as a key component the use of the Kullback-Leibler
(KL) divergence between stationary processes, formulated ear-
lier by [13]. In this paper we use the KL divergence for deter-
mining undirected graphs.
As an alternative to [4], it was suggested in [7] and [23] to

instead use parametric graphical models, known as ‘graphical
interaction models’ which utilise vector autoregressive (VAR)
processes to model . Here the VAR parameters are con-
strained by an associated graph; by then ranging over all the

possible graphs and (typically low) orders of the VAR
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model, an information criterion (IC) can be used to select an ap-
propriate model. However such an exhaustive search procedure
is only suitable for small .
Instead of using exhaustive searches, a topology selection

scheme which uses a more efficient approach was given in [24].
It uses penalized maximum likelihood where the penalty term
reflects sparsity constraints. For every pair of series, the re-
sulting partial coherence is then subjected to thresholding to
determine whether it can be considered to be everywhere null
(for determining the missing edges). Having thus determined
the missing edges, the graph is determined and constrained pa-
rameters can be estimated. By ranging over a small number of
possible VAR orders and penalty weights, and computing an IC
in each case, the graph giving the minimum value of the IC is
selected. Unfortunately, the correct/optimum level to take for
the critical thresholding step is unknown in practice.
The case where a sparse VAR model can be assumed (i.e.,

many parameters are zero) is considered in [5]. Partial coher-
ence is used in selecting the group structure of the AR coeffi-
cients. For a common data set of dimension results were
close to those of [23]. The sparse VAR model was also used in
the lasso-based method of [22].
A fully nonparametric approach to graphical modelling

has the advantage of avoiding the possibility of model mis-
specification that can arise with parametric modelling when
addressing real-world data. Indeed, Matsuda [16] proposed the
identification of a graphical model for based on the use
of nonparametrically-estimated Kullback-Leibler (KL) diver-
gence between two graphical models. Matsuda’s test statistic
is simple to compute and its asymptotic null distribution is
standard Gaussian. It allows to test whether a particular nested
subgraph is “correct”—in the sense that it contains the true
graph—and thus to determine if restricting the set of edges
poses a real constraint. Matsuda used an iterative procedure: at
each step the null hypothesis that a subgraph with one edge less
is correct is tested. At each such iteration the test therefore has
to be carried out as many times as there are edges remaining
in the graph; this is computationally very costly because of the
number of test statistics needing to be computed, especially
for large . Moreover, for general non-decomposable graphs
the computation of the test statistic employs a second iterative
procedure to satisfy the constraints imposed by the currently
selected graph.
While still based on Matsuda’s test statistic, we introduce a

much more efficient approach to identifying the model which is
also well-suited to modern distributed processing:
1. We consider only tests that compare the fully connected or

complete graph (alternative) with graphs that have exactly
one missing edge (null hypothesis). The standard Gaussian
test statistic can be calculated without resorting to any
time-consuming iterations.

2. These tests are carried out using the well-known Holm
method for multiple hypothesis testing. The method pro-
vides strong familywise error control which means that the
type I error of rejecting any of the tested null hypotheses
falsely does not exceed the specified significance level.
This contrasts with Matsuda’s procedure where it is un-
clear how the error rate used in the stepwise selection is
related to the overall properties of the procedure.

3. The decreased number of tests required in our scheme, as
well as the reduced computational burden for evaluating
the test statistics themselves, (as iterative fitting algorithms
are no longer required), produces large efficiency gains.
Indeed, the number of computations for our approach is

compared to for Matsuda’s implementation.
4. In simulations our algorithm achieves power at least as

good as that achieved by Matsuda’s original and much
slower approach.

5. In contrast to Matsuda’s implementation there is no depen-
dency between the calculation of each of the test statistics
and so our algorithm can be scaled for higher dimension-
ality just by using more processors, i.e., it is readily paral-
lelizable for even greater speed gains.

In Section II we review background ideas in time series
graphical modelling (including the concept of a correct graph).
Section III summarizes the construction of Matsuda’s test
statistic and gives a worked example showing how it is used in
his backward stepwise selection procedure. In Section IV we
describe our much more computationally efficient multiple
hypothesis test (MHT) employing Matsuda’s test statistic. The
computational efficiencies of the two approaches are contrasted
in Section V, justifying the improvement for the MHT
algorithm, empirically illustrated in Section VI.A. Statistical
powers are compared for the two algorithms in Section VI.B,
and the MHT algorithm is seen to do at least as well as Mat-
suda’s algorithm. That the MHT algorithm performs well for
higher-dimensional models (large ), and is readily paralleliz-
able for even greater speed gains, is shown in Section VII. The
methodology is satisfactorily applied to EEG data in
Section VIII. Concluding comments are provided in Section IX.

II. GRAPHS AND VAR MODELS

Throughout the paper, for a matrix refers to the
th element of and refers to the th element of
, unless otherwise stated. Without loss of generality

is taken to have a mean of zero.

A. Time Series Graphical Models

The edges between the vertices represent partial correlation
between two series, i.e., there is no connection between nodes
& if and only if and are partially uncorrelated

given . To be precise, we remove the linear effects of
from to obtain the th residual series defined as

, where the
filters give the minimum mean square pre-
diction error. The th residual series is defined likewise. The
sequence , is called the
partial cross-covariance sequence and the two residual series
are uncorrelated if it is everywhere zero. If and are par-
tially uncorrelated we write . Let

. Then is called a partial correla-
tion graph. For Gaussian time series a null partial correlation
equates to independence between the th and th conditioned
series, and in this case we have a conditional independence
graph.
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The Fourier transform of the partial cross-covariance se-
quence is the partial cross-spectral density function, denoted

. The partial coherence is defined as

Since for all
for all we see that

Let denote the spectral matrix of at frequency ,
assumed to exist and be of full rank. Denoting the th ele-
ment of by , the partial coherence can be expressed
as, (e.g., [4]), , and
therefore

i.e., if and are partially uncorrelated then there is a zero in
the corresponding entry of the inverse spectral matrix [4]. (Par-
tial correlation graphical models for time series are undirected
as .)

B. Correct Graphs

An important concept in what follows is that of a correct
graph. Such graphs can be used to identify the underlying graph-
ical model for multivariate time series. The following definition
is a slightly clarified version of that in [16].
Definition 1: If is the true graphical model for ,

then is correct for , if

(1)

Note that by this definition, if an edge is missing in it must
also be absent in for to be correct. A correct graph

, when imposed on top of , will completely cover
all its edges as . Also, the complete graph—containing
all edges between vertices—is correct for any graphical model.
By way of an example, let in Fig. 1 be the true

graphical model. Then the complete graph com-
pletely covers and is correct for . Likewise,
completely covers and is correct for . However, when

is imposed over the edge between and
in is not covered. So but . Therefore

and is not a correct graph for .
It should be emphasized that we use the phrasing “ is

the true graphical model for ” and reserve the use of the
word correct for the special context of Definition 1.

C. VAR Models

Here we give a very brief summary of some relevant results
on VAR processes, useful for understanding ideas in our sim-
ulation examples such as “jointly influencing.” We stress how-
ever that the methodology discussed in the paper is more widely
applicable.

Fig. 1. Illustration of the concept of a correct graph. is the true graph. As
explained in the text, and are correct for while is not.

is a real-valued zero mean -vector-valued autoregres-
sive process of order , or , if it is of the form

, where the are coefficient ma-
trices, and is a -vector-valued white noise
process with a mean vector of zero and covariance matrix .
If , where is a

identity matrix, then the process is stationary [15, p. 25].
We define and .
Let be the th element of where we are inter-

ested in the case . Then is said to be the influence
from on [4]. There is no influence from component
on if , so that .

, is the
spectral matrix for where denotes conjugate transpose.
Then . If

it follows [4] that if the th and th series do not
jointly influence another series (i.e., and/or

), then the th and th series will be partially uncor-
related if and only if and .
Later we will make use of the model

(2)

where , the 5-dimensional Gaussian distribu-
tion with mean and covariance matrix .
For testing and illustration purposes we will make use of sev-

eral models, named as follows:
Model A: Here and

(3)

By inspection of , we see that the set of missing edges
is .
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Model B: (Matsuda [16]). Here and

(4)

and we consider the cases and 0.1, as used in
[16]. For the set of missing edges in our model is

, where we note that although entries (3, 4)
and (4, 3) are both zero, neither entry (5, 3) nor (5, 4) are
zero so that series 3 and 4 jointly influence the 5th, and
therefore edge (3, 4) is not missing. When , the set
of missing edges is simply .
Model C: This consists of of the form (4) with
but now with except that entries (1, 2) and (2,
1) of are equal to 0.5. As a result of these two off-
diagonal entries being non-zero, instead of missing edges

only (2, 3) is missing.

III. TEST STATISTIC

A. Test for Missing Edges
Given with graph and spectral matrix , con-

sider graph and matrix satisfying

(5)

Unique existence of is shown in ([17], Lemma 7).
Proposition 1 [16, p. 401]: Given graph , if sat-

isfies the constraints in (5) then is correct for if
and only if .
The result in Proposition 1 can be used to determine whether

graph is correct, given is correct, where
. With assumed correct we have . If

we calculate estimators using observed data, then
intuitively a large difference between them suggests

and by Proposition 1, would be deemed
incorrect.
Assuming is correct, a test can be constructed be-

tween a null and alternative hypothesis:

where a measure of divergence between and is
used to build the test statistic.
For example, suppose we want to determine whether two se-

ries are partially uncorrelated, or in fact simply uncorrelated in
this case. Define

(6)

the estimated spectral matrix. With being the complete
model, with the two vertices connected, we can test against

, the model where the vertices aren’t connected. The ma-
trix satisfying (5) for is then

(7)

B. Spectral Estimator
Given vector observations , the matrix peri-

odogram estimator of takes the form
, where .

has unit periodicity. Let , the th Fourier
frequency, then given a symmetric positive weight sequence

for , with , the frequency-av-
eraged periodogram is

(8)

This estimator was used byMatsuda [16] in the derivation of his
test statistic. It is necessary and sufficient for to be non-sin-
gular that , i.e., we have or more non-zero values
in our weight sequence, e.g., [9, p. 3007]. For consistency of
the spectral estimator we require such that

for the finite sample sizes used in practice we would ex-
pect . can be chosen using, for example, the method
of ‘window closing’ [20] or by cross-validation [16].

C. Construction of Test Statistic
Estimators and can be found by applying the

constraints in (5) to in (8); the recursion of [27] is used
for this purpose along with a result from [25] which justifies
convergence—see [16, p. 403].
To measure the difference between and Mat-

suda [16] used the estimated Kullback-Leibler divergence,
. With assumed even this is

Under the following assumptions, Matsuda derived a statistic
based on which has an asymptotically standard
normal, , statistic:
1. is a -vector-valued Gaussian stationary process.
2. is positive definite for .
3. is twice continuously differentiable for

and .
4. ( is at most of order ) for

and the weight sequence is of the form
, where is a continuous

even function on .
Matsuda [16] defined the test statistic as

(9)

where , (the number
of missing edges in the model), and are constants with
values determined by , see [16]. Given assumptions 1-4 it
follows that [16]
• Under ,

(10)
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• Under takes the form

(11)

where is the true spectral matrix, denotes the
true Kullback-Leibler divergence, and de-
notes a term of smaller order in probability than .

Under , the dominant term of the test statistic, the diver-
gence, is positive and it therefore has a one-sided critical region.
So for values of the statistic greater than a critical level, is
rejected in favour of . Also from (11) the statistic diverges
to infinity at rate under , so that the test can be
more powerful than other standard tests which diverge at the
rate [16].
Remark 1: We draw attention to the fact that Matsuda’s sta-

tistical results assume that the processes involved are Gaussian.
He considered [16, p. 407] that this might not be a necessity,
but presently this is an open question. Bach and Jordan [1] also
assumed Gaussianity in their study for directed graphs.

D. Matsuda’s Algortihm
Matsuda [16] used the test statistic (9) and the recursion in

[27] in a backward stepwise selection algorithm to identify the
best graphical model for . Start by setting equal to
the complete graph with no missing edges and choose signifi-
cance level . Set and begin:
1. Let be the dis-

tinct graphs with one more missing edge than . Cal-
culate the test statistics

with the statistic corresponding to model .
2. With denoting the standard Gaussian distribution

function, find satisfying

(12)

and if for all , then stop the procedure
and select as the graphical model for . Other-
wise, set where is the smallest
statistic calculated.

3. Set and loop back to step 1.
Under the assumption that all are standard

Gaussian—which they will be asymptotically if is a
correct graph—the result

means that under the hypothesis that all are correct,
the type I error rate is asymptotically less than and the critical
region is conservative [16, p. 404].
Remark 2: Perhaps a more intuitive definition for the type I

error rate, which we use later, would be the probability of not
removing an edge when is correct, i.e., it should have
been removed. This is because we know the distribution of
when ) is correct, so this error rate can be calculated.
The error rate used in the stepwise selection is only relevant in

TABLE I
TEST STATISTICS AND CRITICAL LEVELS

FOR MATSUDA’S ALGORITHM

terms of the tests carried out at each step. It is unclear how it is
related to the overall properties of the procedure [6, p. 158].

E. Worked Example
The weight function chosen is

with . Numerical evaluation of and
when gives and
. We consider Model A of Section II.C with missing edges

. With for simulations of the
VAR process, we ran Matsuda’s algorithm with significance
level .
Let be the complete graph. The test statistics

for the potential models and the critical levels
at which they are tested are given in Table I. The

steps are interpreted as follows:

Not all test statistics are above the critical level,
so the process does not stop; is set to the
graph with the edge missing as this had
the lowest corresponding test statistic.

Likewise is set to the graph with the edges
missing as (2, 3) had the lowest cor-

responding test statistic.

Likewise is set to the graph with the edges
missing as (2, 5) had the

lowest corresponding test statistic.

At this step all the statistics are above
we stop the process here and take as the
estimated graph.

This procedure gave the true final graph for the model.

IV. AN EFFICIENT TESTING PROCEDURE

A. Multiple Hypothesis Testing
We now introduce a new and much more efficient approach

for identifying the true graphical model for . While still
based on the test statistic defined in (9), our method doesn’t
update at each iteration. Essentially, we carry out Matsuda’s
method only for , taking as the complete graph.
If the value of the statistic corresponding to graph

is below an appropriate critical level, it is deemed a cor-
rect graph and the missing edge should also be missing in the
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estimated graphical model. We construct our estimated model
by removing insignificant edges via a MHT.
Our null hypotheses are of the form is correct.

The alternative hypothesis in each case is the fully connected
or complete graph. Each test is thus concerned with whether an
edge exists between two vertices specified by the value of .
Proposition 2: If the graph is correct for edges corre-

sponding to and incorrect for all others, then the
graphical model for is the graph with only edges

missing.
Proof: If graph is correct and corresponds to the

edge , then by definition for
where is the spectral matrix of the true graphical model.
This means that edge must also be missing in and
this is the case for all . Conversely, if is
incorrect, and must necessarily be in ,
hence the result.
We can list the hypotheses in an obvious

way:

is correct;
...

is correct;

is correct;
...

is correct;

Multiple hypothesis testing may be addressed via the maximin
stepdown procedure [14, Sec. 9.2]. With for

and ordered test statistics the
corresponding hypotheses can be tested using
the maximin stepdown procedure:
• Step 1: if , accept .
• Step 2: if but , reject
and accept
...

• Step l: if , but
reject and ac-

cept .
...

• Step : if , reject
.

Remark 3: For each of these tests and
has only a single zero constraint so that finding it does not re-
quire the iterative scheme in [27]. Consequently, the test statis-
tics may be assembled very easily and efficiently.

B. Critical Levels
The choice of the critical values is related to the

idea of the family-wise error rate (FWER). If is the number
of true null hypotheses that are falsely rejected, then the FWER
is defined as , i.e., the probability that at least one
true null hypothesis will be falsely rejected. It is desired that

for all possible constellations of true and false hy-
potheses, the so-called strong error control ([14], (9.3)). This

TABLE II
ORDERED STATISTICS AND CRITICAL LEVELS FOR MHT

can be achieved using the (conservative) Holm approach [14,
p. 363]: at each level the critical value can be evaluated using

, where denotes the common dis-
tribution function of the test statistic under the null hypothesis,
which from (10) is in fact , the standard Gaussian distri-
bution function, in our case. So we choose our critical values
according to the easily computed formula

(13)

C. Worked Examples
Using the same observations as in Section III.E, we

list our hypotheses:
Edge does not exist between
Edge does not exist between

...
...

Edge does not exist between

Ordering the test statistics and including the critical levels
of (13) gives Table II. We can see that

and , so we
reject and accept . Note that this
means our estimated graphical model is the graph with edges

missing, the true graph for the model.
We also compared behaviors ofModel B of Section II.C using

, with Model C, the only parametric difference being
that for Model C. The former has missing edges

the latter has only (2, 3) missing. Constructing
a table like Table II for each we find for Model B that edges
(2,3) and (2,5) have associated statistics 1.49 and and
are classified as missing, all other hypotheses are rejected. For
Model C edge (2,3) has associated statistics 1.07 and is classi-
fied as missing, all other hypotheses are rejected. So again the
true graphs were found.

V. EFFICIENCY CONTRAST
Proposition 3: The number of test statistics calculated in the

Matsuda algorithm is and in the MHT is .
Proof: For Matsuda’s algorithm, assuming the final output

is the true graphical model with missing edges,

(14)
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test statistics are calculated, where .
Setting the ratio of non-edges to total possible edges to , we
can write for . Then substituting into
(14), the total number of test statistics needing to be calculated,
say, satisfies

where denotes terms of smaller order than . For sparsity
take , then asymptotically in

i.e., . For the MHT, regardless of the number of missing
edges in the model, we always calculate statis-
tics, so asymptotically, , i.e., .
Clearly the sample size, , and length of weight sequence,

, will affect the time it takes to calculate each test
statistic. Also, if there is only one missing edge in our model,
as is the case in the MHT, we do not need to iterate in order to
find the matrix satisfying the constraints in (5). If there is more
than one missing edge, as in all steps of the Matsuda algorithm
excluding the first, iteration is required as set out in [27]. As the
number of iterations must increase as more edges are removed
from the model for a good estimate, we will denote this number
at each stage as . ( in the MHT as we only have to
iterate once). It can be shown by considering the steps in the
construction process that computation time for each statistic is

.
Combining this with the number of test statistics needed

to be calculated above, Matsuda’s algorithm has a time
and for the MHT,

(15)

So the calculation times for the tests would be expected to
be

for Matsuda’s algorithm
for the MHT (16)

VI. PRACTICAL COMPARISON FOR SMALL DIMENSIONS

For small values of we are able to make direct practical
comparisons of the two algorithms as Matsuda’s can still be
calculated in a reasonable time period.

A. Timings
Fig. 2 compares calculation times in seconds, for the tests

for . Fig. 2(a) plots versus for
Matsuda’s algorithm, while Fig. 2(b) plots versus for
the MHT. In both plots these times increase linearly with as
expected.
Fig. 2(c) shows the ratio , illustrating the rapid increase

in computation time for Matsuda’s algorithm with , compared
to the MHT approach. These results were derived by randomly
generating a model matrix (see Appendix-A) for
each value considered, and then recording the completion time
of each algorithm—Matsuda’s or MHT—for that model.

Fig. 2. Calculation timings in seconds: (a) for Matsuda’s algorithm, to the
one-sixth power, versus , (b) for the MHT, to the one-quarter power, versus
, (c) the ratio of computation times versus , and (d) for the MHT
versus . Here .

Fig. 2(d) shows, for fixed and the MHT, a plot of
versus , where and increases from 200 to
9 000. From (15)

which for large means that should have a constant gra-
dient with , as seen in Fig. 2(d). These results were derived
by randomly generating a single model matrix ,
(Appendix-A), and then recording the completion time for the
MHT algorithm for that model using the different com-
binations specified.

B. Power

We will compare the results of the MHT approach against
Matsuda’s algorithm using two different models. To do this we
utilise the concepts of (i) FWER, defined in Section IV.B, and
(ii) effective power, the probability of rejecting all false hy-
potheses [21].
The first model is the model of (4) and we consider

the cases (missing edges ), and 0.1, (single
missing edge ), as used in [16].
We considered combinations of (512, 16), (1024,

32), (2048, 64). Results are based on 600 replications for each
pair.
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TABLE III
AVERAGE AND STANDARD ERROR OF VALUES OF THE MODEL B TEST

STATISTIC FOR EACH EDGE TEST WITH

For to compare the algorithms, we only consider
the edges (2,3),(2,5),(3,4). This is due to the fact that these
produce the three borderline statistics and while others may
sometime fall outside the critical region—i.e., we reject them
as edges—this is infrequent enough that simply for comparison
purposes it is worth saving time by ignoring these. This ap-
proach is supported by the results in Table III which used the
values and . (In the computations the test
statistics for other edges were essentially taken to be infinity.)
The results displayed in Fig. 3 were constructed as follows.

For the multiple hypothesis test, was varied between 0 and 0.5
in steps of 0.00125, and used as in (13). The MHT was carried
out for each of the 600 replications followed by the two steps:
1. the FWER was recorded as the proportion of the replica-

tions for which at least one true null hypothesis was falsely
rejected;

2. the effective power of the test was recorded as the propor-
tion of replications for which (3, 4) was not included as a
missing edge. This is essentially the power of the sub-test
on the hypotheses claiming edges (2,3), (2,5), (3,4) to be
missing, since of these the only hypothesis that is false is
the (3, 4) one; see Table IV.

For Matsuda’s algorithm a parameter was created and varied
between 0 and 0.5 in steps of 0.00125, and then formed from

; this is the quantity used in (12). This approach al-
lowed us to concentrate more values near zero, resulting in
a more even grid for the resultant FWER. Matsuda’s algorithm
was carried out for each of the 600 replications and the FWER
and effective power recorded.
Figs. 3(a), (c) and (e) show the relationship between the

FWER and effective power for the MHT (solid line) and
Matsuda’s algorithm (dashed line). As can be seen, there is
no significant difference in the power of the test for the two
methods.
For the case we see fromTable IV that the hypotheses

stating (2, 3) and (3, 4) to be missing edges are both false. So
the same basic procedure is carried out as for but now
the effective power is computed as the probability of rejecting
both the hypotheses involving (2, 3) and (3, 4). The results are
shown in Figs. 3(b), (d) and (f) from which it is seen that again
the MHT does at least as well as Matsuda’s algorithm.
Turning to model A of Section II.C, with given in (3) and

missing edges , we can see in Table V that
the only other ‘boundary edge’ is (3, 5).

Fig. 3. FWER versus effective power for the MHT (solid lines) and Matsuda’s
algorithm (dashed line) for Model B, (4), with (a)
(b) , (c) and (d)

, (e) and (f)
.

TABLE IV
STATE OF THE MISSING EDGE HYPOTHESES FOR MODEL B

WHEN AND

TABLE V
AVERAGE AND STANDARD ERROR OF VALUES OF THE MODEL 2 TEST
STATISTIC FOR EACH EDGE TEST WITH AND

TABLE VI
AVERAGE TYPE I AND II PERCENTAGE ERRORS

Again we considered combinations of (512, 16),
(1024, 32), (2048, 64) and used 600 replications for each

pair. The results were calculated using the same
method as above, the only difference being the effective power
is now the power of the sub-test on hypotheses claiming the
edges (2,3),(2,5),(3,4),(3,5) to be missing. Of these, the false
hypothesis is that stating (3, 5) to be a missing edge.
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Fig. 4. FWER versus effective power for the MHT (solid lines) and Matsuda’s
algorithm (dashed line) for Model A, (3), and (a) (b)

and (c) .

Fig. 5. Calculation timings in seconds for the MHT algorithm as varies from
10 to 50. Here and .

Fig. 4 compares the FWER and effective power for the MHT
and Matsuda’s algorithm. Again, there is no significant differ-
ence in the power of the test for the two methods.

VII. MHT ALGORITHM FOR HIGHER DIMENSIONS

We have shown that the MHT approach performs well for a
relatively small number of dimensions . We now look at higher
dimensions.

A. Timings
It might be thought that the inefficiency of Matsuda’s al-

gorithm is not of concern for such moderately large , given
modern computing power. However Fig. 5 gives timings (see
Section VI.A) for the MHT algorithm in seconds for from 10
to 50 (using a 3 GHz processor). Here and .
For the time taken was about 220s; if this is scaled up
(crudely) for Matsuda’s algorithm by we arrive at a
time of over 6 days.

B. Accuracy
Table VI reports the average type I and type II percentage

errors encountered in the model estimation when .
Here averaging is (i) over the 20 estimated models for

(first column), (ii) over 100 repeat simulations for the
single case (second column), and (iii) over the 21 es-
timated models for (third column). The type

Fig. 6. Type I and II percentage errors for as is varied. Here
.

I percentage error is here the ratio 100(number of edges ac-
cepted when missing)/(number missing) and the type II per-
centage error is the ratio 100(number of edges deleted when
present in the true graph)/(number present).
Fig. 6 gives the type I and II percentage errors when is fixed

at the large value and is varied. These results were
derived using a model matrix (see Appendix A)
giving rise to a true graphical model with 36% of connections
present. The results seem quite satisfactory and behave in the
reciprocal way expected.

C. Parallelizability
The full algorithm consists of three stages:
1. Compute the weighted periodogram and store it in memory

(along with its inverse).
2. Calculate all the necessary test statistics.
3. Select the graphical model by way of the multiple hypoth-

esis test.
Once the test statistics have been computed the time taken to

select the graphical model, step 3, is negligible.
Parallelization can be used to greatly speed up step 2, the cal-

culation of the test statistics. In contrast to Matsuda’s imple-
mentation there is no dependency between the calculation of
each of the test statistics. On a multicore CPU a test statistic can
be assigned to each core, and upon completion the next statistic
needing calculation is assigned. Fig. 7 illustrates that the overall
timing is close to linear in the reciprocal of the number of cores
used.
The projected intercept of the line in Fig. 7, approximately

33 s, indicates the overheads from the parallelization and cal-
culation of the weighted periodogram, and provides a limit on
how fast the algorithm can run. Step 1, contributes to this over-
head, and requires care as it can vary enormously in magnitude
depending on implementation. For example, with

and our CPU optimized implementation for
step 1 took 3.4 s while a non-naïve, but nonetheless unoptimized
implementation, took over 420 s.
The key message is that our algorithm is perfect for paral-

lelization and consequent huge speed gains.

VIII. APPLICATION TO EEG DATA

We now apply the MHT method to electroencephalogram
(EEG) data, (resting conditions with eyes closed), for 33 males,
19 diagnosed with negative-syndrome schizophrenia, and 24
controls. This rare heritage clinical dataset from unmedicated
patients was discussed in detail in [19]. Interest is in detecting
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Fig. 7. Calculation timings in seconds for the MHT algorithm for
against the reciprocal number of cores, as the number of

cores varies from 1 (right of plot) to 8 (leftmost).

Fig. 8. Ten channel EEG time series for one of the negative-syndrome patients.

any differences in patterns of brain connectivity between the
groups.
For each individual EEG was recorded on the scalp at 10

sites so that is a vector-valued process. There are
possible graph structures, and

possible connections between the series (edges to the graph).
Each possible connection was assigned a connection index from
1 to 45 as given in [19].
For illustration purposes, the ten channel time series for one

of the negative-syndrome patients is shown in Fig. 8. For each
of the negative-syndrome patients the MHT algorithm was used
to determine whether an index- connection existed, and the per-
centage of the group of patients exhibiting this connection was
recorded. The same was done for the control group. Fig. 9 gives
the resulting percentages for each connection and both groups.
For 3/4 of the connections the percentage is lower for the con-
trols, suggesting patients exhibit a tendency towards higher con-
nectivity, a result consistent with [19] where completely dif-
ferent methodology was used.

IX. CONCLUDING DISCUSSION

Matsuda’s approach to identification of a graphical model in-
volves an appealing Kullback-Leibler statistic but, while im-
proving on exhaustive search approaches, his implementation
using a backward stepwise selection is extremely heavy com-
putationally. This paper introduced a multiple hypothesis test
implementation using Matsuda’s statistic. The number of statis-
tics needing to be calculated is reduced by and the com-
putational burden for evaluating the test statistics themselves is

Fig. 9. Percentage of negative-syndrome patients (heavy line) and controls
(thin line) exhibiting a specified connection.

.

notably reduced as iterative fitting algorithms are no longer re-
quired.
The MHT approach allows us to derive a more relevant con-

trol on the error rate in contrast to the stepwise procedure where
the error rate used in each test step doesn’t have a clear link to
the total error of the procedure. The type I error rate we are con-
trolling is the probability of failing to delete an edge when it is
missing in the true graphical model. It may be more intuitive to
define the error as deleting an edge that is contained in the true
graph. In order to do this we would have to accurately know the
distribution of the test statistic under this alternative, but unfor-
tunately we don’t know this.
The conservative nature of the Holm approach can in theory

be somewhat offset by using an adaptive approach, (explained in
detail by Guo [12]), particularly for large . The result is a more
powerful test than the standard Holm procedure and although
the FWERwill be higher, Guo showed it still controls the FWER
asymptotically. We implemented this methodology but for our
examples and the values of utilized, differences were very
small; however, this approach is undoubtedly worthy of further
investigation.
It is possible using our method to conduct an efficient step-

wise approach by running the MHT and keeping all edges that
clearly exist (i.e., have a very large test statistic), thus defining a
new to that used previously. Much of the work is thus com-
pleted. Then the MHT can be re-run to test models differing
from by one edge, but such additional steps require the iter-
ative scheme [27].
Finally, we have shown that the algorithm scales very

well—is highly parallelizable—with appropriate computing
resources. Future work would involve rendering the algorithm
for efficient calculation on high performance computing hard-
ware such as GPUs.

APPENDIX

A. Random Model Construction

For our simulations random models were con-
structed by randomly formulating matrices with the
number of zero entries specified as follows.
For a given value a matrix was constructed

with null entries. All diagonal elements and non-diagonal
elements in position for which were
populated by random values sampled from the
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distribution. The matrix was then subject to spectral de-
composition and any eigenvalues with modulus greater than
unity were replaced by their reciprocals and reconstructed
using the modified eigenvalues. For such a we know

, [15, pp. 15 & 653] and so a
stationary process results. The choice of controls the sparsity;
our default choice makes approximately 64% of the
matrix entries zero for .
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