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Abstract—Non-orthogonal joint diagonalization (NJD) free
of prewhitening has been widely studied in the context of blind
source separation (BSS) and array signal processing, etc. However,
NJD is used to retrieve the jointly diagonalizable structure for a
single set of target matrices which are mostly formulized with a
single dataset, and thus is insufficient to handle multiple datasets
with inter-set dependences, a scenario often encountered in joint
BSS (J-BSS) applications. As such, we present a generalized NJD
(GNJD) algorithm to simultaneously perform asymmetric NJD
upon multiple sets of target matrices with mutually linked loading
matrices, by using LU decomposition and successive rotations, to
enable J-BSS over multiple datasets with indication/exploitation
of their mutual dependences. Experiments with synthetic and
real-world datasets are provided to illustrate the performance of
the proposed algorithm.

Index Terms—Blind source separation, joint diagonalization, LU
decomposition, successive rotation.

I. INTRODUCTION

J OINT DIAGONALIZATION (JD) is an important instru-
ment in solving blind source separation (BSS) problems.

For example, consider an instantaneous linear mixture
, where and denote

the source and mixing matrix, respectively. The sources are
assumed mutually independent, or uncorrelated but with some
temporal structures (e.g., non-stationarity, non-whiteness). We
can then calculate the 4th-order cumulant [1] or 2nd-order co-
variance matrices (at distinct time instants or time shifts) [2]–[4]

under the above assumptions, that share the fol-
lowing jointly diagonalizable structure:

(1)

where is diagonal, , and superscript ‘ ’ de-
notes conjugated transpose. JD then seeks an estimate of by
fitting the above common JD structure.
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Numerous algorithms for computing JD were proposed in the
open literature. While the early works are mostly focused on or-
thogonal JD (OJD) which requires to be unitary and thus ap-
plied in BSS of pre-whitenedmixtures [1], [2], the recent efforts,
on the other hand, turned to non-orthogonal JD (NJD) to facil-
itate BSS free of pre-whitening for both real-valued and com-
plex-valuedmixtures [3]–[14]. Criteria including weighted least
squares [4]–[8], minimization of off-norm [9]–[13], and infor-
mation theoretic criterion [14] were successfully adopted, that
are specifically accomplished via several optimization strategies
such as Gauss-Newton [8] and successive rotations [10]–[14].
Although JD has found growing interests in both theory and

application, the majority of its contributions are with regards
to single-set data analysis such as BSS of a single set of linear
instantaneous mixtures. More precisely, the target matrices for
JD are mostly formulized by computing the intra-set statistics
(e.g., auto-covariance, 4th-order cumulant) of a single dataset,
and are thus with symmetric or Hermitian structure. In this
background, most of the JD works were historically devised
for symmetric or Hermitian target matrices whose row and
column spaces are identical [1]–[14]. However, when multiple
datasets with inter-set dependences are available, for example,
when working on multi-subject/multi-modal biomedical data
fusion problems [15], [20]–[23], or BSS of transformed sig-
nals in multiple frequency bins [16], the use of NJD fails to
sufficiently utilize these inter-set dependences, and this will
explicitly result in problems such as permutation misalignment
or loss of accuracy [24], [25]. As such, generalized JD (GJD),
that incorporates both intra-set and inter-set statistics to enable
joint BSS (J-BSS) of multi-set data, has become an issue
of great interests. Indeed, although J-BSS has already been
addressed in other aspects of BSS, for example, in independent
vector analysis (IVA) [15]–[17], canonical correlation analysis
(CCA) [18], [19], [22], and multi-set CCA (MCCA) [20]–[22],
efforts with GJD towards J-BSS are still limited [24]–[29]. The
main difficulty lies in the fact that calculating inter-set statistics
brings asymmetric target matrices for GJD, yet the derivations
for most of the existing JD works were devised for symmetric
or Hermitian problems.
More precisely, asymmetric OJD or joint SVD (J-SVD)

was studied in [25], which could be used for J-BSS of 2
pre-whitened datasets. The work in [24], [26] considered gen-
eralized OJD (GOJD) problem, to facilitate J-BSS of 3 or more
pre-whitened datasets. The authors of [26] also considered for
the first time non-orthogonal joint BSS (NOJoB) for 3 or more
datasets within the generalized NJD (GNJD) context. This
algorithm was originally devised for real-valued problems,
and could be extended to the complex case with some tiny
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modifications. We also considered in [27] the joint solution of
multiple asymmetric NJD problems as a preliminary work of
the presented one. However, the joint NJD (JNJD) algorithm
therein makes use of dependences between adjacent datasets
only, and thus still has problems when handling large number
of datasets. In addition, several GJD algorithms have been suc-
cessfully applied to constrained or coupled tensor factorization
problems [28], [29]. More precisely, the canonical polyadic
decomposition (CPD) with constraints of constant modulus
was converted into a simple GJD formulation in [28], such that
2 sets of target matrices (one set is Hermitian and the other is
symmetric) with a common loading matrix are handled simul-
taneously. In [29], we considered coupled CPD of 2 tensors
with a shared loading matrix and demonstrated how it could be
solved with the JNJD algorithm developed in [27].
In this study, we propose another GNJD algorithm for the

joint analysis of multiple datasets. More specifically, the GNJD
problem is set up with multiple asymmetric NJD problems, of
which every two distinct ones are linked by a shared loading
matrix. By exploiting these mutual links across datasets, the
multiple asymmetric NJD problems are solved simultaneously
using LU decomposition and successive elementary rotations.
The proposed GNJD algorithm relieves the orthogonality con-
straints for J-SVD and GOJD, and could be used to handle 3
or more datasets. In addition, when compared with NOJoB, we
note that similar problem is considered but with distinct opti-
mization strategies. In particular, the proposed GNJD algorithm
yields better convergence behavior when handling large number
of datasets, and improved performance in high noise levels, as
will be shown later.
The rest of the paper is organized as follows. In Section II,

we give the formulization of the GNJD problem and some ex-
amples on how practical problems could be linked to GNJD. In
Section III, we present the proposed algorithm as well as the-
oretical analysis including computational complexity and con-
vergence, and some implementation remarks. Experiment re-
sults are given in Section IV to illustrate the performance of
the proposed algorithm. Finally, Section V concludes this paper.
The source programs for the proposed algorithm are available
at [39].

II. PROBLEM FORMULATION

In this section, we present the data model for multi-set pro-
cessing and further give examples on how the multi-set data
model could be formulized into GNJD problems. In addition,
comparisons with existing JD and GJD formulizations are also
given to provide insights into the GNJD model.

A. Multi-Set Data Model

Recently, multi-set data processing has attracted much atten-
tion in the literature [15]–[27]. The key idea to these works
is to incorporate both intra-set independence (as is assumed in
classical BSS problems) and inter-set dependence at the source
level, to achieve J-BSS or data fusion for multiple datasets. The
following multi-set instantaneous mixing model is assumed:

(2)

where denote the observa-
tion, source, and mixing matrix in the th dataset, respectively,

. By defining new source vectors:

(3)

we note that and are independent for any
(intra-set independence), and that components of

are mutually dependent (inter-set dependence).
The above multi-set data model has been largely considered

in practical problems. For example, in BSS of convolutive mix-
tures, (2) models the linear mixing procedure at the th fre-
quency bin, and the inter-set dependence mentioned above for-
mulizes the well-known cross frequency dependences that are
extensively used in frequency domain BSS of convolutive mix-
tures [16].
The above model is also widely used in multi-set data fusion

with emphasis on finding their similarities or connections,
and has found applications in biomedical engineering [15],
[20]–[23]. For example, the multiple datasets might refer to
data of different modalities (e.g., fMRI, EEG, sMRI) collected
from a single subject under equal conditions, and joint analysis
methods that simultaneously decompose these datasets with
indications of their relations are of high interests [21], [22].
Moreover, the multiple datasets could as well refer to those
collected from multiple subjects under identical modality and
conditions. Typical examples include multi-subject fMRI data
and hyper-scanning EEG data [20], [23]. In addition, the above
multi-set data model was also used in array processing applica-
tions to formulate signals collected from distinct sensors (e.g.,
electrocardiogram data collected with multi-electrodes [24]),
or array statistics of distinct orders or forms (e.g., covariance
and pseudo-covariance matrices [29]).

B. GNJD Formulation

The GNJD formulation contains sets of NJD
problems (mostly asymmetric) of the following form:

(4)

where denote loading matrices for the th
and th datasets, , denote the target
matrices and the unloaded diagonal matrices, respectively,

. Integers and denote
the number of loading matrices, number of target matrices in
each NJD dataset, and dimensionality of target matrices, respec-
tively. We note that the th set of target matrices share
with the th and th sets the loading matrices
and , respectively, . There-
fore, all these NJD problems are mutually con-
nected with one another. GNJD then aims at estimating all the
loading matrices such that the jointly diag-

onalizable structures for all the NJD problems in
(4) are fitted simultaneously.
It is important to note that the above GNJD formulation

could be derived from the multi-set data model provided in
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Subsection II.A. For example, with source non-stationarity
present we could calculate the following target matrices:

(5)

where . Moreover, we note here that
is diagonal under the basic as-

sumptions of J-BSS of intra-set independence and inter-set
dependence, and thus (5) is actually a GNJD formulation. In
addition, the GNJD formulization could also be obtained by
calculating the cross 4th-order cumulants upon the multi-set
data model, as is done in [24].

C. Comparison With Existing Formulations for BSS and J-BSS

The considered GNJD model is distinct from the NJD
models as well as some other linear algebraic models that are
well-established for BSS and J-BSS. More exactly, we note that
the majority of NJD works considered symmetric or Hermitian
target matrices [1]–[14], which were usually constructed with
2nd-order or 4th-order intra-set statistics (such as covariance)
of single dataset observations1. Therefore, the NJD works are
mostly devoted to BSS of a single dataset, and the reasonings
therein might be invalid for asymmetric NJD problems (in the
sense that the row and column spaces are distinct) involved in
the GNJD formulation.
For the joint analysis of 2 datasets, some linear algebraic

models have been established by calculating inter-set statistics
across the 2 datasets. The classical CCA method is one such ex-
ample, for which the cross-covariance matrix of 2 datasets is es-
tablished as the sole target matrix [18], [19], and [22]. The work
in [25] further extends the above one sample cross-covariance
model in CCA into multiple samples to form an asymmetric JD
(or J-SVD) model. It is important to note that the above CCA
and asymmetric JD models could be considered as special cases
of GNJD. More exactly, GNJD model in (4) degrades to the
asymmetric JD model if we let and ,
which is further reduced to CCA if we set to 1.
Recently, some advanced models were developed for mul-

tiple datasets (more than 2). In particular, the MCCA model
extends CCA so as to include one sample cross-covariance
matrices among every 2 pre-whitened datasets [20]–[22]. The
GOJD model considered in [24] further extends MCCA to
the multi-sample case. In particular, GNJD model could be
converted into GOJD if we require the loading matrices ’s
to be unitary, , and that be strictly larger than
, and GOJD could be further converted into MCCA if we

set to 1. In addition, GNJD is also different from the JNJD
formulation in [27], if we note that JNJD only considered a
subset of GNJD model with .
As a result, GNJD is a more generalized model for multi-set

data analysis than the existing CCA, asymmetric JD, MCCA,
GOJD, and JNJD models. In addition, we note that the above

1Sometimes the target matrices may neither be symmetric nor Hermitian such
as the complex time-lagged covariance matrices [2]. We note that the row and
column spaces of these target matrices are identical, and thus the target matrices
could be converted into Hermitian by adding with their conjugated transposes.

models for multi-set analysis are distinct from ordinary NJD
in that the latter fails to consider the inter-set dependences. In
particular, advantages of using multi-set models over NJD have
been partially addressed in [25], [27], with respects to permuta-
tion alignment and estimation accuracy.
To our best knowledge, the above GNJD model has only

been considered once in the open literature [26], where a non-
orthogonal joint BSS (NOJoB) algorithm was proposed based
on power iterations. However, this algorithm will occasionally
suffer from non-optimal converging patterns and performance
loss in highly noisy environment, as will be shown in the exper-
iment section. In the next section, we propose an algorithm to
solve the GNJD problem with LU decomposition and succes-
sive rotations.

III. PROPOSED ALGORITHM

In this section, we illustrate how the GNJD problem is solved
with LU decomposition and successive elementary rotations. In
addition, we present some analysis and implementation remarks
to provide insights into the proposed algorithm.

A. GNJD With LU Decomposition and Successive Rotations

To solve the GNJD problem, we extend the well-established
off-norm minimization criterion [9]–[13] to GNJD as follows:

(6)

where denotes the th unloading matrix, is
the operator that sets all the diagonal elements of its entry to
zero, and is Frobenius norm.
We note that the problem in (6) involves lots of parameters

to adjust during the optimization. Therefore, we adopt LU de-
composition and successive rotation based scheme to ease this
problem into loops over simple linear sub-optimizations [1],
[10]–[14], [27]. More exactly, we consider the LU decompo-
sition of :

(7)

where are the th lower-triangular and upper-
triangular matrices, respectively, , and then (6)
could be converted into the following 2 alternating stages, which
update either or one at a time:

(8)

(9)

where denote the updates
of . In the proposed algorithm, (8) and (9) are alternated
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until convergence is reached. Next we shall explain how these
2 sub-optimization problems could be solved using successive
rotations. Before we start, we note that these 2 stages are similar
as they both seek estimates for triangular matrices, and thus we
shall only discuss the L-stage in (9).
More exactly, the updating of is in terms

of successive products of elementary rotation matrices, each as-
sociated with an index pair , by repeatedly solving the fol-
lowing sub-optimization problems for all index pairs [see
(10) at the bottom of the page]: where is the elementary
rotation matrix associated with index pair .

are the most recent updates for and , and
are updates in the previous iteration.We note

that is an elementary lower triangular matrix defined as:

. . .

. . .

(11)

where the only non-zero off-diagonal element is
at the th row and th column. As such, we only need to
estimate 2 sets of parameters
and by minimizing

in
each iteration, formulized as:

(12)

by denoting and
noting that multiplying from the left and right with

and only impact its th row and column, re-
spectively.

Moreover, with some simple operations we could express
and explicitly with

and as follows:

(13)

(14)

Substituting (13) and (14) into (12) yields:

(15)

where are defined as (16), shown at the bottom of
the page.
By defining

, we actually express

as summation of terms: ,
and each term is associated with only one parameter

. Therefore, we need only set the deriva-
tive of with respect to to zero, for the estimation
of . The solution is given below:

(17)

The L-stage constitutes sweeps over all the index pairs
, as is given in (10), with the optimal parameters

found with (17). When all the possible index pairs are exhausted
once (one sweep), we switch to the U-stage that is accomplished

(10)

(16)
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similarly to the L-stage, with the only exception that the index
pair satisfy . Then after one sweep for the
U-stage we return to the L-stage. These 2 stages are alternated
one after another until convergence.

B. Remarks and Discussion

In this subsection we provide discussions on the properties of
the proposed GNJD algorithm, such as computation complexity
and convergence, as well as some implementation remarks.
Remark 1 (Computation Complexity Per Sweep): From (10)

and (17) we note that in each iteration for fixed index pair
in L-stage, the load for calculating

is , and those for updating and are
and , respectively. Therefore, taking into con-

sideration that there exist such iterations in each
sweep and that similar analysis holds for U-stage as well, the
overall computation load per sweep of GNJD is .
In addition, with similar analysis we note that the computation
complexities for JNJD, NOJoB, and GOJD are

and , respectively. We note here
that the computation load per sweep of GNJD is comparable to
that of GOJD, while JNJD is the least complex as it uses much
less target matrices in the computation procedure.
Remark 2 (Convergence): It is important to note that the

transformation in (10) always reduces the cost function defined
in (6) for each iteration. More exactly, if we take the L-stage for
example, the cost function in the iteration with index pair
is reduced to (15) since only the th columns and rows of the
target matrices are updated. Therefore, substituting the solution

into (15), we have the following result:

(18)

where are defined in (16). We note that is al-
ways non-positive. Since the cost function is lower-bounded by
zero by definition, and is always reduced by the proposed itera-
tions as is implied by (18), the proposed algorithm is guaranteed
to at least converge to a local minimum.
Remark 3 (Parallelization for Calculation of ): We

note that (17) actually infers parallel calculation of for
all , instead of the dataset-wise sequential scheme
that calculates one after another.
Noting that the above sequential updating of unmixing matrix is
required for NOJoB, the proposed GNJD algorithm is expected
to perform faster than NOJoB when handling large number of
datasets.
In addition, parallelization over matrix dimensionality could

be considered for further acceleration [30], [31]. More exactly,
we can use the column-wise parallelization scheme [30] that cal-
culates all ’s with identical index yet distinct indices
simultaneously. It is interesting to note that this scheme is able
to largely reduce the number of rotations needed in one par-
ticular sweep without losing any accuracy of calculation in the

NJD context, and thus similar property could be expected for
GNJD. Other parallelization schemes, such as the tournament
player ordering scheme [31], could also be used in our GNJD
method.
Remark 4 (On the Balance of Intra-Set Statistics and Inter-Set

Statistics): We note that the cost function for GNJD could be
rewritten as the sum of two terms as follows:

(19)

In J-BSS applications, involves off-norms of target ma-
trices ’s that are calculated with intra-set statistics, such as
auto-covariance within the th dataset, yet is related to ma-
trices that are usually obtained from inter-set
statistics across datasets, such as cross-covariance or cross 4th-
order cumulant matrices. Details on the calculation of these
target matrices for J-BSS could be found in Subsection II.B. The
goal of J-BSS is to: (1) estimate unmixing matrices ’s si-
multaneously, and (2) at the same time align the permutations
of columns for all ’s, by minimizing . It
is important to note, with regards to the 2 terms and ,
that minimizing only yields estimates of unmixing matrices
without permutation alignment, yet minimization of achieves
the same goal as J-BSS: estimation of unmixingmatrices as well
as permutation alignment. As such, the inter-set statistical target
matrices actually play a more important role than the intra-set
ones in achieving J-BSS, and this infers that we should give
a larger portion in when performing GNJD.
In addition, the numbers of intra-set statistical and inter-set

statistical target matrices in GNJDmodel (4) are and
, respectively, and thus the portion of in is roughly

, which is small when takes small values.
This indicates that using the cost function (19) might encounter
some problem for small numbers of datasets with regards to per-
mutation alignment. Indeed, a smaller portion of will result
in a number of local minima in the manifold of the cost function
that come from the intra-set statistics, and GNJD is likely to be
stuck into a local minimum in such cases.
Indeed, we have observed with simulations quite a few non-

optimal convergence patterns for NOJoB and GNJD when
takes small values, which in return verifies our analysis above.
It is important to note that GOJD does not have such problem
as it uses inter-set statistics only.
To solve the above problem, we consider to remove intra-set

statistical target matrices from GNJD when is smaller than
(empirically set to 5), and remain both intra-set statistics and

inter-set statistics otherwise.
Remark 5 (Termination Criteria): Several stopping criteria

are available such as monitoring the changes of the off-norm
based cost function defined in (6) between 2 adjacent sweeps.
Here we choose to terminate the iterations when the overall up-
dates of and from all the elementary matrices are
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TABLE I
IMPLEMENTATION OF PROPOSED ALGORITHM

sufficiently close to the identity matrix. That is to say, we shall
stop the iterations if the following inequality is met:

(20)

where and denote the elementary rotation ma-
trices in the L and U stages, respectively, and is a preset
threshold (e.g., we use in experiments).
Remark 6 (Normalization): It is important to note that the

convergence of the proposed algorithm does not necessarily
imply joint diagonalization for all the asymmetric NJD datasets,
as the criterion (6) is not scale invariant, and this may result in
inaccurate estimates of especially when and are
large [11]. In practice, an efficient way to alleviate this is nor-
malization [10]. It is simply achieved by multiplying from
the right by a diagonal matrix such that each row of is of
unit norm, and multiplying by and on both
sides. In addition, we note that the computation cost of normal-
ization for each sweep is which is negligible com-
pared to the overall complexity. Moreover, we have observed
in our experiments that the proposed algorithm still converges
without normalization. However, there is no theoretical proof
for such observations, and we still use it as a proper precaution.
Based on the description of GNJD algorithm and remarks in

Subsections III.A and III.B, we summarize the proposed GNJD
algorithm in Table I.

IV. EXPERIMENT RESULTS

In this section, we illustrate the performances of the proposed
GNJD algorithm with 5 progressively more complex experi-
ments (the list of compared algorithms may vary for different

experiments and is specified at the beginning of each experi-
ment). More exactly, we illustrate in Experiment 1 behaviors
of compared algorithms with exactly diagonalizable matrices,
with emphasis on the converging patterns. In Experiment 2, ap-
proximately jointly diagonalizable asymmetric target matrices
are used in order to examine the performances in turbulences.
In Experiment 3, we test the performance of compared algo-
rithms in the context of 2nd-order J-BSS. In Experiment 4 and
5, results with real-world datasets are presented, wherein appli-
cations with electrocardiogram (ECG) mixtures and frequency
domain speech mixtures are taken into consideration.
All the experiments are done under following configura-

tions; CPU: Intel Core i7-4930MX 3.0 GHz; Memory: 32 GB;
System: 64 bit Windows 7; Matlab R2013b.
Experiment 1. Performances With Exactly Diagonalizable

Matrices: In this experiment, we demonstrate and compare
the convergence behaviors of generalized JD algorithms in-
cluding GNJD, NOJoB [26], JNJD [27] and GOJD [24]. We
generate target matrices

, according to (4) where both the
real and imaginary parts of the elements of
and the diagonal elements of are drawn
from normal distributions with zero mean and unit variance,

, and denote the number of target matrices in each
(asymmetric) NJD set, number of mixing matrices to be esti-
mated, and matrix dimensionalities, respectively. The overall
off-norm (ORON) at the th sweep is calculated to evaluate the
converging procedure which is defined as follows:

(21)

where denotes update of the th unmixing matrix in the th
sweep, operations ‘ ’ and ‘ ’ set the diagonal and
off-diagonal elements of their entries to zero, respectively.
We perform GNJD and NOJoB upon the above generated

target matrices. For JNJD, the target matrices are selected from
those for GNJD by requiring . In addition, the target
matrices for GOJD are for all

, where is the pre-whitening matrix obtained
from singular value decomposition (SVD) of . We draw the
ORON curves of the compared algorithms versus the number of
sweeps from 10 independent runs, under the following settings:
(a) ; (b) ; (c)

; (d) . The re-
sults are plotted in Fig. 1. We note here that in all the 4 settings,
both GNJD and GOJD converge nicely within 15 sweeps, with
superlinear converging pattern particularly when approaching
the final solution. In contrary, we note that non-optimal con-
verging patterns exist for NOJoB in settings (b), (c), and (d),
which are at times observed to fail to converge into global min-
imum. This suggests that using NOJoB for large number of
datasets is likely to have problems of permutationmisalignment.
In addition, JNJD almost completely fail to converge into global
minimum in settings (b), (c), and (d). The above observations
suggest that GOJD and the proposed GNJD algorithms are the
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most reliable ones among the competitors in achieving both es-
timation of loading matrices and permutation alignment, when
handling small or large number of datasets. On the other hand,
NOJoB provides quite reliable performance when the number of
datasets is small, yet lacks some efficiency for large number of
datasets as is indicated in the non-optimal converging patterns.
JNJD is only able to handle small number of datasets.
It is important to note that in this experiment perfect

pre-whitening is done for GOJD, noting that the matrices
are obtained with SVD of the true loading matrices

. However, in noisy cases where uncorrectable
errors for subsequent GOJD stage are likely to be introduced in
pre-whitening [23], the performance of GOJD will deteriorate,
as will be shown in following experiments.
Experiment 2. Performances With Approximately Jointly

Diagonalizable Matrices: In this experiment, we examine
and compare the performances of generalized JD algorithms
(GNJD, NOJoB, GOJD, JNJD) with approximately jointly
diagonalizable target matrices generated as follows:

(22)

where is constructed in the same way as Experiment
1, is the noise term with both the real and imaginary
parts drawn from normal distributions with zero mean and unit
variance, and denote the levels of signal and noise, re-
spectively. In addition, we define signal-to-noise ratio (SNR) in
this case as:

(23)

We perform GNJD and NOJoB upon
, and JNJD

upon the subset of with . In addition,
the true loading matrices are assumed known for GOJD
to facilitate pre-whitening. The target matrices for GOJD are

with pre-whitening matrices obtained
from SVD of .
We evaluate the performances of all compared algorithms by

the joint inter-symbol-interference (J-ISI) [24] defined as:

(24)

where denotes the th element of
calculates the absolute value of each element of its entry,
denotes the th normalized estimated unmixing matrix, and
is the th normalized true mixing matrix. We note here that J-ISI
takes into account both the accuracy and the permutation of the
rows of the estimates of unloading matrices, and a small value
of it indicates an accurate estimate of each individual unmixing
matrix, as well as nicely aligned permutations for all the un-
mixing matrices.
We fix to 0.01, let SNR vary from 0–20 dB, and plot the

J-ISI curves obtained from 100 independent runs in Fig. 2 under

Fig. 1. Overall off-norm (ORON) of GNJD, NOJoB, JNJD, and GOJD versus
the number of sweeps. (a) , (b)
, (c) , (d) .

the following two settings: (a) ; (b)
. It is shown that GNJD provides the
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Fig. 2. J-ISI of GNJD, NOJoB, JNJD, GOJD in additive turbulences. (a)
, (b) .

best results when SNR is lower than 16 dB, followed by NOJoB
and then by GOJD in both cases. This observation clearly indi-
cates the pros and cons of non-orthogonal and orthogonal GJD
that the former is likely to outperform the latter in the presence
of additive turbulences, and this coincides nicely with the com-
parison of the non-orthogonal and the orthogonal in the JD con-
text [32]. Moreover, it is interesting to note that JNJD provides
competitive performance when , which again suggests its
applicability for small number of datasets.
Experiment 3. 2nd-Order J-BSS of Synthetic Multi-Set Data:

In this experiment, we compare the proposed GNJD algorithm
with NOJoB, GOJD, and MCCA in 2nd-order J-BSS of syn-
thetic multi-set data (JNJD is excluded due to its poor perfor-
mance in the following settings). The non-stationary sources are
generated as:

(25)

where
denotes the th source at time instance in the th dataset, and

is a full rank matrix used to introduce inter-set
correlations. Both the real and imaginary parts of each element

of are drawn from normal distribution of zero mean and unit
variance. are complex BPSK
that are amplitude modulated across time slots:

(26)

where ’s are randomly drawn from uniform distribution over
[0, 1] and is defined as:

(27)

where is a BPSK signal at time with value selected
from symbols with equal probability, is the number
of samples of , and denotes the overlapping rate of
parts in and that contribute to the same time
duration in . The mixtures are constructed as:

(28)

where both the real and imaginary parts of mixing matrices
’s are taken randomly from normal distribution with zero

mean and unit variance, and is the noise term in the th
dataset. The spatial correlations for noise terms associated with
distinct datasets are introduced similarly to (25). and de-
note the signal and noise levels respectively. We note here that

(see Fig. 3 as an example) are short-time stationary, and
thus target matrices are constructed according to (5). In
practice, we calculate the sampled version of as:

(29)

where denotes the th block segmented from along
the time dimension, with block length , and overlapping rate

. SNR in this scenario is defined with and via
(23).
The target matrices for GOJD are obtained with pre-whitened

datasets. The pre-whitening matrices are obtained via SVD of
the sampled . The target matrices for MCCA are cross-
covariance matrices (without taking into account the temporal
non-stationarity) across every pair of pre-whitened datasets.
We fix the number of temporal samples

, and , and let SNR vary from dB–10
dB. The J-ISI curves versus SNR are plotted in Fig. 4 with con-
tributions from 100 independent runs under the following 2 set-
tings: (a) ; (b) .
From Fig. 4 we see that GNJD yields best performance in

low SNR levels ( –5 dB), followed by NOJoB, and GOJD in
both scenarios. When SNR exceeds 5 dB, the proposed GNJD
algorithm slightly underperforms NOJoB and GOJD, but is still
able to provide quite precise estimates (J-ISI is below 0.05). In
addition, the merit of GNJD in low SNR is seen clearer when
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Fig. 3. The real part of an amplitude modulated BPSK signal with ,
and .

Fig. 4. J-ISI of GNJD, NOJoB, GOJD, and MCCA in 2nd-order J-BSS. (a)
, (b) .

, suggesting that the proposed GNJD algorithm is more
advantageous for handling larger number of datasets.

Fig. 5. The 8-channel ECG data from a pregnant woman.

We note in this experiment (as well as Experiment 2) that
GNJD exhibits slightly lower performance than GOJD and
NOJoB for high SNR’s. That is because the latter two algo-
rithms impose some constraints in the optimization (e.g., the
orthogonality constraint for GOJD, the unit-norm constraint for
rows of demixing matrix in NOJoB), and these constraints bring
some merits over the unconstrained GNJD algorithm when
SNR is high (such that prewhitening is precise for GOJD and
non-optimal convergence is rarely encountered for NOJoB).
In the presence of low SNR, however, that GOJD suffers from
imprecise prewhitening and NOJoB encounters non-optimal
convergence, GNJD is shown to yield best performance. In
fact, noise is always present and can sometimes be quite high
in real-world problems, and that makes GNJD particularly
interesting in solving practical noisy problems.
Experiment 4. Fetal Electrocardiogram (ECG) Separation:

In this experiment, we consider and compare 2nd-order J-BSS
with GNJD, JNJD, GOJD, NOJoB, and MCCA in the context
of fetal ECG separation with real-world 8-channel ECG data as
is shown in Fig. 5, collected from a pregnant woman and made
available in [33]. The sampling rate is 250 Hz and 2500 samples
(10 s) are recorded.
We note that the 2nd-order J-BSS with GOJD has already

been applied to the same dataset and more details about the mo-
tivation of using J-BSS in such problems could be found in [24].
Here, we emphasize on the comparison of J-BSS algorithms in
this application. The multi-set data is constructed following a
similar procedure to [24] as:

(30)

The target matrices for GNJD and NOJoB are non-stationary
covariance matrices, obtained similarly to (29) in Experiment 3
with block length , and overlapping rate . The
target matrices for JNJD and GOJD are constructed from those
of GNJD via a similar procedure to that in Experiment 3. The
target matrices for MCCA are cross-covariance matrices across
every pair of pre-whitened datasets. The separation results are
plotted in Figs. 6–10 where those labelled denote the th
set of estimated sources, .
From those figures we see that the strong and slow mother

ECG could be nicely extracted by all the 5 compared algo-
rithms, if we note the last two columns of the displayed results
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Fig. 6. Results from J-BSS with GNJD.

Fig. 7. Results from J-BSS with GOJD.

Fig. 8. Results from J-BSS with JNJD.

Fig. 9. Results from J-BSS with NOJoB.

in Figs. 6–10. In addition, the fetal ECG could be successfully
restored in some components of the estimated results as well,
if we look into the 1st components in , and

Fig. 10. Results from J-BSS with MCCA.

Fig. 11. Illustration of the simulated room settings.

for all the compared algorithms. However, differences could
be observed in other estimated results. In particular, we note
that GNJD extracts more components related to fetal ECG than
others if we compare the 2nd column of the displayed results,
where GOJD, JNJD, NOJoB and MCCA only generate interfer-
ences while GNJD extracts fetal ECG components in and

. Generally, fetal ECG’s are with particular interests in this
application.
Experiment 5. Speech Separation in Frequency Domain:

In this experiment, we consider and compare the applications
of 2nd-order J-BSS with GNJD, JNJD, GOJD, NOJoB and
MCCA to real-world speech separation in the frequency do-
main. We also include in the comparison some JD algorithms
such as Cardoso’s Jacobi-like OJD algorithm [1], Tichavsky
and Yeredor’s uniformly weighted exhaustive diagonaliza-
tion by Gaussian iteration (UWEDGE) [6], complex-valued
joint diagonalization via givens and shear rotations (C-JDi)
[13] proposed by Mesloub, Abed-Meraim, and Belouchrani,
and LU decomposition based complex-valued JD (LUCJD)
[12]. We consider the scenario that two microphones receive
two speeches. The real-world mixtures are obtained from
SISEC2010 website [34] (scenarios Room 4 and Room 5). The
room is a chamber with cushion walls of size 4.45 m 3.55
m 2.5 m, microphones are placed around the center of the
room with height 1.25 m with interspacing of 5.7 cm, the
sources are placed at height 1.25 m, with distance of 1 m from
microphones in Room 4 setting, and 1.8 m from microphones
in Room 5 setting. The detailed description of the scenarios
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could be found in [34], and an illustration of Room 4 is given
in Fig. 11.
Frequency domain speech mixtures are obtained with short

time Fourier transform (STFT). The STFT frames are of
length ( or 4096 in particular) for the competitors,
half-overlapped with neighboring ones and windowed with sine
function. The signals for the first frequency
bins are selected for the compared algorithms, as the rest of the
frequency bins are redundant due to the symmetry of Fourier
transform. The Matlab code for the above procedure could be
found in E. Vincent’s website [35].
In addition, we construct groups each containing
adjacent frequency bins, and perform 2nd-order J-BSS de-

scribed in Subsection II.B with GNJD, GOJD, JNJD, NOJoB,
and MCCA for each group. For JD algorithms including OJD,
UWEDGE, C-JDi, and LUCJD, 2nd-order BSS is performed
for each frequency bin wherein the target matrices are ob-
tained as non-stationary covariance matrices [3]. Moreover,
pre-whitening is done at each frequency bin for OJD, MCCA,
and GOJD.
After the above 2nd-order J-BSS (BSS) stage for each fre-

quency bin, we calculate cross-covariance’s of amplitudes of
separated signal components of adjacent frequency bins, and
admit those with larger cross-covariance’s as coming from the
same source. This amplitude-covariance based permutation
alignment scheme is then performed sequentially to cover
all the frequency bins to tackle the permutation ambiguity
problem. In addition, the scaling ambiguity problem is solved
via minimal distortion principle [36]. It is important to note
that there actually exist more advanced permutation alignment
schemes in the open literature [37]. However, we emphasize
herein the separation performance for each frequency bin, and
thus only use the basic one. Finally, inverse STFT is done to
transform the separation results back to time domain.
We obtain the source speeches from Sawada’s website [38].

The performance is evaluated with signal-to-interference ratio
(SIR) and signal-to-distortion ratio (SDR). Detailed definitions
and Matlab codes for these metrics could be found in [35].
All the compared algorithms are performed with STFT

length and . In addition, J-BSS algorithms
(GNJD, NOJoB, GOJD, JNJD, MCCA) are performed with

and . Over all the above parameter options, the
best result (with largest average SIR value) for each individual
algorithm is selected and illustrated in Tables II and III for
Room 4 and 5, respectively.
We highlight the largest value along each column with bold

font. From these tables we firstly observe that GNJD generates
the best average results over the 2 sources in both scenarios, with
regards to both SIR and SDR values. Moreover, for SIR values
of each specific source, GNJD provides the best results for both
sources in setting Room 4, and best SIR value for source 2 in
setting Room 5. In addition, we note that GNJD is able to yield
nice SIR’s for both sources, in contrary to some other algorithms
that only yield nice estimate for one source yet poor one for the
other (e.g., NOJoB and GOJD in setting Room 5). Noting that
SIR generally evaluates the separatability of the compared al-
gorithms, the superiority of GNJD over all other competitors
with regards to SIR clearly indicates its advantages in this as-

TABLE II
SIR AND SDR VALUES OF ALL COMPARED ALGORITHMS FOR SEPARATING

REAL-WORLD SPEECH MIXTURES UNDER SCENARIO ROOM 4

TABLE III
SIR AND SDR VALUES OF ALL COMPARED ALGORITHMS FOR SEPARATING

REAL-WORLD SPEECH MIXTURES UNDER SCENARIO ROOM 5

pect. Furthermore, we note that GNJD is able to provide quite
competent SDR values (always ranked among top 3 for each
specific source in both settings, and ranked 1st for the average
value), indicating that GNJD could provide nice quality of the
resulting speech estimates in addition to nice separatability.
The results clearly demonstrate the superiority of GNJD

over other (generalized) JD variants in frequency domain based
speech separation, thanks to its strong and robust performance
for exploiting inter-set covariances of multi-set data in highly
noisy environments.

V. CONCLUSION

In this study, we considered the generalized non-orthog-
onal joint diagonalization (GNJD) of multiple asymmetric
NJD datasets of which every pair share one common loading
matrix. We proposed an algorithm for such problem based
on LU decompositions and successive rotations. We have
shown that the GNJD formulization could be obtained from
the multi-set data model by using 2nd-order statistics, and thus
the proposed algorithm could be used in multi-set data analysis
applications such as joint blind source separation (J-BSS) and
multi-modal/multi-subject data fusion. In addition, we have
provided some theoretical analysis including complexity and
convergence, as well as some implementation remarks.
Experiments are conducted to compare the proposed GNJD

algorithm with existing ones of similar type, namely non-or-
thogonal joint blind source separation (NOJoB), generalized or-
thogonal joint diagonalization (GOJD), joint NJD (JNJD), and
multiple canonical correlation analysis (MCCA), with artificial
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target matrices in both exactly and approximately jointly diag-
onalizable cases (Experiments 1 and 2), 2nd-order J-BSS appli-
cations over synthetic datasets (Experiment 3), and real-world
J-BSS applications such as fetal ECG extraction (Experiment
4), and frequency domain speech separation (Experiment 5).
The results generally show that GNJD is able to provide better
performance when compared with NOJoB, GOJD, JNJD, and
MCCA.
The sensitivities of GNJD and other generalized JD methods

to difficult conditions are not studied in this paper and will be
one of our future focuses.
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