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Abstract—We describe a method of oversampling signals defined
on a weighted graph by using an oversampled graph Laplacian
matrix. The conventional method of using critically sampled graph
filter banks has to decompose the original graph into bipartite sub-
graphs, and a transform has to be performed on each subgraph
because of the spectral folding phenomenon caused by downsam-
pling of graph signals. Therefore, the conventional method cannot
always utilize all edges of the original graph in a single stage trans-
formation. Our method is based on oversampling of the underlying
graph itself, and it can append nodes and edges to the graph some-
what arbitrarily. We use this approach to make one oversampled
bipartite graph that includes all edges of the original non-bipartite
graph. We apply the oversampled graph with the critically sampled
graph filter bank or the oversampled one for decomposing graph
signals and show the performances on some experiments.

Index Terms—Graph filter banks, graph oversampling, graph
signal processing, graph wavelets, multiresolution.

I. INTRODUCTION

RAPHS are data structures that can represent complex re-

lationships among data and can be used in many fields of
engineering and science. A graph consists of nodes and edges,
and each edge is usually assigned a weight determined by the
similarity and connectivity of the nodes. A recent development
is that of graph signal processing, in which a sample is placed on
each node of a graph and the processing takes into account the
structure of the samples [1]-[14]. Whereas signals of regular
signal processing have very simple structures, those of graph
signal processing are allowed to have complex irregular struc-
tures.

Multiresolution analysis is an efficient way of analyzing, pro-
cessing, and compressing signals [15]. Wavelet transforms for
graph signals can be used to make multiresolution analysis [5],
[13], [16], [17]. In particular, the use of two-channel critically
sampled wavelet filter banks on graphs has been proposed [2],
[3]. An important topic in graph signal processing is down-
sampling and upsampling. Similar to the aliasing effect of reg-
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ular signal processing, the spectrum folding phenomenon af-
fects downsampling of graph signals. In order to deal with this
challenge, studies on critically sampled filter banks have fo-
cused on bipartite graphs and determined the conditions under
which perfect reconstruction is possible.

The graph filter banks with downsampling operations, such
as critically sampled graph filter banks and oversampled ones
[16], [17], can only be applied to bipartite graphs. For arbitrary
non-bipartite graphs, the original graph must be decomposed
into bipartite subgraphs. Each subgraph has all of the nodes and
some of the edges of the original graph, and their union yields
back the original graph. The filter banks are applied to each of
these subgraphs, and this leads to a multidimensional transform.
The subgraph only has some of edges of the original graph, and
the single stage transform usually does not involve many of the
original edges.

The concept of graph oversampling using an oversampled
graph Laplacian matrix was proposed in our recent paper [16].
By using such a matrix, we can append nodes and edges to the
graph somewhat arbitrarily. Furthermore, graph signals can also
be freely chosen. However, in that paper, we only presented a
simple example of oversampling for a bipartite graph. An inap-
propriate choice of the oversampled graph Laplacian matrix and
graph signals will degrade performance relative to that of the
original graph. Additionally, theoretical connections to graph
theory were not studied.

In this paper, we present an effective method of applying
graph oversampling to non-bipartite graphs that avoids inap-
propriate choices. In particular, we describe a method that con-
verts an arbitrary K -colorable graph into one bipartite graph
containing all edges of the original graph and compare the over-
sampled bipartite graph with critically sampled ones. Moreover,
we describe an image processing with graph oversampling. This
formulation enables us to decompose images in an edge-pre-
serving manner. The redundant multiresolution transform can
be implemented with critically sampled graph filter banks or
oversampled ones on the oversampled graph. We validated the
performance of graph oversampling through an experiment on
non-linear approximation of images and denoising of graph sig-
nals.

The rest of this paper is organized as follows. In Section II,
we describe the notation used in this paper, the two-channel crit-
ically sampled wavelet filter bank on graphs [2], [3], and the
oversampled one [16], [17]. Section III introduces the method
of oversampling graph Laplacian matrices and input signals.
Section IV describes the way of oversampling arbitrary graphs
that makes one oversampled bipartite graph from a K -colorable
graph. We also clarify the theoretical relationship between the
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proposed oversampled graph and the bipartite double cover of
a graph in graph theory [18]-[20]. Section V shows examples
of graph oversampling for images and a ring graph, and com-
pares oversampled bipartite graphs with the critically sampled
ones. Section VI describes experimental results on graph signal
decomposition. Section VII concludes the paper.

II. PRELIMINARIES

A. Graph Signals

A graph G is represented as G = {V.£}, where
V = {wop,v1,...,vn_1} and € denote sets of nodes and
edges, respectively. The graph signal is defined as f € RV.
We will only consider a finite undirected graph with no loops
or multiple links. The number of nodes is N = |V|, unless
otherwise specified. The (m,n)-th element of the adjacency
matrix A is defined as follows:

(1)

A(m,n) = Wy if nodes m and n are connected,
' 0 otherwise,

where w.,,,, denotes the weight of the edge between m and n.
The degree matrix D is a diagonal matrix, and its mn-th diagonal
element is d,,,, = Zﬂ G- The unnormalized graph Lapla-
cian matrix (GLM) is defined as . := D — A and the symmetric
normalized GLM is £ := D~1/2LD /2 The symmetric nor-
malized GLM has the property that its eigenvalues are within
the interval [0, 2], and we will use £ in this paper. The eigen-
values of £ are A; and ordered as: 0 = Ag < A1 < Aqg... <
An -1 < 2 without loss of generality.! The eigenvector w), cor-

responds to A; and satisfies Luy, = A;uy,. The eigenvectors
U = [un,, ..., uxr,_, ] satisfy
UU? =1y, (2)

where -T is the transpose of a matrix or a vector and Iy is an
N x N identity matrix. The entire spectrum of G is defined
by o(G) := {Xp,..., An-1}. The graph Fourier transform is
defined as follows [5], [21]:
N-1

F) = (us, f) = Z uy, (n) f(n).

n=0
where -* is the complex conjugate. The projection matrix for the
eigenspace Vy, is

)

Py = Z U - “4)
A=A

If A; and A; are different eigenvalues, P, and P A, are orthog-
onal; that is,

PPy, = 6(A — Aj)Ps,, (5)

where 6(A) is the Kronecker delta function. Let i()\;) be the
spectral kernel of filter H. The spectral domain filter can be
written as

H= > h(X})Py,.

Xi€c(G)

(6)

IThe eigenvalue A; will be nonzero only if the graph is connected. An —; = 2
only for bipartite graphs.
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The spectral domain filtering of graph signals can be simply
denoted as Hf.

B. Two-Channel Graph Wavelet Filter Banks

A bipartite graph, whose nodes can be decomposed into two
disjoint sets L and H such that every link connects a node in L
to one in H, can be represented as G = {H, L, £}. The down-
sampling function 3 of a bipartite graph is defined as

Bu(m) = {—l—l ifm e H,

-1 ifme L. )

The diagonal downsampling matrix is J g = diag{8g(n)} and
satisfies J = Jy = —J . The downsampling-then-upsampling
operation is defined as [3]

1
Dyu,r = §(IN +J5),

1
Dyug = §(IN +J). (8)
where Iy is an V x N identity matrix.
J and P, are related as follows [3] (spectral folding phe-
nomenon):
JP,, =Ps_, J. )
The nodes in H store the output of the highpass channel,
whereas the nodes in L store the output of the lowpass channel.
Critically sampled graph filter banks decompose f into |L|
lowpass coefficients and |H| highpass coefficients, where
|L| + |H| = N, as illustrated in Fig. 1. The overall transfer
function of graph-QMF [3] and graphBior [2] can be written as

1 1

= %(GOHO + G H;) + %(GlJHl — GoJHy). (10)
The spectral folding term G1JH; — GoJH,, arising from
downsampling and upsampling, must be zero. In addition,
T = I should be satisfied for perfect reconstruction. Hence,
the perfect reconstruction condition of graph-QMF [3] and
graphBior [2] can be expressed as

9o(AMho(A) + g1(A)h1(A) =2,
go()\)ho(Q — /\) — gl(/\)hrl(Q — /\) =0. (ll)
Additionally, the orthogonal transform, graph-QMF, has an
orthogonality condition h3(A) + h3(2 — A) = c?. Therefore,
filters are chosen in a way that satisfies h1(A) = hg(2 — A),
ho(A) = go(A) and hy(X) = g1(A). Unfortunately, filters that
satisfy these conditions are not compact supports. That is, if
graph-QMF were forced to be a compact support, it would
suffer from a loss of orthogonality and a reconstruction error.
On the other hand, graphBior relaxes the orthogonal condition
of graph-QMF and has a perfect reconstruction condition and
compact support because it uses a design method similar to
Cohen-Daubechies-Feauveau’s construction for regular signals
[22].
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Fig. 1.

Critically sampled two-channel graph filter bank.

The critically sampled filter bank is designed for bipartite
graphs. When it is applied to an arbitrary graph, the original
graph should be decomposed into an edge-disjoint collection of
K bipartite subgraphs by using a bipartite subgraph approxi-
mation such as Harary’s algorithm [3], [23] and the transform
performed on each subgraph. Each subgraph has the same node
set as the original graph, and their union yields back the orig-
inal graph. This decomposition leads to a separable multidimen-
sional graph wavelet filter bank.

C. M-Channel Oversampled Graph Filter Banks

The authors proposed A -channel oversampled graph filter
banks [16], [17], where M is even and M/2 filters keep ||
signals and other ones keep |H| signals. Similar to the criti-
cally sampled case, the perfect reconstruction condition of the
M -channel oversampled graph filter bank can be represented as

M-1
Z g (N (N) = 2, (12)
M/2 1
Z 9N hie(2 = A) = grrary2(Mhgynr2(2 = A) =0
k=0

(13)
for any A. The latter equation is satisfied by choosing the filters
gr(A) = hpyary2(2—A) and gy ar/2(A) = he(2— A). Further-
more, the product filters are defined as pr(A) = g (A)he(N);
accordingly, (12) can be written as

M/2-1

>

k=0

pe(A) + pr(2 — A) = 2. (14)

In order to obtain the product filters satisfying this condition,
the critically sampled product filter is factorized into lowpass
and bandpass filters. Unlike critically sampled ones, M -channel
oversampled graph filter banks can have arbitrary filters and still
satisfy the perfect reconstruction condition.

III. OVERSAMPLED GRAPH LAPLACIAN MATRIX

In this section, we describe the structure of oversampled
GLMs and oversampled graph signals [16]. Fig. 2 shows an
example of the transform using graph oversampling with an
M -channel oversampled graph filter bank. Before applying the
graph filter bank, the original bipartite graph G = {L, H, £} is
expanded into an oversampled bipartite graph G = {L, H.£}
where L and H include L and H, respectively. The spectral
domain filtering is then performed based on the oversampled
GLM.

Let us denote the original GLM of a bipartite graph by Ly
and its adjacency matrix by Ay, and let us set their sizes as
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Ny x Ny. The normalized oversampled GLM Z', isan N1 x N;
matrix (N; > Np), and N7 — Ny is the number of the additional
nodes. It is represented as

L=D'2LD/? (15)
where
L=D-A (16)
~ Ay Ay
A= 17
|:A01 ONLNO:| ( )

in which A is the oversampled adjacency matrix, and D is the
degree matrix that normalizes the new GLM. Additionally, A
contains information on the connection between the original
nodes and appended ones. Note that nodes are appended so that
L is still a bipartite graph. Filters in the spectral domain in Fig. 2
are defined as

Hi= Y h(X)Py,
Xi€a(G)

Gi= Y g(A)Py, (18)
Xi€0(G)

where P »; is the projection matrix of the oversampled graph.
The downsampling matrix J = —J5 = J4 of the oversam-

pled graph is determined by L and H. It can be represented as

follows:
~ [Jo O
-y 5]

where J, and J are the downsampling matrices of the original
and additional nodes, respectively. The oversampled signal f is

written as
v fo]
=17

where f is the signal for the additional nodes and its length is

N1 — Ny. Since the perfect reconstruction condition of graph

filter banks does not depend on the graph oversampling as long
~f

19

(20)

as the oversampled graph is bipartite, the output signal f is
equal to the input 51gna1 [ regardless of the add1t10na1 signal

value f,. Naturally, fo can be obtained from _f

IV. EFFECTIVE GRAPH EXPANSION METHODS

As described in Section III, the appended nodes of the over-
sampled GLM can be arbitrarily connected to the nodes as long
as the oversampled graph is bipartite. The additional signal
value f can also be freely chosen. However, an inappropriate
choice of graph oversampling causes a performance loss. In this
section, we describe an efficient way to construct oversampled
graphs that avoids such losses. Since the oversampled graph
has to be a bipartite graph, we first decompose the original
graph into bipartite subgraphs. We take one bipartite subgraph
and append nodes and edges in the other bipartite subgraphs to
it. In this way, one oversampled bipartite graph containing all
the edges of the bipartite subgraphs is obtained.
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graph
oversampling

So

H=F UF,UF;
@ ©

Fig. 3. Bipartite oversampled graph construction for three-colorable graphs.
(a) Three-colorable graph whose node sets are F;, F> and F. (b) Bipartite
subgraph B . (c) Bipartite subgraph 5. (d) Oversampled bipartite graph. The
gray lines are edges contained in 53, and the dashed and solid black lines are
vertical edges and additional edges according to the edge information of original
graph, respectively. (e) Sets L and H of the oversampled bipartite graph.

A. Three-Colorable Graphs

First, we describe a way to convert a three-colorable graph
into one oversampled bipartite graph containing all edges
of the original graph. We assign three colors to nodes such
that adjacent nodes have different colors and distinguish these
nodes as F, F5 and F3, respectively. The three-colorable graph
(Fig. 3(a)) can be decomposed into two bipartite subgraphs: B
that contains edges linking F; U F3 and Fy (Fig. 3(b)), and Bs
that contains edges between F; and F5 (Fig. 3(c)). Hence, the
edges in B, only have connections on one side of the subsets
(F1 and Fg) OfBl.

To make the oversampled graph, nodes are appended just
above each node in /4 and F5 of 31 . The additional node sets are
represented as F] and F}, respectively. Each appended node has
the same value as the corresponding node. By adding the edges
between F) and F3 to the graph, we can convert the original
graph into one bipartite graph that contains all edges and nodes
in the original graph (Fig. 3(d)). Since each appended node and
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N

its corresponding node have the same value, they can be con-
nected by a vertical edge. The oversampled graph has node sets
L=F,UFyand H = F| U Fj U Fj3, as shown in Fig. 3(e).
If some of the nodes in F; and F% only have connections to
F3, they are isolated in B2. Hence, there is no need to append
these nodes to the oversampled graph. The redundancy after a
transformation by using the M -channel graph filter bank and
oversampling of a three-colorable graph can be computed as

e M (] + [ Fo) + (1F| + [F5] + [F5))}
2N
M (N + |Fy[ + |[Fo| — |1])

= oN 21

where |7] is the number of isolated nodes and satisfies |F| +
[Fal = [Fa| + [Fo| = 1.

B. K-Colorable Graphs

For K -colorable graphs where K > 4, the method described
above can be extended to make one bipartite graph including
all of the edges of the original graph. We assume that the nodes
of the original graph G = {V,£} are assigned colors and di-
vided into K sets Fy, I, ..., Fg. Fig. 4 shows two examples
of the oversampled bipartite graphs for a five-colorable graph.
The oversampled bipartite graph is generated according to the
following steps:

1) The foundation bipartite graph G, = {Ly, Hy, &} is
made from the original graph. Ly = {Fy, Fy,..., F}
and Hy = {Fi11, Fiio,..., Fix}, where [ is an arbitrary
integer value satisfying 1 < I < K. & is defined as
the edge set containing all edges between L; and H,
(Figs. 4(b) and 4(e)).

2) The remaining graph G = {V,& \ &} is computed. G
has two disjoint graphs: an /-colorable graph G(L;) and
a (K — [)-colorable graph G(Hy) (Figs. 4(c) and 4(f)).

3) We place appended nodes F; directly above each node in
F} of the foundation bipartite graph. The nodes in F have
the same values as those in F7.

4) By letting /] be in /1, it can be connected freely with the
nodes in {F3,..., F}} since they belong to L. The edges
between F| and {Fs, ..., F}} are appended in accordance
with the edge information of G( L ). By using the above op-
eration, all nodes can connect with F; or F| while keeping
the graph bipartite.

5) Steps 3 to 4 are repeated for £y, ..., Fj to yield oversam-
pled sets Fy, ..., F/ and appended new edges in G(Ly).



SAKIYAMA AND TANAKA: OVERSAMPLED GRAPH LAPLACIAN MATRIX FOR GRAPH FILTER BANKS

6) Similar operations to Steps 3 to 5 can also be applied to the
sets in H,. As aresult, the sets £ |, ..., F; and the edges
in G(H,) are appended to the foundation bipartite graph.

Consequently, the sets F7, . . ., Fj, and the edges corresponding
to & \ & are added to the foundation bipartite graph. Based
on the above operations, an oversampled bipartite graph G =
{L, H, £} containing all edges of the original graph is generated
as shown in Figs. 4(d) and 4(g), where . and H respectively
include L and H;. Note that L and H of the oversampled graph

become

L=FU.. .FUF U...Fy, (22)
H=FU.. FUF,U... Fg. (23)

Similar to the three-colorable case, vertical edges can be ap-
pended and isolated nodes in G will be removed. As a result,
the number of the nodes in these sets can be represented as

K
Z |F1/| =N —|In,],

1

L= |F|+ (24)
i=1 i=I+1

. K l

Hl= > B+ > IF|=N-I], (25

i=l+1 =1

where |1y, | and |7p, | are the number of isolated nodes in G(Ly)
and G(H,), respectively, and satisfy

4 I
SOIF =D IF| = ], (26)
=1 =1
K K
dOAF= Y |F| - a,|. 27)

i=l+1 i=l+1
The redundancy after the transformation with the M -channel
graph filter bank with graph oversampling can be calculated as

_ M((N =g, )) + (N — [In,])
N 2N
]M(lllbl + |IH6D

2N )

=M - (28)

According to the choice of /, there exists L%J variations of
the oversampled graph for K -colorable graphs. For the special
case of{ = 1, L; isequal to F; and ?(Lb) has no edges as shown
in Figs. 4(e) and 4(f). Therefore, we do not need to append nodes

just above Ly, and the oversampled bipartite graph becomes

L=FUFU.. Fj,
H=FU... Fgk.

(29)
(30)

Similarly, when I = K — 1, the oversampled bipartite graph
becomes

L=FU.. Fx_1, 31
H=F|U.. Fj ,UFg. (32)

The oversampling is done in the same way as described in
Section IV-A for three-colorable graphs.
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(O] ® (€]

Fig. 4. Examples of oversampled bipartite graphs for a five-colorable graph.
The circles filled with red and blue represent sets L and H sets, respectively.
(a) Original graph. (b) Foundation bipartite graph with I = 3. (¢) G withl =
3. (d) Oversampled bipartite graph with / = 3. The dashed lines indicate the
vertical edges. (e) Foundation bipartite graph with7 = 1. (f) G with = 1. (g)
Oversampled bipartite graph with [ = 1.

(b)

Fig. 5. (a) Bipartite double cover of a three-colorable graph. (b) Its set of L
and H.

C. Theoretical Relationship With Bipartite Double Cover

In graph theory, the bipartite double cover of a graph G is
defined as the tensor product Gppc = G ® Ko, where K is the
complete graph of two vertices [18]-[20]. Gg pc has 2N nodes
and 2|€| edges. An example of the bipartite double cover of a
three-colorable graph (Fig. 3(a)) is shown in Fig. 5. The set of
foundation nodes {F, ..., Fx} is contained in L and the set
of additional nodes { ¥, ..., Fj; } is in H. The bipartite double
cover is equivalent to the proposed oversampled graph in the
case of | = K without vertical edges.

The adjacency matrix of Ggpc can be represented as

~ 0 A
Appc = {A 0 ] (33)
and its normalized GLM is
~ I D :AD :
L = 1 .
Boe {—D%ADf I ] 39
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If uy, is an eigenvector of £ with the eigenvalue A,,

. . ~ 1T 717
one can immediately see that u;- = E[""Al uy | and
G _ 1

uy = ﬁ['"’f; — ui]T are eigenvectors of c Bpc Wwith eigen-
values \; = A; and 2 — ), respectively. The graph Fourier

~ T
coefficient of the oversampled graph signal f = [f5 fol

associated with A; is

"K}Z % ["}ZC '”)T\J [.fo} :\/auif():\/ﬁo(/\i)a (35)

0

and that associated with 2 — A; is

ﬁgﬂj = [Uf

1 1 |f o] _
V2o u] [f 0 .
As aresult, we can obtain only N nonzero graph Fourier coeffi-
cients which are equal to those with the original GLM. In other
words, the graph Fourier spectrum using the bipartite double
cover is the same as the one using the original graph.

On the other hand, let us define the adjacency matrix of the
foundation bipartite graph G; of the proposed method as A ¢
and that of the remaining graph G as A... For simplicity, we
will consider the expansion method without vertical edges. The
adjacency matrix and degree matrix of our approach become

(36)

< _Af A,

A= A, 0 } (37)
and

~ [D 0

D= 0 D'r‘:| , (38)

where A = Ay + A, andDD = Dy + D,.. Its normalized GLM
is

(39)
If we assume the oversampled graph has eigenvectors %y, =

T . .
[u} ], then it must satisfy

z[wm]_[t-Diap "D HA,D, | [u,
uy, ~D, A, D% I uy,

(40)

The constraint can be simplified as

1
2

(1 ~D :A;D * - D*%ATDZ%) uy, = Auy,. (41)
On the other hand, the original GLM satisfies

)\,L"LI.)\L ZL:’LL)\i
- (I _ D—%AD—%) uy,

b=

- (I— D *(A;+A,)D" 42)

) Uy, -

1 1 1 _ i
Comparing (41) and (42), D"2A, D77 = D 2A,D,*
has to be satisfied. As a result, L has the eigenvector
iy, = Sl wl]" with X, = )\ iff D, = D, which
is the case of the bipartite double cover. In other cases, the
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(a) (b)

()

Fig. 6. (a) Image graph. (b) Rectangular bipartite subgraph. (c) Diagonal bi-
partite subgraph. (d) Oversampled rectangular bipartite graph. (e) Oversampled
diagonal bipartite graph. The appended nodes are black circles filled with blue,
and the appended edges are black lines.

eigenvalues and eigenvectors of the oversampled graph are
different from those of the original graph. Hence, we can obtain
a different graph Fourier spectrum from that of the original
graph by using our approach with [ < K. Additionally, A, has
columns and rows whose elements are all zero when! = K — 1
or the remaining graph has isolated nodes. In this case, the size
of L is less than 2N .

In summary, the proposed oversampled way in the case of
[ = K without vertical edges is a bipartite double cover, and its
graph Fourier spectrum is the same as that of the original graph
except for a trivial scaling. The proposed oversampled method
with [ < K has different eigenvectors from those of the original
graph, and its redundancy is less than that of the bipartite double
cover.

V. EXAMPLES OF GRAPH OVERSAMPLING

Here, we show examples of graph oversampling for images
and arbitrary graphs. Furthermore, we compare the oversampled
bipartite graph of ring graph with the critically sampled ones.

A. Image Graphs

Images can be viewed as graph signals by connecting each
pixel with its eight neighboring ones, as shown in Fig. 6(a) [3].
Since this graph is four-colorable, it can be decomposed into
rectangular (Fig. 6(b)) and diagonal (Fig. 6(c)) bipartite sub-
graphs. If we use critically sampled graph filter banks on the
image signal, the diagonal edges will be ignored in a single stage
if only the rectangular bipartite graph is used. Moreover, hori-
zontal and vertical edges will be ignored if only the diagonal
graph is used. For the critically sampled graph filter banks, a
multidimensional transform is applied to multiple bipartite sub-
graphs to resolve the problem [2], [3]. However, we cannot per-
form the transform that considers the rectangular and diagonal
connections simultaneously.

The above problem can be partially solved by exploiting
the oversampled GLM. That is, we append diagonal edges to
the rectangular bipartite graph while keeping the oversampled
graph bipartite. The rectangular oversampled image graph is
illustrated in Fig. 6(d). The blue nodes are appended just above
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Oversampled rectangular Oversampled diagonal

bipartite subgraph bipartite subgraph

H, LL
H, —@-LH

r H

Oversampling

H,

graph signals

Oversampling

graph signals

H, HJ

o)

Fig. 7. One-level decomposition of images. J-~ /J . andJ; /I denote
the downsampling operations of the rectangular graph and the (ﬁagonal graph,
respectively.

the red nodes of the rectangular bipartite graph, and they have
diagonal edges connecting them to the red nodes. The additional
blue nodes have the same pixel values as the corresponding red
nodes. In order for the number of lowpass coefficients to be
equal to the critically sampled case, we append nodes only on
the H side. After the downsampling of the critically sampled
graph filter bank, the red nodes contain the lowpass component,
and their corresponding nodes (additional blue nodes) and blue
nodes in the original graph contain the highpass component.
Hence, the transform becomes redundant in spite of the use of
the critically-sampled transform. At this point, we can use the
oversampled diagonal bipartite graph (Fig. 6(e)) as a second
stage of decomposition. The overall transform including the
critically sampled graph filter bank with the oversampled GLM
for images is shown in Fig. 7. We can iterate this process on
the LL subbands to realize a multilevel image decomposition.
Thus, with the oversampled bipartite graph, we can transform
images with the rectangular graphs plus diagonal connections
as well as diagonal graphs p/us horizontal and vertical connec-
tions in the single stage transform.

B. Ring Graph

All ring graphs with an odd number of nodes are three-col-
orable as shown in Fig. 8(a). Let us assume that the original
graph has 2n + 1 nodes, and Fy, F5, and I are the red, blue,
and green nodes in Fig. 8(a), respectively. F; and F3 each have
n nodes, and F5 has 1 node.

The bipartite subgraphs 5; and B2 of this ring graph are
shown in Figs. 8(c) and 8(d). The critically sampled graph filter
bank must be applied to each bipartite graph. After the signal
decomposition using the critically sampled graph filter bank,
the LLL and H L channels each have n nodes, whereas the LH
channel has only one node (the  H channel is empty). There-
fore, the number of coefficients in each channel is heavily bi-
ased. Because of the graph decomposition basis, the transform
for B; treats all edges except the one between vy and v1, whereas
the transform for Bs handles only the edge between vy and v1.
Although vy and vy, are in the 3-hop neighborhood in the orig-
inal ring graph, their relationship becomes very weak as a result
of the bipartite decomposition. That is, v» and vy, are in the
(2n — 2)-hop neighborhood of B and are not connected to 5.

The oversampled bipartite graph of the ring graph and its
sets . and H are shown in Figs. 8(b) and 8(e), respectively.
As shown in Fig. 8(e), I has nodes in 77 and F> and H has
those in FY, F and F3. Therefore, the number of nodes in
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Fig. 8. (a) Ring graph (n = 4). (b) Oversampled bipartite graph. (c) Sets
L, and H, of the bipartite subgraph B;. (d) Sets L, and > of the bipartite
subgraph 53.. (e) Sets L and H of the oversampled bipartite graph.

and H are n + 1 and n + 2. Hence, the redundancy is only
(2n+3)/(2n +1). In the oversampled bipartite graph, all adja-
cent nodes are connected and all edges of the original graph can
be considered in a single stage transform. Furthermore, if we
append vertical edges, nodes v and v2,, are in a 4-hop neigh-
borhood and have a strong connection like that of the original
graph.

VI. EXPERIMENTAL RESULTS

We performed experiments on images and arbitrary graphs to
assess the performances of the oversampled GLM.

A. Image Processing

We performed non-linear approximation to introduce the
potential ability of graph oversampling. The proposed methods
are compared with the standard separable CDF 9/7 wavelet
filter bank [22], the Laplacian pyramid for regular signals
[24], the critically sampled graphBior filter bank [2], and the
Laplacian pyramid for graph signals [4]. The graph-based
methods used the same filters (graphBior(5,5)). The Laplacian
pyramid for regular signals used 9/7 filters and a reconstruction
scheme using the pseudo inverse [25]. The graphBior used an
edge-aware image graph [26]. The edge-aware image graphs
were made as follows. The links around the edges of the images
are classified into regular or less-reliable links. They were
determined by checking that the difference in pixel intensity
between the edge pixels is more than or less than a certain
threshold. The weights of less-reliable links are set to zero
or reduced to a value lower than those of the regular links
(Figs. 6(a)—(c)). For example, the edge-aware image graphs of
Fig. 9(a) are shown in Figs. 9(b) and 9(c). The graph Laplacian
pyramid used the same graph and downsampling operation
as graphBior for the lowpass channel. The proposed method
used the oversampled edge-aware image graph [27]. In this
case, on the basis of the edge-aware image bipartite graph, the
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Fig. 9. (a) Original image. (b) Edge-aware rectangular bipartite graph. The
solid and dashed lines are regular and less-reliable links, respectively. (c) Edge-
aware diagonal bipartite graph. (d) Oversampled edge-aware rectangular bipar-
tite graph. The black lines are additional edges. The dashed black lines indi-
cate vertical edges. The red nodes contain the lowpass component, and the blue
nodes contain the highpass component after downsampling. (e) Oversampled
edge-aware diagonal bipartite graph.

nodes and the links are added along the edges: 1) diagonal
direction regular links are added to the edge-aware rectangular
graph and 2) rectangular direction regular links are added to
the edge-aware diagonal graph. For instance, the oversampled
graphs for the rectangular and diagonal bipartite graphs of
Fig. 9(a) are shown in Figs. 9(d) and 9(e). The critically sam-
pled graph filter banks are applied to these graphs using the
method described in Section V-A.

Table I lists the PSNRs of the reconstructed images, i.e., re-
constructions from all lowpass coefficients and some fraction
of the highpass coefficients after the three-level decomposition.
Since the fraction of highpass coefficients is relative to the size
of the original image, the number of the lowpass and high-
pass coefficients used for the reconstruction is the same for
all methods. However, the ratio of the remaining highpass co-
efficients to the total number of highpass coefficients varies
since the Laplacian pyramid and the proposed method are re-
dundant transforms. In spite of this, the proposed method per-
formed better than the other methods, including graphBior, in
most cases. It can be seen that the vertical edges provide signif-
icant gains.

Fig. 10 shows images reconstructed from all lowpass coeffi-
cients and 3% of the highpass coefficients, and Fig. 11 shows
zoomed-in Coins images. The standard CDF 9/7 and Laplacian
pyramid for regular signals did not take into account the edge in-
formation, and as a result, the reconstructed images were blurred
around the edges. Since the graph-based transforms consider the
rectangular and/or diagonal edges, they preserve the edges well.
We can see that blurring and ringing artifacts around the edges
in the reconstructed image of the proposed method are greatly
suppressed compared with other graph-based transforms.

B. Experiments on Oversampled Graphs

The performance of the proposed oversampled graph was
examined in two applications for arbitrary graphs. We made
the oversampled bipartite graphs from two original graphs, a
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TABLE 1
RECONSTRUCTION OF IMAGES USING NLA: PSNR (dB)

Fraction of highpass coeffs. [ 0.00 [ 0.01 | 0.02 [ 004 [ 008 [ 0.16
Ballet
9/7 filter [22] 2457 | 31.76 | 35.83 | 43.10 | 52.87 | 60.05
Laplacian pyramid [24] 24.57 | 3049 | 33.71 | 3827 | 45774 | 55.29
graphBior [3] 31.66 | 4239 | 4598 | 50.69 | 56.10 | 61.37
graph Laplacian pyramid [4] 31.66 | 41.37 | 44.16 | 47.70 | 52.00 | 56.96
proposed (without vertical edges) | 30.78 | 45.12 | 50.12 | 55.04 | 59.35 | 63.80
proposed (with vertical edges) 33.01 | 49.97 | 53.51 | 57.02 | 60.35 | 64.58
Synthetic
9/7 filter 3044 | 37.95 | 4296 | 50.81 | 66.73 | 110.10
Laplacian pyramid 3044 | 3630 | 39.43 | 4423 | 51.64 | 66.61
graphBior 3292 | 40.77 | 44.18 | 49.34 | 58.94 | 76.88
graph Laplacian pyramid 3292 | 39.77 | 4235 | 45.60 | 50.48 58.83
proposed (without vertical edges) | 33.22 | 40.40 | 43.99 | 49.83 | 60.20 81.62
proposed (with vertical edges) 3429 | 43.36 | 46.99 | 52.53 | 61.53 | 82.38
Cameraman
9/7 filter 20.66 | 23.38 | 25.30 | 27.61 | 30.82 | 35.73
Laplacian pyramid 20.66 | 23.73 | 25.15 | 27.05 | 29.81 33.76
graphBior 21.74 | 25.82 | 27.42 | 29.58 | 3246 | 37.07
graph Laplacian pyramid 21.74 | 2528 | 26.66 | 28.49 | 30.76 33.95
proposed (without vertical edges) | 21.29 | 24.47 | 2592 | 27.97 | 30.69 35.11
proposed (with vertical edges) 21.75 | 26.26 | 27.78 | 29.81 | 32.72 | 37.12
Coins
9/7 filter 2323 | 2649 | 2829 | 30.73 | 3432 | 40.17
Laplacian pyramid 2323 | 2634 | 27.94 | 30.11 | 33.11 37.66
graphBior 2478 | 28.87 | 30.54 | 32.77 | 3592 | 40.88
graph Laplacian pyramid 2478 | 28.43 | 29.76 | 31.55 | 33.94 37.37
proposed (without vertical edges) | 24.56 | 27.21 | 28.70 | 30.73 | 33.93 38.63
proposed (with vertical edges) 25.15 | 29.11 | 30.75 | 33.09 | 36.22 | 40.75

three-colorable Minnesota Traffic Graph G~ and a four-col-
orable Yale Coat of Arms Gy ¢, according to the description in
Section IV. These original graphs can be decomposed into two
bipartite graphs by using Harary’s algorithm [3], [23], as shown
in Figs. 12 and 13, respectively. The original signals are shown
in Figs. 12(b) and 13(b). We tested a number of setups for the
oversampled graphs, such as with/without vertical edges and
different values of / of the foundation bipartite graph. Let us
denote an oversampled graph without vertical edges as G! and
with vertical edges as G'. The notations of the tested oversam-
pled graphs are summarized in Table II. In order to verify the
performance of the proposed oversampled graphs, we applied
the graphBior filter bank to each graph.

1) Denoising: First, we tried denoising the graph signals.
The input signal was corrupted by additive white Gaussian
noise. After a one-level decomposition, we retained the
lowest-frequency subband and the remaining high-frequency
subbands were hard-thresholded with I' = 3¢, where o is
the standard deviation of the noise. Table III summarizes the
denoising results. For the Minnesota Traffic Graph, G3;y
performs better than gg/,}N. For the Yale Coat of Arms, the SNR
of G{¢ is the almost same as that of 912”0 when /| = 2. In
contrast, for I = 3, G2 outperforms G¢... Furthermore, the
oversampled graph with [ = 3 provides better SNRs than that
with [ = 2 in spite of it having less redundancy.

2) Non-Linear Approximation: Next, we considered the
non-linear approximation of the signal on the Minnesota Traffic
Graph. We used a two-level decomposition of the proposed
methods, i.e., after applying the graphBior filter bank using the
oversampled graph, the lowpass signal was further decomposed
on the basis of a downsampled graph consisting of vertices
in the set L and edges in the original graph. Table IV shows
the SNR values of the reconstructed signals from all lowpass
coefficients and some fraction of the detail coefficients. As a
benchmark, we applied graphBior with critically sampled GLM
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Fig. 10. Images reconstructed from all lowpass coefficients and 3% of the highpass coefficients after a three-level decomposition. From left to right: original
image, CDF 9/7 wavelet, the Laplacian pyramid for regular signals, graphBior filter bank, the Laplacian pyramids for graph signals, and the proposed method with
vertical edges. From top to bottom: Ballet, Synthetic, Cameraman, and Coins.

© ' )

Fig. 11. Zoomed in Coin image reconstructed from lowpass coefficients and 3% of the highpass coefficients after three-level decomposition. (a) Original image.
(b) CDF 9/7 wavelet (PSNR: 29.64 dB). (c) Laplacian pyramid for regular signals (PSNR: 29.13 dB). (d) graphBior (PSNR: 31.75 dB). (e) Laplacian pyramid for
graph signals (PSNR: 30.75 dB) (f) Proposed method with vertical edges (PSNR: 32.10 dB).

(CSGLM). The number of lowpass coefficients was the same It can be seen that the proposed method performed better
for all methods. when the reconstructed signal was approximated from only
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Fig. 12. (a) Original graph of the Minnesota Traffic Graph. (b) Input signal.
The original graph and input signal were reproduced from the MATLAB code
of Narang and Ortega [3]. (c) Bipartite subgraph #1. The blue squares and red
circles indicate sets L and I, respectively. (d) Bipartite subgraph #2.
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Fig. 13. (a) Original graph of the Yale Coat of Arms. It was reproduced from
the course website by Spielman [28]. The four-colorable graph was made by re-
moving the nodes assigned the fifth color from the original five-colorable graph.
(b) Input signal. It was created using SGWT toolbox [5]. (c) Bipartite subgraph
#1. The blue squares and red circles indicate sets L and #, respectively. (d)
Bipartite subgraph #2. (e) Foundation graph of G¥- .. (f) Remaining graph of
Gye.
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TABLE II
NOTATION OF OVERSAMPLED BIPARTITE GRAPHS
Graph L H Vertical Edges
Minnesota | G2, Fi, Py F3, F|,F} YES
Traffic Graph éﬁ,, N NO
GZ || Fu, F2, Fj, F} | F3, F1, F], F} YES
Yale Coat (jf,c NO
of Arms ¥ || PR Fs | Fy, F Fj,F} YES
Gio NO

TABLE III
COMPARISON OF OVERSAMPLED GRAPHS (DENOISING): SNR (dB)

o || 1/32 | 1/16 [ 1/8 [ 1/4 | 12 | 1 ||Redundancy
Minnesota Traffic Graph
5%1\, 32.19 | 2646 | 20.58 | 14.59 | 8.68 | 2.80 1.37
912\/1 N 32.46 | 26.76 | 20.88 | 14.94 | 9.00 | 3.11 1.37
noisy 30.15 | 24.08 | 18.06 | 12.02 | 599 |-0.02
Yale Coat of Arms
QN}Q/,C 31.12 | 2520 | 19.31 | 1337 | 7.69 | 1.86 1.96
g~)2/c 31.14 | 2521 | 19.32 | 1336 | 7.68 | 1.87 1.96
g}%’c 31.13 | 2534 | 1945 | 1396 | 859 |3.14 1.78
ggc 31.33 | 2532 | 1990 | 14.29 | 9.23 | 4.11 1.78
noisy 30.15 | 24.10 | 18.08 | 12.01 | 6.04 | 0.00 -
TABLE IV
COMPARISON OF OVERSAMPLED GRAPHS
(NON-LINEAR APPROXIMATION): SNR (dB)
# of highpass coeff. || CSGLM | G2,y | G2,y

0 18.49 19.06 | 19.10

30 26.71 25.03 | 26.12

60 32.18 33.04 | 33.55

90 35.02 3645 | 36.72

120 37.77 39.81 40.18

150 40.59 42.16 | 42.02

180 45.22 44776 | 44.74

lowpass signals and from all lowpass coefficients with 60—150
highpass coefficients. Since the redundancy of the oversampled
graphs is greater than the critically sampled bipartite graph, the
critically sampled graph outperformed the oversampled graphs
in the case of the reconstruction using >180 detall coefficients.
Additionally, Gy, had a better SNR than G2 4N 10 most cases.

For these results, we decide to use the oversampled graph
with [ = K — 1 without vertical edges (G 1) in the following
experiments on arbitrary graphs.

C. Signal Spread on Arbitrary Graphs

To demonstrate the advantage of the oversampled bipartite
graph, we compared the signal spreads of a critically sampled bi-
partite graph and an oversampled one. The original graph in this
case was the Petersen graph, and it was decomposed into the two
bipartite subgraphs. The input signal is shown in Fig. 14(a). The
comparison is between the critically sampled bipartite graph and
the oversampled bipartite graph. The lowpass filtered signals are
shown in Figs. 14(b)—(d). As expected, the spread of the signal
after using the oversampled bipartite graph is very similar to that
of the original (non-bipartite) graph.
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Fig. 14. Signal spread. (a) Input signal. (b) Lowpass filtered signal using the (non-bipartite) original graph. (c) Lowpass filtered signal using bipartite subgraph.

(d) Lowpass filtered signal using oversampled bipartite graph.
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Fig. 15. Denoising results of Minnesota Traffic Graph. (a) Noisy observation; (b) sym8 (1 level); (c) sym8 (5 level); (d) graphBior with CSGLM,; (e) GLP; (f)
graphBior with BDC; (g) SGWT; (h) OSGFB with CSGLM; (i) graphBior with OSGLM; (j) OSGFB with OSGLM.

D. Denoising of Graph Signals

The detailed experiments of graph signal denoising are
shown; signals are corrupted by white Gaussian noise. For the
proposed method, we applied the critically sampled graphBior
filter bank (abbreviated as graphBior with OSGLM) [2] or the
four-channel oversampled graph filter bank (abbreviated as
OSGFB with OSGLM) [16] on oversampled graphs.

We compared the above two methods with the regular
one-dimensional wavelet sym8 with one-level and five-level
decompositions, graphBior(6, 6) (graphBior with CSGLM)
[2], the Laplacian pyramid for graph signals (GLP) [4], the
spectral graph wavelet transform (SGWT) with three scales
[5], graphBior with the bipartite double cover (graphBior with

BDC), and the four-channel oversampled graph filter bank with
the bipartite graph decomposition (OSGFB with CSGLM) [16],
[17]. Since sym$ treated the signal as a vector, it did not take
into account the structure of the signals. For a fair comparison,
the graph Laplacian pyramid used the same bipartite graphs
and downsampling operation as those of graphBior for the
lowpass channel. All of the graph-based methods performed
one-level transforms. That is, graphBior, the oversampled
graph filter bank and the graph Laplacian pyramid performed
two-dimensional transforms by using two subgraphs, whereas
the proposed methods performed one-dimensional transforms
by using the oversampled bipartite graph. The lowest frequency
subband was kept, and the other high-frequency subbands were
hard-thresholded with the threshold 7' = 30.
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Fig. 16. Denoised results of the Yale Coat of Arms. (a) Noisy observation; (b) sym8 (1 level); (c) sym8 (5 level); (d) graphBior with CSGLM,; (e) GLP; (f)

(h)

graphBior with BDC; (g) SGWT; (h) OSGFB with CSGLM,; (i) graphBior with OSGLM; (j) OSGFB with OSGLM.

TABLE V
DENOISED RESULTS OF MINNESOTA TRAFFIC GRAPH: SNR (dB)
o noisy sym8 sym8 graphBior | GLP | SGWT OSGFB graphBior | graphBior OSGFB
(1 level) | (5 levels) | (CSGLM) (CSGLM) (BDC) (OSGLM) | (OSGLM)

1/32 30.15 30.17 30.22 31.44 31.39 33.35 34.75 32.54 32.46 35.08
1/16 24.08 24.25 24.07 25.61 25.68 27.76 28.78 26.75 26.76 29.34
1/8 18.06 18.65 17.99 19.97 20.02 22.08 21.84 20.81 20.88 23.17
1/4 12.02 11.94 11.07 14.19 14.24 15.05 15.26 14.79 14.94 17.63
12 5.99 6.23 5.76 8.50 8.51 10.33 10.29 8.92 9.00 12.31

1 -0.02 1.59 3.13 2.63 2.61 8.82 4.24 3.03 3.11 7.04

Redundancy | - | 1.00 | 1.00 | 1.00 [ 205 | 4.00 | 4.00 2.00 | 1.37 | 2.74
TABLE VI
DENOISED RESULTS OF YALE COAT OF ARMS: SNR (dB)
o noisy sym§8 sym8 graphBior | GLP | SGWT OSGFB graphBior | graphBior OSGFB
(1 level) | (5 levels) | (CSGLM) (CSGLM) (BDC) (OSGLM) | (OSGLM)

1/32 30.15 29.64 29.41 29.85 30.10 29.40 30.11 31.55 31.33 31.77
1/16 24.10 23.67 23.33 24.24 24.71 23.70 24.66 25.43 25.32 26.80
1/8 18.08 18.02 17.04 18.75 19.21 18.24 19.05 20.01 19.90 21.22
1/4 12.01 11.36 10.19 13.16 13.58 12.95 13.98 14.39 14.29 15.21
172 6.04 6.19 4.98 8.66 8.80 8.85 10.25 9.23 9.23 10.49

1 0.00 1.82 2.21 3.94 4.00 6.47 7.45 3.88 4.11 7.48

Redundancy [ - [ 1.00 ] 1.00 | 1.00 | 179 [ 400 ] 4.00 2.00 | 1.78 | 3.56

Tables V and VI compare the SNRs after denoising. The
graph-based transforms outperformed the regular wavelet
transforms. OSGFB with OSGLM shows better performance
than other graph-based transforms in most cases. It was es-
pecially superior to OSGFB with CSGLM and SGWT on the
Minnesota Traffic Graph, in spite of it having less redundancy.

In comparison with the methods using graphBior filters, graph-
Bior with BDC and graphBior with OSGLM have significantly
better SNR. Moreover, graphBior with OSGLM had similar
levels of performance as graphBior with BDC, especially for
the strong noise case, despite that its redundancy is less than
graphBior with BDC.
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Figs. 15 and 16 show the denoised signals of the Minnesota
Traffic Graph and the Yale Coat of Arms for o = 1/2, respec-
tively. Since the regular signal processing did not take into ac-
count the structure of the signals, the signals denoised by sym$8
were still noisy. We can see that OSGFB with OSGLM per-
formed better than the other transforms.

VII. CONCLUSION

This paper presented a method of oversampling graph sig-
nals. The method appends nodes and edges to the original
graph to construct an oversampled GLM. It is applicable to
arbitrary K -colorable graphs, including image graphs. The
graph oversampling can consider connections of many nodes
while keeping the oversampled graph bipartite. We performed
non-linear approximation for images and graph signal de-
noising experiments showing that our oversampling method
outperforms the other transforms.
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