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Abstract—We consider distributed estimation of the inverse co-
variance matrix, also called the concentration or precision matrix,
in Gaussian graphical models. Traditional centralized estimation
often requires global inference of the covariance matrix, which can
be computationally intensive in large dimensions. Approximate in-
ference based on message-passing algorithms, on the other hand,
can lead to unstable and biased estimation in loopy graphical
models. Here, we propose a general framework for distributed
estimation based on a maximum marginal likelihood (MML)
approach. This approach computes local parameter estimates by
maximizing marginal likelihoods defined with respect to data col-
lected from local neighborhoods. Due to the non-convexity of the
MML problem, we introduce and solve a convex relaxation. The
local estimates are then combined into a global estimate without
the need for iterative message-passing between neighborhoods.
The proposed algorithm is naturally parallelizable and computa-
tionally efficient, thereby making it suitable for high-dimensional
problems. In the classical regime where the number of variables
is fixed and the number of samples increases to infinity, the

proposed estimator is shown to be asymptotically consistent and to
improve monotonically as the local neighborhood size increases. In
the high-dimensional scaling regime where both and increase
to infinity, the convergence rate to the true parameters is derived
and is seen to be comparable to centralized maximum-likelihood
estimation. Extensive numerical experiments demonstrate the
improved performance of the two-hop version of the proposed
estimator, which suffices to almost close the gap to the centralized
maximum likelihood estimator at a reduced computational cost.

Index Terms—Distributed estimation, Gaussian graphical
models, structured covariance.

I. INTRODUCTION

G RAPHICAL models provide a principled framework for
compactly characterizing dependencies among many

random variables, represented as nodes in a network [3], [4].
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Their sparse structure allows for efficient and distributed in-
ference using message-passing algorithms such as loopy belief
propagation (LBP), which makes them especially well-suited to
large networks, such as sensor, social, and biological networks
[5]–[7]. Less well-studied, however, is the equally important
task of distributed estimation of the parameters of a graphical
model from data. The goal of this work is to develop and
analyze distributed methods for model parameter estimation.
In this paper we focus on Gaussian graphical models (GGM)

with known graph structure, i.e., the pattern of edges is known.
Our approach can also be extended to more general graphical
models, including discrete distributions. For GGMs, parameter
estimation essentially reduces to (inverse) covariance estima-
tion, and knowledge of the edge pattern imposes sparsity con-
straints on the inverse covariance matrix, also known as the
concentration or precision matrix. While the resulting GGM
maximum likelihood (ML) parameter estimation problem is a
convex optimization, solving it exactly for generally structured
networks using centralized algorithms as in [8]–[10] becomes
impractical in large real-world networks where data collection
and computational resources are limited.
A natural approach toward distributed parameter estimation

is to leverage methods for distributed marginal inference, such
as LBP and its extensions. The idea is to replace the objective
function and its gradient in the ML estimation problem with
approximations that can be computed through iterative mes-
sage-passing. However, in many cases LBPmay fail to converge
or give good marginal estimates, and when it does converge, the
resulting parameter estimates may be biased [11], [12].
Another direction for distributed estimation is to consider a

surrogate objective that decomposes into smaller problems that
are locally parameterized. Then a distributed ML algorithm es-
timates the local parameters by processing local data with lim-
ited message passing. Some recent efforts along this direction
[5], [6] have considered a pseudo-likelihood framework for ex-
ponential family distributions.
This paper proposes a general framework for distributed

estimation based on marginal likelihoods, as contrasted with
pseudo-likelihoods. Each node collects data within its extended
neighborhood and independently forms a local estimate by
maximizing a marginal likelihood. To deal with the non-con-
vexity of the maximum marginal likelihood (MML) estimation
problem, we formulate a convex relaxation of the problem. The
resulting distributed estimator is computationally efficient, and
involves minimal message passing.
We analyze the mean squared error (MSE) of the proposed

distributed estimator in both the classical asymptotic regime
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(fixed number of parameters and increasing number of sam-
ples ), and also the high-dimensional regime where both
and increase to infinity ( ). In the classical regime,
the distributed estimator is shown to be asymptotically consis-
tent. Furthermore, the asymptotic error improves monotonically
as the local neighborhood size increases. In the high-dimen-
sional regime, we show that under certain conditions and proper
scaling between and , the proposed estimator achieves a
comparable statistical convergence rate to the (more expensive)
global ML estimator.
Our analytical results are supported by extensive numerical

experiments on both synthetic and real-world data sets. In par-
ticular, we show that two-hop local information is sufficient for
the proposed distributed estimator to match the performance of
the more expensive centralized ML estimator. The proposed es-
timator also improves significantly upon existing distributed es-
timators [5], [6]. In terms of computation, the complexity of our
estimator increases at most linearly with in most cases and
can be further reduced through parallelization. In the case of a
physical network implementation, the near-absence of message
passing and long-distance communication is also an advantage.
We emphasize that the problem we consider is different

from covariance selection [10], [13]–[15], in which the graph
topology is not known a priori andmust be estimated in addition
to the parameters. To test our assumption of known graph struc-
ture, we also study the robustness of the proposed estimators
against small model (i.e., structure) mismatch. Both theoretical
analysis and numerical results show that the proposed distributed
estimator is as robust as the centralizedML estimator.
The algorithm and some preliminary experimental results in

the current paper were first presented in [1]. During the prepa-
ration of this extended version, a related and independent work
[16] has come to our attention. The authors of [16] consider a
distributed learning algorithm for generalMarkov random fields
which works on local unions of cliques, generalizing nodes and
edges in the Gaussian case. Asymptotic consistency is also dis-
cussed. After submission of this extended version, an anony-
mous reviewer made us aware of an earlier arXiv posting [17]
by Massam and Wang that considered a version of our algo-
rithm [1] for discrete graphical models. Focusing on the discrete
case, they established novel asymptotic theory that parallels the
theory developed in the present paper for the Gaussian case.
The outline of the paper is as follows. In Section II, we give

a brief review of graphical models, centralized ML parameter
estimation, and the difficulty of parameter estimation using tra-
ditional marginal inference techniques. In Section III, we pro-
pose a general approach to distributed estimation based on mar-
ginal likelihoods. In Section IV, we provide extensive analysis
of the convergence rates and robustness of the proposed esti-
mator. Section V discusses the computational complexity and
implementation advantages of the estimator. Numerical exper-
iments are presented in Section VI and the paper concludes in
Section VII.

Notation

Boldfaceuppercase lettersdenotematricesandboldface lower
case letters denote column vectors. Sets of single indices are de-
noted by calligraphic upper case letters. The cardinality of a set

isdenotedby and thedifferenceof twosets isdenotedas .
Followingcommonnotation, represents a submatrixof
with rows indexed by and columns indexed by . We also
make reference to irregular sets of index pairs such as the edge
set of a graph, for which we use standard upper case letters.

then refers to the vector of entries of indexed by . The
standard inner product between two symmetric matrices is de-
noted as , i.e., .
Wedistinguish the following twonorms formatrices: the induced

norm , and the el-
ement-wise norm .
and denote the maximum and minimum eigenvalues
of matrix , respectively.

II. BACKGROUND

We begin by providing background on graphical models and
their statistical inference. We refer the reader to [3], [4] for a
detailed treatment.

A. Gaussian Graphical Models

Consider a -dimensional random vector following
a graphical model with respect to an undirected graph

, where is a set of nodes cor-
responding to elements of and is a set of edges connecting
nodes. The vector satisfies the Markov property with respect
to if for any pair of nonadjacent nodes in , the corresponding
pair of variables in are conditionally independent given the
remaining variables.
If the vector follows a multivariate Gaussian distribution,

the corresponding model is called a Gaussian graphical model
(GGM). We assume without loss of generality that has zero
mean. Then the probability density function can be written
in canonical form in terms of the concentration matrix as
follows:

(1)

The Markov property manifests itself in a simple way through
the sparsity pattern of :

(2)

B. Maximum Likelihood Parameter Estimation for GGMs

Estimating the parameters of a graphical model from sample
data is the first step for many applications. For Gaussian graph-
ical models this reduces to estimating the non-zero elements of
the concentration matrix (including the diagonal elements).
Defining

(3)

as the index set for these non-zero elements, the centralized
global maximum likelihood (GML) estimation problem can be
formulated as [3]:

(4)



MENG et al.: MARGINAL LIKELIHOODS FOR DISTRIBUTED PARAMETER ESTIMATION OF GAUSSIAN GRAPHICAL MODELS 5427

where

is the sample covariance matrix and are i.i.d.
samples of .
The GML problem (4) is a convex log-determinant-regular-

ized semidefinite program ( -SDP) with respect to and
various gradient-based algorithms can be applied to solve this
problem, many of which have specialized implementations on
graphs, e.g., iterative proportional fitting (IPF) [4], chordally-
embedded Newton’s method [9], etc. The standard gradient de-
scent algorithm for solving problem (4) has the following update
rule at each iteration:

(5)

where is the GML objective function and denotes
its gradient, is the step-size, and we have used the facts

for and
for symmetric matrices [18]. The obvious difficulty is the
global matrix inversion involved in computing the gradient at
each step, whose computational cost is cubic in the number of
variables for generally structured models.
Given the expense of the matrix inversion in (5), an alterna-

tive is to consider distributed message-passing algorithms, such
as loopy belief propagation (LBP), an iterative message-passing
algorithm for inference of marginal distributions. When ap-
plied to tree-structured graphs, LBP yields exact marginals.
Unfortunately, this does not hold for loopy graphs in general
[19]. For Gaussian models, many sufficient conditions exist
for Gaussian LBP to converge, such as diagonal dominance,
walk-summablility, pairwise normalizability, etc. [11]. How-
ever, when these sufficient conditions do not hold, Gaussian
LBP can be divergent, or it may converge to degenerate, un-
normalized marginal distributions. A recent work [20] uses the
method of multipliers to improve the convergence behavior of
Gaussian LBP for some less ill-conditioned models. However,
even if LBP converges, its final estimate is not guaranteed to be
consistent. For discrete graphical models, the authors of [12]
show that many models are in principle not learnable through
LBP, which implies that an estimator based on LBP inference
is inevitably biased for a subset of models. Similar drawbacks
also hold when using other approximate inference techniques,
for example, tree-reweighted BP [21]. The above difficulties
of parameter estimation using traditional marginal inference
techniques motivate us to consider a different distributed
framework for parameter estimation, as introduced in the next
section.

III. DISTRIBUTED ESTIMATION IN GGMS

Our framework avoids the weakness of LBP and other mes-
sage passing approaches to distributed estimation of GGMs.
The proposed distributed algorithm collects all the data samples

from within each neighborhood and computes a local parameter
estimate. A global estimate of the parameter (e.g., precision ma-
trix ) is then formed by combining these local estimates with
a simple, single pass aggregation rule.

A. Marginal Likelihood Maximization

We consider estimating local parameters by maximizingmar-
ginal likelihood functions in neighborhoods around each node.
Define the index set for immediate neighbors of node as

(6)

and consider a neighborhood indexed by a set containing at
least the node itself and its immediate neighbors . Let
denote the concentration matrix corresponding to the marginal
distribution over the variables in the neighbor-
hood, and let be the mar-
ginal sample covariance matrix. The maximum marginal like-
lihood (MML) estimation problem in neighborhood can be
formulated as:

(7)

where the first constraint represents the marginalization rela-
tionship between and the global precision matrix , and the
second line of constraints reflects the global sparsity constraints.
We index the nodes in the MML problem (7) in the same way as
in the GML problem (4). (For example, if , the
rows and columns of are indexed by and not re-in-
dexed to .)
The difficulty with direct application of MML is that problem

(7) is in general a non-convex optimization with respect to
and . The non-convexity arises from the coupling of the non-
linear marginalization constraint linking to and the sparsity
constraints on . As a surrogate, we derive next a convex relax-
ation of the MML estimation problem.

B. Convex Relaxation of MML

We apply the Schur complement identity to the marginaliza-
tion constraint in (7), yielding

(8)

where is the complementary set to , and we have dropped
the subscript to simplify notation. Define the buffer set
as the set of all variables in that have immediate neighbors
in the complement ,

(9)

The difference set between and is referred to as the pro-
tected set . The buffer and protected sets are illus-
trated in Fig. 1(a) and (b). Due to the Markov property, we have
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Fig. 1. Illustration of defined sets in the proposed local relaxation of MML. In (a) and (b) we show two different graphs, in which the two-hop neighborhood
for node is indicated with dashed contours. The buffer set variables and the protected set variables (excluding node itself) are colored blue and

red, respectively. For the graph in (b), we illustrate the one-hop and two-hop local relaxations in (c). The dashed red lines in (c) denote the fill-in edges due to
relaxation. (a) 2D lattice and two-hop neighborhood . (b) A general graph and two-hop neighborhood . (c) Local relaxations (one-hop (left) and two-hop
(right)). Dotted lines denote fill-in edges.

Decomposing into and then reveals the
sparsity pattern of using (8):

and hence

(10)

(11)

An important observation from (10) is that in the rows and
columns indexed by the protected set , the sparsity pattern of

is entirely preserved and the local parameters are equal
to the global ones. On the other hand, the sparsity pattern in the
“buffer submatrix” is in general modified from due
to the fill-in term, i.e., the second term in (11).
Based on these observations, we now specify a relaxed set of

constraints on themarginal concentrationmatrix . First denote
the set of all local edges that are not affected by the fill-in term
in (11) as

(12)

where the superscript stands for “protected”. We then add to
all index pairs that could potentially be affected

by fill-in in (11), resulting in a relaxed edge set (see Fig. 1(c)
for illustrations):

(13)

In light of (10) and (11), any feasible marginal concentration
matrix for the MML estimation problem (7) is guaranteed
to be supported only on the set . Therefore we can relax the
feasible set and formulate the following relaxation of (7) at each
node , called the relaxed MML (RMML) problem:

(14)

The above RMML problem is a convex optimization with re-
spect to and has the same form as the global MLE problem
(4) but over matrices of much lower dimension.
After solving the RMML estimation problems as surrogates

to estimate local parameters, a global estimate of the concen-
tration matrix can then be constructed by extracting a subset of
parameters from each local estimate and concatenating them.
Specifically, we extract the local parameter estimates indexed
by

(15)

i.e., the non-zero entries in the th row of . We refer to the
parameters indexed by as the row parameters for node .
From (10), when there are no sampling errors, i.e., , the
marginal and global concentration matrices are guaranteed to
share the same parameters in . Therefore our global estimate
of is formed by concatenating local solutions of (14):

(16)

The proposed RMML framework is very general and applies
to many possible choices of local neighborhoods, which in-
clude, e.g., nearest neighbors, second-order nearest neighbors,
or, in general, -th order nearest neighbors of a node . In the
following subsections, we consider one- and two-hop neigh-
borhoods. The absence of sampling errors is still assumed, i.e.,

.

C. Case I: One-Hop Estimator

We first consider a first-order (i.e., one-hop) neighborhood
consisting of node and its immediate neighbors , i.e.,

. Generically in the worst case where the immediate
neighbors are all buffer nodes, we have , and .
The fill-in term in (11) affects the submatrix , leaving
only the first row and column untouched. In this case, since
is by definition connected to all elements in , the relaxed edge
set defined in (13) includes all possible pairs (see leftmost
graph of Fig. 1(c) for an illustration): .
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The solution to the relaxed MML problem (14) for the first-
order neighborhood is simply the inverse of the local sample
covariance,

(17)

The global estimate is obtained by combining the local one-hop
estimates as in (16).
In the one-hop case, the proposed relaxed MML estimator

reduces to the LOC estimator in [6]. As shown in [6], this esti-
mator is also equivalent to the pseudolikelihood estimator [22]
without symmetry constraints, and the covariance selection pro-
cedure in [10] when the graph is known.

D. Case II: Two-Hop Estimator

We next consider a second-order neighborhood (two-hop),
that includes nodes that are reachable from node within

two hops. In this setting, the worst-case protected set is given
by and the buffer set consists
of all nodes that are exactly two hops away from the th node.
Hence can be thought of as the set of second-hop nodes. In
the two-hop case, the protected edge set includes not only
edges between node and its immediate first-hop neighbors, but
also edges between first-hop neighbors and between first- and
second-hop neighbors (see Fig. 1(c) for an illustration).
Unlike in the one-hop case, the two-hop problem (14) does

not admit a general closed-form solution. However, as men-
tioned before, (14) can be solved using efficient algorithms for
semidefinite programming. A global estimate is obtained as be-
fore by combining row parameter estimates (16).

E. Symmetrization of RMML Estimator

When is estimated from finite sample sizes, the local es-
timates from the relaxed MML problems are not perfectly con-
sistent with each other. For example, , which comes from

node ’s local estimate, may not agree with , which comes
from node ’s local estimate. Therefore the resulting global es-
timate in (16) is not guaranteed to be symmetric.
A common way of addressing these discrepancies is to use it-

erative consensus methods as in [5], [6]. In this work however,
we find that a single round of naive local averaging along edges
is sufficient to ensure convergence to the true parameters, and
also to yield a good approximation to the global MLE. Specifi-
cally, the local average is given by

(18)

which is the only message passing required. This message
passing is single pass, unlike LBP which requires several
iterations (if it converges at all). In the one-hop case, the re-
sulting symmetric estimator coincides with the AVE estimator
proposed in [6].

IV. ANALYSIS

A. Asymptotic Analysis: Classical Fixed-Dimensional Regime

First we analyze the proposed distributed RMML estimator in
the classical asymptotic regime, where the number of variables

is fixed while the number of samples goes to infinity. Let
and denote the true precision and covariance matrices,

respectively. The following theorem states the asymptotic con-
sistency of the RMML estimator and characterizes its
asymptotic mean squared error:
Theorem 1 (Asymptotic MSE): The relaxed MML estimator

is asymptotically consistent, and its mean squared
(Frobenius) error satisfies

(19)

where is the number of samples, denotes the diagonal
of a matrix, and is the Fisher information matrix of the re-
laxed MML problem in the th neighborhood (14), which takes
the following form:

and
or

otherwise.
(20)

The above result can be derived by applying classical asymp-
totic theory [23] to each local RMML problem (14), which is
a well-defined M-estimation problem. Then the asymptotic be-
havior of the global RMML estimate follows by aggregation.
The detailed proof of Theorem 1 is provided in Appendix A.
While Theorem 1 ensures the consistency of RMML estima-

tors with arbitrary local neighborhoods (as long as the row pa-
rameters are included), the following theorem guarantees that,
in the asymptotic limit, larger neighborhoods always yield re-
duced estimation variance:
Theorem 2 (Monotonicity of Asymptotic MSE): Let

be the RMML estimate obtained from -hop
local neighborhoods. When the number of samples ,
for , we have

(21)

(22)

While Theorem 2 is stated for Gaussian graphical models, it
was first proven for the case of discrete graphical models by
Massam and Wang in [17]. As pointed out by the authors of
[17], their proof can be easily extended to the Gaussian case.
For completeness, we include our own proof of Theorem 2 in
Appendix B. The two proofs follow parallel lines of argument.
In Section VI, we present numerical results that verify The-

orem 2 not only in the large-sample regime but also when the
sample size is comparable to or smaller than . In particular,
it will be seen that the difference between and
hops is most significant while the difference between and
the GML estimator (and by extension and GML) is much
smaller.

B. Asymptotic Analysis: High-Dimensional Regime

Theorems 1 and 2 characterize the classical asymptotic be-
havior of the RMML estimator. In this subsection we analyze
the high-dimensional convergence rate of the RMML estimator,
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which can be applied to settings where both the number of vari-
ables and the number of samples increase to infinity, i.e.,

. Such problems arise in high-dimensional appli-
cations, and have attracted much attention in modern statistics
[10], [13], [14]. We will show that under very mild conditions,
the proposed RMML estimator enjoys a sharp MSE conver-
gence rate to the true parameter, which is almost the same as
the more expensive global ML estimator.
Similar to [13], [14], we first assume that themaximum eigen-

value of is bounded from above:

(23)

Recall that defines the relaxed edge set in the local neigh-
borhood. Let denote the maximum cardinality among all local
relaxed edge sets, i.e.,

(24)

and let denote the sum of the cardinalities of all local relaxed
edge sets:

(25)

Also denote as the maximum variance.
The following theorem states an upper bound on the estima-

tion error rate in the high-dimensional regime.
Theorem 3 (High-Dimensional MSE): Assume the number of

samples satisfies

(26)

for and an arbitrary con-

stant . Then

(27)

with probability greater than .
Proof of Theorem 3 can be found in Appendix C.
Remarks:
1) It is interesting to compare the result in Theorem 3 with
the standard convergence rate for the GML estimator (e.g.,
[13], [14], [24]). Theorem 3 assumes a very mild condi-
tion (26) on the sample size, which is less restrictive than
the requirement shown in [14] in the high di-
mensional regime, and is comparable to those obtained in
[13], [24] when the local neighborhood size increases more
slowly than , i.e., . However, we emphasize that,
unlike some of the literature, we assume the graph struc-
ture is known.

2) The error bound in Theorem 3 is (up to a constant) slightly
more pessimistic than the rate shown in

[13], [14] by the additional factor of ,
which is roughly the average cardinality of local neighbor-
hoods. Again, when the local neighborhood size increases
more slowly than in the high-dimensional regime, this
additional factor becomes relatively insignificant.

3) The mild sample size requirement is partly due to our dis-
tributed framework, under which the stochastic deviation
is smaller since a smaller set of parameters needs to be con-
sidered for each local RMML problem. However, the addi-
tional parameters introduced by convex relaxation and the
aggregation of local estimation errors result in the addi-
tional factor mentioned above. This demonstrates the
trade-off due to the desire for distributed, convex optimiza-
tion in the proposed framework.

C. Robustness Against Model Mismatch

One of the premises of the estimation framework we consider
in this paper is that the true structure of the graph is known.
However, this assumption could be violated in practice. In this
section, we investigate the robustness of the estimators against
small structure mismatch. Our specific interest is in the bias due
to model mismatch and hence we focus on the infinite sample
regime.
We first consider the GML problem. The GML estimator ef-

fectively provides a mapping from the edge elements of mo-
ment (covariance) parameters to the canonical (concentra-

tion) parameters . We denote this mapping as ,

i.e., . This mapping is specified implicitly
by the optimality condition:

(28)

Due to a property of minimal exponential families, ex-
ists and is unique provided that covariance matrix is positive
definite [4]. Also by the implicit function theorem, is
differentiable and thus continuous.
Consider a perturbed concentration matrix which has uni-

formly bounded perturbations on the non-edge entries with re-
spect to the nominal parameter :

(29)

where is supported only on . We assume the perturba-
tion is small enough, such that the perturbed matrix is still pos-
itive definite. Denote the corresponding covariance matrix as

. Then the bias of the GML estimator due to model
perturbation can be obtained by a first-order perturbation anal-
ysis of the GML mapping defined above.
Let denote the Hessian of the GML problem (4)

with no sparsity constraints, which is also related to the Jacobian
of (28) with respect to . We have

where in the second-to-last relation we have used the first-order
approximation of matrix inversion, and the last identity is due to
the implicit function theorem applied to the optimality condition
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(28). Also note that due to consistency of the
GML estimator.
Therefore the maximum element-wise bias with respect to

the new model can be bounded as follows (disregarding higher-
order terms):

(30)

where we recall is the induced matrix norm.
The second term in the last display is the inevitable bias due to

model mismatch, while the first term captures the additional bias
attributable to the GML estimator under model perturbation.
The additional bias depends on , which

is intuitively related to the level of incoherence between the
edge and non-edge elements in the Hessian of the GML problem
(4). Similar incoherence quantities have been shown to play
a crucial role in the literature on variable selection [25] (e.g.,
Lasso) and structure estimation in Gaussian graphical models
[13]. Therefore the smaller this incoherence parameter is, the
more robust the GML estimator will be.
Since each local problem in RMML estimation has the same

structure as the GML problem, we can apply similar analysis
to each local neighborhood. The resulting bound on the bias
of the RMML estimator is dependent on similar incoherence
parameters but defined with respect to relaxed edge sets in
the local neighborhoods. We conjecture that these local inco-
herence parameters are comparable to, if not smaller than, the
global incoherence. Hence the robustness of the distributed
RMML estimator is expected to be comparable to the GML
estimator. While our conjecture is not formally proven in this
paper, it is positively supported by the numerical experiments
in Section VI.

V. COMPUTATIONAL COMPLEXITY AND IMPLEMENTATION

In this section we discuss the computational complexity of the
proposed RMML approach and some implementation issues.
First we note that each local RMML problem has the same struc-
ture as the centralized ML problem, which is a -regular-
ized semidefinite program ( -SDP). Therefore many well-
developed solvers and efficient specialized algorithms can be
used. Furthermore, due to the distributed nature of the RMML
approach, the local problems can all be solved in parallel be-
fore the final one-step averaging. The combination of lower di-
mensionality in the local problems and parallelization can sig-
nificantly reduce the total run time compared with centralized
algorithms.
In terms of algorithms, we find the iterative regression

method introduced in [26] is very efficient for sparse graphs.
This algorithm iteratively performs linear regressions of each
node variable against its immediate neighbors until global
convergence. However, the major drawback of this algorithm
is the need to maintain global parameters, which prevents
direct parallelization and also makes implementation difficult
in distributed networks (as discussed below).

The computational advantage of the proposed RMML algo-
rithm becomes more obvious when the number of variables in-
creases to large numbers. Assuming that the local neighborhood
dimensions increase more slowly than , such as with K-NN
graphs and lattice graphs, the total complexity of the RMML es-
timator scales linearly in , independent of the algorithm used
to solve the local problems. The run time increases even more
slowly if the overall algorithm can be parallelized. In contrast,
for the centralized algorithms, the dependence of complexity on
is at least linear and is much faster for denser graphs and/or if
generic -SDP solvers are used.
Another advantage of the proposed RMML algorithm is that

it is highly suitable for network applications due to its minimal
requirement for message passing which reduces communication
cost. In sharp contrast, many centralized algorithms, such as the
iterative regression algorithm mentioned above, require central-
ized storage and iterative updating of a large number of vari-
ables, which in turn requires expensive communication among
non-adjacent nodes in the network.

VI. EXPERIMENTS

In this section, we evaluate the proposed RMML estimator
and compare it with the centralized and other distributed esti-
mators in the literature. All methods have been coded in Matlab
routines that will be available at the reproducible research
web page1. We focus on the one-hop and two-hop versions
of the RMML estimator (denoted as RelaxMML-1hop and
RelaxMML-2hop, respectively). Other estimators considered
in this section are:
• The centralized GML estimator, denoted as GML in the
legends;

• The LOCAL and AVE estimators from [6], denoted as LOC
and AVE. They coincide with the asymmetric and sym-
metric versions respectively of the one-hop relaxed MML
estimator;

• The weighted maximum pseudo-likelihood estimator
using Alternating Direction Method of Multipliers
(ADMM) consensus, proposed in [6] and [5] and de-

noted as PML-ADMM. We use the weights as
in [6].

We first verify the classical asymptotic rates for the proposed
estimators predicted by Theorems 1 and 2 (see Fig. 2) using
10,000 randomized runs sampled from a four-nearest-neighbor
Gaussian graphical model with nodes distributed uni-
formly in space over the unit square. The concentration matrix
is initialized as with random sign,
where is the Euclidean distance between the th and th
nodes. The empirical normalized mean squared errors (MSE),

defined as , are computed from Monte Carlo samples,
and they are compared with the theoretical bounds predicted
by Theorem 1. Fig. 2 illustrates the tightness of these bounds.
It is also worth noting that the bound for the two-hop RMML
estimator is much lower than that of the one-hop estimator, as
predicted by Theorem 2. The two-hop bound approximates the
bound for the GML estimator closely, suggesting that RMML

1http://tbayes.eecs.umich.edu/rrpapers
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Fig. 2. Asymptotic normalized MSE for K-NN graphs ( ). The
curves denote the theoretical asymptotic limits, whereas the symbols denote the
empirical normalized MSE over 10,000 runs.

estimators are nearly asymptotically efficient. The asymptotic
bounds for RMML estimators with larger neighborhoods follow
themonotonicity relation in Theorem 2, however the differences
are too small to visually identify, and hence are omitted from the
plot.
Next we evaluate the non-asymptotic MSE performance of

the proposed estimator, and compare it with the other estima-
tors on both synthetic and real-world data sets. For synthetic
data sets, we consider three classes of graphs that are motivated
by real-world applications. For each class we follow similar ex-
periment settings as in [6]. Specifically, we randomly generate
20 topologies and associated sparse concentration matrices ,
and for each , we perform 10 experiments in which random
samples are drawn from the distribution and the concentration
matrix is estimated from the samples. The normalizedMSEs are
averaged over all 200 experiments, and are reported in Fig. 3.
An illustration of the graph topology is shown in the top-right
corner of each plot. The classes of graphs we consider are:
• K-NN graphs (Fig. 3(a)): A K-nearest neighbor graph is
a straightforward model for real-world networks whose
measurements have correlations that depend on pairwise
Euclidean distances, e.g., sensor networks. For these ex-
periments, we randomly generate nodes uni-
formly over the unit square. Each node is then connected
to its -nearest neighbors, where . The concentra-
tion matrix is initialized as with
random sign, where is the Euclidean distance between
the th and th nodes. Finally we add a small value to the
diagonal to ensure positive definiteness.

• Lattice graphs (Fig. 3(b)): A lattice graph is appropriate
for networks with regular spatial correlations, e.g., images
that areMarkov random fields.We generate a square lattice
graph with nodes and edge weights
generated as , where is a normally dis-
tributed random variable with mean 0.5 and variance 0.2.

A small value is added to the diagonal to ensure positive
definiteness.

• Small-world graphs (Fig. 3(c)): Small-world graphs
have been proposed for social networks, biological net-
works, etc., where most nodes have few immediate
neighbors but can be reached from any other node through
a small number of hops [28]. We generate graphical
models structured as random small-world networks
using the Watts-Strogatz mechanism [28] with ,

, and parameter . Under
this particular setting, a large fraction of nodes have large
second-hop neighborhoods with dimension close to . In
general we expect the second-hop neighborhood to scale
linearly with respect to . We choose the edge weights
to be uniformly distributed and also add a small diagonal
loading to ensure that is positive definite.

The MSE curves shown in Fig. 3 match our theoretical pre-
dictions in Section IV-B, and they also demonstrate the supe-
rior performance of the proposed RMML estimator. In partic-
ular, for the graphs that have relatively small two-hop neighbor-
hoods, namely the K-NN graphs and the lattice grids, the MSE
of the proposed two-hop relaxed MML estimator almost coin-
cides with the MSE of the global MLE. On the other hand, for
small-world networks, the dimensions of the two-hop neighbor-
hoods grow as fast as . In this case, a noticeable gap emerges
between the global MLE and the two-hop relaxed MML esti-
mator. These graphs are known to be harder to learn through dis-
tributed algorithms. The two-hop relaxed MML estimator still
outperforms the other distributed algorithms by a large margin.
Next, we apply the estimators to a real-world sensor net-

work. The IntelLab dataset [27] contains temperature informa-
tion from a sensor network of 54 nodes deployed in the Intel
Berkeley Research lab between February 28 and April 5, 2004.
This dataset is known to be very difficult with missing data,
noise and failed sensors. We select 50 sensors with relatively
stable and regular measurements. To obtain a target concentra-
tion matrix, we use 1800 consecutive samples per sensor, inter-
polate the missing or failed readings and de-trend the data using
a local rectangular window of 10 samples. Next, we compute
the sample covariance and invert it to obtain a sample concen-
tration matrix. This concentration matrix is then thresholded to
yield a ground truth graphical model with a sparsity level of
70% zeros. Using knowledge of the sparsity and sampling from
the original 1800 samples, we estimate the concentration ma-
trix using the same estimators as before. As shown in Fig. 3(d),
the proposed two-hop relaxed MML estimator still gives a very
tight approximation to the centralized GML estimator and its
advantage over other distributed estimators is obvious.
We investigate the robustness of the centralized and

distributed estimators in the presence of model mis-
match. The nominal precision matrix corresponds to a
four-nearest-neighbor graphical model with as in the
previous experiments. We add random perturbations to
the non-edge components of the nominal precision matrix (also
with minimal diagonal loading to ensure positive definiteness),
then generate samples from the perturbed model. The different
estimation algorithms are applied assuming the nominal graph
structure and the resulting MSEs are plotted with respect to
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Fig. 3. Normalized MSE in the concentration matrix estimates for different graphical models. The legend in Fig. 3(d) applies to all plots. The proposed 2-hop
relaxed maximum marginal likelihood (RMML) estimator clearly improves upon existing distributed estimators and nearly closes the gap to the centralized max-
imum likelihood estimator. (a) Normalized MSE for K-NN graphs ( ). (b) Normalized MSE for lattice graphs ( , ,

). (c) Normalized MSE for small-world graphs ( , , ). (d) Normalized MSE for IntelLab Sensor Network Data set [27] ( ).

the nominal model. The MSEs of all estimators (using samples
from both the original and perturbed models, respectively) are
reported in Fig. 4. All errors are averaged across 50 randomized
experiments. As can be seen, the model mismatch leads to
estimation bias for both centralized and distributed estimators.
The magnitudes of the model mismatch bias for all estimators
are comparable, as predicted by the theoretical analysis in
Section IV-C. These experiment results confirm the robustness
of the proposed distributed algorithm.
We next turn to computational comparisons. In the following

experiments, we illustrate the computational gain of our dis-
tributed estimator over the centralized one through two runtime
comparisons performed inMatlab. Ourmain focus is on the rela-

tive scaling of the runtime with respect to the number of nodes
for different estimators. We consider two algorithms for solving
both the centralized GML problem and the local RMML prob-
lems. The first is an interior point algorithm implemented in the
solver logdetPPA [29], which is specially designed for solving

-SDPs. The second algorithm is the iterative regression
approach in [26] for solving the covariance selection problem
[10] with known structure. In both experiments, the graphical
model is a four-NN graph with similar parameter settings as be-
fore. We compare the total runtime of the GML estimator and
that of different versions of RMML estimators. For the RMML
estimators, we implement a sequential and a parallel version
using the parfor function in Matlab. The results are reported in
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Fig. 4. Robustness of estimators under model mismatch. All errors are obtained
from K-NN ( ) graphs and averaged over 50 experiments. For
the perturbed models, is added to the non-edge components of the nominal
precision matrix. The proposed distributed RMML estimator is as robust as the
GML estimator.

Fig. 5. As expected, the runtime of the GML estimator is at least
linear in and the generic solver appears to be much more ex-
pensive than the iterative regression algorithm for this particular
task. The total cost of the RMML estimator without paralleliza-
tion is also linear in , and is slightly higher than the GML esti-
mator. However, when four-core parallelization is used, the run
time is approximately reduced by a factor of four, resulting in
lower computational complexity after .
It is expected that with a higher degree of parallelization, the

run time of the proposed RMML estimator will continue to de-
crease almost linearly with the number of cores. As discussed in
Section V, all local RMML problems can be solved in parallel
without the need for any iterative message-passing. Therefore
the communication overhead is minimal, consisting of the final
concatenation and symmetrization steps (16) and (18).

VII. CONCLUSION

We have proposed a distributed MML framework for esti-
mating the concentration matrix in Gaussian graphical models.
The proposed method solves a convex relaxation of a marginal
likelihood maximization problem independently in each local
neighborhood. A global estimate is then obtained by combining
the local estimates via a single round of local averaging. The
proposed estimator is shown to be statistically consistent and
computationally efficient. In particular, we have shown that the
statistical convergence rate of our estimator is comparable to
that of the more expensive centralized maximum likelihood es-
timator. Likewise in numerical experiments, a two-hop version
of the distributed estimator is seen to be sufficient to attain cen-
tralized performance. Its improved performance relative to ex-
isting distributed estimators is also illustrated.

APPENDIX A
PROOF OF THEOREM 1

Proof: Consider the following set of sparse positive
semidefinite matrices with respect to a non-zero element set :

We first note that, when is taken to be the relaxed edge set
of a neighborhood as defined in (13), then the true marginal
concentration matrix corresponding to the neighborhood,

, must belong to the set . This can be seen from
the fact that the true global concentration matrix conforms
to the sparsity pattern specified by and from relations (10)
and (11). Therefore the proposed relaxed MML problem (14)
is equivalent to a standard ML problem with respect to a GGM
distribution parameterized by matrix , with being
the population parameter. Then the asymptotic consistency, nor-
mality and efficiency of the proposed relaxed MML estimator
(with respect to the local problem) all follow from the stan-
dard asymptotic analysis of the ML estimator [23]. In partic-
ular, the variances of the errors achieve the diagonal elements
of the inverse Fisher information matrix defined in (20) (see
[30] for the derivation). Finally by extracting and summing the
variances corresponding to the row parameters, we obtain the
expression for the asymptotic mean squared Frobenius error of
the proposed global estimator .

APPENDIX B
PROOF OF THEOREM 2

Proof: We first consider the case of , i.e., we compare
the asymptotic variances of the one-hop and two-hop RMML
estimators. Subsequently we generalize the arguments to
and to the global ML estimator. Suppressing the index for

local neighborhoods, let be the sets of buffer and all
nodes (i.e., variables) with respect to the -hop neighborhood,
respectively ( ).
Next we define some set notation for edge parameters. Let

denote the subset of edges in with
both endpoints in . Let be the set of all possible edges
connecting -hop buffer nodes, i.e., . Recall
from (15) that denotes the set of row parameters, which is
defined as . Finally note that the ( -hop) relaxed
edge sets defined in (13) are related to the above two sets as

, , 2.
We augment the two-hop neighborhood graph by adding all

edges among one-hop buffer nodes and among two-hop buffer
nodes that are not already in (see Fig. 6 for an illustration).
This augmented edge set is denoted as .
After this augmentation, the one-hop buffer clique separates
the two-hop neighborhood graph into two components and a
non-overlapping decomposition follows:

(31)

where we define two subsets and . The augmented
two-hop neighborhood graph is therefore decomposed by

[3, Def. 2.1].
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Fig. 5. Run time comparisons for GML and RMML estimators. In panel (a) the logdetPPA solver is used, and in panel (b) the iterative regression algorithm is used.
In both figures, solid lines denote the runtime scaling of the sequential version of the algorithm, while the dashed lines denote runtime scaling for a parallelized
version with four cores. In both figures, the runtime of the GML estimator is super-linear in , while the RMML estimator exhibits linear scaling in , and the
runtime is further reduced by a factor approximately equal to the number of cores used. All experiments are implemented in a Matlab environment. (a) Run time
comparison using logdetPPA solver. (b) Run time comparison using iterative regression algorithm.

Fig. 6. Illustration of the graph augmentation in the proof of Theorem 2.
Dashed red lines indicate the added edges, and dashed blue contours indicate
the sets and , which intersect at the one-hop separator clique formed by
red nodes.

Similar to Theorem 1, the asymptotic error covariance matrix
of the RMML estimator for the augmented two-hop neighbor-
hood is the inverse of corresponding Fisher information matrix
(FIM), denoted as . By Proposition 5.8 in [3], the decompos-
ability of the augmented graph leads to the following decompo-
sition of the inverse of FIM:

where appropriately zero-pads its argument to conform to
the dimensions of .
Restricting this relation to the row parameters , we have

(32)

since the row parameters are only contained in . Noting that
set is equivalent to the one-hop relaxed edge set , then

(33)

Therefore, from Theorem 1 we have that the asymptotic mean
squared error of the RMML estimator using the augmented
graph is the same as that of the one-hop RMML estimator.
On the other hand, the augmented edge set is different

from the relaxed edge set only in the one-hop buffer clique
. Therefore another possible decomposition of the aug-

mented edge set is (after re-ordering):

(34)

where we define the difference set as . Then using a prop-
erty of Schur complements of positive semidefinite matrices,
the variance matrix corresponding to (i.e., the non-zero pat-
tern of the two-hop RMML estimator) satisfies

(35)

Restricting this relation to the submatrix indexed by set , we
have

(36)

Now combining (33), (36) and Theorem 1, we can conclude
that the asymptotic variance of the one-hop RMML estimator
(i.e., the mean squared error) is larger than that of the two-hop
estimator.
Similar arguments can be established for comparing the

asymptotic variances of the two-hop RMML and the GML es-
timators, which shows that the asymptotic variance of RMML
estimator is larger than that of the GML estimator. The above
proof can be easily generalized to arbitrary -hop neighbor-
hoods.



5436 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

APPENDIX C
PROOF OF THEOREM 3

The key ingredient in proving Theorem 3 is the following
lemma, which provides a bound for the error of the RMML es-
timator (14) in a given local neighborhood (the neigh-
borhood index is suppressed). Let be the true global co-
variance matrix, and be the true marginal precision matrix
corresponding to the given neighborhood.

Lemma 1: For a given local neighborhood , if

(37)

we have

(38)

The proof of Lemma 1 is given in Appendix D. The above
lemma is deterministic in nature. To ensure that assumption (37)
is satisfied with high probability when the sample covariance

is random, we make use of the following concentration
result for Gaussian random variables by Ravikumar et al. [13]:

Lemma 2: For a -dimensional Gaussian random vector
with covariance matrix , the sample covariance matrix ob-

tained from samples satisfies

(39)

for all , where .
Now we are ready to prove Theorem 3.
Proof: (Theorem 3) Given the condition (26) on , we

have

(40)

Then applying Lemma 2 and the union bound, we have

(41)

Conditioned on the event in (41), condition (26) also guaran-
tees that (37) holds for all local neighborhoods. Then the total
Frobenius error in the global estimate can be bounded by
Lemma 1:

where identity is due to the fact that the global estimator is a
concatenation of non-overlapping row parameter sets (see (15)
for definition of ’s), equality is due to our construction of

from (see (16)), and the fact that row parameters
are always protected.

APPENDIX D
PROOF OF LEMMA 1

Proof: The main idea of this proof is inspired by [14]. The
difference is that we focus on the local RMML problem, rather
than the global ML problem (which is studied in [14]). Define
the marginal likelihood function for a local neighborhood

as , where we super-script
the sample covariance to emphasize that it is obtained from
samples.
Recall is the local marginal precision ma-

trix. Define the shorthand notation for the local RMML estimate
as .
Consider the function , where
respects the sparsity structure of the RMML problem, i.e.,

and . Let be a given radius,
define the following set

(42)

where is the local relaxed edge set. Note that defines a
sphere, not a ball.
Note that is a convex function of . By construction

we have , and the optimality of implies that
, where we define . Then if

we can establish that

then the optimal error matrix must lie inside the sphere de-
fined by by convexity of , implying that .
Now it suffices to find a suitable radius such that
is lower-bounded from zero for all .
Since

Similar to [14], we make use of the Taylor’s theorem for the
function

(43)

where denotes the Kronecker product, and is the properly
vectorized form of matrix .
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Using this identity, we have

(44)

Next we bound and defined above separately.
For , notice that the difference matrix is non-zero only

in a restricted set , therefore it reduces to a lower-dimensional
inner product:

(45)

where is due to the duality between norms and .
For , we follow similar derivations as in [14]:

where follows the eigenvalue property of Kronecker
product, is due to the fact that , is due to the
interlacing property of eigenvalues of sub-matrices

(46)

The last inequality is due to construction, i.e., .
Now can be bounded by

(47)

(48)

The proof is complete if the RHS can be lower bounded away
from zero. It can be verified that with the choice of as in
(37), letting suffices. Therefore

.
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