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Optimal Algorithms for -subspace
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Abstract—We describe ways to define and calculate -norm
signal subspaces that are less sensitive to outlying data than -cal-
culated subspaces. We start with the computation of the max-
imum-projection principal component of a data matrix containing
signal samples of dimension . We show that while the general

problem is formally NP-hard in asymptotically large , , the
case of engineering interest of fixed dimension and asymptoti-
cally large sample size is not. In particular, for the case where
the sample size is less than the fixed dimension , we
present in explicit form an optimal algorithm of computational
cost . For the case , we present an optimal algorithm
of complexity . We generalize to multiple -max-projec-
tion components and present an explicit optimal subspace cal-
culation algorithm of complexity where is the
desired number of principal components (subspace rank). We
conclude with illustrations of -subspace signal processing in the
fields of data dimensionality reduction, direction-of-arrival estima-
tion, and image conditioning/restoration.

Index Terms— norm, norm, dimensionality reduction,
direction-of-arrival estimation, eigendecomposition, erroneous
data, faulty measurements, machine learning, outlier resistance,
subspace signal processing.

I. INTRODUCTION

A general intention of subspace signal processing is to parti-
tion the vector space of the observed data and isolate the

subspace of the signal component(s) of interest from the dis-
turbance (noise) subspace. Subspace signal processing theory
and practice rely, conventionally, on the familiar -norm based
singular-value decomposition (SVD) of the data matrix. The
SVD solution traces its origin to the fundamental problem of
-norm low-rank matrix approximation [1], which is equiva-

lent to the problem of maximum -norm data projection with
as many projection (“principal”) components as the desired low-
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rank value [2]. Among the many strengths of -norm prin-
cipal component analysis (PCA), one may point out the sim-
plicity of the solution, scalability (new principal directions add
on to the previous ones), and correspondence to maximum-like-
lihood estimation (MLE) under the assumption of additively
Gaussian-noise corrupted data.
Practitioners have long observed, however, that -norm

PCA is sensitive to the presence of outlier values in the data
matrix, that is, erroneous values that are away from the nominal
data, appear only few times in the data matrix, and are not
to appear again under normal system operation upon design.
Recently, there has been an -arguably small but growing-
interest in pursuing -norm based approaches to deal with the
problem of outliers in principal-components design [3]–[24].1

The growth in interest can also be credited incidentally to the
popularity of compressed sensing methods [25]–[28] that rely
on -based calculations in signal reconstruction.
This paper makes a case for -subspace signal processing.

Interestingly, in contrast to , subspace decomposition under
the error minimization criterion and the projection max-
imization criterion are not the same. A line of recent research
pursues calculation of principal components under error
minimization [3]–[9]. The error surface is non-smooth and the
problem non-convex resisting attempts to guaranteed optimiza-
tion even with exponential computational cost. Suboptimal
algorithms may be developed by viewing the minimization
function as a convex nondifferentiable function with a bounded
Lipschitz constant [29], [30]. A different approach is to cal-
culate subspace components by projection maximization
[10]–[22].2 No algorithm has appeared so far with guaranteed
convergence to the criterion-optimal subspace and no upper
bounds are known on the expended computational effort.
In this present work, given any data matrix

of signal samples of dimension , we see that the general
problem of finding the maximum -projection principal com-
ponent of is formally NP-hard for asymptotically large ,
[16]. We prove, however, that the case of engineering interest
of fixed given dimension is not NP-hard. In particular, for
the case where , we present in explicit form an algo-
rithm to find the optimal component with computational cost
. For the case where the sample size exceeds the data di-

mension –which is arguably of higher interest in
signal processing applications—we present an algorithm that

1Absolute-value errors put significantly less emphasis on extreme errors than
squared-error expressions.
2A combined -norm approach has been followed in [23], [24].
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computes the -optimal principal component with complexity
, . We generalize the effort to the

problem of calculating , , components
(necessarily a joint computational problem) and present an ex-
plicit optimal algorithm for multi-component subspace design
of complexity . We conclude with illustra-
tions of the developed subspaces in problems from the fields
of dimensionality reduction, direction-of-arrival estimation, and
image reconstruction that demonstrate the inherent outlier resis-
tance of subspace signal processing.
The rest of the paper is organized as follows. Section II

presents the problem statement and establishes notation.
Section III is devoted to the optimal computation of the

principal component. Section IV generalizes to optimal
-subspace calculation (joint multiple components).

Experimental illustrations are given in Section V and a few
concluding remarks are drawn in Section VI.

II. PROBLEM STATEMENT

Consider real-valued measurements of di-
mension that form the data matrix

(1)

In the common version of the low-rank approximation problem,
one seeks to describe (approximate) the data matrix by a
rank- product where , ,

. Given the observation data matrix , -norm
matrix approximation minimizes the sum of the element-wise
squared error between the original matrix and its rank- surro-
gate in the form of Problem defined below,

(2)

where is the matrix norm (that is,

Frobenius norm) of a matrix with elements . Problem
is our most familiar -singular-value-decomposition

( -SVD) problem solved with computational complexity
[2]. corresponds also to the sta-

tistical problem of maximum-likelihood estimation (MLE) of
an unknown rank- matrix corrupted by additive element-wise
independent Gaussian noise [31].
We may expand (2) to and

inner minimization results to for any fixed ,
, by the Projection Theorem [2]. Hence, we obtain

the equivalent problem

(3)

frequently referred to as left-side -SVD. Since
where denotes the trace of a matrix, the

error minimization problem is also equivalent to the
projection (energy) maximization problem

(4)

The optimal (in , , and ) is known simply
as the dominant-singular-value left singular vectors of the
original data matrix or dominant-eigenvalue eigenvectors of

[1], [2]. Note that, if and we possess the so-
lution for singular/eigen vectors in (2), (3), (4), then

the solution for rank is derived readily by

with

(5)

This is known as the PCA scalability property.
PCA, as reviewed above in , , and , has a

simple solution, is scalable (new principal directions add on
to the previous ones), and corresponds to MLE under the as-
sumption of Gaussian additively corrupted data. Practitioners,
however, have long noticed a drawback. By minimizing the
sum of squared errors, principal component calculation be-
comes sensitive to extreme error value occurrences caused by
the presence of outlier measurements in the data matrix (mea-
surements that are numerically distant from the nominal data,
appear only few times in the data matrix, and are not to appear
under normal system operation upon design). Motivated by this
observed drawback of subspace signal processing, in this
work we study and pursue subspace-decomposition approaches
that are based on the norm,

(6)

We may “translate” the three equivalent optimization
problems (2)–(4) to new problems that utilize the norm as
follows,

(7)

(8)

(9)

A few comments appear useful at this point: (i) corresponds
to MLE when the additive noise disturbance follows a Lapla-
cian distribution [31]. (ii) The optimal metric value in with
a single dimension is the complexity parameter for
saddle-point methods when used to provide an approximate so-
lution to the /nuclear-norm Dantzig selector problem [30].
(iii) Under the norm, the three optimization problems ,

, and are no longer equivalent. (iv) Under , the PCA
scalability property does not hold (due to loss of the Projection
Theorem). (v) Even for reduction to a single dimension (rank

approximation), the three problems are difficult to solve.
(vi) As of today, it is unknownwhich of the subspaces defined in

, , and exhibits stronger resistance against faulty
measurements; indeed, none of these problems was solved op-
timally so far for general .
In this present work, we focus exclusively on . In

Section III, we find efficiently the principal maximum
projection component of . In Section IV, we investigate
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the problem of calculating (jointly necessarily) multiple
projection components that maximize the

“energy” of the data on the projection subspace.

III. THE -NORM PRINCIPAL COMPONENT

In this section, we concentrate on the calculation of
the -maximum-projection component of a data matrix

(Problem in (9), ). First, we show
that the problem is in general NP-hard and review briefly
suboptimal techniques from the literature. Then, we prove that,
if the data dimension is fixed, the principal -norm com-
ponent is in fact computable in polynomial time and present an
algorithm that calculates the principal component of with
complexity , .

A. Hardness of Problem and an Exhaustive-Search Algorithm
Over the Binary Field

We present a fundamental property of Problem , ,
that will lead us to an efficient solution. The property is pre-
sented in the form of Proposition 1 below and interprets
as an equivalent quadratic-form maximization problem over the
binary field.
Proposition 1: For any data matrix , the solution

to is given by

(10)

where

(11)

In addition, .

Proof: For any , .

Therefore, we can rewrite the optimization problem as

(12)

For any fixed vector , inner maximization in (12) is solved by
and

(13)

Combining (12) and (13), we obtain

(14)

That is, where

and .
By Proposition 1, to find the principal -norm component
we solve (11) to obtain and then calculate .

The straightforward approach to solve (11) is an exhaustive
search among all binary vectors of length . Therefore, with
computational cost , Proposition 1 identifies the -optimal
principal component of . As the data record size grows, cal-
culation of the principal component by exhaustive search in
(11) becomes quickly infeasible. Proposition 2 below declares

that, indeed, in its general form , , is NP-hard for
jointly asymptotically large . McCoy and Tropp provide an
alternative proof in [16], that is the earliest known to the authors.
Proposition 2: The computation of the principal compo-

nent of by maximum -norm projection (Problem
, ) is NP-hard in jointly asymptotic .
Proof: In (12), for any fixed , .

Hence,

(15)

By (10) and (15), computation of the principal component
of is equivalent to computation of in (11). Consider
the special case of (11) where , ,

(hence, ). Then,

(16)

But is the NP-complete equal-partition
problem [32]. We conclude that computation of the principal
component of is NP-hard in jointly asymptotic .

B. Existing Approaches in Literature

Recently there has been a growing documented effort to
calculate subspace components by projection maximization
[10]–[22]. The work in [11] presented a suboptimal iterative
algorithm for the computation of , which, following the
formulation and notation of this present paper, initializes the
solution to some arbitrary component and executes

(17)

(18)

, until convergence. The work in [17] presented
an iterative algorithm for the joint computation of prin-
cipal -norm components. For the case where , the it-
eration in [17] simplifies to the iteration in [11] (that is, (17),
(18) above). Therefore, for , the algorithms in [11], [17]
are identical and can, in fact, be described by the simple single
iteration

(19)

for the computation of in (11). Equation (19), however,
does not guarantee convergence to the -optimal component
solution (convergence to one of the many local maxima may be
observed). In the following section, we present for the first time
in the literature an optimal algorithm to calculate the prin-
cipal component of a data matrix with complexity polynomial
in the sample size when the data dimension is fixed.

C. Exact Computation of the Principal Component in
Polynomial Time

Proposition 2 proves NP-hardness of the computation of the
principal component in (that is, when are

jointly arbitrarily large). However, of engineering interest is the
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case of fixed data dimension . In the following, we show for
the first time in the literature that, if is fixed, then computation
of is no longer NP-hard (in ). We state our result in the
form of Proposition 3 below.
Proposition 3: For any fixed data dimension , computation

of the principal component of has complexity
, .

By Proposition 2, computation of the principal compo-
nent of is equivalent to computation of in (11). To
prove Proposition 3, we will prove that can be computed
with complexity . We begin our developments
by defining

(20)

Then, also has rank and can be decomposed by

(21)

where , , , are the eigenvalue-weighted eigenvec-
tors of with nonzero eigenvalue. By (11),

(22)

For the case , the optimal binary vector can be
obtained directly from (11) by an exhaustive search among all

binary vectors . Therefore, we can design the
-optimal principal component with computational cost

. For the case where the sample size exceeds
the data dimension , we find it useful in terms of both
theory and practice to present our developments separately for
data rank , , and .
1) Case : If the data matrix has rank , then

and (22) becomes

(23)

By (10), the -optimal principal component is

(24)

designed with complexity . It is of notable practical im-
portance to observe at this point that even when is not of
true rank one, (24) presents us with a quality, trivially calcu-
lated approximation of the principal component of : Cal-
culate the principal component of the matrix

, quantize to , and project and normalize to ob-
tain .
2) Case : If , then and (22) becomes

(25)

The binary optimization problem (25) was seen and solved in
[33] by the auxiliary-angle method [34], which was also used
earlier in [35], [36]. Here, we define the complex vector

(26)

and rewrite (25) as

(27)

We introduce the auxiliary angle and note that, for
any complex scalar ,

(28)

with equality if and only if . That is,

(29)

Therefore, the maximization in (27) can be rewritten as

(30)

where, for any given angle , inner maximization is
achieved by

(31)

Then, the optimal vector in (27), i.e., the solution to (11), is
met if we scan the entire interval and collect the locally
optimal vector for any point .
Interestingly, as we scan the interval , the locally

optimal vector does not change unless the sign of
changes for some . Since the

latter happens only at angle and angle , we obtain
points in total at which changes. Next, we order

the points with complexity and create
successively binary vectors by changing each time the sign
of if the th element of is the one that determines a sign
change. It is observed that the binary vectors that we obtain
this way are pair-wise opposite (the vectors that are collected
when are opposite to the ones that are collected
when ). Since opposite vectors result
in the same metric value in (11), we can restrict our search
to and maintain optimality. Therefore, with overall
complexity , we obtain a set of binary vectors
that contains . Then, we only have to evaluate the
vectors against the metric of interest in (11) to obtain . We
conclude that the -optimal principal component of a rank-2
matrix is designed with complexity .
3) Case : If , we design the -optimal principal

component of with complexity by considering the
multiple-auxiliary-angle approach that was presented in [37] as
a generalization of the work in [33].
Consider a unit vector . By the Cauchy-Schwartz in-

equality, for any ,

(32)

with equality if and only if is codirectional with . Then,

(33)
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By (33), the optimization problem in (22) becomes

(34)

For every , inner maximization in (34) is solved by the
binary vector

(35)

which is obtained with complexity . Then, by (34), the
solution to the original problem in (22) is met if we collect all
binary vectors returned as scans the unit-radius -dimen-
sional hypersphere. That is, in (22) is in3

(36)

Two fundamental questions for the computational problem
under consideration are what the size (cardinality) of set is
and how much computational effort is expended to form .
We address first the first question.We introduce the auxiliary-

angle vector , ,
and parametrize as follows,

...
(37)

Then, we re-express the candidate set in (36) in the form

(38)

where, according to (35),
(39)

We note that, for any point , each element ,
, depends only on the corresponding row

of and is determined by . Hence, the
value of the binary element changes only when

(40)

To gain some insight into the process of introducing the auxil-
iary-angle vector , we notice that the points that satisfy (40)
determine a hypersurface (or -manifold) in the -di-
mensional space that partitions into two regions. One re-
gion corresponds to and the other corresponds to

. A key observation in the algorithm is that, as scans

3The th element of vector , , can be set nonnegative without loss of op-
timality, because, for any given , , the binary vectors and

result to the same metric value in (22).

Fig. 1. Visualization of the calculation of the principal component of a data
matrix of samples with rank . The space

is partitioned into cells with distinct
corresponding binary vectors , ; in (11)
equals for some and the principal component is

.

any of the two regions, the decision on does not
change. Therefore, the rows of are associated with

corresponding hypersurfaces that partition into
cells such that ,

, and each cell corresponds to a
distinct vector . As a result, the candidate vector
set is .

In [37], it was shown that when pairs of
cells that correspond to opposite binary vectors (hence, equiv-
alent vectors with respect to the metric of interest in (22)) are
considered as one. Therefore, the candidate vector set has
cardinality . Fig. 1 presents
a visualization of the algorithm/partition for the case of a data
matrix of samples with rank .
Since , the hypersurfaces (or -manifolds) are, in
fact, curves in the 2-dimensional space that partition into
cells. The cells and associated binary
candidate vectors are formed by the eight-row three-column
eigenvector matrix of and the scanning angle vector

.
Regarding the cost of calculating , since each cell con-

tains at least one vertex (that is, intersection of hypersur-
faces), see for example Fig. 1, it suffices to find all vertices in
the partition and determine for all neighboring cells. Consider

arbitrary hypersurfaces; say, for example, ,
, , . Their intersection satisfies

and is com-
puted by solving the equation

(41)
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The solution to (41) consists of the spherical coordinates of the
unit vector in the null space of the matrix .4

Then, the binary vector that corresponds to a neighboring cell
is computed by

(42)

with complexity . Note that (42) presents ambiguity
regarding the sign of the intersecting hypersurfaces. A
straightforward way to resolve the ambiguity5 is to consider
all sign combinations for the corresponding elements

and obtain the binary vectors of all
neighboring cells. Finally, we repeat the above procedure for
any combination of intersecting hypersurfaces among
the ones. Therefore, the total number of binary candidates
that we obtain (i.e., the cardinality of ) is upper bounded by

. Since complexity is required
for each combination of rows of to solve (42), the
overall complexity of the construction of is for any
given matrix .
Our complete, new algorithm for the computation of the
-optimal principal component of a rank- matrix

that has complexity is presented in detail in Fig. 2.
Computation of each element of (i.e., column of in the
algorithm) is performed independently of each other. There-
fore, the proposed algorithm is fully parallelizable. The space
complexity of the algorithm is , since after every com-
putation of a new binary candidate the best binary candidate
needs to be stored.
We note that the required optimal binary vector in (22) can,

alternatively, be computed through the algorithm in [38], [39]
with time complexity and space complexity at least

based on the reverse search for cell enumeration in ar-
rangements [40] or with time complexity but space
complexity proportional to based on the incremental
algorithm for cell enumeration in arrangements [41], [42]. An-
other algorithm that can solve (22) with polynomial complexity
is in [43]. Its time complexity is , while its space
complexity is polynomially bounded by the output size (i.e.,

). In comparison to the above approaches, the algo-
rithm in Fig. 2 is the fastest known with smallest (linear) space
complexity. We conclude that the -optimal principal compo-
nent of a rank- data matrix , , is
obtained with time complexity and space complexity

. That is, the time complexity is polynomial in the sample
size with exponent equal to the rank of the data matrix, which
is at most equal to the data dimension . The space complexity
is linear in the sample size.

4If is full-rank, then its null space has rank 1 and is uniquely
determined (within a sign ambiguity which is resolved by ). If, instead,

is rank-deficient, then the intersection of the hypersurfaces (i.e.,
the solution of (41)) is a -manifold (with ) in the -dimensional
space and does not generate a new cell. Hence, linearly dependent combinations
of rows of are ignored.
5An alternative way of resolving the sign ambiguities at the intersections of

hypersurfaces was developed in [37] and led to the direct construction of a set
of size with complexity .

Fig. 2. The optimal algorithm for the computation of the maximum
-projection component of a rank- data matrix of samples of di-

mension (space complexity ; parallelizable computation of columns
of ). Executable code can be found at [47].

IV. MULTIPLE -NORM PRINCIPAL COMPONENTS

In this section, we switch our interest to the joint design of
principal components of a data matrix

. After we review suboptimal approaches from the recent lit-
erature, we generalize the result of the previous section and
prove that, if the data dimension is fixed, then the prin-
cipal components of are computable in polynomial time

.

A. Exact Exhaustive-search Computation of Multiple
Principal Components

For any matrix ,

(43)

where denotes the nuclear norm (i.e., the sum of the sin-
gular values) of . Maximization in (43) is achieved by

where is the “compact” SVD of , and are
and , respectively, matrices with

, is a nonsingular diagonal matrix, and is the rank
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of . This is due to the trace version of the Cauchy-Schwarz
inequality [44] according to which

(44)

with equality if which is satisfied by

.
To identify the optimal subspace for any number of com-

ponents , we begin by presenting a property of in the
form of Proposition 4 below. Proposition 4 is a generalization of
Proposition 1 and interprets as an equivalent nuclear-norm
maximization problem over the binary field.
Proposition 4: For any data matrix , the solution

to is given
by

(45)

where and are the and matrices that consist
of the dominant-singular-value left and right, respectively,
singular vectors of with

(46)

In addition, .
Proof: We rewrite the optimization problem in (9) as

(47)

That is, where
and, by (43) and (44),

where is the “compact” SVD of .

By Proposition 4, to find exactly the optimal -norm pro-
jection operator we can perform the following steps:
1) Solve (46) to obtain .
2) Perform SVD on .
3) Return .
Steps 1–3 offer for the first time a direct approach for the com-
putation of the jointly-optimal principal components of
. Step 1 can be executed by an exhaustive search among all
binary matrices of size followed by evaluation in

the metric of interest in (46). That is, with computational cost

we identify the -optimal principal components
of .

B. Existing Approaches in Literature

For the case , [11] proposed to design the first prin-
cipal component by the coupled iteration (17)–(18) (which
does not guarantee optimality) and then project the data onto
the subspace that is orthogonal to ; design the principal
component of the projected data by the same coupled iteration;
and continue similarly. To avoid the above suboptimal projec-
tion-greedy approach, [17] presented an iterative algorithm for
the computation of altogether (that is, the joint compu-
tation of the principal components). In the language of
Proposition 4, the algorithm can be described as arbitrary ini-
tialization at some followed by updates

(48)

(49)

(50)

for , until convergence. Similar to the work in
[11], the above iteration does not guarantee convergence to the
-optimal subspace.

C. Exact Computation of Multiple Principal Components
in Polynomial Time

By the proof of Proposition 4, for any given
the corresponding metric-maximizing binary matrix is

. Hence,

(51)

By Proposition 4 and (51), computation of the principal
components of is equivalent to computation of in
(46), which indicates NP-hardness in (that is, when
are arbitrarily large). As before, in this section we consider the
case of engineering interest of fixed data dimension . As in
Section III, we show that, if is fixed, then computation of the
principal components of is no longer NP-hard (in ).

We state our result in the form of the following proposition.
Proposition 5: For any fixed data dimension , optimal

computation of the principal components of
can be carried out with complexity ,

.
To prove Proposition 5, it suffices to prove that can

be computed with complexity . As in (20),
(21), let denote the rank of and where is
the eigen-decomposition matrix of . By (46),

(52)
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where denotes the th eigenvalue of matrix ,
.

For the case , the optimal binary matirx can
be obtained directly from (46) by an exhaustive search among
all binary matrices . Therefore, we can
design the -optimal principal components with computa-
tional cost .
For the (certainly more interesting) case where the sample

size exceeds the data dimension, , we present for the
first time a generalized version of the approach in [33], [37]
that introduces an orthonormal scanning matrix to maximize a
rank-deficient nuclear norm. In particular, we observe by (52)
that we need that solves

(53)

By interchanging the maximizations in (53), for any fixed
matrix the inner maximization with respect to

is solved by

(54)

which is obtained with complexity linear in . Then, by (53),
the solution to our original problem in (52) is met if we collect
all possible binary matrices returned as the columns of
scan the unit-radius -dimensional hypersphere while main-

taining orthogonality among them. That is, in (52) is in6

(55)

Then, by relaxing orthogonality among the columns of ,

(56)

which implies that

(57)

From (57), we observe that the number of binary matrices that
we collect as the columns of scan the unit-radius -dimen-
sional hypersphere -with or without maintaining orthogonality-
is polynomial in . After has finished scanning the hyper-
sphere, all collected binary matrices in are compared to
each other against the metric of interest in (52) with complexity

per matrix. Therefore, the complexity to solve (46) is de-
termined by the complexity to build or at most since

by (56).

6Without loss of optimality, we set , ,
since, for any given , , the binary matrices and

result to the same metric value in (46).

Fig. 3. The optimal algorithm for the computation of the
-dimensional -principal subspace of a rank- data matrix of

samples of dimension (function compute_candidates in Fig. 2). Executable
code can be found at [47].

Since , we already have a direct way to
solve (52). First, we construct with complexity as
described in Section III. We note that contains
binary vectors. Then, we construct which consists of all
selections of elements of allowing repeated elements. The
order of the elements in each selection can be disregarded, since
the order of the columns of does not affect the metric in (52).
Hence, the total number of selections that we need to consider is
the number of possible ways one can choose elements from a
set of elements disregarding order and allowing repetitions
(i.e., the number of size- multisets of all ), which equals
[45]

(58)

since . For each one of the binary
matrices, we evaluate the corresponding metric
in (52) with complexity . Then, we identify the op-
timal matrix by comparing the calculated metric
values. Therefore, the overall complexity to solve (46) is

.
The complete algorithm for the computation of the optimal
-dimensional -principal subspace of a rank-

matrix with complexity is given
in Fig. 3. As a simple illustration of the practical computational
cost of the presented algorithm, in Table I we show the average
CPU time expended by an Intel® Core™ i5 Processor at 3.40
GHz running the algorithm of Fig. 3 in Matlab® R2012a to cal-
culate the principal components of a rank- data
matrix for and (we consider only
the cases ). The presented CPU time for each case
is the average over 100 data matrix realizations created with in-
dependent zero-mean unit-variance Gaussian drawn entries. Im-
portantly, per Figs. 2 and 3, both visiting the manifold-in-
tersection points for constructing (lines 2–8 of function com-
pute_candidates in Fig. 2) and constructing given (line 4
of the -principal subspace algorithm in Fig. 3) are fully paral-
lelizable actions that can be distributed over multiple processing
units. Thus, the entire subspace calculation is fully paralleliz-
able and the expended calculation time can be divided down by
the number of available processors (plus necessary inter-pro-
cessor communication overhead).
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Fig. 4. (a) Training data matrix with its and principal components . (b) Training data matrix corrupted by four additional outlier
points in bottom right with recalculated and principal components. (c) Evaluation data set of 1000 nominal points against the outlier infected (Fig. 4(b))
and principal components. For reference, in all figures we plot along the ideal maximum-variance direction of the nominal-data distribution (dominant

eigenvector of the true nominal-data autocovariance matrix).

TABLE I
AVERAGE CPU TIME IN SECONDS EXPENDED BY AN INTEL® CORE™
I5 PROCESSOR (AT 3.40 GHZ) TO FIND THE -DIMENSIONAL
-PRINCIPAL SUBSPACE OF A FULL-RANK DATA MATRIX

BY EXECUTING SERIALLY IN MATLAB® R2012A THE ALGORITHM OF FIG. 3

V. EXPERIMENTAL STUDIES

In this section, we carry out a few experimental studies on
-subspace signal processing to motivate and illustrate the

theoretical developments in the previous sections. Examples
are drawn from the research fields of dimensionality reduction,
data restoration, direction-of-arrival estimation, and image con-
ditioning/reconstruction.

A. Experiment 1—Data Dimensionality Reduction

We generate a nominal data set of two-di-
mensional observation points drawn from the

Gaussian distribution as seen in Fig. 4(a).

We calculate and plot in Fig. 4(a) the (by standard SVD)
and (by Section III-C, Case , complexity about

) principal component of the data matrix .7 For
reference purposes, we also plot the true nominal data max-
imum-variance direction, i.e., the dominant eigenvector of

the autocorrelation matrix . Then, we assume that

our data matrix is corrupted by four outlier measurements,
, , , , shown in the bottom right corner of Fig. 4(b).

We recalculate the and principal component of the
corrupted data matrix and notice
(Fig. 4(a) versus Fig. 4(b)) how strongly the component
responds to the outliers compared to . To quantify the

7We note that without the presented algorithm, computation of the prin-
cipal component of would have required complexity proportional to
(by (25)), which is of course infeasible.

impact of the outliers, in Fig. 4(c) we generate 1000 new

independent evaluation data points from

and estimate the mean square-fit-error when
or . We find

versus
.

In contrast, when the principal component is calculated from
the clean training set, or , we find esti-
mated mean square-fit-error 6.077 and 6.080, correspondingly.
We conclude that dimensionality reduction by principal
components may loose only minimally in mean-square fit
compared to when the designs are from clean training sets,
but can protect significantly when training is carried out in the
presence of erroneous data.
Next, we compare the dimensionality-reduction performance

of the proposed -principal subspace with that of other sub-
spaces in the literature obtained by means of -norm based
methods. Specifically, alongside the (SVD) and -prin-
cipal component (proposed), we calculate the -principal
component [23] as well as the direction obtained by means
of -factorization through alternating weighted median
calculation [3], [4].8 All directions are calculated from an

-point corrupted data set with

outliers drawn from and

nominal points drawn from .

In Fig. 5, we plot the mean-squared-fit-error averaged over
10000 independent corrupted training data-set experiments
as a function of the number of outlying points in the data set

. We notice that, when designed on nominal data, all
examined subspaces differ little, if any, from the -principal
subspace in mean-square fit error. However, when designed on
outlier-corrupted data sets, the -principal subspace exhibits
notable robustness outperforming uniformly and significantly
all other subspaces, especially in the – mid-range of
corruption. Given that and start very near each other in
mean-square-fit-error at 0% corruption and meet again only at

8The works in [23] and [3], [4] present suboptimal solutions to optimization
problems for which no optimal algorithm (efficient or not) is known to date.



MARKOPOULOS et al.: OPTIMAL ALGORITHMS FOR -SUBSPACE SIGNAL PROCESSING 5055

Fig. 5. Mean-square-fit error of -dimensional data when projected
onto the direction ( ) of the -principal component, the -principal
component, the -principal component [23], and -factorization [3], [4].

100% corruption, one is tempted to say that the subspaces
are to be uniformly preferred over if the associated compu-
tational cost can be afforded.

B. Experiment 2—Data Restoration

As a toy numerical example, we consider a hypothetical case
where we collect from a sensor system eight samples of five-di-
mensional data. Due to the nature of the sensed source, the data
are to lie in a lower-than-five dimensional space, say a plane.
Say, then, the true data are given by the rank-2 data matrix
in (59) at the bottom of the page. Assume that, due to sensor
malfunction or data transfer error or data storage failure, we
are presented instead with the corrupted matrix in (60),
shown at the bottom of the page, where seven of the original

entries in two of the data points have been altered/overwritten
and spans now a four-dimensional subspace of .
Our objective is to “restore” to taking advantage

of our knowledge (or assumption) of the rank of the original
data. Along these lines, we project onto the span of its

- or -principal components,

(63)

where or . The resulting - and
-derived representations of are in (61) and in

(62), respectively, both shown at the bottom of the page. In
Fig. 6, we plot the element-by-element and per-measurement
square-restoration error for the two projections. The relative su-
periority of -subspace data representation is clearly captured
and documented.

C. Experiment 3—Direction-of-Arrival Estimation

We consider a uniform linear antenna array of ele-
ments that takes snapshots of two incoming signals
with angles of arrival and ,

(64)

where are the received-signal amplitudes with
array response vectors and , correspondingly, and

is additive white complex Gaussian
noise. We assume that the signal-to-noise ratio (SNR) of
the two signals is and

. Next, we assume that
one arbitrarily selected measurement out of the ten obser-
vations is corrupted by
a jammer operating at angle with amplitude

. We call the resulting corrupted observation set
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Fig. 6. (a) Element-by-element and (b) per-measurement square restoration
error.

and create the real-valued version
by

part concatenation. We calculate the -principal
components of , ,
and the -principal components of ,

. In Fig. 7, we plot the stan-
dard MUSIC spectrum [46]

(65)

where , as well as what we may
call “ MUSIC spectrum” with in place of . It is in-
teresting to observe how MUSIC (in contrast to MUSIC)
does not respond to the one-out-of-ten outlying jammer value
in the data set and shows only the directions of the two actual
nominal signals.

D. Experiment 4—Image Reconstruction

Consider the “clean” 100 64 gray-scale image
of Fig. 8(a). We assume that is not

available and instead we have a data set of cor-
rupted/occluded versions of , say . Each

Fig. 7. MUSIC power spectrum with or calculated principal
components (data set of measurements with signals at
and of which one measurement is additive-jammer corrupted with

; ; ).

corrupted instance , , is created by partitioning
the original image into sixteen tiles of size 25 16 and re-
placing three arbitrarily selected tiles by 25 16 grayscale-noise
patches as seen, for example, in Fig. 8(b).
The 10 corrupted instances are vectorized to form the data

matrix

(66)

Next, we “condense” to a rank-2 representation by both -
and -subspace projection,

(67)

where consists of the or , ac-
cordingly, principal components of . In Fig. 8(c) we show the
projection of the corrupted image of Fig. 8(b) onto the -de-
rived rank-2 subspace (maximum- -projection reconstruc-
tion). In Fig. 8(d), we show the projection of the same image
onto the -derived rank-2 subspace (maximum- -projection
reconstruction). Figs. 8(c) and 8(d) offer a perceptual (visual)
interpretation of the difference between and -subspace
rank reduction. It is apparent that maximum- -projection
reconstruction offers a much clearer image representation of
than maximum- -projection reconstruction. This is another
result that highlights the resistance of -principal subspaces
against outlying data corruption.

VI. CONCLUSION

We presented for the first time in the literature optimal (exact)
algorithms for the calculation of maximum- -projection sub-
spaces of data sets with complexity polynomial in the sample
size (and exponent equal to the data dimension). It may be pos-
sible in the future to develop an principal-component-anal-
ysis (PCA) line of research that parallels the enormously re-
warding PCA/feature-extraction developments. When
subspaces are calculated on nominal “clean” training data, they
differ little—arguably—from their -subspace counterparts in
least-squares fit. When, however, subspaces are calculated from
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Fig. 8. (a) Original image . (b) An “occluded” instance of . (c) Maximum- -projection reconstructed image, and (d) max-
imum- -projection reconstructed image.

data sets with possible erroneous, out-of-line, “outlier” entries,
then subspace calculation offers significant robustness/resis-
tance to the presence of inappropriate data values.
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