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-Channel Oversampled Graph Filter Banks
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Abstract—This paper proposes -channel oversampled filter
banks for graph signals. The filter set satisfies the perfect recon-
struction condition. A method of designing oversampled graph
filter banks is presented that allows us to design filters with
arbitrary parameters, unlike the conventional critically sampled
graph filter banks. The oversampled graph Laplacian matrix is
also introduced with a discussion of the entire redundancy of
the oversampled graph signal processing system. The practical
performance of the proposed filter banks is validated through
graph signal denoising experiments.

Index Terms—Graph filter banks, graph signal denoising, graph
signal processing, graph wavelets, oversampled filter banks.

I. INTRODUCTION

G RAPH signal processing is one of the emerging topics
in signal processing [1]–[12]. Unlike regular signal

processing1, graph signal processing must explicitly consider
the structure of the signal. In this context, well-studied signals,
e.g., acoustic, image, and video signals, can be considered to be
graph signals with very simple structures, and for this reason,
tools for graph signal processing have received much attention.
As we describe later, graph signal processing in graph spec-

tral domain is based on a transformation using the eigenvec-
tors of the graph Laplacian matrix (GLM), which determines
the signal structure. Spectral graph theory [13] has been used to
study the relationships among the eigenvalues (or eigenvectors)
of the GLM, and the signal processing community has focused
on features that relate to diagonalizing a given matrix. For ex-
ample, the diagonalization power of the discrete cosine trans-
form (DCT) was summarized in [14]. Moreover, it was proven
that DCT is the optimal basis for image/video processing with
graphs of simple intra/inter-prediction [11].
Graph wavelet transforms have been developed for signals

with structures. Some transforms on graph vertex domain re-
quire simplifications to be made to the graph, such as decompo-
sition into even and odd nodes [5], [6]. Recently, wavelet trans-
forms on graph spectral domain have been proposed [2]–[4].
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1In this paper, we often use the word regular signals/transforms to distinguish
discrete signals on uniform points without explicit structures from the graph
signals discussed in this paper.

A key technique of (digital) signal processing is down and up-
sampling, and it has been also studied for graph signals in the
context of the spectral folding phenomenon [2], [3], which is
analogous to the aliasing effect of regular signal processing.
Since the spectral folding phenomenon affects bipartite graphs,
the filter banks are designed to be two-channel critically sam-
pled ones. Unfortunately, these designs have strong limitations
imposed on them if they are to be used to obtain critically sam-
pled perfect reconstruction filter banks. In contrast, -channel
( ) filter banks would be useful for graph signals, since
oversampled filter banks for regular signals have more freedom
in their design and it has been shown that they outperform crit-
ically sampled systems in several applications [15]–[20].
Here, we study such graph filter banks and show that they do

not have the limitations of critically sampled ones. For instance,
perfect reconstruction is possible even if we use an arbitrary
lowpass filter, and the filters we design have good stopband at-
tenuation. Furthermore, we discover where the graph signals
are oversampled and derive the perfect reconstruction condi-
tion for the oversampled case. We also introduce an oversam-
pling scheme that uses an oversampled graph Laplacian ma-
trix. To the best of our knowledge, it is the first attempt at using
an oversampled graph Laplacian matrix for graph signal pro-
cessing. Moreover, our recent work [21]–[23] describes graph
expansion techniques in more detail.
As a possible application, we show how our oversampled

graph filter bank can be used to denoise graph signals. A com-
parison of implementations of a simple hard-thresholding tech-
nique shows that the proposed filter bank outperforms the ex-
isting graph filter banks and the wavelet transform for regular
signals.
The remaining part of this paper is organized as follows.

Preliminaries and notations are summarized in the rest of this
section. Section II reviews the existing studies. The oversam-
pled graph Laplacian matrix and redundancy of transforms are
studied in Section III. Section IV gives the perfect reconstruc-
tion condition of oversampled graph filter banks, and Section V
presents a detailed design method. Design examples and ex-
perimental results on graph signal decomposition are shown in
Section VI. Section VII concludes the paper.

A. Preliminaries and Notations

In this paper, we consider a finite undirected graph
where and represent sets of nodes and

edges in the graph, respectively. Similar to [2], [3], we assume
a graph without self-loops or multiple connections. The number
of nodes is , unless specified otherwise. The ( )-th
element in the adjacency matrix is defined as follows:

if nodes and are connected,
otherwise,

(1)
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where is a weight on the edge. The diagonal degree matrix
contains . With and , the unnormalized

GLM is defined as . We will consider the sym-
metric normalized GLM (SNGLM) , since
the normalized version is always restricted to having eigen-
values in and it is required to correctly reflect the current
graph downsampling phenomenon [2], [3]. Our filter bank is
also applicable without any changes to the random-walk GLM

[3].
The important symbols for the paper are listed below:
1) : Graph signal ( ).
2) : -th Eigenvector of .
3) : -th eigenvalue of ( ), where

, and for
bipartite graphs.

4) : Spectrum of the graph, i.e.,
.

II. REVIEW

Here, we briefly review the existing approaches using graph
wavelets and filter banks.

A. Graph Fourier Transform and Spectral Domain Graph
Filter

Analogous to regular signal processing, the graph Fourier
transform (GFT) of is defined as follows [4]:

(2)

where is the complex conjugate. Filtering in the spectral do-
main, i.e., the GFT domain, is able to control the spectral and
vertex domain spread. As a result, recent studies on graph filters
have focused on spectral domain designs.
The eigenspace projection matrix is defined as follows:

(3)

where is the transpose of a matrix or a vector. Note that the
are orthogonal to each other. That is,

(4)

where is the Kronecker delta function, or, equivalently,

(5)

where and is an identity matrix of
size . By using , a spectral domain filter for graph signals
can be defined as follows:

(6)

where is the kernel of .

Fig. 1. Two-channel critically sampled graph filter bank.

B. Critically Sampled Graph Filter Banks

The downsampling and upsampling effects of the SNGLM of
a bipartite graph have been studied in [2]. Note that an arbitrary
graph can be decomposed into disjoint bipartite graphs. Let
us define a bipartite graph where nodes in are
divided into two disjoint sets and . We call the nodes in
the lowpass channel and those in the highpass channel, for
the sake of convenience.
Similar to the case of regular signals, the downsampling-then-

upsampling operation can be defined as follows:

(7)

where is a diagonal matrix with antipodal coefficients, i.e.,
or , with the following form:

if belongs to ,
if belongs to .

(8)

The following proposition is the key to designing the perfect
reconstruction graph filter banks.
Proposition 1: (Downsampling Phenomenon of Bipartite

Graph [2, Proposition 1]) The eigenspace projection matrix
and the downsampling matrix are related as follows:

(9)

Two sorts of critically sampled perfect reconstruction graph
filter banks have been proposed. One is graph-QMF [2], which
is the orthogonal solution, and the other is graphBior [3], which
guarantees perfect reconstruction by relaxing the orthogonal
property of the graph-QMF.
Fig. 1 illustrates the entire transformation for one bipartite

graph. It is similar to the regular filter banks [24]–[26], but the
number of signals in the lowpass and highpass channels are no
longer (or, more formally, or ): the lowpass
channel contains signals whereas the highpass channel re-
tains signals, where . The number of signals
in each channel is determined on the basis of the graph-coloring
result.
Both graph-QMF and graphBior are designed to satisfy the

following perfect reconstruction condition:

(10)

where is a filter in the analysis
bank and is one in the synthesis
bank. In (10), the second term is called the spectral folding term,
and it corresponds to aliasing in regular signals. Therefore, this
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spectral folding term must be zero. As a result, a critically sam-
pled perfect reconstruction graph filter bank must satisfy the fol-
lowing conditions:

(11)

For graph-QMF, one prototype lowpass filter is used to
yield the remaining , , and . Moreover,
has to satisfy , where is some constant.
However, such an cannot be an exact polynomial: hence,
perfect reconstruction and orthogonality are not possible [2],
[3]. Instead, graphBior is based on the spectral factorizations of
a maximally flat filter pair, which is a similar approach to that
of the Cohen-Daubechies-Feauveauwavelet transform [27], and
the designed filter bank satisfies (10).

III. OVERSAMPLING GRAPH SIGNALS

In this section, we describe the actual oversampled position
in the signal processing flow of spectral graph signal processing
and explicitly show the redundancy of the oversampled graph
filter bank. In this section, we assume that the original arbitrary
graph has already been decomposed into disjoint bipartite
graphs. The oversampling process can be done independently
of each bipartite subgraph.

A. Oversampled SNGLM

Let us define the original GLM of a bipartite graph as and
its corresponding adjacency matrix whose size is .
Without loss of generality, an oversampled SNGLM can be
represented as follows:

(12)

where

(13)

(14)

in which is the oversampled adjacency matrix whose size is
and is a degree matrix that normalizes the new

GLM. Additionally, contains information on the connec-
tion between the original graph and the appended nodes so that
is still a bipartite graph.
With the oversampled SNGLM, we can transform the over-

sampled signal , which is represented as

(15)

where is the original signal and is the signal for additional
nodes and its length is . Since the expansion process of
the signal (and its corresponding SNGLM) is independent of the
filter selection, the entire transform is a perfect reconstruction
only if the graph filter bank satisfies the perfect reconstruction
condition. Filtering in the spectral domain is defined similarly
to the critically sampled case [1]–[3]:

(16)

Fig. 2. Graph oversampling of a bipartite graph. Gray lines indicate edges in
the original graph and black lines represent appended edges.

Fig. 3. Toy example of graph oversampling. (a) Scenario 1: Two-node-graph.
(b) Scenario 2: Oversampled two-node-graph. The black lines are appended
edges.

where is the eigenspace projection matrix corresponding to
in (12).

B. Examples of Graph Oversampling

An effective graph expansion method is beneficial for ana-
lyzing graph signals. Note that the expanded signal can be
freely chosen and the choice of , i.e., how to connect
with , is also arbitrary. However, an inappropriate choice of

and/or will cause a performance loss compared to the
original GLM. One possible recommendation, studied in our re-
cent papers [21], [22], is that is to be (a part of) duplicated
copy of and is determined according to the edges in the
original graph.
An example of graph oversampling for a bipartite graph is

illustrated in Fig. 2. In the figure, and represent sets of
colored nodes and gray lines indicate the original edges. The
original bipartite graph is oversampled by adding the nodes just
above and and connecting the appended nodes with cor-
responding original nodes. The effective oversampling methods
for arbitrary (non-bipartite) graphs are studied in [21], [22]. Its
strategy is used for the experiments in Section VI of the over-
sampled graph filter banks proposed in this paper.
Furthermore, we would like to mention that the output signal

after filtering with the oversampled SNGLM is completely dif-
ferent from that obtained with undecimated graph filtering. To
introduce the fact, we assume two following scenarios:

Scenario 1: Filtering using the original graph without
downsampling.
Scenario 2: Filtering using the oversampled graph with
downsampling.

Here, a toy example is considered: a two-node-graph illus-
trated in Fig. 3(a). All weights on edges are 1 and the original
graph signal is . We use this graph for the
scenario 1. For the scenario 2, the simplest oversampled graph
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Fig. 4. Signal processing flow of oversampled graph filter bank. Symbols just below the skewed lines indicate the number of signals at typical positions.

corresponding to Fig. 2 is used and it is shown in Fig. 3(b). Obvi-
ously, the oversampled graph is still a bipartite graph. The over-
sampled graph signal in this example is defined as the duplicated
copy of , i.e., .
The original GLM is represented as

(17)

Its eigenvalues and eigenvectors are clearly
and

The oversampled GLM is

(18)

and its normalized version is

(19)

Its eigenvalues are and

For the scenario 1, the output signal after filtering with
can be represented as

(20)

As a result, it captures the signal characteristics at (the
minimum and maximum eigenvalues).
Whereas for the scenario 2, we can observe the different filter

response. The filtered and downsampled signal for the scenario
2 can be represented as follows:

(21)

where and . In this example,
the extra eigenvalues are used for the signal
analysis. Roughly speaking, finer characteristics of the graph
signal can be captured by oversampling the graph signal and
the underlying graph.

C. -Channel Filter Banks for Bipartite Graph and
Redundancy of Oversampled Graph Filter Banks

In summary, there are two possible ways to oversample :
oversampling at 1) the oversampled SNGLM in (12) and/or 2)
spectral filters ( ). The situation is

illustrated in Fig. 4. Let be the number of filters which
keep signals after downsampling. The overall redundancy
can be expressed as

(22)

where . For example, when , , and
, i.e., using a four-channel filter bank with

the original SNGLM ( ), .

IV. PERFECT RECONSTRUCTION CONDITION OF OVERSAMPLED
GRAPH FILTER BANKS

The details of the perfect reconstruction condition are dis-
cussed in this section. For clearer understanding, we present the
case of first, and extend it to any value of afterwards.
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Fig. 5. Oversampled graph filter bank.

Fig. 6. Four-channel product filter example.

A. Four-Channel Case

Consider the four-channel graph filter bank shown in Fig. 5.
After filtering with , the zeroth and first channels pass
signals, whereas the second and third ones keep signals.
is represented as

(23)

where

Therefore, the overall transfer function is

(24)

From Proposition 1, and the orthogo-
nality of , we get

(25)

As a result, the perfect reconstruction condition becomes

(26)

Fig. 7. -channel oversampled graph filter bank.

and

(27)

for any . Equation (27) is satisfied if we use the constraints
, , , and
(similar to what is done in [3]). Accordingly,

(26) becomes

(28)

Let us define a product filter as . Finally,
(28) can be rewritten as

(29)

By using this perfect reconstruction condition, we can select
four-channel product filters instead of two-channel systems of
the critically sampled graph filter bank. The situation is shown
in Fig. 6.

B. General -Channel Case

Let us assume that an oversampled graph filter bank has
channels, where is even. Additionally, we assume that
filters keep signals and the other ones keep signals, as
shown in Fig. 7. Similar to (25), the transfer function can be
calculated as

(30)

The perfect reconstruction condition is

(31)

(32)
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for any . The latter equation is valid if we choose
and . Accordingly,

(31) becomes

(33)

As a result, the product filter must satisfy the following
condition:

(34)

V. DESIGN OF -CHANNEL OVERSAMPLED GRAPH
FILTER BANK

First, we will consider the case of . Let us define
. Equation (29) can be rewritten as

(35)

This equation is the same as that of a two-channel biorthogonal
graph filter bank [3]. Therefore, the design problem boils down
to separating the critically sampled product filter into low-
pass and bandpass (Fig. 6) filters and such that the
sum of filters is .
Let us assume that a lowpass product filter is arbitrarily

chosen so that and are “good” lowpass filters. By
changing the variable of [3], can be expressed
as

(36)

where is an arbitrary parameter.
Following [3], has the degree and its even

degree must be zero from the halfband condition.2 Hence,
is represented as

(37)

which is, of course, the same as that in [3] and has a unique solu-
tion satisfying (35). Finally, the remaining product filter
can be defined as follows:

(38)

Example: zeros at
This is the same example as in [3]. We assume . As in

(36) and (38), and are

(39)

(40)

where and are arbitrarily chosen parameters. Then, the
sum of the product filter is defined as

(41)

2Although Proposition 1 in [3] restricts to being a product of two ker-
nels, it is nonetheless applicable to the sum of two kernels assumed in this paper.

which is an odd-order polynomial and it is the same product
filter as that in [3]. To guarantee the perfect reconstruction,
and must be

(42)

That is, we can add free parameters ( and ) to design a
halfband filter, and this will lead to better filter characteristics.
A similar derivation is possible for general -channel graph

filter banks. In that case, the parameters for product
filters can be freely chosen, and the last product filter can be
designed so that the entire product filter is a maximally flat
halfband filter.
Remark 1: The above design method yields perfect recon-

struction graph filter banks. Unfortunately, the filter selection
similar to graph-QMF [2] cannot obtain the perfect reconstruc-
tion filter set with the real-valued exact polynomial filters even
for this oversampled case. This is easily confirmed by exam-
ining the transfer function in (30). If the filter bank is chosen
similar to graph-QMF, the condition must be
satisfied. Therefore, the perfect reconstruction condition (34)
becomes

(43)

Here, let us focus on the highest degree of . In-
deed, each has an even highest degree. However, as previ-
ously mentioned, must be an odd degree poly-
nomial. Hence, at least one has a complex coefficient to
cancel the highest degree. This means real-valued oversampled
graph filter banks with the filter selection similar to graph-QMF
cannot be designed.
Remark 2: Let us define to be the matrix form of the anal-

ysis transform. Riesz bounds, which give the lower and upper
bounds and such that , of the
analysis filter bank can be calculated similarly to what is shown
in [3], [4], as

(44)

Practically speaking, the second term in (44) can be ignored
since the first term is much larger than the second one. That is,
the Riesz bounds can be approximated as

(45)
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Fig. 8. Four-channel oversampled graph filter banks. From left to right: , , and . Top row: analysis filter bank. Black lines indicate
graphBior(6,6) [3]. Bottom row: halfband filters.

Fig. 9. Six-channel oversampled graph filter bank: analysis bank.

This result is the similar to what is shown in [3].

VI. DESIGN EXAMPLES AND EXPERIMENTAL RESULTS

In this section, we show the design methodology of
-channel oversampled graph filter banks and a few de-

sign examples.

Fig. 10. MultiresolutionCoins image after three-level decomposition using the
oversampled graph filter bank. The original image on the same scale is shown
at the top right. The values of the transformed coefficients are scaled to be in
the range for the sake of visualization.
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Fig. 11. Graphs decomposed by the proposed oversampled graph filter bank. (Colors are adjusted according to each channel for the sake of visualization.) Original
signal is shown in Fig. 13(a). We use a two-dimensional four-channel filter bank leading to . Note that the graph is three-colorable: therefore,
channels 8, 9, 12, and 13 (corresponding to the HL channel for the critically sampled filter banks) are empty.

Fig. 12. Structure of the Minnesota Traffic Graph. It was reproduced from the MATLAB code of Narang and Ortega [3], and Harary’s algorithm [2], [28] was
used to yield two bipartite subgraphs. From left to right: Original graph, bipartite graph #1, and bipartite graph #2.

A. Design Methodology

As mentioned above, we can use arbitrary parameters to de-
sign filters. In what follows, we will use a sequential design
method to obtain good filter banks:
1) Design and ( ) with

and zeros (where in (36)–(37)) at
( ). They are represented as follows:

(46)

where and are filter coefficients. i.e., the
product filter can be rep-
resented as

(47)
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Fig. 13. Denoising results of Example 1: (a) input signal; (b) noisy observation; (c) sym8 (1 level); (d) sym8 (5 levels); (e) graphBior(6, 6); (f) SGWT; (g) OSGFB
with CSGLM; and (h) OSGFB with OSGLM.

The numbers of arbitrary parameters in and
are and , respectively.

The filters are optimized by using the cost function of the
stopband attenuation shown below:

(48)

where and are weights and and are de-
fined as the passband and stopband ( ),
respectively.

2) Calculate the two-channel halfband filter pair
and with zeros at so that

the pair satisfies (35).
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Fig. 14. Denoising results of Example 2: (a) Input signal; (b) Noisy observation; (c) sym8 (1 level); (d) sym8 (5 levels); (e) graphBior(6, 6); (f) SGWT; (g) OSGFB
with CSGLM; and (h) OSGFB with OSGLM.

3) Calculate the bandpass product filter3

3There always exists which satisfies the perfect reconstruction condi-
tion (35) [3]. Therefore, also has a unique solutionwith real coeffi-
cients as long as all of the arbitrary design filters have real coefficients. Addition-
ally, since the perfect reconstruction condition is only imposed on ,

and in (46) can be set arbitrarily regardless of .

(49)

4) Factorize into two bandpass filters
and . Test all combinations of roots as

long as both bandpass filters have real-valued coefficients,
and select the best combination, i.e., the filters minimizing

.
Fig. 8 shows an example of oversampled graph filter banks.

The arbitrary lowpass filters and are designed to
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TABLE I
DENOISED RESULTS OF MINNESOTA TRAFFIC GRAPH (AVERAGE OF TEN EXECUTIONS): SNR (dB)

have degree 10 and 11, respectively. We used
and . For comparison, the frequency

responses of the critically sampled graphBior(6, 6) [3] are also
plotted. They have 13-taps for the lowpass filter and 12-taps for
the highpass filter. It is clear that our oversampled lowpass filter
has a sharper transition band and a more uniform response in the
passband than the critically sampled graph filter banks have. In
the following experiments, we use the oversampled filter bank
with .
Additionally, Fig. 9 presents a six-channel oversam-

pled graph filter bank with zeros and
. The filter lengths are 11 or 12 taps.

For lowpass filters, we used and
. For bandpass ones,

and are used. It is
clear that our sequential design methodology can be used for
the general -channel case and the frequency responses of the
filters are well localized.

B. Graph Signal Decomposition

In this experiment, we assume that is oversampled only at
the -channel filter kernels: i.e., we use and
for the sake of clarity. The experiment using an oversampled
SNGLM is presented in the next subsection. Since the filters
designed in this paper are exact polynomials, the filtered signal
can be efficiently computed by using Chebychev polynomials
[4]. Therefore, an explicit computation of the entire set of eigen-
values and eigenvectors of or is not required.
Figs. 10 and 11 show the decomposed results of the graph

signals using the proposed oversampled graph filter bank. For
the Coins image shown in Fig. 10, the eight-connected image
graph is decomposed into a rectangular bipartite subgraph and
a diagonal bipartite subgraph. Its further details can be found in
[2], [3]. The structure of the Minnesota Traffic Graph, whose
decomposition is presented in Fig. 11, is shown in Fig. 12. It is
three-colorable: thus, the HL channel is empty and not shown.
It is clear that the decomposed graph signals are well localized
and different channels extract different signal characteristics.

C. Denoising of Graph Signal

Here, we show the potential ability of using oversampled
graph filter banks to remove additive white Gaussian noise from

graph signals of the Minnesota Traffic Graph. The oversam-
pled graph filter bank is compared with graphBior(6, 6) [3],
the spectral graph wavelet transform (SGWT) with three scales
[4] and a regular one-dimensional wavelet sym8, which can be
found in the Wavelet Toolbox in MATLAB. For the regular
wavelet transform, the input signal is treated as a vector, and
one-level and five-level dyadic decompositions are performed.
Only one level transform is used for the graph filter banks. All
methods retain the lowest-frequency subband and the remaining
high-frequency subbands are hard-thresholded with ,
where is the standard deviation of noise.
We tested two setups for the oversampled graph filter bank.

One uses the critically sampled SNGLM (abbreviated as
OSGFB with CSGLM): the multidimensional decomposition
introduced in [2] is performed on the two bipartite subgraphs
shown in Fig. 12. The other uses the oversampled SNGLM
(abbreviated as OSGFB with OSGLM): the oversampled

SNGLM can be one bipartite graph containing all edges in
the original graph [21], [22]. Therefore, by using the latter
approach, a multidimensional decomposition does not have to
be performed on the graph. Furthermore, two signal examples,
shown in Figs. 13(a) and 14(a) were tested. Both structures,
i.e., the original GLM, are the same, but the values on the nodes
are different.
Table I summarizes the denoising performances together with

the redundancies of the transforms. As expected, the graph filter
banks perform much better than the regular wavelet transform.
Furthermore, our oversampled graph filter bank outperforms
graphBior by 1–3 dB in SNR. The SGWT performs better for
the strong noise case , whereas the proposed oversampled
graph filter banks are better than the SGWT for the other . In-
terestingly, the OSGFB with OSGLM sometimes outperformed
the OSGFB with CSGLM and the SGWT in spite of it having
less redundancy. The effectiveness of the OSGLM is thus ex-
perimentally validated.
Moreover, the OSGFB with OSGLM is comparable to the

SGWT for Example 2 even for the strong noise case. Both trans-
forms have four filters: however, the frequency partitions are
different. The SGWT belongs to a class of nonuniform graph
filter banks, whereas our filter bank is a uniform one. Indeed, the
performance depends on the signal characteristics. The graph
Fourier spectra of both examples are shown in Fig. 15. Obvi-
ously, the spectrum of Example 1 is more concentrated at the
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Fig. 15. Graph Fourier spectra of Minnesota Traffic Graph. Since the
experiment uses the unnormalized GLM, the maximum value of is not
restricted to be 2. We utilized the code by Shuman et al. in [12]. (a) Example 1.
(b) Example 2.

low values than that of Example 2. This characteristic is re-
sponsible for the good denoising performance of the SGWT
with in Example 1.
The denoised signals of Example 1 and 2 for

are shown in Figs. 13 and 14, respectively. Since the regular
wavelet transform does not consider the structure of signals
explicitly, the signals are over-smoothened across the boundary
of the center and surrounding areas; many blue points appear
in the surrounding area. In contrast, graph filter banks preserve
the solid boundary. It is clear that the proposed filter bank per-
forms better than the critically sampled one. It is well-known
in signal/image processing circles that the oversampled filter
banks are better than the critically sampled ones for signal
analysis. The experiment showed this to be the case for graph
signal processing.

VII. CONCLUSIONS

We presented a method of designing -channel oversampled
filter banks for graph signals. It satisfies the perfect reconstruc-
tion condition and allows us to use arbitrary parameters, unlike
critically sampled graph filter banks. Furthermore, it was shown
to outperform other transforms, including regular wavelet trans-
forms, in a graph signal denoising experiment.
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