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Hadamard Transforms
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Abstract—Complex-valued conjugate-symmetric Hadamard
transforms ( -CSHT) are variants of complex Hadamard trans-
forms and found applications in signal processing. In addition,
their real-valued transform counterparts ( -CSHTs) perform
comparably with Hadamard transforms (HTs) despite their
lower computational complexity. Closed-form factorizations of
-CSHTs and -CSHTs have recently been proposed to make
calculations more efficient. However, there is still room to find
effective and general factorizations. This paper presents a simple
closed-form complete factorization of -CSHTs based on that
of -CSHTs. The proposed factorization can be applied to both
- and -CSHTs with one factorization and it provides sev-
eral benefits: 1) It can save total implementation costs for both
-CSHTs and -CSHTs; 2) the generalized -CSHT factorization
significantly reduces its computational cost; 3) memory-saved
local orientation detection of images can be achieved; 4) a fast
direction-aware transform can be attained; 5) it clarifies that -
and -CSHTs are closely related to common block transforms,
such as the discrete Fourier transform (DFT), binDCT, and HT;
and 6) it achieves a new integer complex-valued transform, which
can approximate the DFT better than the original -CSHT. The
image orientation estimation and performance in image coding
of our -CSHTs were evaluated through examples of practical
applications based on the proposed factorization.

Index Terms—BinDCT, complex Hadamard transform, conju-
gate-symmetric sequency-ordered Hadamard transform, DCT,
Hadamard transform.

I. INTRODUCTION

H ADAMARD transforms (HTs) [1]–[11] have been
widely studied for a long time and used for various

signal processing and communication applications. Without
being exhaustive, they include image compression [2], image
watermarking [3], face recognition [4], motion estimation
[5], multicarrier CDMA systems [6], and multiband OFDM
ultrawideband systems [7]. They have very low computational
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complexity since each element of their transformation matrices
is 1 or . The HTs can be classified into several types in
terms of orders, i.e., dyadic, natural, and sequency orders
[12]. Although the type is chosen according to applications,
sequency order is commonly preferred and is often used. This
is because sequency is defined as one half the average number
of zero crossings per unit time in the unit circle of a complex
plane, which is analogous to the frequency of a discrete Fourier
transform (DFT).
Until now, various extended versions of HTs have been

proposed. They are classified into two categories. The first
is the real matrix class such as antipodal transforms [13]
and lapped HTs [14]. The second is the complex matrix
class, which includes unified complex Hadamard transforms
(UCHTs) [15] and complex HTs [16]. Complex-valued HTs
consist of and can be recursively generated by
the Kronecker product.
Since these complex-valued HTs do not form sequency or-

ders, complex-valued sequency-ordered HTs ( -HTs) have
been developed [17]. Due to sequency order, the -HTs can
behave like DFTs in practical applications. Nevertheless, it has
been pointed out that their spectrum is not conjugate-symmetric
as it is with DFTs, and thus more memory is needed to store the
transformed coefficients.
Complex-valued sequency-ordered conjugate-symmetric

HTs ( -CSHT), whose spectrum is conjugate-symmetric,
have been proposed by permutating complex-valued natural-or-
dered conjugate-symmetric HTs ( -CSHT) to reduce the
redundancy of -HTs [18]–[20]. They are more closely
related to the frequency of DFTs than that of -HTs and
are used in several applications [18], [20]. Moreover, the row
vectors of the -CSHT matrix can be regrouped according
to conjugate-symmetric properties to obtain corresponding
real-valued sinusoidal waves with respective frequencies. These
real versions of SO-CSHTs have been denoted -CSHT
in this paper. It is worth noting that -CSHTs perform
comparably with HTs in a few applications, such as image
coding [18], despite their lower computational complexity.
Although they have been well developed in terms of the-

oretical aspects and practical applications, problems remain
in efficiently factorizing them. This paper addresses the fac-
torization problem in complex-valued CSHTs and real-valued
CSHTs ( -CSHTs and -CSHTs) both for natural-ordered
and sequency-ordered versions. The factorizations of both
-CSHTs and -CSHTs in the original paper by Aung et al.
[18] were only presented for , where is the number
of dimensions. Unfortunately, -CSHT and -CSHT factoriza-
tions were not consistent: One factorization cannot be derived
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TABLE I
COMPARISON OF TECHNICAL CONTENTS ON -CSHTS AND -CSHTS

simply from another. Additionally, no general factorizations
for were presented. -CSHT factorizations for the
general were recently proposed by Bouguezel et al.
[19] and Wu et al. [20]. However, their implementations were
restricted to the -CSHT version and the -CSHT counterpart
could not be trivially derived.
Briefly, these previous methods involved two issues that

needed to be resolved:
1) General factorization: The CSHT should be factorized
for general and have factorizations for both of
-CSHT and -CSHT.

2) Consistency of factorization: the -CSHT and -CSHT
should be factorized based on one approach.1.

Here, the objective for “consistency of factorization” is to pro-
vide a cost saving implementation. If two factorizations are con-
sistent with each other, we do not need full implementations of
both transforms. That is, if the -CSHT is implemented once
in our factorization, the -CSHT can be immediately designed
by multiplying some simple matrices. Thus, computational re-
sources for each of them can be directly reused for the other one.
In addition, it can be derived that if either - or -CSHT fac-
torization satisfies completeness, the other also satisfies it due
to consistency of factorization.
This paper presents the most general factorization of CSHTs

thus far. First, the -CSHT factorization of the general
dimensions was newly developed. Based on the generalized
-CSHT factorization, a consistent factorization of - and
-CSHTs is presented. The proposed consistent factorization
indicates theoretical completeness of both - and -CSHTs. A
comparison of CSHT factorizations is summarized in Table I.
Six main benefits are derived thanks to the consistent factor-

ization.
1) As previously mentioned, it saves implementation costs for
both - and -CSHTs.

1Consistency of factorization in this paper can be described as follows: let
be the -CSHT and be the -CSHT factorized by .

Then, can be represented as the product of with some matrix (
).

2) The computational cost for any -CSHTs can be
significantly reduced.

3) Since the -CSHTs, i.e., integer-to-integer transforms, can
extract local orientations of images with the same memory
size as that of the original image, a memory-saved local
orientation estimation of images can be achieved, whereas
integer-to-complex transforms, e.g., the conventional
-CSHT and DFT, require a memory size twice that of
the original images.

4) Furthermore, fast direction-aware non-redundant image
transformation can be achieved from our factorization.
This transform is called a fast directional -CSHT
( -CSHT) in this paper.

5) The structures of the - and -CSHTs based on the pro-
posed factorization clarify the structural relationship with
other basic transforms, such as the binDCT [21], [22], HT,
and DFT.

6) By appending some trivial integer matrices, a new in-
teger complex-valued transform can be attained, which is
proposed as a modified -CSHT. It can approximate the
frequency responses of the DFT better than the original
-CSHT.

The proposed -CSHT factorization was applied to image ori-
entation analysis and image coding as application examples in
the simulation. Our preliminary work [23] demonstrated nei-
ther the theoretical completeness of factorization for - and
-CSHTs, realization of -CSHT and modified -CSHT,
structural factorization comparison between -CSHT and DFT,
memory-saved image orientation analysis, nor image coding
performance, as summarized in Table I.
The rest of the paper is organized as follows. Section II

reviews the definitions and the conventional factorizations of
the - and -CSHTs. The proposed closed-form factorization
is explained in Section III. The completeness and computa-
tional complexity, the method of local orientation detection
of the proposed factorization, and -CSHTs are also dis-
cussed. Section IV clarifies that our -CSHT is related to the
binDCT and a few other block transforms such as the HT and
DFT. Moreover, a modified -CSHT was derived. Section V
provides a numerical evaluation of computational complexity,
performance in image orientation estimation, and performance
in image coding of the proposed -CSHTs. Section VI con-
cludes this paper.

Notations

Matrices are indicated in upper-case bold face letters. A ma-
trix with a size of is denoted by subscript . The ex-
presses unit complex number . The identity and
reverse-identity matrices correspond to and . The null
matrix is . The -th row and -th column entry of matrix is
described as .

II. PRELIMINARIES

This section first reviews the structures of the -CSHT and
-CSHT. Then, conventional factorizations are presented.
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Definitions of -CSHT, -CSHT, and -CSHT

We first define the -CSHT based on a recursive expres-
sion in this section. Let be a -CSHT matrix,
where . Then, this is defined [18] by:

(1)

where

The smallest matrices , , and are:

The -CSHT is formulated by permutating the rows of the
-CSHT matrix according to the bit-reversal order.

(2)

where represents the function that maps the integer to the
corresponding bit-reversal order and denotes a
element of . For example, is described as:

Furthermore, since the -CSHT is conjugate-symmetric, a
real-valued counterpart of the -CSHT, i.e., the -CSHT

, can be derived from as:

...

(3)
where is the column index of the matrix and and
correspond to real and imaginary parts of the number. A real-
valued matrix can similarly be generated from the -CSHT
by combining the conjugate-symmetric pair, which is denoted
as the -CSHT.

A. Closed-Form Factorizations of -CSHT and -CSHT by
Aung et al. [18]

The factorizations of the -CSHT and -CSHT were
separately presented in the original paper by Aung et al. [18]

and they were implemented for . The -CSHT is
factorized as:

(4)

where

Note that if is removed, (4) is the same as the -CSHT
factorization.
On the other hand, a factorization of 8 8 -CSHT is

presented in Aung et al. [18] as:

(5)

where . The factorizations of and are

given in Fig. 1. Unfortunately, the relationships between these
two factorizations are not very clear despite the fact that one of
them is just a counterpart of the other.

B. Closed-Form Factorization of -CSHT by Bouguezel et
al. [19]

The algorithm used in Aung et al.’s original paper [18] is
only given for . Bouguezel et al. and Wu et al. [19],
[20] presented the closed-form representation of the -CSHT
for . The -CSHT structure by Bouguezel et
al. [19] is represented as:

(6)

where represents a Kronecker product operator and
denotes the identity matrix with the size of

. This factorization requires the same number of
arithmetic operations as those in the original -CSHT for
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Fig. 1. CSHT factorization in Aung et al.’s original paper. Top: -CSHT.
Bottom: -CSHT.

, but provides a more general structure according to .
Wu et al. also presented a similar factorization of the -CSHT
[20].

III. PROPOSED CLOSED-FORM FACTORIZATION

This section presents a general closed-form factorization of
the -CSHT. It is expressed as a combination of the -CSHT
and postprocessing with a complex-valued matrix. Similar to
Bouguezel et al.’s previous factorization [19], let us consider
the case for ( ).

A. Generalized Factorization of -CSHT

We start by generalizing the -CSHT in (5), which is in con-
trast to the conventional factorizations. The factorization of
is represented as:

(7)

where

(8)

Moreover, the 2 2 and 4 4 -CSHT matrices are defined as:

(9)

Fig. 2. Sixteen-point -CSHT based on our factorization where dashed boxes
represent four- and eight-point -CSHTs.

Note that the proposed -CSHT is the generalized version of
. More specifically, by using the relationship of:

it can be shown that is equivalent to as:

There is a diagram of the proposed structure for in
Fig. 2. Clearly, our -CSHT factorization yields a simple re-
cursive implementation. It should be noted that the above dis-
cussion is the same as that in our preliminary results without
theoretical completeness [23].

B. Completeness of Proposed -CSHT Factorization and
Consistent Factorization for - and -CSHTs

This section provides a theoretical discussion concerning the
completeness of the proposed -CSHT. A consistent factoriza-
tion for both - and -CSHTs is also derived.
Reformulate the definition of the -CSHT (3) as:

. . . (10)

in which and denotes a permutation

matrix. Hence, it is enough to show a closed-form (complex)
matrix satisfying to verify the completeness of
the proposed -CSHT factorization. From another viewpoint,
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indicates that the - and -CSHTs can be factor-
ized by a single approach, i.e., it yields consistent factorization.
First, complex matrix and permutation matrix are

defined as:

(11)

where denotes a diagonal matrix whose di-
agonal elements are . The smallest matrices ,
, , and are defined as

(12)

By using , , and in (7), the following theorem can
be derived.
Theorem 1: The -CSHT can be factorized as:

(13)

Thus, it can also be factorized as:

(14)

where represents the row-wise permutated version of
via the bit-reversal order.

Proof: We can verify the theorem by induction. For
, it trivially follows that Next, for

, the matrix form of is:

Hence, .
Now, let us assume that, for , the following equa-

tion is satisfied.

(15)

Based on this assumption,

(16)

should be verified. The left-hand side of the assumption in (15)
is analyzed as:

(17)

The right-hand side of (15) is also calculated as:

(18)

where the assumption in (15) is used (
). Thus, by comparing (17) and (18),

the assumption in (15) can be simplified to:

(19)

where . Furthermore, from the definition of both
sides of the assumption in (19), it can further be calculated as:

(20)

The following condition is finally derived:

(21)

With the same discussion as that for (17) and (18), the
problem in (16) can be simplified to:

(22)

Substituting the definitions in (1), the left-hand side of (22) can
be represented as:

(23)

where .Then,
from the condition in (21), all elements in (23) can be converted
to:

(24)
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Fig. 3. Sixteen-point -CSHT ( ) based on our factorization where dashed boxes represent , and from left to right.

where , ,
and . Then,

the equation can be calculated as:

where and . Then,

Finally, (22) is satisfied when . From the definition of
-CSHT, it can be derived that

(25)

where represents the permutation matrix corresponding to
(2). Consequently, -CSHT factorization is obtained by re-
placing with , which is the permutated version of
according to row-wise bit-reversal ordering.
Furthermore, ( ) in (11) can be factorized as:

(26)

An example of a 16-channel -CSHT based on (11) and (26)
is shown in Fig. 3.
As mentioned in Section II, Aung et al. presented factoriza-

tions of both -CSHT and -CSHT only for and the fac-
torization of the -CSHT could not be directly derived from that
of the -CSHT (or vice versa). Moreover, Bouguezel et al.’s
[19] and Wu et al.’s [20] methods are a general -CSHT fac-
torization in terms of ; however, those of the -CSHTs were
not shown. Our preliminary result of -CSHT factorization in
[23] did not guarantee it was theoretically complete, i.e., the fac-
torization was given heuristically. Furthermore, its permutation
matrix had to be determined according to the dimensions. In the
above proof of Theorem 1, the complete closed-form factoriza-
tion of the -CSHT and -CSHT is given. Consequently, our
factorization provides a consistent, general, and complete form
of CSHTs for both real and complex versions.
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TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITIES

C. Computational Complexity

The computational complexity of the proposed -/ -CSHT
factorizations is discussed here. The number of complex multi-
plications by in the proposed factorization of the -CSHT is
given as follows. From (11) and (26), the number of complex
multiplications of -CSHT can be counted as:

(27)

Furthermore, from (11), the number of additions/subtractions in
our factorization can be counted as:

(28)

Butterfly matrices for the -CSHT require
additions/subtractions for , e.g., 18 additions/subtrac-
tions for .
Here, the existing factorizations of (4) in Aung et al. [18],

of (6) in Bouguezel et al. [19] and Wu et al. [20] are com-
pared. As reported by Aung et al. [18] and Bouguezel et al. [19],
the complex multiplications by of the -CSHT ((4) and (6))
are 3 and , respectively. The complex additions/subtrac-
tions are 24 and . Since the factorization by Wu et
al. [20] is equivalent to that in (6), the complex multiplications
and additions/subtractions are the same. Although the sliding
algorithm presented by Wu et al. [20] can reduce computational
complexity in the case of sliding transformation, it is beyond the
scope of this paper2.
Conventional factorization is only presented in Aung et al.

[18] for the -CSHT, where there are 18 additions/subtractions.
In summary, our general factorization requires the same number
of additions/subtractions and complex multiplications for each
case as those of the conventional factorizations in specific situ-
ations, which is summarized in Table II.

D. Local Orientation Detection and Fast Directional -CSHT

It is well-known that separable 2-D DFT can analyze
directional orientations of images from transformed DFT
coefficients. Note that since the DFT is a real-to-complex trans-
formation, memory twice as large as that of the original image
is basically required for calculating output coefficients. This
subsection explains the use of -CSHT for local orientation
detection, and then describes the method of memory-saved
detection based on the proposed factorization, which does not
require complex-valued calculations.

2In fact, the factorization inWu et al. [20] is an overcomplete implementation
of the -CSHT.

Fig. 4. (Left): Frequency responses of 4 4 -CSHT
( ). (Right): 2-D frequency plane partitioning of separable 2-D transform of
. ( ) indicates -th row and -th column subband.

For simplicity, we have considered a 4 4 -CSHT ( in
(2)), but it can easily be generalized to any size. Let
( ) be the subband filters corresponding to the -th
row of . Their frequency responses are given in Fig. 4(a).
Let be the row-wise reordered version of ((3)) as:

(29)

and its identical subband filters , can be repre-
sented as:

(30)

The separable 2-D -CSHT decomposes the 2-D frequency
plane into subbands as in Fig. 4(b). The amplitude of the
subband coefficients implies the strength of each directional
component. For example, the transformed coefficients at
exhibit 45 degree directional orientation. 2-D subband filter

( ) corresponding to subband can
be expressed as:

(31)

On the other hand, is

(32)

This indicates that the transformed coefficients corresponding
to can be calculated by those obtained with the 2-D
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separable -CSHT as follows. Let , , and be a
local block of an image and

(33)

where in (2). is the row-wise reordered version of
((3)) as:

...

...

(34)
The energy of coefficients can be computed by

as:

(35)

where

(36)

Since the complex conjugate relationship implies symmetry
( ),
the other coefficients missed in (36) are not required. In this
way, local orientation can be detected by using only real-valued
(integer) processing. The conventional -CSHT factoriza-
tions [18]–[20] have to convert an image to complex-valued
coefficients since the complex calculations in (4) and (6) are in-
evitable. As a result, the proposed framework can save memory
for signal processing.
The above discussion enables us to derive the directional
-CSHT, which is a non-redundant transform and provides di-
rectional image representation. Recall that each frequency re-
sponse of in (31) or in (32) only has support
in one quadrant of the 2-D frequency plane, as illustrated in
Fig. 5(a). By taking the real or imaginary parts of and

, the following relationships can be found:

Fig. 5. (a) Frequency responses of and corresponding to
and . (b) Frequency responses of real part of and .

(37)

As indicated in Fig. 5(b), and
still have the capability of extracting directional com-
ponents, and and as well. The
output signals of , , , and

can be derived by using -CSHT as follows. Let
, where is defined in (3). Then,

directional output coefficients ( )
are given as:

(38)

where and . If normalization is re-
quired, , otherwise . Obviously, this process is
invertible. The -CSHT followed by the operation of (38) is
denoted as the -CSHT. The number of extra additions/sub-
tractions required for -CSHT is and that
of the scaling factors is also . The -CSHT
can efficiently work in direction-aware image coding, as will be
shown in Section V-B.

IV. STRUCTURAL COMPARISON WITH BASIC TRANSFORMS

A. Comparison With BinDCT and HT

First, we compare the structure of the -CSHT with those of
the binDCT [21], [22], [25], and HT [1]. All of them are simple
transforms whose elements are 1, or 0.
The binDCT is known to be computationally effective form

of DCT. It approximates the DCT’s transformation matrix with
the lifting implementation [24]. It was originally based on Chen
et al.’s [25] and Loeffler et al.’s factorizations [26]. We con-
sider the former in this section. It is implemented with butterfly
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Fig. 6. Structures of binDCT where and are parameters for lifting steps
(scaling parameters have been omitted for simplicity). Top: General binDCT
structure based on Chen’s factorization. Bottom: BinDCT-C9.

matrices and several lifting steps and gives a multiplierless rep-
resentation of the DCT. Based on the tradeoff between com-
plexity and performance, the binDCT has many configurations.
Here, we have focused on the simplest version of the binDCT,
which is Liang and Tran’s binDCT-C9 [21]. The factorizations
of the general binDCT and the binDCT-C9 (8 8) are outlined
in Fig. 6.
Liang and Tran [21], compared the structures of the binDCT

and HT. Based on binDCT factorization, we can obtain the HT
from the binDCT-C9 by appending two butterfly matrices and a
trivial shown in Fig. 7(b). It is clear, on the other hand, that
the binDCT-C9 has quite a close structure to that of the -CSHT
(Fig. 7(c)). In fact, the -CSHT is the same as the binDCT-C9
except for the permutation matrices. The computational com-
plexities of the binDCT-C9 and -CSHT are the same since the
upper right lifting matrix of the binDCT-C9 in Fig. 6 can be
represented as one butterfly matrix in Fig. 7(a) (except for
the scaling factor) [21]. Consequently, it can be clarified that the
-CSHT can be regarded as a variant of the binDCT-C9 as well
as HT via our factorization.

B. Comparison With DFT and Realization of Modified
-CSHT

Furthermore, we analyzed the important structural relation-
ship between the -/ -CSHT and DFT. Since the properties
of the -CSHT are analogous to those of the DFT, the -/
-CSHTs can be expected to have similar factorizations to the
DFT.

Fig. 7. Comparison of integer-valued transforms. (a) binDCT-C9. (b) HT. (c)
-CSHT. Differences from binDCT-C9 are indicated in bold.

Let be the DFT matrix defined as
. Then, it is verified that ( ) can

be factorized as3:

(39)

where , , and are given in (11), and is in (8).
is a row-wise permutation matrix. can be determined

by the products of some simplematrices, e.g., butterflymatrices,
permutation matrices, and rotation matrices. For example,

(40)

Fig. 8(a) shows the factorization of . In the figure,
, where

3A theoretical complete closed-form factorization of (39) for is one
of our future works.
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Fig. 8. (a) Structure of 16 16 DFT factorization related to proposed -CSHT, where and . (b) 16 16 modified -CSHT derived
from (a) by replacing angle with and removing multiplications.

(41)

where and . By comparing Fig. 3
with Fig. 8(a), is very similar to the -CSHT except for
some trivial matrices. Thus, the proposed -/ -CSHT factor-
ization has a very close relationship with that of the DFT.
Interestingly, a new integer complex-valued approximation

of the DFT, which is denoted as a modified -CSHT, can be
proposed inspired by the factorization of in (39). We can
construct an integer-valued approximated transform in the same
way of [22], by replacing the real matrices in the DFT factor-
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Fig. 9. Frequency responses of -CSHT (left), modified -CSHT (middle), and DFT (right). (a), (b), and (c): 8 8, and (d), (e), and (f): 16 16. (a) -CSHT.
(b) Modified -CSHT. (c) DFT. (d) -CSHT. (e) Modified -CSHT. (f) DFT.

TABLE III
NUMBER OF REAL/COMPLEX ADDITIONS AND MULTIPLICATIONS

ization to integer ones. All the rotation angles in the design of
the modified -CSHT are first set to trivial ones, say 0 or ,
and then all the scaling factors are removed. Fig. 8(b) has an
example of the 16 16 modified -CSHT.
Table III summarizes the computational costs of the -CSHT,

modified -CSHT, andDFT. Their frequency responses are also
shown in Fig. 9. Clearly, the modified -CSHT approximates
the frequency responses of the DFT better than the -CSHT,
despite a few extra additions/subtractions and permutation op-
erators.

V. SIMULATION

A. Local Orientation Estimation

One of the main contributions of this paper is that the pro-
posed factorization can reduce the computational cost for ar-
bitrary -CSHT, whereas the conventional methods
can only be applied to 8 8. Moreover, the -CSHT has the
capability for local orientation analysis without having to use
complex-valued processing. This subsection evaluates the local

orientation estimation of images, as an application of the large
-CSHTs.
As illustrated in Fig. 10, the separable 2-D transform by using
-CSHT ((34)) is first applied to each image
block as . We used Zoneplate (Fig. 10)
as a test image, since it contains various directional compo-
nents. Then, the transformed coefficients are con-
verted to by using (35) to analyze directional in-
formation. The direction index to obtain the maximum ampli-
tude of can be calculated as:

(42)

Finally, the local orientation is determined from . For
comparison, we use the DFT-based image orientation estima-
tion. For each block, the separable 2-D DFT of is
applied, and the maximum amplitude of the DFT coefficients is
found as in (42). The detected results from the DFT are set as the
correct direction, and then we count the number of mismatched
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Fig. 10. Overview of local orientation detection (8 8). (Left): Original image
of Zoneplate. (Middle): Amplitude obtained by -CSHT or DFT.
(Right) Determination of local direction. For example, red coefficient indicates
detected one with maximum amplitude.

Fig. 11. Amplitude of transformed coefficients rearranged according to same
subband. (a): DFT and (b): -CSHT with postprocessing in (35). (a) DFT.
(b) -CSHT.

TABLE IV
NUMBER OF MISMATCHED BLOCKS

blocks indicating the different indices between the -CSHT and
DFT.
Fig. 11(a) and (b) show the magnitudes of the transformed

coefficients of the DFT and -CSHT by rearranging the coeffi-
cients according to the same subband index. Clearly, the trans-
formed coefficients obtained from the -CSHT can exhibit the
directional components of the test image, as well as those of the
DFT. As indicated in Table IV, only 3% of blocks failed for the
8 8 case. Moreover, for block sizes of 16 16 and 32 32,
the detected subband indices obtained with the -CSHT are al-
most or perfectly matched with those obtained with the DFT.
Note that the DFT is complex-valued transform, it basically re-
quires a memory size twice that of the original images. Conse-
quently, the -CSHTswith large blocks can achieve comparable
performance in orientation analysis with the DFT while saving
computational cost and memory.

B. Image Coding Example

We evaluated performance in image coding and the practical
computational complexities of the -CSHT as applications of
the proposed factorization, which are discussed in this subsec-
tion. Aung et. al. also demonstrated similar image coding simu-
lations [21]. However, they only used 8 8 dimension in their
simulations. Since the proposed factorization provides any di-
mensions of , we can obtain results in the case of .
We compared four integer transforms, i.e., the HT, binDCT,
-CSHT, and -CSHT. To the best of our knowledge, the

Fig. 12. The 16 16 binDCT derived from multiplierless DCT presented in
[21] by setting lifting coefficients to zero.

TABLE V
CODING GAIN AND PRACTICAL COMPUTATIONAL

COMPLEXITY FOR VARIOUS TRANSFORMS

16-point binDCT corresponding to the binDCT-C9 has not been
officially presented. One possible realization is only simplifying
Loeffler et al.’s 16-point binDCT factorization [21] in the same
way as the binDCT-C9, i.e., removing all the lifting steps. The
binDCT obtained from the multiplierless DCT by setting lifting
coefficients to zero is illustrated in Fig. 12. Each transform ma-
trix, which is denoted as , is normalized to be orthogonal by
multiplying scaling matrix as .
Table V compares the coding gain and practical implemen-

tation cost, i.e., the numbers of additions/subtractions and
multiplications per block. The proposed -CSHT requires less
computational cost than the HT and binDCT, and achieves
higher coding gain than the binDCT. Note that the conven-
tional 16 16 -CSHT in [18] requires higher computational
cost, which is equal to 4096 additions/subtractions per block,
because no explicit factorization is given. Since larger HT and
-CSHT can easily be derived, additional results are listed in
Table V. It indicates the coding gains of both transforms are
saturated as the transforms increase in size and they asymp-
totically approach each other. The computational costs for the
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Fig. 13. Test images: (a) Lena and (b) Barbara.

TABLE VI
IMAGE CODING RESULTS FOR VARIOUS TRANSFORMS

-CSHT, on the other hand, are much lower than those for the
HT. Furthermore, the number of additions/subtractions of the

-CSHTs are even lower than that of the HTs, despite the
additional operations in (38). Note that no additional multipli-
cation is required for the -CSHTs, since the normalization
factors in (38) can be merged with .
The set partitioning in hierarchical trees (SPIHT) progressive

image coding algorithm [27] was used for encoding transformed
coefficients. We used three popular test images of Lena, Bar-
bara (Fig. 13(a) and (b)), and Zoneplate. Table VI summarizes
the reconstruction error (PSNR [dB]) of several bit rates. It can
be seen that the -CSHT improves the image coding perfor-
mance of the -CSHT. Moreover, it is highly comparable to the
HT. In particular, it consistently outperforms the HT in all bit
rates for Zoneplate, due to the ability of compact representation
for directional components.

VI. CONCLUSION

We presented a general and unified factorization of the
-CSHT and -CSHT. We first generalized the conventional
factorization of the -CSHT, and then factorized the -CSHT
based on the -CSHT. Hence, the structure covered both real
and complex versions of the CSHT and any dimensions of

. In addition, we verified that the proposed factoriza-
tion was complete and the computational complexity of the
proposed factorization was the same as that of the conventional
one.
The proposed factorization has several useful and important

benefits. 1) Its consistency saved the total implementation
costs of the - and -CSHTs, whereas the conventional fac-
torization needs complete implementations both for the -
and -CSHTs. 2) While the conventional method could not
factorize the -CSHT for arbitrary ( ), the proposed
-CSHT could be applied to arbitrary and thus signifi-
cantly reduced the computational cost. 3) Since the proposed
factorization is real-valued processing ( -CSHT) followed by
complex-valued processing, local image orientations could be
analyzed from only real-valued (integer) coefficients obtained
from the -CSHT. Since the conventional factorizations were
real-to-complex transforms, they consumed twice as much
memory as the original image size. 4) Fast direction-aware
non-redundant image transformation, i.e., -CSHT, could
be achieved. 5) The proposed factorization clarified that the
-CSHT is very closely related to the binDCT and HT, and
the -CSHT is an integer-valued counterpart of the DFT. 6)
Furthermore, by appending some trivial integer matrices to
-CSHT factorization, a modified -CSHT could be achieved,
which approximated the DFT better than the conventional
-CSHT.
The -CSHT was applied to image orientation estimation

and image coding as possible applications. The -CSHT
achieved comparable performance with the DFT in image ori-
entation estimation despite its integer-based processing. On the
other hand, the -CSHT presented comparable or superior
performances to the HT and the binDCT in image coding,
especially for images containing many directional components.
We also validated that the coding gains of the -CSHT and HT
were comparable for large blocks.
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