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A Unified Approach to Structured Covariances:
Fast Generalized Sliding Window RLS

Recursions for Arbitrary Basis
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Abstract—This paper extends the existing fast RLS recur-
sions originally intended to exponentially windowed problems
for general models, to a generalized sliding window formulation
(GSWRLS). From amatrix algebra perspective, we show explicitly
how the displacement rank of the underlying inverse covariance
matrix associated to any operator is defined as a function of
the number of window breakpoints and how the fast GSWRLS
calculates these rank factors in a fast manner. The recursions
hold regardless of the (first order) data structure induced and
show that fast fixed order and order recursive RLS algorithms
can still be obtained for unwindowed data matrices exhibiting
a fixed arbitrary relation between successive regressors. Our
approach highlights the existence of a certain degree of freedom
inherent to structured data matrices induced by general models,
showing that efficient representations of their inverse covariances
are not limited to factor circulants, but rather constructed from
any arbitrary operator. These Bezoutians, usually expressed
via reproducing kernel relations, can be represented exactly in
matrix form, along with a precise correspondence to variables of
a GSWRLS. As a fallout, we obtain a vector relation stating the
so-called minimality property, for extended models and windows,
as opposed to analogous generating function arguments normally
seen in original approaches. These results pave the way to a
more general framework of polynomial Vandermonde covariance
decompositions which arise naturally via a proper choice of
recurrence related polynomials. This has further impact on several
signal processing applications, including superfast realization of
equalizers in communications scenarios.

Index Terms—Sliding window RLS algorithm, orthonormal
model, lattice, regularized least-squares.

I. INTRODUCTION

S TRUCTURED problems are present in numerous signal
processing and communications scenarios. Frequently, the

data model involved in a given problem induces a particular
structure in the corresponding solution, which in turn can be
exploited in order to decrease the computational effort that
would be required to realize the original “unstructured” for-
mula. Common examples arise in the theory of fast recursive
least-squares (RLS) algorithms [1], where for matrices,
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instead of relying on Gauss elimination computations,
recursive solutions require by exploiting the sequential
least-squares structure of a given data, or even multi-
plications per iteration, by relying on additional data structure
[8], [10]–[12]. A fast algorithm is by itself one way of proving
the so-called displacement structure, tracing back the works
[13]–[29] for inversion of Toeplitz matrices. For example, the
displacement rank of any Toeplitz form does not exceed 2, a
fact that extends similarly to other structures. The displacement
rank is propagated through its Bezoutian1, that is, the inverse
of a structured matrix whose efficient representation can be
exploited in numerous ways towards complexity reduction.
The concept of displacement has been vastly studied in the

adaptive context in terms of successive time-varying inverse co-
variance matrices, related through sequential rank-one updates
and/or downdates, in a more general sliding window context.
We shall refer to such matrices (which include a regularization
term as well) as a covariance Bezoutian, which is simply the
inverse of a highly structured deterministic covariance. For
instance, in a pre-windowed adaptive filter setup, a widely
known result is that the displacement rank of any covariance
Bezoutian with respect to a shift operator is equal to 3, while
it is equal to 4, for non-prewindowed data models [5]–[7]. The
celebrated fast fixed-order [8] and order-recursive RLS algo-
rithms aforementioned [1] are common examples that make use
of rank-3 displacements [39], while the Generalized Window
Fast Transversal Filter (GWFTF) of [30] is an example that
relies on a rank-4 displacement. The intrinsic property of these
Bezoutians finds application not only in adaptive contexts, but
also in non-adaptive computation of equalizers and receivers in
channel estimation-based scenarios. For instance, I have shown
in [32] and [36] that the rank-3 and rank-4 displacement prop-
erties of inverse covariances can be exploited via fixed-order
RLS recursions in order to compute MIMO decision feedback
equalizers (DFE), and via lattice recursions in the computation
of SISO block DFEs in [35] (see also [37]).
The notion of displacement gave a deeper explanation to

fast RLS recursions with shift data structure, and allowed us
to show more recently that fast fixed-order and order-recursive
RLS algorithms hold similarly for any prewindowed data struc-
ture whose defining basis functions satisfy recurrence relations

1This terminology is due to Sylvester [17] in the context of polynomial root
localization, referring back to the studies of Euler and Bézout in elimination
theory [15], [16], while the displacement equation was first introduced by
Cayley [18], following a generating function description, and the works of
Hermite [19] in polynomial stability. At that time, their concern was not related
to the complexity issues of matrix-vector multiplication or inversion operations
(see Olshevsky et al. and also [20]).
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in [10], [11]. In these references, this was exemplified via a
special case of Szegö polynomials [34] orthogonal on the unit
circle, proving that even infinite-impulse-response (IIR) filters
give rise to fast algorithms with complexity orders that reach
much lower levels compared to the ones obtained by the usual
tapped-delay-line. In fact, for pre-windowed data, the displace-
ment rank of these covariances in regularized least-squares
(LS) or minimum-mean-square-error (MMSE) solutions is
shown not to exceed 3, regardless of the (first-order) basis
functions generating the underlying data.
The ultimate goal of this presentation is to take a holistic

approach on the representation of (time-varying) structured
windowed covariances considering arbitrary operators. Our
approach is underpinned by the development of a GSWFTF
algorithm for extended data matrix structures constructed from
successive related input regressors. This is because the algo-
rithm itself naturally yields the generators of a displacement
equation in a fast, causal manner. The results of this work are
closely connected to the development of Bezoutian representa-
tions of [2]–[4]. We highlight the importance and applications
of the algorithm development itself, and explain how it will
be connected to the subjects of Bezoutian decompositions
discussed in the related paper [2], as well as its impact in
communication applications.
The fast Generalized Sliding-Window Recursive Least

Squares (GSWRLS) algorithm [30] is known by its supe-
rior tradeoff among tracking, robustness, and convergence
speed when compared to existing rectangular sliding window
(SWRLS) based algorithms. Whereas the SWRLS completely
forgets data beyond a length of past input samples, quickly
incurring in numerical errors accumulation, the GSWRLS
algorithm makes use of only partial downdate recursions, thus
preserving the exponential window decay towards infinity.
The resulting window exhibits a characteristic “tail” beyond
samples, which helps regularizing the least-squares (LS)

problem, therefore contributing to better conditioning and
stability of sliding-window adaptive filters. Compared to the
SWRLS and the Affine Projection Algorithm (APA) [31], the
GSWRLS is able to retain both desired robustness and fast
convergence features within a single algorithm. Note that the
APA solves an underdetermined system of equations due to a
short window length, and yet both SWRLS and the APA are
subject to ill-conditioning and noise enhancement effects [30].
Now, the GSWRLS of [30] has been derived for shift data

structures only, and no counterpart is available for general
models. By general model, we mean any data model such that
two successive regression vectors can be related by a constant
matrix, say, . While is arbitrary, and the fast transversal
recursions are obtained regardless of its structure, we shall
assume later that it belongs to a class of operators induced by
recurrence related polynomials, since this guarantees that the
complexity of matrix-vector multiplications involving will
be efficient and linear in the filter order. Changing basis rep-
resentation brings several benefits, including better numerical
conditioning, reduced computational complexity, and compact
representation of models. For example, rational bases allows
substitution of long FIR filters by shorter compact infinite
impulse response (IIR) models (see [10] and the references
therein). This can represent large computational savings, since

in a variety of signal processing and communications applica-
tions, such as echo cancelation and equalization, one is often
challenged with the problem of training or equalizing long
tapped-delay line filters. Unlike the conventional IIR adaptive
methods, which present serious problems of stability, local
minima and slow convergence, the use of IIR bases offers a
stable and global solution, due to the fixed poles location. The
resulting algorithm then becomes fast of operations per
iteration, where . Moreover, these IIR bases can be
simultaneously chosen in such way that is also unitary, which
implies perfect numerical conditioning for the computations
involving this matrix.
In this paper, we extend theGSWRLS to such genericmodels,

which we also refer to as Extended Generalized Sliding Window
Fast Transversal Filter (EGSWFTF). Several recursions analo-
gous to the ones encountered in the standard fast RLS theory are
derived, as well as new updates and downdates not available in
the context of the existing GSWRLS for shift data structure [30].
While some of these recursions may be familiar to the reader ac-
quainted with the GSWRLS recursions, their derivation in our
context contains a level of generality not seen in the original al-
gorithms for shift-data, and will be fundamental for the connec-
tions with the framework of covariance decompositions pursued
in [2] (as well as for the development of future order-recursive
algorithm counterparts). This will allow us to pursue a rescuing
mechanism for the EGSWFTF, which improves the stability be-
havior of the recursions.
This paper is organized as follows. Starting from a general-

ized window formulation, Section II introduces the GSWRLS
problem for a data structure induced by a first order relation
between two successive regressors. Without loss of generality,
the EGSWFTF algorithm is obtained assuming a window with
a single breakpoint after samples. In Section III, the condi-
tions for exact initialization of the EGSWFTF are established
regardless of the (first-order) input model. Until this point, no
specific structure for the input model is defined. This will be
determined in Section IV, which gives a unified treatment on
recurrence-related polynomials, and shows how the choice of
input basis functions affects the efficiency and numerical condi-
tioning of the underlying EGSWFTF recursions. The bridge be-
tween the input basis and the displacement theory is approached
in Section V. It is shown how the displacement operator is con-
structed as a composition of the model operator and any ar-
bitrary companion matrix, while the corresponding displace-
ment equation in terms of the Kalman and prediction vectors
of this problem are explicitly given. In Section VI, we solve
the displacement equation for the constructed operators, and
show how the reproducing kernel of the Ricatti variable, nor-
mally written in polynomial form, is instead obtained explicitly
in vector form. This result, along with the additional relations
of Section VII, complete the set of minimality conditions of the
EGSWFTF algorithm, for which we propose a simple rescue
mechanism. Finally, simulations considering an extended or-
thonormal model illustrate the benefits of the proposed algo-
rithm in Section VIII2.
Notation: We denote by the conjugate and transpose of a
vector. Since we will be dealing with row (time) updates and

2This work was partially published in [43].
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downdates, as well as column (order) updates and downdates
(i.e., order recursive variables), we shall write, e.g., , as
the order data matrix at time . A third index will be nec-
essary, which refers to the updated or downdated variable, e.g.,

corresponds to the Ricatti variable at time , defined
via a length window for an order LS problem, and simi-
larly for , and so on. We shall use
to capture the diagonal elements of a matrix into a vector, as well
as to perform the reverse operation. With an
abuse of notation, we shall use this operator in the case of block
diagonal matrices as well. The notation is used to denote

. The notation is the phase of . We use to denote
complex conjugation followed by order reversal of the coeffi-
cients of a column or row vector, and e.g., for columnwise
reversal in case of matrices. We refer to

...
. . .

...
...

(1)

as the companion matrix associated to the coefficient vector
, which collapses to the so called

—factor circulant operator, when , for . The
shift operator is such that .

II. FAST GENERALIZED SLIDING-WINDOW RLS FILTER FOR
EXTENDED MODELS

We assume that the reader is acquainted with the role of the
displacement theory in LS adaptive algorithms in its state-of-
the-art. We refer to the recent works [10]–[12], where a gen-
eral framework for exploiting data structure in RLS problems
has been introduced. The central idea in these references is to
show that fast recursions propagate the displacement rank of
the Ricatti variable corresponding to any prewindowed data ma-
trix, whenever a relation among the successive rows of this ma-
trix can be established. More specifically, we denote the indi-
vidual rows of a data matrix by , i.e.,

, where two successive (row) vec-
tors , of order , are given by

In tapped-delay-line models we have , so
that becomes Toeplitz-like. More generally, let the entries
of be related as

(2)

where is . Our development al-
lows for a very general data structure, in the following senses:
(i) The successive rows of are related by a fixed matrix

; (ii) The data structure is not necessarily pre-windowed;

Fig. 1. Generalized window.

(iii) The structure of can be interrupted at several points
via scaling, while being exponentially weighted at the same time
during each interval. That is, let denote a size identity
matrix, and consider the weighting matrix

(3)

where the scalars , determine the levels of
downdating employed at each past input
blocks of data, respectively. Without loss of generality, we shall
assume a prewindowed data model with one level of weighting,
i.e., , denoting the window length from the current
time instant until its first breakpoint. Extension to levels is
straightforward. Fig. 1 illustrates the generalized window, for

.
Now, define the inverse

(4)

where is a positive definite regularization matrix. We shall
assume that the effect of regularization in (4), in case it exists,
is taken into account in the definition of the data matrix itself.
That is, one can factor in (4) as , so
that defining the new data matrix as

... (5)

can be equivalently written as
. Also, is replaced by , defined

similarly to (3), but with size . Of
course, this factorization is highly non-unique; the rows

, in are simply interpreted as fictitious
data, whose structure will be chosen accordingly3—see
Section III. Still, we shall continue to use the index in

, in order to denote time, instead of , which denotes
the row index.

A. Exploiting Structure Sequentially

Our goal here is to provide the vector relations involving the
Kalman gains which are key in making use of data structure. We

3It is intuitive to conclude that the displacement rank of the corresponding Be-
zoutian is no longer 3 as in the case of a single exponentially weighted window,
since structure will be broken at several points. Some adaptive algorithms are
simply special cases of the above construction; for instance, RLS corresponds to

or (for non-pre-windowed); the GSWRLS algorithm is equiva-
lent to picking for a pre-windowed scenario. In the latter, it is clear that
the displacement rank of becomes 4.
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allow these relations to take into account a non-prewindowed
scenario, in which the first row of is not zero. This would
be the case on a non-adaptive scenario where there is no control
on the regularization term. In this case, from (2), the relation
the data matrices and through successive instants
(i.e., assuming that is associated with time), we have that

(6)

with , and where for compactness of notation

we shall denote . The notation is due to the fact
that in order-recursive problems, a certain column update may
lead to a matrix structure that does not necessarily corresponds
to data originated within the taps of input network. That is,
when updating to by appending a new column
to the right, the augmented matrix can assume any structure, so
that . The last column of will be denoted
by , which in turn defines the last column of —see (41)
further ahead.
Now consider the following definitions (7)–(12), described

on the top of the next page, involved in the fast generalized
window recursions defined from and the coefficient ma-
trix , obtained from (6).

(7)

(8)

(9)

(10)

(11)

(12)

The variables and

in (7) and (9) are the normalized Kalman gains
corresponding to the updating and downdating LS problems re-
spectively, with respect to their likelihood variables (11), (12).
Similar definitions hold for the ones arising from in (8)
and (10).

One way to exploit structure is to obtain a vector update for
the Kalman vectors , defined in (7) and (9),
instead of ones relying on matrix-vector multiplications based
recursions. This can be achieved, e.g., in a causalmanner, from
(6) as , which implies

that are related as

(13)

where , with

, and likelihood variable

for .

Using (7) and (9), the relations for and
are readily established from (13) as

(14)

(15)

Of course, for , the effect of disappears with time.
In the adaptive filtering context, because is arbitrary chosen
a priori, we can set , which eliminates the need of recur-

sions for and in (14) and (15). In
an non-adaptive scenario, additional recursions for propagating

can be extended along the lines of [36], where those were
derived for shift-data structures.
Relations (14) and (15) are in turn key to performing fast up-

date of the Kalman vectors, and require twomain ingredients for
this purpose: (i) That we obtain order updates for these quanti-
ties; (ii) That these matrix-vector multiplications are ef-
ficient as well.

B. Forward and Backward Prediction Updates and Downdates

We now derive all the updating equations that do not rely
on data structure. In a sliding window scenario, the coefficient
matrix is time-(row) updated as

(16)

while its downdated recursion is given by

(17)

In the latter, the fraction of is removed from
the covariance . Hence, the solution to

(18)

can be recursively computed irrespective of data structure via

where denote the solu-
tion and likelihood variable in the downdated problem.
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Similar recursions hold for the forward and backward
prediction problems with analogous expressions for

. The likelihood factors relate the

forward a priori errors

and

as well as the back-

ward a priori errors

and
to their a posteriori

versions (defined by replacing the prediction vectors with their
time updates):

(19)

(20)

The gain vector is forward order-updated as

(21)

The likelihood factor and minimum cost in the above recursion
satisfy the following updates:

(22)

(23)

which, when combined yield

(24)

Similarly, the forward order update for is given by

(25)

with corresponding likelihood variable and minimum cost sat-
isfying

(26)

(27)

which, combined, yield

(28)

The forward prediction vector is row-downdated as

(29)

and time-updated according to

(30)

Analogously, we can easily write the following backward pre-
diction update and downdate counterparts. For example,

(31)

(32)

The remaining equations are already included in the algorithm
listing for simplicity. The algorithm is completed via the rela-
tion between the likelihood variables of the downdate problems

and the ones of the update problem
. In view of the two alternative ex-

pressions (11) and (12), these can be related as

(33)

(34)

Also, the order-updates for their inverses can be obtained by
multiplying (21) and (25) from left and right by and

, to get

(35)

(36)

as well as the respective order updates

(37)

(38)
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III. STATE-SPACE DESCRIPTION AND INITIAL CONDITIONS

The correct initial conditions are easily set by relying on the
interpretation that the effect of is due to the existence of fic-
titious input data, i.e., , in which case
we can construct by applying an impulse of magnitude

to the underlying network. This results in the fol-
lowing structure for

... ...
...

...
...

As a consequence, assumes the following form:

(39)

(40)

where . Now consider the following partitions:

(41)

where . Thus, expanding (39),
we find that should satisfy the equations shown in
(42)–(44) at the bottom of the page. In an adaptive scenario,
we can set . Then, if is stable and the pair

is controllable, the Lyapunov equa-
tion (42) admits a unique positive definite solution ,
which is given by

(45)

The above condition is in perfect agreement with the stability
and controllability arguments from a state-space point of view.
Indeed, a state-space description for the regressor can be
written as:

(46)

with solution

(47)

so that, with , the associated system controllability ma-
trix is given by (48), shown at the bottom of the page.
All remaining variables thus follow from this solution and are

included in the initialization step of Table I, listing what we refer

to as theExtendedGeneralizedSliding-WindowFastTransversal
Filter (EGSWFTF) for generic models. The least-squares solu-
tion is propagated via the last six recursions in the al-
gorithm listing. Aswe havementioned, we assumewe have con-
trol on the regularization term, so we set in (39).
Remark 1: The existence of the solution to the Lyapunov

equation above depends on the structure of the induced operator
. We shall return to this state-space description in Section IV,

in the context of recurrence-related input basis functions.
Remark 2: Note that for an order- LS problem, traditional

derivations propagate the prediction and Kalman vectors as
order- quantities. Here, we see that in fact these quantities
are only required to be order , as expected from the
displacement equation of —see (83) further ahead.
Remark 3: As we shall see later on, in most cases of in-

terest the operator arises from efficient recurrence polyno-
mial relations, so that its inverse will be well defined. In ad-
dition, because of that, multiplication of its transpose , or
its inverse by a vector are easily obtained from the corre-
sponding transpose or inverse realizations well known from sys-
tems theory, in light of the so-called Horner polynomials [23].
A unified approach considering recurrence related polynomial
basis will be presented in Section IV. In the most interesting
cases, these are efficient as well.

IV. UNIFIED APPROACH TO RECURRENCE POLYNOMIALS AND
HESSENBERG STRUCTURES

Consider a transversal system realization based on arbitrary
basis functions as illustrated in Fig. 2.
Although the set can be interrelated in several

ways, as we have mentioned, in this paper we shall focus on
first order relations only, in which case structure will be induced
by a constant matrix relating two successive regressors as
in (2). Different recurrence relations will give rise to different
patterns for .
Note that we can represent Fig. 2 equivalently as a tapped-

delay-line followed by amatrix transformation , say,
, which performs a particular change of basis described

according to this representation—see Fig. 3. The tapped-delay-
line case is such that .
An the data matrix can thus be expressed in

terms of a Toeplitz-like matrix as

...

... (49)

(42)
(43)
(44)

(48)
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TABLE I
THE EXTENDED GENERALIZED SLIDING-WINDOW FAST TRANSVERSAL FILTER

(EGSWFTF) FOR GENERIC DATA STRUCTURES

where . By
virtue of the delay line of Fig. 3, exhibits a Toeplitz-like
structure. We shall make use of this interpretation further ahead.

Fig. 2. Transversal realization based on general basis.

Fig. 3. Transversal realization as a change of basis.

It turns out that the choice of basis functions is key for the
efficiency of the EGSWRLS recursions of Table I. In

other words, note that although the EGSWFTF is obtained re-
gardless of the data structure induced in , the updates of

and require efficient multiplications by the
inverse which in turn requires that itself possesses a
particular structure. The point is that when are con-
structed from recurrence-related polynomials, it can be shown
that assumes in general a Hessenberg structure [2].
In the following, I unify the theory of structured matrix oper-

ations with its algorithmic realization, so that the use of different
extended basis is justified.

A. Two-Term, Three-Term, and -Term Recurrence Relations

There are numerous ways in which we can construct the poly-
nomial basis . They can be realized via two-terms,
three-terms, or generally, via -term recurrence relations, each
particular one serving to a different purpose, including better nu-
merical conditioning, reduced computational complexity, com-
pact representation ofmodels, and so on. In this section, we shall
examine a few important recurrence relations that will lead to
the solution of current open problems and connections.
Consider the (shifted) -term recurrence relation

(50)

(51)

(52)

for . The polynomial has also been
referred to as the master polynomial associated to
[28]. This results in the upper triangular structure for matrix

shown in (53) at the bottom of the next page, where the
-th column defined in (41)

contains the coefficients of the last polynomial. This structure
can be easily verified via back-substitution of the polynomials

, etc., into the definition of . For
instance, for , we obtain

(54)
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In other words, the -term recursion (50) can always be trans-
formed into another -term recurrence relation of the form

(55)

where the are defined by the ele-
ments of .
Observe that in principle we do not need to assume any par-

ticular structure for the last column of . This is in agreement
with what we mentioned regarding the notation of the order-up-
dated matrix in the beginning of Section II.A. The data
matrix will be perfectly defined, as long as its last column
is mapped onto the last column of , which can be arbi-
trary chosen. It represents a degree of freedom in connection
with systems theory not fully noticed or exploited in earlier ap-
proaches to these problems. For instance, if the latter is chosen
as the tap filter weight vector , then

.
Several facts regarding the connections of the state-of-the-art

in recurrence polynomials with the new results pursued herein
are in order:
1) Relation Between and the Confederate Structure: For

the -term recurrence relation in (51), the matrix
becomes a Hessenberg matrix, which has been referred

to as a confederate matrix associated to the system of poly-
nomials (see [21]–[23] and its references). The con-
federate matrix has several useful properties, and in particular,
its eigenvalues are directly related to , which is a free
polynomial. It is defined, e.g., in [23] under the notation “ ”,
where the role of the companion form is fixed, and associated
to the coefficients of the system transfer function . That is,
therein their definition differs from ours with respect to its last
column. We provide a broader view instead, suggesting that it
can be suitably designed in order to construct operators
with eigenvalues placed at any desired location. Moreover, in
[21]–[23], this association is such that the highest polynomial
order as we see on the right hand side of (55) is always in terms

of , since in these references only FIR basis functions
are considered. Here, we further allow for a first-order rational
transfer function relating two successive basis functions, so that
an additional -th order term may arise in (55). More specifi-
cally, assume that are generated according to the fol-
lowing two-term recurrence relation:

(56)

This results in the Hessenberg structure for shown in (57)
at the bottom of the page.
Now, the two-term recurrence of the form (56) can also be

transformed into a -term recurrence relation. Indeed, cross-
multiplying the terms of (56) and backsubstitution of the lower
order polynomials into , we verify that it satisfies the
following -term recurrence:

(58)

for , where
. The only difference compared to (55) is

the presence of an additional -th order term on the
r.h.s. of (58), as a result of the IIR nature of these bases. We
remark that in this case, is no longer Hessenberg, even
though it is related to one.
Observe that for Hessenberg matrices, and when
, the element of becomes zero, so that .

As a result, the state regressor given in (47) becomes

(59)

(60)

...
...

. . .
. . .

...
...

. . .

(53)

...
...
. . .

...
...

(57)
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Fig. 4. Transversal orthonormal structure based on IIR Szegö bases.

with the controllability matrix shown in the first equation at the
bottom of the page.
Now, substituting into

(47) and using the persymmetry property of Toeplitz matrices,
i.e., , we verify that .
Recall that the EGSWFTF algorithm is only feasible in case
it can be properly initialized, and depends on the subma-
trices defined in (41). We thus see that for
recurrence related basis, regardless of the choice for , as
long as , and the pair
is controllable, the structure of guarantees that the
Lyapunov equation (42) for the initialization of the
EGSWFTF in Table I has a unique solution, and given by

.
The condition simply implies that ,
so that controllability is inferred from the rank of .
2) Szegö Orthonormal Polynomials on the Unit Circle: In

[11], by choosing ,
with , we obtain an important class of Szegö
polynomial basis which is rational and orthonormal on the unit
circle, illustrated in Fig. 4:

(61)

It is an extension of the so-called Laguerre expansion based on
a single pole . It can be verified that with the border
conditions , (57) collapses to a unitary Hessen-
bergmatrix (say, for even), shown at the bottom of the page.
It can be verified that is a unitary matrix, i.e.,

. Hence, the EGSWFTF algorithm based on
(61), besides the benefit of robustness due to an abrupt change

in the window parameter , fast convergence inherent to RLS,
and compactness of modeling, it additionally provides perfect
numerical conditioning.

B. Signal Flow Graph Connections

Referring to the two-term IIR recurrence relation in (56), as-
sume we pick , with . Since the
input states are updated to with only oper-
ations through , it is obvious that applying the same struc-
ture to any arbitrary vector implies a one sample filtering step
through the same network that originated in first place.
Moreover, the inverse operation can be simply real-
ized by reversing the signal-flow graph of the original network,
which also requires a one sample filtering through all inverse
transfer functions . For example,
let denote the -th entry of defined in Table I.
It is thus obtained from the entries in oper-
ations as

(62)

Note that this is an overall operation, which therefore
justifies the EGSWFTF algorithm as truly fast.
This simple arguments are a consequence of the well known

theory of realization of digital filters, which has been reemerged
more recently in the context of fast structured matrix operations
and factorizations. This is easily seen by invoking their dual
realizations and its defining Horner-like polynomials—see,
for instance, [23]. The procedure for obtaining the Horner-like
polynomials is known, and follows similarly the arguments that
led to , realized by reversing the signal flow graph direc-
tions of the original network, and identifying the Horner-like
polynomials as the partial transfer functions seen
from the input to the tapped-delays inputs in the dual system.
These dual polynomials easily realize inverses, transpositions,
and matrix factorizations efficiently, and are paramount to the
connections presented in this work4. Just like recurrence related
polynomial basis, the associated Horner-like polynomials are

4A recent sequence of papers on structured matrices has cast real-orthogonal
and Szegö polynomials as special cases of a broader class so-called -
quasi-separable polynomials, which possess efficient polynomial evaluation al-
gorithms as an extension of the above Horner rule, as well as the Clenshaw
rule for real-line orthogonal polynomials and the Ammar-Gragg-Reichel rule
for Szegö polynomials [25]–[28].

...
...

. . .
. . .

...
...
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computed through recurrences involving any number of terms
as well. In a more general case of the -term recursion of
(50), the corresponding dual polynomials satisfy the -term
relations

(63)

(64)

where are the coefficients of the master polynomial of
order , i.e.,

(65)

with and . In the monomial

case, these polynomials, denoted by are simply
called Horner polynomials, and satisfy the recursion

(66)

V. UNIFIED DISPLACEMENT AND ARRAY RELATIONS

In the following, we specify a class of operators that
will produce a low rank factorization of , where its gen-
erators are explicitly defined, regardless of data structure. As
a byproduct, we obtain a fast array version of the EGSWFTF.
Extension to more general non-Hermitian cross-variances is
straightforward.

A. Fast GSWRLS Array Algorithm

The propagation of low rank factors that define the Bezoutian
in our scenario can be equivalently expressed as an array algo-
rithm, and easily extended to a generalized window with several
breakpoints. To see this, define the following quantities,

(67)

as well as the normalized vectors

(68)

Now, let be the any companion matrix defined as (1), and
consider the block decompositions shown in (69)–(70) at the
bottom of the page. Before continuing, we point out that the
choice of is arbitrary. This extra degree of freedom in the
choice of the vector will be crucial to the construction of suit-
able operators [see (81) and (82)], and will lead to efficient and
useful representations of .
Now, consider the time update for

(71)

Substituting (69) and (70) into (13), and using the updating
relation (71), we get

(72)

which implies the following rank-5 recursion, in terms of
“squared” quantities:

(73)

Equation (73) represents a norm preserving relation, which
implies the array equation shown in (74) at the bottom of the

(69)

(70)
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page, where is a -unitary matrix defined explicitly in
terms of the square-roots of the minimum costs, likelihood vari-
ables, and prediction quantities involved in the EGSWFTF al-
gorithm, with . It can be obtained
explicitly from the normalized version of updates and down-
dates presented in the previous section, which in turn define
(implicitly) the hyperbolic rotations characterizing these recur-
sions in array form. For instance, (21) can be normalized by
(24), yielding

(75)

and

(76)

Similarly, defining

(77)

gives

(78)

The normalized forward prediction and normalized quantities
are row-downdated as

(79)

and time-updated as

(80)

Analogously, we can easily write normalized backward pre-
diction update and downdate counterparts; Rearrangement of
these relations and some algebra will lead to the explicit struc-
ture of , which is not our main concern here.

B. Displacement Equations

The array relations of the previous section can now be com-
bined with the order updates of the covariances and

of (69) and (70), yielding the following general result:
Theorem 1 (Displacement Equation of Arbitrarily Structured

Covariances): Consider a matrix constructed from any
first-order recurrence relation. Let be any arbitrary
pair of companion matrices. Then, the following compositions
for displacement operators

(81)

(82)

satisfy the displacement equations with respect to the coefficient
matrices and

(83)

(84)

respectively.
Proof: From the normalized fast recursions, substituting

into (72),
and using (71), we obtain (83). Likewise, substituting (69) into
(72), we obtain (84).
Note that in the adaptive filtering context, by setting , we
obtain a rank-4 displacement rank, regardless of the structure
induced in . Also, both displacement equations (83) and (84)
can be used to represent the decomposition of a certain inverse
covariance , since one can always interchange the roles
of and with a suitable choice for the first and
last columns of their corresponding data matrices.

(74)
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VI. SOLUTION OF THE DISPLACEMENT EQUATION AND
FREQUENCY DOMAIN REPRESENTATION FOR ARBITRARY

OPERATORS

In this section, we show that an eigenvector based represen-
tation for the time-varying covariance is not limited to
tapped-delay-lines, but holds for any first order induced oper-
ator. This result brings two significant consequences:
1. It paves the way to efficient representation of Bezoutians
based on polynomial Vandermonde matrices arising from
recurrence-related models; This in turn allows the devel-
opment of superfast representations of such general covari-
ances, corresponding to other than the ones originated from
tapped-delay line models [2].

2. It will provide as a corollary, the minimality condition
stated it terms of the generators of as a vector rela-
tion, as opposed to the generating function approach nor-
mally seen in prewindowed RLS algorithms. We remark
that this holds for a generalized window and for any data
model that induces a displacement equation.

Lemma 1 (Eigenvector Representation of Covariance Be-
zoutians): Let be the inverse covariance matrix arising
in a generalized window LS formulation for an arbitrary data
model induced by , and assume that are chosen
such that the eigenvalues of in (81) are the
roots of arbitrary scalars and respectively,
i.e., , where ,
and , where , with

. Let be their corresponding eigenvector

matrices, and define . Then,
can be factored as

(85)

where is the DFT matrix and

(86)

(87)

with analogous definitions for the variables with dependency
on .

Proof: See Appendix.
Corollary (Minimality Condition in the -Domain): The

vectors

which define are related in the -domain
as follows:

(88)

where are defined in (86) and (87).
Proof: Choosing in (A-4), yields

, and (88) follows.
A special case of the above relation appeared in [42], [44]

in a pure matrix algebra scenario for , and in the simple
monomial basis case; Interestingly, in the latter, such relation
has never been linked to its reproducing kernel counterpart in
the context of RLS problems, for which it becomes a rank-3 re-
lation (see, e.g., [10] and the references therein). Here, we fur-
ther express the spectral factorization aforementioned in terms
of the actual vector quantities, instead of generating functions.
Equation (A-4) brings a generalization with respect to Be-

zoutians representation for arbitrary polynomial basis, which
holds even for infinite impulse response basis functions. Equa-
tion (88) provides a key result to all fast RLS algorithms for
generalized window and data structures, and shows explicitly,
how the normalized backward prediction filter is related to
the normalized forward prediction and Kalman gain vectors
in any -domain. In particular, for tapped-delay-line models,

become —factor circulants,
respectively, so that choosing , the vector
is obtained via spectral factorization.
We highlight that at this point, the eigenvector factor-

ization (85) assumes that operators with the properties
can be constructed, and

implicitly, that are efficient transformations. In [2],
we show that recurrence related polynomials along with the
existing degree of freedom in the companion structure in
fact allows us to achieving this condition.

VII. MINIMAL REPRESENTATION IN THE EGSWFTF

The error propagation in fast RLS algorithms is originated in
the backward prediction part of the recursions. This can be un-
derstood by representing the propagated quantities of the pre-
diction section as the states of a nonlinear system, say

Ϝ (89)

where is the input signal, and is a memoryless nonlin-
earity that depends on the algorithm used. In the case of the
GSWFTF algorithm, the states are

(90)

Now consider the perturbed system

Ϝ (91)
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where is due to quantization. The state error
will remain bounded if (89) is exponentially stable for

all states contained in a certain stability region
(the solution manifold), and if the perturbation does not push

outside . Now let be the stability domain of
the perturbed system (91). An algorithm is said to be backward
consistent if the computed solution of a problem is the exact so-
lution to a perturbed problem. The procedure for stability anal-
ysis is to check if for all , in which case its
time recursions will be exponentially stable (see [39]).
The answer to whether the fast fixed-order RLS filters are

stable or not relies on the fact that these represent systems with
non-minimal dimension, in which case as
shown in [39], [41] for the FIR case, and more generally in [10]
for orthonormal models. We would like to define a similar sta-
bility domain for the GSWFTF algorithm considering
general operators, by specifying the minimal components of the
state vector .
The first (main) minimality condition was already stated in

(88), where is seen uniquely determined from

as the spectral factor of the right-hand-side of this equation,
that has all its zeros outside the unit circle and all its poles
inside the unit circle5. The quantity is inferred by
normalizing the last entry of to unity (in the
orthonormal basis representation). Now, in order to completely
characterize the minimal components of the GSWFTF
algorithm, we further need to establish one last relation.
Equations (28) and (31) can be combined by using the fact

that to yield

(93)

Likewise, (24) and (32) can be combined, since
. This gives

(94)

5The minimality condition in the adaptive filtering case is usually stated via
a reproducing kernel relation, i.e.,

(92)

where the bivariate polynomial extends to general basis
functions, the Christoffel-Darboux formula [34] originally intended
to Toeplitz matrices (see also [10]). The generating functions

are obtained similarly from the
forward and backward prediction quantities and Kalman gains. It has been the
key to demonstrate (here written according to our new algorithm solution)
that, when , in which case , only degrees of
freedom are necessary to represent , a crucial observation
for the theory of fast RLS algorithms. Until today, with the exception of the
fast QR-RLS based on the Gray Markel lattice structure of [40], all fast RLS
algorithms are known to be non-minimum, meaning that, for an order filter,
these versions do not enforce the condition of (88), and therefore propagate
redundant variables in representing . This extra redundancy causes all
fast RLS recursions to eventually become unstable in the light of backward
consistency and minimality concepts discussed in [39], [41].

so that substituting (94) into (93) we obtain

(95)

Finally, solving for , we arrive at

(96)

where . Observe that (96) gen-

eralizes the well known relation
, obtained for shift-data structures and exponentially

weighted window.
Equations (88) and (96) imply that in fact only de-

grees of freedom are needed to represent the LS solution. That
is, the set is represented by the variables such that (i) the
spectral factorization (88) is verified with respect to any arbi-
trary basis functions, (ii) with having all its zeros out-
side the unit circle and all poles inside the unit circle and (iii)
the likelihood variable obtained from (96), satisfies

. In this case, the minimal components of
the state vector are

and the error between the actual and computed quantities
is interpreted as a

perturbation that leads the state outside the stability domain .
The rescuing mechanism proposed in [10] represent a rough

way of projecting the state back onto the manifold ,
once becomes negative. It amounts to monitoring
the quantity (we describe the procedure here for the EGSWFTF
algorithm) . If it is posi-
tive, the algorithm continues its flow. Otherwise, we restart the
algorithm as follows (Rescuing Procedure):

Recall that the original rescue mechanism proposed in
[9] re-initializes the backward prediction minimum cost as

instead.
We remark that the original approach proposed for addressing

the stability problem of the FTF algorithm was extended in [30]
(see the references therein) for the GSWFTF algorithm, consid-
ering shift data. Although the resulting algorithm is claimed to
be numerically stable, the method of analysis employed and the
corresponding stabilized solution are valid only under some re-
strictive conditions, and instability can still occur in practice.

VIII. SIMULATIONS

Consider a transversal system of an orthonormal IIR real-
ization with basis functions given by (61) which is
illustrated in Fig. 4. In this section, we verify the ability of
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Fig. 5. Line echo path, 200 samples.

Fig. 6. EGSWFTF for taps and setup: (a) with no rescuing
; (b) with rescuing ; (c) with rescuing .

the rescue mechanism developed to the proposed extended
GSWFTF algorithm to maintain stability, considering this
compact representation.

Experiment 1 (Comparison with the SWFTF and effect of
rescuing): We test the new adaptive filter with taps,

and in Matlab® precision, and consid-
ering a well behaved first order autoregressive input with pole
at 0.9. From our discussion in Section IV.A, as long as
, the structure of guarantees that the Lyapunov equa-

tion (42) for the initialization of the GSWFTF in Table I has
a unique solution. We thus set the poles values randomly, such
that this condition is satisfied, and considered first an exact mod-
eling scenario. As can be seen in Fig. 6, after 450 iterations, the
EGSWFTF without rescue mechanism becomes unstable (a).
For the sake of comparison, we plot in Fig. 6(b) the learning
curve of the conventional (rectangular) SWFTF employing a
rescuing mechanism, which corresponds to . As we
can see, the SWFTF exhibits numerical problems even in the
case of rescuing. Note that while both extended SWFTF and the
EGSWFTF algorithms have the same number of minimal states,
the generalized window shape contributes to better conditioning
(Although not shown here, this can be observed even in the lat-
tice implementation of the SWRLS algorithm, when compared
to the GSWFTF). TheMSE performance of the EGSWFTFwith

is depicted in Fig. 6(c). We observe that the existence
of a window “tail” beyond past input samples helps in the
stability of the FTF recursions, so that the use of rescuing in the
latter case makes the EGSWFTF more robust in finite precision
compared to the one employed in the standard SWFTF.

Experiment 2 (Effect of different for and under
rescuing): In this experiment, we examine the stability perfor-
mance of the EGSWFTF for a short window length, say, ,
and -tap orthonormal model filter. Fig. 7 illustrates
the EGSWFTF for two different cutoff levels, and

. Note that in the former, the performance approaches
the one of a SWFTF, which as we expect, will show quick di-
vergence, specially for . Note that the choice

Fig. 7. ESWFTF with rescuing for taps and . (a) ;
(c) .

Fig. 8. Comparison between the GSWFTF for the FIR and for a Laguerre
model with pole , considering a taps and .

allows a better tradeoff, in the sense that even in the case of
a short window, the EGSWFTF with rescuing shows stability
improvement.

Experiment 3 (Compactness of Modeling of the
EGSWFTF): Finally, the main purpose for using the or-
thonormal IIR basis of (61) is 1) the ability to represent long
impulse response systems by replacing an adaptive FIR filter
with one employing a reduced order EGSWFTF realization;
2) to maintain the numerical conditioning of the input signal,
given that it remains unchanged with respect to a monomial
basis. Hence, we compare the learning curves considering the
identification of the line echo path of Fig. 5, for the EGSWFTF
algorithm based on an -tap FIR model, i.e., for

, and the one based on the orthonormal IIR
realization of same order. For simplicity, we set all poles of
the network as , after a few trial and error
attempts to optimize its value. An optimization method for
the poles choice is beyond the scope of this work, and will
be addressed in a forthcoming publication. The input to the
network is a composite source signal (CSS), which can be
considered a ill-behaved input to the EGSWFTF. Chances that
divergence occurs in this case are much higher, and the system
is also slightly undermodeled, since most of the path energy is
concentrated in the first 60 taps. Fig. 8 illustrates the learning
curves of the EGSWFTF for and . We
clearly see that, under the same model order, the improved
robustness of the FTF filter employing the Laguerre expansion
(top) when compared to the FIR filter (bottom).

IX. SUMMARY AND CONCLUDING REMARKS

We have moved beyond the existing fast exponentially
weighted RLS algorithms for extended models, and showed
that generalized sliding window counterparts are also feasible.
Different choices for the operator may lead to better nu-
merical conditioning, reduced computational complexity, and
compact representation of models.
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The contributions herein include explicit fast transversal
recursions for extended models and generalized window and
new updates not available for shift-data structure, along with
the minimality condition stated explicitly in terms of the
EGSWFTF quantities. The latter is obtained from the covari-
ance Bezoutian decomposition in exact correspondence with
the GSWFTF state variables, also yielding a rescue mechanism
as in the exponentially weighted RLS case. The generalized
window, which combines the robustness of the APA and the
convergence speed of RLS recursions can now be utilized in the
context of extended models, as for instance, IIR orthonormal
basis functions, which is specially useful in non-stationary
environments.
While the EGSWFTF recursions are adaptive, they exert di-

rect impact on the computation of non-adaptive scalar and block
transmission equalization techniques, which can be formulated
by solving the displacement equation with respect to particular
bases [4]. The usefulness of changing basis representation stems
from compactness of models and efficient superfast realizations,
for which the computation of the displacement generators in
connection with the Kalman recursions in both cases was un-
available, even for tapped-delay-line models.
We highlight that such DFT Bezoutian representations can be

achieved regardless of the input basis that yields , due to the
additional degree of freedom provided by the companion ma-
trices . This will be particularly discussed in a sequel of
this work, where we shall extend the DFT expressions obtained
herein to arbitrary transformations, by pointing out close con-
nections with recurrence related polynomials and new general
Bezoutian representations. More specifically, arguments show
how the choice of free companion structures along with recur-
rence related basis representation yields an exact filterbank de-
composition, from the solution of the corresponding displace-
ment equation. Proper choices for the pair will
thus lead to representations of highly structured inverses, ex-
tending the standard DFT formulas to more general transforma-
tions. We showed that the minimality condition holds even for
arbitrary domain transformations, and provides a vector relation
among the generators of the structured inverse.

APPENDIX

Iterating (83) times, we obtain

(A-1)

Now, observe that all terms inside the summations on the
r.h.s. of (A-1) are of the form , for some column
vector , and let . Then, in
terms of the eigenvector matrices , it can be written as

(A-2)

for and
are the monomial Vandermonde ma-

trices, e.g.,

...
...

. . .
...

(A-3)

where , with , and

, with , denote the eigen-
values of and respectively. Because it is well known

that , with
analogous expressions for , the r.h.s. of (A-2) becomes

Finally, since , and we obtain

(A-4)

This gives (85), where are defined in (86) and (87).

ACKNOWLEDGMENT

The author thanks FAPERJ for funding.

REFERENCES

[1] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ,
USA: Wiley, 2003.

[2] R. Merched, “A unified approach to structured covariances: Polyno-
mial vandermonde bezoutian representations,” in Proc. EUSIPCO,
Bucharest, Romania, Aug. 2012, pp. 1860–1864, ISSN 2076-1465.

[3] R. Merched, “Exact trigonometric superfast inverse covariance repre-
sentations,” in Proc. ICNC, San Diego, 2013, pp. 490–495, EUA.

[4] R. Merched, “A unified approach to reduced-redundancy trans-
ceivers: Superfast linear and block-iterative generalized decision
feedback equalizers,” IEEE Trans. Signal Process., vol. 61, no. 17,
pp. 4214–4229, 2013.



MERCHED: A UNIFIED APPROACH TO STRUCTURED COVARIANCES 6075

[5] B. Friedlander, “Lattice filters for spectral estimation,”Proc. IEEE, vol.
70, pp. 990–1017, 1982.

[6] D. Alpay, P. DeWilde, and H. Dym, “On the existence and construction
of solutions to the partial lossless inverse scattering problem with ap-
plications to estimation theory,” IEEE Trans. Inf. Theory, vol. 35, no.
6, pp. 1184–1205, Nov. 1989.

[7] P. A. Regalia and F. Desbouvries, “Displacement structures of co-
variance matrices, lossless systems, and numerical algorithm design,”
SIAM J. Matrix Anal. Appl., vol. 16, no. 2, pp. 536–564, Apr. 1995.

[8] L. Ljung, M. Morf, and D. Falconer, “Fast calculation of gain matrices
for recursive estimation schemes,” Int. J. Control, vol. 27, pp. 1–19,
Jan. 1978.

[9] D. W. Lin, “On the digital implementation of the fast Kalman algo-
rithms,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, pp.
998–1005, Oct. 1984.

[10] R. Merched and A. H. Sayed, “Extended fast fixed order RLS adaptive
filtering,” IEEE Trans. Signal Process., vol. 49, no. 12, pp. 3015–3031,
Dec. 2001.

[11] R. Merched, “Extended RLS-lattice adaptive filters,” IEEE Trans.
Signal Process., vol. 51, no. 9, pp. 2294–2309, Sept. 2003.

[12] R. Merched, “On the extended RLS lattice adaptive filter variants:
Error-feedback, normalized, and array-based algorithms,” EURASIP
J. Appl. Signal Process., pp. 1235–1250, May 2005.

[13] T. Kailath, A. Vieira, and M. Morf, “Inverses of Toeplitz operators,
innovations and orthogonal polynomials,” SIAM Rev., vol. 20, pp.
106–119, 1978.

[14] T. Kailath, S.-Y. Kung, and M. Morf, “Displacement ranks of matrices
and linear equations,” J. Math. Anal. Appl., vol. 68, pp. 395–407, 1979.

[15] L. Euler, Introduction in Analysin Infinitorum, Tomus Primis, Lau-
sanne, 1748.

[16] É. Bézout, “Recherches sur le degré deséquations résultantes de
l’évanouissement des inconnues et sur les moyens qu’on doit em-
ployer pour trouver ces équations,” (in French) Histoire de l’Académie
royale des sciences, partie Mémoires, pp. 288–338, 1764.

[17] I. Sylvester, “On a theory of syzygetic relations of two rational integral
functions, comprising an application to the theory of Sturm’s functions,
and that of the greatest Algebraical common measure,” Philos. Trans.
Roy. Soc. London, vol. 143, pp. 407–548, 1853.

[18] A. Cayley, “Note sur la méthode d’élimination de Bezout,” (in French)
J. für die Reine und Angewandte Mathematik, vol. 53, pp. 366–376,
1857, Berlin.

[19] C. Hermit, “Extrait d’une lettre de Mr. Ch. Hermite de Paris á Mr. Bor-
chardt de Berlin, sur le nombre des racines d’une équation algibrique
comprises entre des limits donnés,” (in French) J. für die Reine und
Angewandte Mathematik, vol. 52, pp. 39–51, 1856, Berlin.

[20] H. Lev-Ari, Y. Bistritz, and T. Kailath, “Generalized Bezoutians and
families of efficient zero-location procedures,” IEEE Trans. Circuits
Syst., vol. 38, pp. 170–186, Feb. 1991.

[21] T. Kailath and V. Olshevsky, “Displacement structure approach to dis-
crete trigonometric transform based preconditioners of G. Strang and
T. Chan types,” Calcolo, no. 33, pp. 191–208, 1996.

[22] T. Kailath and V. Olshevsky, “Displacement structure approach to
polynomial Vandermonde and related matrices,” Linear Algebra
Appl., vol. 261, pp. 49–90, 1997.

[23] V. Olshevsky, “Eigenvector computation for almost unitary Hessen-
berg matrices and inversion of Szego-Vandermonde matrices via Dis-
crete Transmission lines,” Linear Algebra Appl., vol. 285, pp. 37–67,
1998.

[24] Y. Eidelman, I. Gohberg, I. Koltracht, and V. Olshevsky, “A
Bjorck-Pereyra-type algorithm for Szego-Vandermonde matrices
based on properties of unitary Hessenberg matrices,” Linear Algebra
Appl., vol. 420, pp. 634–647, 2007.

[25] T. Bella, V. Olshevsky, and P. Zhlobich, “Signal flow graph approach
to inversion of (H,m)-quasiseparable-Vandermonde matrices and new
filter structures,” Linear Algebra Appl., vol. 432, pp. 2032–2051, Apr.
2010.

[26] T. Bella, V. Olshevsky, and P. Zhlobich, “Classifications of recurrence
relations via subclasses of (H,m)-quasiseparable matrices,” Numerical
Linear Algebra in Signals, Systems and Control, ser. Lecture Notes in
Electrical Engineering, vol. 80, pp. 23–53, 2011.

[27] T. Bella, Y. Eidelman, I. Gohberg, and V. Olshevsky, “Character-
ization of quasiseparable matrices and their subclasses via
recurrence relations and signal flow graphs,” [Online]. Available:
http://www.math.uconn.edu/~olshevsky/papers/characterization.pdf
preprint

[28] T. Bella, Y. Eidelmany, I. Gohbergy, V. Olshevsky, E. Tyrtyshnikovz,
and P. Zhlobich, “A Traub-like algorithm for Hessenberg-quasisep-
arable-Vandermonde matrices of arbitrary order,” Operator Theory,
Adv. Appl., vol. 199, pt. II, pp. 127–154, 2010.

[29] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-Like Matrices
and Operators. Berlin, Germany: Akademie-Verlag and Birkhäuser,
1984.

[30] K.Maouche andD.T.M.Slock, “Performance analysis andFTFversion
of the generalized sliding window recursive least-squares (GSWRLS)
algorithm,” in Proc. 29th IEEE Annu. Asilomar Conf. Signals, Syst.,
Comput., PacificGrove, CA, USA,Oct. 1995, vol. 1, pp. 685–689.

[31] S. L. Gay and S. Tavanthia, “The fast affine projection algorithm,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May 1995, vol.
5, pp. 3023–3026.

[32] R. Merched and N. R. Yousef, “Fast computation of finite-length
MIMO MMSE decision feedback equalizers,” in Proc. Asilomar
Conf., Dec. 2004, pp. 1781–1784.

[33] J. Maroulas and S. Barnett, “Polynomials with respect to a general
basis. I. Theory,” J. Math. Anal. Appl., vol. 72, pp. 177–194, 1979.

[34] G. Szegö, Orthogonal Polynomials, 4th ed. Providence, RI, USA:
Amer. Math. Soc., 1975, pp. 42–44.

[35] R.Merched and I. S. G. Figueiredo, “Block precoder-based energy con-
strained DFE,” in Proc. Int. Symp. Circuits Syst., Kos, Greece, May
2006, pp. 2057–2060.

[36] R. Merched, “Fast computation of constrained decision feedback
equalizers,” IEEE Trans. Signal Process., vol. 55, pp. 2446–2457,
Jun. 2007.

[37] R. Merched, “Fast algorithms in slow and high Doppler mobile envi-
ronments,” IEEE Trans. Signal Process., vol. 9, no. 9, pp. 2890–2901,
Sept. 2010.

[38] R. Merched, “Application of superfast algorithms to pilot-based
channel estimation schemes,” in Proc. SPAWC, Recife, Brazil, Jul.
2008, pp. 141–145.

[39] P. A. Regalia, “Numerical stability issues in fast least-squares adapta-
tion algorithms,” Opt. Eng., vol. 31, pp. 1144–1152, Jun. 1992.

[40] P. A. Regalia, “Numerical stability properties of a QR-based fast least-
squares algorithm,” IEEE Trans. Signal Process., vol. 41, no. 6, pp.
2096–2109, Jun. 1993.

[41] D. T. M. Slock, “The backward consistency concept and round-off
error propagation dynamics in recursive least-squares algorithms,”
Opt. Eng., vol. 31, pp. 1153–1169, Jun. 1992.

[42] I. Gohberg and V. Olshevsky, “Circulants, displacements and de-
composition of matrices,” Integral Equat. Oper. Theory, vol. 15, pp.
853–863, May 1992.

[43] R. Merched, “Fast generalized sliding window RLS recursions for IIR
recurrence related basis functions,” in Proc. DSP Conf., Corfu, Greece,
Jul. 2011, pp. 1–6.

[44] G. Ammar and P. Gader, “New decompositions of the inverse of a
Toeplitz matrix,” in Signal Process., Scattering, Operator Theory,
Proc. Int. Symp. (MTNS-89), Boston, MA, USA, 1990, vol. III, pp.
421–428, Birkhauser.

[45] G. Heinig and K. Rost, “DFT representations of Toeplitz-plus-Hankel
Bezoutians with application to fast matrix vector multiplication,”
Linear Algebra Appl., vol. 284, pp. 157–175, Nov. 1998.

Ricardo Merched (S’94–M’01–SM’06) received
the B.S. and the M.Sc. degrees from the Federal
University of Rio de Janeiro (UFRJ), Brazil, and
the Ph.D. degree from University of California, Los
Angeles (UCLA) in 2001. He became Professor at
the Department of Electrical and Computer Engi-
neering at UFRJ in 2002. He was a visiting professor
at University of California, Irvine, and at Unik,
University Graduate Center in Oslo, during 2006
and 2007. Dr. Merched was an Associate Editor of
the IEEE Transactions on Circuits and Sistems I, the

IEEE Transactions on Signal Processing Letters, and the EURASIP, European
Journal on Advances in Signal Processing. His current main interests include
adaptive filtering algorithms, multirate systems, efficient digital signal pro-
cessing techniques for MIMO equalizer architectures in wireless and wireline
communications, RADAR imaging, and biomedical imaging applications, as
well as low complexity solutions for these problems. He holds six US patents
on efficient digital signal processing algorithms for channel estimation and
equalization.


