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Abstract—Colocated multiple-input multiple-output (MIMO)
technology has been widely used in automotive radars as it
provides accurate angular estimation of the objects with a
relatively small number of transmitting and receiving antennas.
Since the Direction Of Departure (DOD) and the Direction Of
Arrival (DOA) of line-of-sight targets coincide, MIMO signal
processing allows for the formation of a larger virtual array for
angle finding. However, multiple paths impinging the receiver is
a major limiting factor, in that radar signals may bounce off
obstacles, creating echoes for which the DOD does not equal
the DOA. Thus, in complex scenarios with multiple scatterers,
the direct paths of the intended targets may be corrupted by
indirect paths from other objects, which leads to inaccurate angle
estimation or ghost targets. In this paper, we focus on detecting
the presence of ghosts due to multipath by regarding it as the
problem of deciding between a composite hypothesis, H0 say,
that the observations only contain an unknown number of direct
paths sharing the same (unknown) DOD’s and DOA’s, and a
composite alternative, H1 say, that the observations also contain
an unknown number of indirect paths, for which DOD’s and
DOA’s do not coincide. We exploit the Generalized Likelihood
Ratio Test (GLRT) philosophy to determine the detector struc-
ture, offering closed-form expressions for theoretical detection
performance, and a convex waveform optimization approach
to improve detection performance. In practical scenarios, the
unknown parameters of GLRT philosophy are replaced by
carefully designed estimators. The angles of both the active
direct paths and of the multi-paths are indeed estimated through
a sparsity-enforced Compressed Sensing (CS) approach with
Levenberg-Marquardt (LM) optimization to estimate the angular
parameters in the continuous domain. Simulation and experimen-
tal results are finally offered in order to validate the proposed
solution.

Index Terms—Automotive radar, Colocated multiple-input
multiple-output (MIMO), multipath, GLRT, group sparse.
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I. INTRODUCTION

In recent years, the need for safer driving has led to a
significant demand for automotive radar [1]–[4]. Colocated
multiple-input multiple-output (MIMO) technology has been
proven to be effective in providing accurate angular estimation
of objects with a relatively small number of antennas, making
it popular in the automotive industry [5]–[7].

One major challenge of colocated MIMO systems is the
multipath reflection, where the target’s echo takes multiple
paths to reach the receiver, including direct and indirect paths
[8]–[11]. Direct paths involve the signal being transmitted
from the radar to the target and then reflected back to the
radar directly, while the indirect paths could bounce multiple
times between reflectors. Usually, due to different propagation
delays, range gating can get rid of the indirect paths from the
target we are trying to detect. However, the direction of depar-
ture (DOD) of the signal does not equal the direction of arrival
(DOA) for some indirect paths, [5], [12], so the assumption of
colocated MIMO does not hold. As a consequence, in multi-
target scenarios, the direct paths of intended targets may be
corrupted by indirect paths from other objects, and applying
classical angle finding algorithms may result in degraded angle
estimation accuracy and detection of ghost targets.

To detect ghost targets, some researchers exploit the geo-
metrical relationships of the detections in the delay-Doppler
domain. Specifically, R. Feng et al. employed the Hough
transform to explore the linear relationship of the multipath
detections [13]. F. Ross et al. detected the ghost targets by an-
alyzing the Doppler distribution of moving targets [14]. These
methods can be effective when the speed of the ghost target is
significant, and the efficient utilization of Doppler information
can aid in extracting geometric information from multipaths
for identification. Notably, the authors in [15] proposed a novel
method to suppress ghosts through waveform design, which
effectively controls the responses of distinct delay-Doppler
cells with a high degree of precision. However, in situations
with densely distributed objects, ghost targets with low speeds
may couple with the stationary objects, making it difficult to
use Doppler information to identify them.

Several strategies for multipath ghost suppression in the an-
gular domain have been proposed so far, ranging from antenna
design [9], [16] to synthetic aperture radar (SAR) [17] and
deep learning [18]. Alternative deep neural network (DNN)
[19] method seeks to verify DOD and DOA equality but
may overlook complexities from mixed paths within a delay-
Doppler cell. Considering the potential advantages of indirect
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paths in non-line-of-sight detection [20], [21] or reconfigurable
intelligent surface (RIS) applications [22], accurately detecting
and estimating the parameters of each path is more valuable
than simply suppressing multipath: this is the idea underlying
[23], where the presence of multipath reflections is detected
through a Generalized Likelihood Ratio Test (GLRT). The
detector was developed under a specific signal model where
only two TX antennas are used and all indirect paths for a
target are confined to a single delay-Doppler cell. However,
in automotive radars, MIMO arrays typically incorporate more
TX antennas [24] and a single delay-Doppler cell can contain
paths from multiple targets. Given the potential model mis-
match, the performance of angle estimation in [23] degrades
in such situations and the GLRT would fail.

Accurate estimation of target information is crucial for
ghost detection in the angular domain, particularly in scenarios
involving mixed first-order and direct paths. The coexistence
of these paths often results in significant mutual interference,
while discrepancies in DOD and DOA for indirect paths
further complicate estimations, posing a challenge to achieving
high accuracy angle measurements. In the field of bistatic
MIMO radar, the angle finding methods for situations with
different DOA and DOD have been widely studied. Subspace
methods, such as the two-dimensional multiple signal clas-
sification (2D-MUSIC) [25] and unitary-estimation of signal
parameters via rotational invariance technique (U-ESPRIT)
[26] have been proposed. These methods have limitations
related to signal and noise characteristics, array geometry, and
computational complexity, which make them unsuitable for
automotive radars. In [27], minimum variance distortionless
response (MVDR) is utilized for spectrum estimation, address-
ing grating lobes in sparse MIMO radar by proposing a sup-
pression method tailored for multipath environments. In [28],
an iterative adaptive approach (IAA) was employed to estimate
the two-dimensional spatial spectrum for automotive radar,
while in [29], the authors propose a joint direction of departure
(DOD) and direction of arrival (DOA) estimation method by
comparing the power distribution of the IAA spectrum. More
recent techniques based on compressed sensing (CS) theory
[30] provide an alternative for jointly estimating the DOD and
DOA [31], [32]. The performance of these methods depends
on the designed dictionaries and gridding scheme in the
angular domain. However, as the paths are usually specified by
parameters in a continuous domain, the discretization usually
leads to model mismatch and degradation in estimation [33],
[34].

In this paper, we further investigate ghost target detection in
the angular domain, to the end of detecting the indirect paths
and allowing their removal, so as to preserve only the direct
paths from the target. Two types of paths are considered in
our analysis: direct paths, exhibiting the same DOD and DOA,
and first-order paths (more on this in Section II) whose DOD
does not equal DOA. After deriving the MIMO radar signal
model, the problem of first-order paths existence is stated as a
binary decision problem between a composite hypothesis, H0

say, that the observations only contain an unknown number of
direct paths sharing the same (unknown) DOD’s and DOA’s,
and a composite alternative, H1 say, that the observations

also contain an unknown number of indirect paths, for which
DOD’s and DOA’s do not coincide. In this context, we resort to
the GLRT philosophy to determine the detector structure and
propose a convex waveform optimization approach to enhance
detection performance. As for the implementable solution, the
unknown parameters of GLRT philosophy are replaced by
carefully designed estimators. In particular, to estimate the
angle of the paths under the two alternative hypotheses, we
develop CS methods in the continuous domain for the cases
with and without first-order paths, respectively. Specifically, in
the situation with first-order paths, the algorithm is designed
with a group-sparsity enforced structure to take advantage
of the reversibility of the propagation path. To improve the
convergence performance, we adopt a Levenberg-Marquardt
(LM) optimization approach to accelerate the execution of
the algorithm. The proposed method has shown superior per-
formance over existing methods by simulation. An extensive
performance assessment is finally offered in order to validate
the proposed strategy.

The remainder of the paper is organized as follows: In
Section II, we present the signal model of multipath reflec-
tion. Section III details the proposed detector and derives its
exact theoretical performance. In Section IV, we describe the
proposed angle estimation methods under different situations.
In Section V, we present the simulation results, and finally,
Section VI concludes the paper.

Notation : The transposition, Hermitian transposition, inver-
sion, pseudo-inversion, Kronecker product, Khatri-Rao (KR)
product, Hadamard product and direct sum operations are
denoted by (·)T , (·)H , (·)−1, (·)†, ⊗, ◦, ⊙, ⊕, respectively.
Matrix X and vector x are indicated in boldface. The notation
diag(X) denotes the operation of extracting elements from
the diagonal of X to form a new vector. ∥x∥2 =

√∑
i x

2
i

denotes the ℓ2-norm. R(X) denote the range-span of the
matrix X. x(k) denotes the value of x at the k-th iteration and
x(k,j) denotes the value of x(k) at the j-th iteration. In being
the n × n identity matrix. For X , the n-th column vector
and (m,n)-th element are denoted by X(n) and [X]m,n,
respectively, while the m-th element of vector x is given by
[x]m .

II. SIGNAL MODEL AND PROBLEM FORMULATION

State-of-the-art automotive radars usually employ Fre-
quency Modulated Continuous Wave (FMCW) sequences to
enable high-resolution estimation of target range and radial
velocity [35], [36], and adopt colocated MIMO technology to
synthesize a large virtual array for accurate angle estimation
using multiple transmit and receive antennas. We consider a
colocated MIMO radar system with MT transmit antennas
emitting as many coded sequences [37] and MR receive
antennas. At the receiver end, the signal at each antenna
undergoes the usual processing to extract the contribution of
each transmit antenna and synthesize a MIMO channel with
MTMR elements. This signal is then processed via fast Fourier
transform (FFT) along fast and slow time to obtain the delay-
Doppler profile of the echo path [1]. Finally, the virtual array
response of the detected target can be constructed to estimate
the direction of targets [6].
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Fig. 1: (a) A direct path, (b) A pair of first-order paths.

The multipath scenario can be visualized as a radar emitting
signals that bounce off a target and a reflector. As depicted in
Fig. 1, where the target is placed at position A and the reflector
is located at point B, the signals received by the radar can take
different paths as follows:

• Direct path: The shortest path between the radar and the
target, where the departure and arrival angles of the direct
path are equal to the target angle as shown in Fig. 1a.

• First-order paths: The indirect paths involve a single
bounce at the reflector on the way of departure or arrival,
resulting in a longer delay compared to the direct path.
As shown in Fig. 1 b, the DOD’s of the first-order paths
do not equal the respective DOA’s.

• Higher-order paths: The indirect paths involve more
bounces before the echo reaches the receiver. However,
due to the attenuation caused by scattering at the target
and reflectors, higher-order paths are normally weak, and
may thus be neglected [13], [38].

In automotive radar, delay and Doppler information of direct
path yields target range and velocity [2], respectively. Both
DOD and DOA equal the angle of far-field targets, enabling
the virtual array to form an aperture larger than the physical
aperture of the radar, thereby enhancing angular resolution and
accuracy of angle estimation [5], [24], [39]. Although Fig. 1
depicts, for simplicity reasons, a single target scenario, the
situation we consider here is one wherein multiple reflecting
objects are present in the radar field of view, whereby the
direct paths generated by the intended targets may end up
being corrupted by the first-order paths generated by other
reflecting objects.

Consider a FMCW MIMO radar that transmits L
pulses from each transmit antenna and exploits slow-
time coding as a multiplexing approach. Denote x(l) =
[x1(l), x2(l), · · · , xMT

(l)]T as the vector of the code trans-
mitted at the l-th epoch by the MT transmit antennas,
the transmitted code matrix can be represented as X =
[x(1),x(2), · · · ,x(L)] ∈ CMT×L. After performing FFT on
the fast-time of received measurements, we consider K0 direct
paths and K1 pairs of first-order paths in a given delay cell

under test and model the observation y(l) ∈ CMR×1 as

y(l) =

K0∑
k=1

αke
j2πfd(l−1)aR(θk)a

T
T (θk)x(l)

+

K1∑
k=1

βk,1e
j2πfd(l−1)aR(φk)a

T
T (ϑk)x(l)

+

K1∑
k=1

βk,2e
j2πfd(l−1)aR(ϑk)a

T
T (φk)x(l) +w(l),

(1)

where

• αk, βk,1 and βk,2 represent the complex amplitude of the
k-th direct path for k = 1, 2, . . . ,K0 and the k-th pair
first-order paths for k = 1, 2, . . . ,K1 respectively. The
amplitudes depend on a number of factors such as the
transmit power, antenna gain pattern, path loss propaga-
tion, reflection coefficient, and matched-filter gain.

• θk denotes the DOD of the k-th direct path, which is
equal to the DOA; ϑk and φk denote the DOD and DOA
of the k-th pair first-order path with ϑk ̸= φk; fd is the
normalized Doppler frequency.

• aT (·) ∈ CMT×1 and aR(·) ∈ CMR×1 are the steering
vectors

aT (θ) =
1√
MT

[
ej2πdT,1 sin(θ)/λ, ej2πdT,2 sin(θ)/λ, ...

, ej2πdT,MT
sin(θ)/λ

]T
, (2)

aR(ϕ) =
1√
MR

[
ej2πdR,1 sin(ϕ)/λ, ej2πdR,2 sin(ϕ)/λ, ...

, ej2πdR,MR
sin(ϕ)/λ

]T
, (3)

with θ and ϕ denoting the angles of aT (·) and aR(·),
respectively, λ denoting the wavelength, dT,m and dR,n

denoting the relative distances of the m-th TX element
and the n-th RX element from the reference array ele-
ment.

• w(l) ∈ CMR×1 is the white Gaussian noise at the
radar receive array, distributed as CN (0, σ2IMR

), with
σ2 denoting the noise variance [40].

Denoting P(fd) = diag
(
[1, ej2πfd , · · · , ej2πfd(L−1)]

)
, the

received data matrix reads

Y = [y(1),y(2), · · · ,y(L)]

=

K0∑
k=1

αkaR(θk)a
T
T (θk)XP(fd)

+

K1∑
k=1

βk,1aR(φk)a
T
T (ϑk)XP(fd)

+

K1∑
k=1

βk,2aR(ϑk)a
T
T (φk)XP(fd) +W , (4)
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where W = [w(1),w(2), · · · ,w(L)]. Plain matched filtering
thus yields

Z = Y (XP(fd))
H

=

K0∑
k=1

αkaR(θk)a
T
T (θk)XP(fd)P

H(fd)X
H

+

K1∑
k=1

βk,1aR(φk)a
T
T (ϑk)XP(fd)P

H(fd)X
H

+

K1∑
k=1

βk,2aR(ϑk)a
T
T (φk)XP(fd)P

H(fd)X
H

+WPH(fd)X
H , (5)

where P(fd)P
H(fd) = IL. Vectorizing the matrix Z finally

yields the general model of the virtual MIMO array signal in
a given delay-Doppler cell under test, denoted as

z = (Rx ⊗ IMR
)

K0∑
k=1

αkaT (θk)⊗ aR(θk)

+ (Rx ⊗ IMR
)

K1∑
k=1

βk,1aT (ϑk)⊗ aR(φk)

+ (Rx ⊗ IMR
)

K1∑
k=1

βk,2aT (φk)⊗ aR(ϑk)

+r, (6)

where Rx = X∗XT , r = ((X∗P(fd))⊗ IMR
) w̃,

w̃ = vec(W). Denoting Θ0 = [θ1, θ2, . . . , θK0
]T ∈

RK0×1 as the vector containing the angles of K0 di-
rect paths, the corresponding steering matrix is A(Θ0) =
[a(θ1),a(θ2), . . . ,a(θK0

)] ∈ CMTMR×K0 where a(·) =
aT (·) ⊗ aR(·). In the absence of first-order paths (K1 = 0),
the signal model in (6) simplifies to

z = (Rx ⊗ IMR
)A(Θ0)α+ r, (7)

where α = [α1, α2, . . . , αK0
]T ∈ CK0×1 is the amplitude

vector of direct paths.
In the presence of first-order paths (K1 ̸= 0),

we define the DOD angle vector Θ1 =
[ϑ1, ϑ2, . . . , ϑK1

]T ∈ RK1×1, the DOA angle vector
Φ1 = [φ1, φ2, . . . , φK1

]T ∈ RK1×1 and the amplitude vector
β1 = [β1,1, β2,1, . . . , βK1,1, β1,2, β2,2, . . . , βK1,2]

T ∈ C2K1×1

for the K1 pair of first-order paths. Moreover,
we define Θ = [ΘT

1 ,Φ
T
1 ,Θ

T
0 ]

T ∈ R(2K1+K0)×1,
Φ = [ΦT

1 ,Θ
T
1 ,Θ

T
0 ]

T ∈ R(2K1+K0)×1. Denoting AT

and AR as steering matrices of the radar TX and RX arrays,
respectively, we have

AT (Θ) = [aT (ϑ1), . . . ,aT (ϑK1),aT (φ1), . . . ,aT (φK1),

aT (θ1), . . . ,aT (θK0)] ,

AR(Φ) = [aR(φ1), . . . ,aR(φK1),aR(ϑ1), . . . ,aR(ϑK1),

aR(θ1), . . . ,aR(θK0)] ,

and the signal model (6) can be rewritten as

z = (Rx ⊗ IMR
)A(Θ,Φ)β + r, (8)

In the previous equation A(Θ,Φ) = AT (Θ)◦AR(Φ) denotes
the response matrix, β = [βT

1 ,α
T ]T ∈ C(2K1+K0)×1 is

the complex amplitude vector. Note that a pair of first-order
paths share the same sparse pattern which is usually smaller
than the number of array elements [23], resulting in a group-
sparse structure that can be employed for multipath estimation
purpose.

III. DETECTION OF MULTIPATH

In the general setup outlined in the previous section, ghost
detection amounts to solving a coupled detection-estimation
problem, wherein we have to discriminate between a compos-
ite hypothesis, H0 say, that the observations only contain a
unknown number K0 of direct paths coming from as many
unknown different directions, against a composite alternative,
H1 say, that the observations also contain a unknown number
K1 of first-order paths each characterized by an unknown
pair of angles. In what follows, we (suboptimally) break up
this problem into a two-step procedure: first, we introduce
and discuss a GLRT assuming that the number of the direct
and first-order paths, as well as the corresponding angular
information - i.e., the matrices A(Θ0) of (7) and A(Θ,Φ)
of (8) - are known. Subsequently, we illustrate a number of
possible techniques to provide the detector with the required
information (i.e., we make it implementable), by formulating
the problem of preliminary estimating these matrices as a
sparse recovery problem taking full advantage of the models
introduced in the previous section.

A. GLRT detector

Assume at first that the two matrices in (7) and (8) are
known, whereby we have to solve the composite binary
hypothesis test{

H0 : z = (Rx ⊗ IMR
)A(Θ0)α+ r,

H1 : z = (Rx ⊗ IMR
)A(Θ,Φ)β + r,

(9)

where α ∈ CK0×1 and β ∈ C(K0+2K1)×1 are unknown
parameters. Before proceeding, it is worth commenting on
some constraints we want to force upon the solution of the
above test, i.e.:

1) We want the test to be Constant False Alarm Rate
(CFAR), i.e. its test statistic pdf under H0 and its
detection threshold to be functionally independent of the
noise floor and of the directions and intensities of the
direct paths;

2) We want the resulting test to have some form of opti-
mality, so as to use its performance as a yardstick to
compare our implementable solutions to.

Since

E(rrH) = E
(
(X∗ ⊗ IMR

)w̃w̃H(X∗ ⊗ IMR
)H

)
= (X∗ ⊗ IMR

)σ2IMRL(X
T ⊗ IMR

)

= σ2(X∗XT )⊗ IMR

= σ2Rx ⊗ IMR
, (10)
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we have r ∼ CN (0, σ2Σx) where Σx = Rx ⊗ IMR
. From

now on, we assume rank(Rx) = rank(X) = MT
1, the

correlation matrix Σx is also full-rank. Since Σx is known, a
noise-whitening transformation converts the test (9) into

H0 :z̄ ∼ CN (Σ1/2
x A(Θ0)α, σ

2IMTMR
),

H1 :z̄ ∼ CN (Σ1/2
x A(Θ,Φ)β, σ2IMTMR

),
(11)

where z̄ = Σ
−1/2
x z. Notice that, by construction,

Σ
1/2
x A(Θ,Φ) is the matrix concatenation [41]

Σ1/2
x A(Θ,Φ) = Σ1/2

x [E ,A(Θ0)], (12)

where E = [A(Θ1,Φ1),A(Φ1,Θ1)] ∈ CMTMR×2K1 only
depends on the DODs and the DOAs of the first-order paths.
Under the CFAR constraint outlined above, we are thus
in the situation of detecting a subspace signal in subspace
interference and noise of unknown level [41, Section VIII],
whereby the GLRT reads

TGLRT =
∥P (Θ0)z̄∥2

∥P (Θ,Φ)z̄∥2
H1

≷
H0

λG, (13)

where P (Θ0) = IMTMR
−Σ

1/2
x A(Θ0)(Σ

1/2
x A(Θ0))

† = P0

is the orthogonal projector onto the orthogonal complement
of Σ1/2

x A(Θ0) in CMTMR , and P (Θ,Φ) = P1 has the same
meaning with respect to Σ

1/2
x A(Θ,Φ), λG is the detection

threshold.
The test (13), which we adopt outright, complies with the

prior constraints 1) and 2). Concerning 1), indeed, the test is
invariant to transformations that rotate the observations in the
range span of G = P0Σ

1/2
x E and positively scale z̄ [41]. As

we’ll be shortly verifying, this results in a detection threshold
and a false alarm probability which are independent of both
A(Θ0) and the noise floor σ2. Concerning optimality, the test
statistic in (13) turns out to be a maximal invariant statistic
[42], whereby the test (13) is Uniformly Most Powerful (UMP)
one under the said invariance constraints.

B. Performance bounds and waveform optimization

In this section, we first specialize on the problem at hand
the key results of [41, Section VIII] concerning the detec-
tion performance of the test family (13), and then we deal
with the optimization of the transmit space-time code matrix.
Since Σ

1/2
x A(Θ,Φ) is a concatenation of Σ

1/2
x A(Θ0) with

some E, we have that R(Σ1/2
x A(Θ0)) ⊆ R(Σ1/2

x A(Θ,Φ)),
whereby R(P1) ⊆ R(P0), i.e. R(P0) = R(P1) ⊕ S⊥,
where S⊥ denotes the orthogonal complement of R(P1) in
R(P0). Denoting PS⊥ as the orthogonal projector onto S⊥,
and assuming that the echo signals from different paths are
incoherent, we have dim (R (P1)) = MTMR − K0 − 2K1,
dim (R (P0)) = MTMR − K0 and dim

(
R

(
PS⊥

))
= 2K1,

leading to [41, Section VIII]

∥P0z̄∥2

∥P1z̄∥2
= 1 +

∥∥PS⊥ z̄
∥∥2

∥P1z̄∥2
= 1 +X. (14)

1A justification of this assumption will be given infra

Under H0, X is the ratio of two independent central Chi-
square random variables, with 4K1 and 2(MTMR − K0 −
2K1) degrees of freedom, respectively, and hence has a Fisher-
Snedecor distribution with density

fX|H0
(x) =

1

B (2K1;m)
x2K1−1(1 + x)−(m+2K1), (15)

where m =MTMR−K0−2K1 and B (a; b) denotes the beta
function with parameters a and b.

In order to determine the density under H1, a model for
β is to be chosen. A customary assumption is that β ∼
CN (0,Kβ), namely that it is a proper complex Gaussian
vector with covariance matrix Kβ , which implies that the test
statistic has again a Fisher-Snedecor distribution [41, Section
VIII]. Since

E
(∥∥PS⊥ z̄

∥∥2|H1

)
= E

(∥∥∥PS⊥Σ1/2
x A(Θ,Φ)β + PS⊥r

∥∥∥2)
= Tr

(
EHΣ1/2

x P0Σ
1/2
x EKβ

)
+ σ22K1, (16)

we have

fX|H1
(x) =

1

(1 + ρ1)B (2K1;m)

(
x

1 + ρ1

)2K1−1

×
(
1 +

x

1 + ρ1

)−(m+2K1)

, (17)

where

ρ1 =
Tr

(
EHΣ

1/2
x P0Σ

1/2
x EKβ

)
2K1σ2

. (18)

Elementary calculations allow thus to determine the perfor-
mance of the test in the form:

Pfa = 1− 1

B (2K1;m)

m−1∑
i=0

(−1)i
(
m−1

i

)
2K1 + i

(
1− 1

λG

)2K1+i

,

(19)

Pd = 1− 1

B (2K1;m)

m−1∑
i=0

(−1)i
(
m−1

i

)
2K1 + i

(
λG − 1

λG + ρ1

)2K1+i

.

(20)

As far as the false alarm performance is concerned, we
recall here that the test (13) achieves CFARness, whereby Pfa

only depends on K0 and K1: sample plots of the behavior of
Pfa versus the threshold for some values of K0 and K1 are
reported in Fig. 2.

Concerning the detection probability, we refer to the in-
teresting special case that β ∼ CN (0, σ2

βI2K1
), α ∼

CN (0, σ2
αIK0

), which yields

ρ1 =
σ2
β

2K1σ2
Tr

(
EHΣ1/2

x P0Σ
1/2
x E

)
=

σ2
β

2K1σ2

× Tr
(
EHΣxE −EHΣxA0(A

H
0 ΣxA0)

−1AH
0 ΣxE

)
,

(21)

where A0 = A(Θ0). The quantity in (21) represents a suitable
figure of merit to be maximized over the set of admissible
code matrices under additional constraints, so as to endow the
resulting waveform with relevant features. The first constraint
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Fig. 2: Pfa versus λG with MTMR = 48.

is obviously a power constraint, expressed as xH
mxm = 1,

where xm represents the code sequence of the m-th transmitter
for m = 1, 2, . . . ,MT . Notice also that, in the presence of
some prior information on the surrounding environment, a
reasonable constraint should be ∥ Rx−V ∥2≤ ϵ where V is a
proper beamforming matrix that accounts for prior information
on the angular location of real and virtual sources. If no such
information is available, then we need to robustify the design,
by avoiding the radar has blind angles, whereby we force the
condition that Rx should not be too far from the ”orthogonal
form” which ensures complete coverage of all the angles. As
a consequence, the optimization problem to be solved reads

max
Σx

Tr
(
EHΣxE −EHΣxA0(A

H
0 ΣxA0)

−1AH
0 ΣxE

)
s.t. [Rx]m,m = 1,m = 1, 2, · · · ,MT

∥Rx − IMT
∥2 ≤ µ Σx ⪰ 0,

with Σx = Rx ⊗ IMR
. Notice that, since Π ⪰ B implies

Tr (Π) ≥ Tr (B), the problem

max
Π
−Tr(Π) s.t. Π ⪰ B

admits Tr(Π) = Tr(B) as unique solution. Thus maximizing
the objective function in (21) boils down to solving the
problem

max
Σx,Π

[
Tr

(
EHΣxE

)
− Tr (Π)

]
Π ≥ EHΣxA0(A

H
0 ΣxA0)

−1AH
0 ΣxE

The constraint is obviously satisfied since the Schur comple-
ment of the matrix

Λ =

[
Π EH(Rx ⊗ IMR

)A0

AH
0 (Rx ⊗ IMR

)E (AH
0 (Rx ⊗ IMR

)A0)

]

with respect to the block (AH
0 (Rx⊗IMR

)A0) is semi-definite
positive, and the matrix Π is necessarily also positive semi-
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Fig. 3: Pd versus σ2
β/σ

2 with MTMR = 48.

definite. As a consequence, waveform optimization reduces to
solving the convex problem

argmax
Rx,Π

Tr
(
EH(Rx ⊗ IMR

)E −Π
)

s.t. [Rx]m,m = 1,m = 1, 2, · · · ,MT

Λ ⪰ 0

∥Rx − IMT
∥2 ≤ µ

Rx ⪰ 0. (22)

Since (22) is a Semi-Definite Programming (SDP) prob-
lem, it can be solved efficiently by the convex optimization
approach. Fig. 3 highlights the detector behavior for different
values of (K0,K1) and the impact of the number of system
degrees of freedom MTMR. Not surprisingly, we observe that
larger values of K1 for fixed K0 result in better detection per-
formance. This is obviously because the two subspaces defined
by the projection matrices P0 and P1 become more and more
distinguishable as K1 increases: the inevitable consequence is
that the ”worst case” is the situation where K0 is large (in
the plot, K0 = 3) and K1 small (in the plot, K1 = 1). In
this figure, two types of waveforms are compared including
the orthogonal waveform with Rx = IMT

, the optimized
waveform with the perfect parameter information of direct
and first-order paths. By optimizing the transmit waveform,
a significant improvement in target detection performance can
be achieved.

IV. ANGLE ESTIMATION FOR MULTIPATHS

As anticipated, the test (13) is not implementable, in that the
two matrices A(Θ0) and A(Θ,Φ) are not known even in their
order. In principle, such a prior uncertainty could be addressed
within the GLRT framework. Noticing that directly solving
the problems minK0,A(Θ0)∈CMT MR×K0 ∥ P (Θ0)z̄ ∥2 and
minK0,K1,A(Θ,Φ)∈CMT MR×(K0+2K1) ∥ P (Θ,Φ)z̄ ∥2 leads to
an overestimation of the model order. To address this, we
introduce the sparsity of the reflection paths for estimating
A(Θ0) and A(Θ,Φ). This sparsity can be justified by the
fact that automotive radar systems, typically equipped with an
array configuration of at least 3 transmitters and 4 receivers
(i.e. MTMR > 12), utilize mm-wave technology with a wide
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bandwidth for high range resolution. As a result, only a limited
number of targets, usually fewer than three, are present within
the same delay-Doppler bin [6], meaning K0 and K1 are
usually much smaller than MTMR [43]. Specifically, we try
to resolve the following problem assuming H0 hypothesis is
true:

(K̂0, Θ̂0, α̂) = argmin
Θ0∈RK0×1,α∈CK0×1,K0

K0

s.t.
∥∥z̄ − Ā(Θ0)α

∥∥2
2
≤ ϵ2,

(23)

where Ā(·) = Σ
1/2
x A(·), and obtain a suitable estimation

of the direct paths Θ̂0. It is worth noting that for any Θ0,
α should be Ā†(Θ0)z̄ to minimize

∥∥z̄ − Ā(Θ0)α
∥∥2, so the

constraints degrades to ∥ P (Θ0)z̄ ∥22≤ ϵ.
Similarly, assuming H1 hypothesis is true, we resort to:

(K̂0, K̂1, Θ̂, Φ̂, β̂) = argmin
K0,K1,

Θ∈R(K0+2K1)×1,

Φ∈R(K0+2K1)×1,

β∈C(K0+2K1)×1

K0 + δK1

s.t.
∥∥z̄ − Ā(Θ,Φ)β

∥∥2
2
≤ ϵ2,

(24)

where δ is the parameter characterizing the weights between
K0 and K1. The test family is then applied for the detection
of H1 from H0

∥ (IMTMR
− Ā(Θ̂0)Ā

†(Θ̂0)z̄ ∥2

∥ (IMTMR
− Ā(Θ̂, Φ̂)Ā†(Θ̂, Φ̂)z̄ ∥2

H1

≷
H0

λG. (25)

The next two subsections are thus devoted to illustrating how
the needed estimators may be designed to solve (23) and (24)
through bounded-complexity procedures.

A. Estimators for Θ0 under H0 hypothesis

We propose here an iterative procedure to solve (23). We
define r(t) as the residual in the t-th iteration, obtained by
subtracting the contribution from the estimated angles at that
iteration. It is initialized as r(0) = z̄. As to the set of the
angles of the direct paths, it is initialized as the empty set,
i.e. Θ̂(0)

0 = ∅ and K̂
(0)
0 = 0. The algorithm thus entails an

initial search over a uniform grid of size G, {θ̃1, θ̃2, . . . , θ̃G}
say, and successive refinement of the estimate in a continuous
domain.

In the t-th iteration, we insert a path into the set and K̂(t)
0

is updated as K̂(t)
0 = K̂

(t−1)
0 + 1. The minimization of the

ℓ2-norm of the residual entails evaluating

θ̂(t) = argmax
θ(t)∈{θ̃1,θ̃2,··· ,θ̃G}

|(r(t−1))Ha(θ(t))|, (26)

and updating the angle matrix as Θ̂
(t,0)
0 = [(Θ̂

(t−1)
0 )T , θ̂(t)]T .

The accuracy of this estimate is subsequently enhanced by
using Gauss–Newton (GN) iterations adopting the results of
the on-grid search, i.e. Θ̂

(t,0)
0 , as the initial point. The GN

method thus updates such an estimate through the inner
iteration

Θ̂
(t,i+1)
0 = Θ̂

(t,i)
0 − (H

(t,i)
0 )−1g

(t,i)
0 , (27)

where g
(t,i)
0 and H

(t,i)
0 denoting gradient and Hessian of

the function F (Θ
(t,i)
0 ) =∥ z̄ − Ā(Θ

(t,i)
0 )Ā†(Θ

(t,i)
0 )z̄ ∥22,

respectively. Define Ā
(t,i)
0 = Ā(Θ

(t,i)
0 ), P (t,i)

0 = P (Θ
(t,i)
0 ).

Following the derivations in Appendix A, the expressions of
H

(t,i)
0 and g

(t,i)
0 are given by

g
(t,i)
0 = −2Re

{
diag{(Ā(t,i)

0 )†z̄z̄HP
(t,i)
0 D

(t,i)
0 }

}
, (28)

H
(t,i)
0 = 2Re

{
(D

(t,i)
0 )HP

(t,i)
0 D

(t,i)
0

⊙
(
(A

(t,i)
0 )†z̄z̄H((A

(t,i)
0 )†)H

)T
}

+ 2Re
{
(D

(t,i)
0 )HP

(t,i)
0 z̄z̄HP

(t,i)
0 (D

(t,i)
0 )T

⊙
(
(Ā

(t,i)
0 )†((Ā

(t,i)
0 )†)H

)}
, (29)

where D
(t,i)
0 =

[
∂ā(θ̂

(i)
1 )

∂θ̂
(i)
1

,
∂ā(θ̂

(i)
2 )

∂θ̂
(i)
2

, . . . ,
∂ā(θ̂

(i)
t )

∂āθ̂
(i)
t

]T
with

ā(θ̂
(i)
j ) = Σ

1/2
x a(θ̂

(i)
j ) for j = 1, 2, . . . , t.

The above computations are carried out iteratively until
a maximum iteration number I is reached, whereby Θ̂

(t,I)
0

is adopted as the refined estimated angle Θ̂
(t)
0 in the t-th

iteration. This allows updating the amplitude estimates and
the residual as:

α̂(t) = Ā†(Θ̂
(t)
0 )z̄, (30)

r(t) = z̄ − Ā(Θ̂
(t)
0 )α̂(t). (31)

In principle, the iterative process stops when ∥r(t)∥2 ≤ ϵ
i.e the condition of (23) is satisfied. Additionally, considering
the potential issue of overestimating K0, we also set a max-
imum number of iterations T . The iterative process will be
terminated if t ≥ T or ∥r(t−1)∥2−∥r(t)∥2 ≤ ϵ1. The detailed
procedure is given in Algorithm 1 and we name the proposed
method as Compressed Sensing method in Continuous Domain
under hypothesis H0 (CSCD-H0) algorithm.

It is worth noticing that, without the refinement step, the
algorithm would reduce to an Orthogonal Matching Pursuit
(OMP) algorithm [44], which is a classic method in CS.
As OMP does not involve grid refinement in the continuous
domain, a simplification may cause a remarkable performance
impairment due to the well-known off-grid problem and would
likely lead to overestimating the value of K0.

B. Estimators for (Θ,Φ) under H1 hypothesis

Under H1, the algorithm we propose is an extension of the
previous one, on the understanding that now the angles of both
direct and first-order paths must be estimated. To reduce in-
terference between direct and first-order paths, we implement
the estimation procedures separately on direct and first-order
paths and subsequently decide the estimated paths that should
be retained. The initial values of the relevant parameters are
of course r(0) = z, Θ̂

(0)
1 = ∅, Φ̂(0)

1 = ∅, Θ̂(0)
0 = ∅, K̂(0)

1 = 0,
K̂

(0)
0 = 0.
Assume we want to estimate an additional direct path.

Again, we first undertake a search on a G−dimensional grid of
the common values of its DOA and DOD according to (26),
thus obtaining a coarse estimate of the angle set Θ̄(t,0) =
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Algorithm 1: CSCD-H0 algorithm

Input: z̄, {θ̃1, θ̃2, . . . , θ̃G} and T , I , ϵ, ϵ1;
Output: K̂0, α̂ ∈ CK̂0×1, Θ̂0 ∈ RK̂0×1;

1 Initialization: Θ̂(0)
0 = ∅ and K̂(0)

0 = 0, r(0) = z̄, t = 0;
2 while ∥r(t)∥2 > ϵ do
3 t← t+ 1;
4 Obtain the inserted angle θ̂(t) via (26);
5 Θ̂

(t,0)
0 = [(Θ̂

(t−1)
0 )T , θ̂(t)]T , K̂(t)

0 = K̂
(t−1)
0 + 1;

6 for i = 0 to I do
7 Calculate g

(t,i)
0 and H

(t,i)
0 according to (28)

and (29), respectively;
8 Update Θ̂

(t,i+1)
0 by (27);

9 end
10 Update Θ̂

(t)
0 ← Θ̂

(t,I)
0 ,

11 Update α̂(t) and residue r(t) by (30) and (31),
respectively;

12 if t ≥ T or ∥r(t−1)∥2 − ∥r(t)∥2 ≤ ϵ1 then
13 Break;
14 end
15 end
16 Return: Θ̂0 = Θ̂

(t)
0 , α̂ = α̂(t), K̂0 = K̂

(t)
0 .

[Θ̄
(t,0)
1 ; Φ̄

(t,0)
1 ; Θ̄

(t,0)
0 ] with Θ̄

(t,0)
1 = Θ̂

(t−1)
1 , Φ̄

(t,0)
1 = Φ̂

(t−1)
1

and Θ̄
(t,0)
0 = [(Θ̂

(t−1)
0 )T , θ̂(t)]T .

In order to search for an additional first-order path pair,
coarse estimates of the angle pair (ϑ̂(t), φ̂(t)) are again
obtained via search on two uniform G-dimensional grids
Ξt = {ϑ̃1, ϑ̃2, . . . , ϑ̃G} and Ξr = {φ̃1, φ̃2, . . . , φ̃G}:

(ϑ̂(t), φ̂(t)) = argmax
ϑ(t)∈Ξt

φ(t)∈Ξr

ϑ(t)<φ(t)

(
|(r(t−1))H(aT (ϑ

(t)) ◦ aR(φ(t)))|

+|(r(t−1))H(aT (φ
(t)) ◦ aR(ϑ(t)))|

)
.

(32)

We thus have a coarse estimate of the angle set
¯̄Θ(t,0) = [ ¯̄Θ

(t,0)
1 ; ¯̄Φ

(t,0)
1 ; ¯̄Θ

(t,0)
0 ] with ¯̄Θ

(t,0)
1 =

[(Θ̂
(t−1)
1 )T , ϑ̂(t)]T , ¯̄Φ

(t,0)
1 = [(Φ̂

(t−1)
1 )T , φ̂(t)]T and

¯̄Θ
(t,0)
0 = Θ̂

(t−1)
0 . The refinement steps of the two estimates

above via search on a continuous domain have the same
rationale as for the case illustrated in the previous subsection.
Due to the mixture of direct and first-order paths under the H1

hypothesis, the GN method may lead to unstable estimation
due to the rank-deficiency in Hessian when the difference
between DOD and DOA is not large 2. Therefore, we resort
to the LM method [45] for updating angle estimates.

For brevity, here we outline the LM iteration for the search
of an additional direct path since the search for an additional
first-order path follows the same flow with Θ̄(t,0) replaced by
¯̄Θ(t,0). The angle set is updated as Θ̄(t,i+1) = Θ̄(t,i) +h(t,i),
where

h(t,i) = −(H(t,i) + µ(t,i)IK̂(t))
−1g(t,i), (33)

2An example will be given to illustrate this problem

with H(t,i) and g(t,i) denoting the Hessian and gradient of
F̄ (Θ̄(t,i)) =∥ z̄ − A(Θ̄(t,i), Φ̄(t,i))A†(Θ̄(t,i), Φ̄(t,i))z̄ ∥22,
respectively. K̂(t) denotes the size of Θ̄(t,i), µ(t,i) is a damping
parameter. We emphasize that the quantities g(t,i) and H(t,i)

are different from those under H0 . In fact, g(t,i) should now
be partitioned as:

g(t,i) =
[
g
(t,i)
T ;g

(t,i)
R ;g′

0
(t,i)

]
, (34)

where g
(t,i)
T and g

(t,i)
R denote the gradients of F̄ with respect

to DOD’s and DOA’s of first-order paths, respectively, while
g′
0
(t,i) denotes the gradient of F̄ with respect to the DOA’s

of direct paths: closed-form expressions of these quantities are
given in (44) -(46) of Appendix B. Similarly, the matrix H(t,i)

is written as

H(t,i) =

 H
(t,i)
TT H

(t,i)
TR H

(t,i)
T0

H
(t,i)
RT H

(t,i)
RR H

(t,i)
R0

H
(t,i)
0T H

(t,i)
0R H

(t,i)
00

 , (35)

and explicit forms for the different blocks are given in (50)-
(58) of Appendix B.

We explicitly note here that paths with unequal DOD and
DOA are added in pairs by (32), namely, first-order paths
always appear in a paired, group-sparse manner. This group-
sparse characteristic is rare in the interference from direct
paths or grating lobes caused by sparse linear array (SLA).
When calculating derivatives in g(t,i) and H(t,i), the pairwise
constraint of the first-order paths must be considered. For
instance, when calculating the derivative of F̄ with respect to
ϑ̂(t), the derivative of both aT (ϑ̂

(t))◦aR(φ̂(t)) and aT (φ̂
(t))◦

aR(ϑ̂
(t)) should be calculated. This allows the algorithm to

leverage the group-sparsity of the first-order paths to enhance
the estimation accuracy.

The damping parameter µ(t,i) in (33) is selected by a line
search algorithm that is controlled by the gain ratio

ϱ(t,i) =
F̄ (Θ̄(t,i))− F̄ (Θ̄(t,i) + h(t,i))
1
2 (h

(t,i))H(µ(t,i)h(t,i) − g(t,i))
. (36)

Steps 9-14 in Algorithm 2 describe how this parameter is
obtained.

Once the refinement step is over, we obtain the angle
set Θ̄(t,T ) = [Θ̄

(t,I)
1 ; Φ̄

(t,I)
1 ; Θ̄

(t,I)
0 ] and the residual r

(t)
1

for the estimate of an additional direct path, and ¯̄Θ(t,T ) =

[ ¯̄Θ
(t,I)
1 ; ¯̄Φ

(t,I)
1 ; ¯̄Θ

(t,I)
0 ] and r

(t)
2 for the estimate of an addi-

tional pair of first-order paths. A decision on which model
better fits the observation is thus made based on the quantity
r(t) = ∥r(t)2 ∥2 − ∥r

(t)
1 ∥2 through

(Θ̂
(t)
1 , Φ̂

(t)
1 , Θ̂

(t)
0 ) =

{
(Θ̄

(t,I)
1 , Φ̄

(t,I)
1 , Θ̄

(t,I)
0 ) r(t) > δr

( ¯̄Θ
(t,I)
1 , ¯̄Φ

(t,I)
1 , ¯̄Θ

(t,I)
0 ) r(t) < δr

where δr is a suitably set threshold.
The proposed algorithm, named Compressed Sensing

method in Continuous Domain under hypothesis H1 (CSCD-
H1), is summarized in Algorithm 2 and, like CSCD-H0,
reduces to a kind of Group OMP (GOMP) as the refinement
phase is omitted.

We illustrate the convergence of the GN and LM methods
implementation of the refined estimation through a simulation
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Algorithm 2: CSCD-H1 algorithm
Input: z̄, Ξt, Ξr and T , I , J ,ϵ,ϵ2, δr ;
Output: K̂1, K̂0, Θ̂, Φ̂, β̂;

1 Initialization: Θ̂(0)
1 = ∅, Φ̂(0)

1 = ∅, Θ̂(0)
0 = ∅,

r(0) = z̄, t = 0;
2 while ∥r(t)∥2 > ϵ do
3 t← t+ 1;
4 Obtain the angle of direct path θ̂(t) via (26);
5 Obtain Θ̄(t,0) = [Θ̄

(t,0)
1 ; Φ̄

(t,0)
1 ; Θ̄

(t,0)
0 ] where

Θ̄
(t,0)
1 = Θ̂

(t−1)
1 , Φ̄

(t,0)
1 = Φ̂

(t−1)
1 and

Θ̄
(t,0)
0 = [(Θ̂

(t−1)
0 )T , θ̂(t)]T ;

6 for i = 0 to I do
7 Calculate g(t,i) and H(t,i) using (34) and (35),

respectively;
8 Calculate h(t,i) and ϱ(t,i) by (33) and (36),

respectively;
9 j ← 0;

10 while ϱ(t,i) ≤ 0 and j < J do
11 Update j ← j + 1, µ(t,i) ← 2jµ(t,i);
12 Calculate h(t,i) and ϱ(t,i) by (33) and (36),

respectively;
13 end
14 µ(t,i+1) = µ(t,i) max{ 13 , 1− (2ϱ(t,i) − 1)3};
15 Θ̄(t,i+1) = Θ̄(t,i) + h(t,i);
16 end
17 r

(t)
1 = z̄ − Ā(Θ̄(t,I), Φ̄(t,I))Ā†(Θ̄(t,I), Φ̄(t,I))z̄;

18 Obtain the inserted angle pair (ϑ̂(t), φ̂(t)) via (32);
19 Obtain ¯̄Θ(t,0) = [ ¯̄Θ

(t,0)
1 ; ¯̄Φ

(t,0)
1 ; ¯̄Θ

(t,0)
0 ] where

¯̄Θ
(t,0)
1 = [(Θ̂

(t−1)
1 )T , ϑ̂(t)]T , ¯̄Φ

(t,0)
1 =

[(Φ̂
(t−1)
1 )T , φ̂(t)]T and ¯̄Θ

(t,0)
0 = Θ̂

(t−1)
0 ;

20 Optimize the ¯̄Θ(t,0) based on the LM method
given by step 6 to step 16 with Θ̄(t,0) replaced
by ¯̄Θ(t,0);

21 r
(t)
2 = z̄ − Ā( ¯̄Θ(t,I), ¯̄Φ(t,I))Ā†( ¯̄Φ(t,I), ¯̄Θ(t,I))z̄;

22 Calculate r(t) = ∥r(t)2 ∥2 − ∥r
(t)
1 ∥2;

23 if r(t) < δr then
24 (Θ̂

(t)
1 , Φ̂

(t)
1 , Θ̂

(t)
0 ) = (Θ̄

(t,I)
1 , Φ̄

(t,I)
1 , Θ̄

(t,I)
0 );

25 r(t) = r
(t)
2 .

26 else
27 (Θ̂

(t)
1 , Φ̂

(t)
1 , Θ̂

(t)
0 ) = ( ¯̄Θ

(t,I)
1 , ¯̄Φ

(t,I)
1 , ¯̄Θ

(t,I)
0 );

28 r(t) = r
(t)
1 .

29 end
30 if t ≥ T or ∥r(t−1)∥2 − ∥r(t)∥2 ≤ ϵ2 then
31 Break;
32 end
33 end
34 Return: Θ̂ = [Θ̂

(t)
1 , Φ̂

(t)
1 , Θ̂

(t)
0 ], Φ̂ = [Φ̂

(t)
1 , Θ̂

(t)
1 , Θ̂

(t)
0 ],

β̂ = Ā†(Θ̂, Φ̂)z̄, length of Θ̂(t)
1 as K̂1, length of

Θ̂
(t)
0 as K̂0

example. In Fig. 4, we compared the curves of the loss
function F with the number of iterations during the optimiza-
tion processes using both GN and LM methods. Specifically,

Fig. 4a demonstrates similar convergence behavior for both
methods in the scenarios with a large difference between DOD
and DOA angles. However, when small differences between
DOD and DOA angles are present, as shown in Fig. 4b, the
GN method faces challenges in achieving convergence. The
instability of the GN method can be attributed to the rank-
deficiency in the Hessian matrix. Conversely, the LM method
incorporates a regularization term to address this problem and
demonstrates more robustness in these scenarios.

0 1 2 3 4 5 6 7 8 9

iteration number

45

46

47

48

49

50

F
 

GN

LM

0 1 2 3 4 5 6 7 8 9

iteration number

45

46

47

48

49

50

F
 

GN

LM

(a)

0 1 2 3 4 5 6 7 8 9

iteration number

44.5

45

45.5

46

46.5

47

F
 

GN

LM

0 1 2 3 4 5 6 7 8 9

iteration number

44.5

45

45.5

46

46.5

47

F
 

GN

LM

(b)

Fig. 4: Plots of cost function against the iteration number:
(a) First-order path with (−1.9◦,−13.2◦), (b) First-order path
with (−1.9◦,−3.2◦).

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation setup

In this section, numerical simulations are conducted to
evaluate the performance of the proposed algorithm. For the
proposed detection scheme, CSCD-H0 is adopted under H0,
and CSCD-H1 is adopted under H1, so the detector is named
GLRT-CSCD for simplicity. Likewise, we have GLRT-OMP
algorithms for the detectors with OMP-based estimators. We
include the IAA-based and the least absolute shrinkage and
selection operator (LASSO)-based methods in the GLRT test,
denoting them as GLRT-IAA and GLRT-LASSO, respectively.

Note that the angle estimation is crucial for the detection
performance, we compare the accuracy of different methods.
We conduct comparisons between the OMP, IAA [46], and
LASSO [47] methods against our proposed CSCD-H0 algo-
rithm in H0 scenario. Similarly, we evaluate the performance
of the GOMP, multipath IAA (MPIAA) [28], and group
LASSO (GLASSO) [48] methods against our proposed CSCD-
H1 algorithm in H1 scenario. With the estimated angle, GLRT
is applied to detect whether the first-order indirect path exists.

Other simulation parameters are set as follows:
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Fig. 5: Real and virtual layouts of the MIMO radar antennas, (a) ULA, (b) SLA.

1) The radar operates at 79 GHz with carrier wavelength
λ = 3.8mm. The number of transmitting elements
MT = 6 and receive element MR = 8. We first con-
duct simulations with a uniform linear array (ULA) as
illustrated in Fig. 5a. Moreover, by maintaining constant
values for MT and MR, we ensure a consistent upper
bound in detection performance and subsequently verify
the performance of an SLA as shown in Fig. 5b.

2) The noise is randomly generated according to a Gaussian
distribution with the variance σ2 = 1. The path ampli-
tudes are generated according to β ∼ CN (0, σ2

βI2K1
),

α ∼ CN (0, σ2
αIK0

). The signal-to-noise-ratio (SNR) of
direct paths and first-order paths are defined as σ2

α/σ
2

and σ2
β/σ

2, respectively.
3) The grids are obtained by discretizing angle space

[−90◦, 90◦] with a step of 2◦. The max iteration of
the OMP, GOMP, CSCD-H0 and CSCD -H1 estimator
are set to T = 10. The stop criterion parameters are
set as I = 10, ϵ =

√
σ2MTMR, ϵ1 = 0.4 and

ϵ2 = 0. For CSCD-H1, we set parameters δr = σ and
J = 3. The iteration number of IAA in H0 and H1

hypothesis are both set to 5, the regularization parameter
of LASSO estimators are set as 2σ

√
2logG in H0 and

2σ
√
2log(G2) in H1, respectively.

4) We evaluate the root-mean-squared-error (RMSE) of the
angle estimation for the proposed algorithms. Notice
that the algorithms return a bunch of estimations, corre-
sponding to either true paths or erroneous ones, and the
paths cannot be detected if there is no estimation close to
its direction. We thus refer to the RMSEs conditioned on
the correct path estimation. In undertaking simulations, a
path is declared to be correctly estimated if its estimation
error is smaller than the array beamwidth. Specifically,
the RMSEs of the first-order path and direct path are
calculated by

RMSE1 =

√√√√√√√√√
1

MC

MC∑
m=1

1
2|Ωm

1 |

·
∑

j∈Ωm
1

 (ϑ
(m)
j − ˆ̇

θ
(m)
j )2

+ (φ
(m)
j − φ̂(m)

j )2

 , (37)

RMSE0 =

√√√√ 1

MC

MC∑
m=1

1

|Ωm
0 |

∑
j∈Ωm

0

(θ
(m)
j − θ̂(m)

j )2, (38)

TABLE I: Complexity analysis

Scenario method computational complexity

H0

CSCD-H0 O(GMTMRK0 +K2
0 (MTMR)2I)

OMP O(GMTMRK0)

IAA O((G2MTMR +MTM3
R)J)

LASSO O(G2MTMR +G3)

H1

CSCD-H1 O(G2MTMRU + U2(MTMR)2I)

GOMP O(G2MTMRU)

MPIAA O((G4MTMR +MTM3
R)J)

GLASSO O(G4MTMR +G6)

respectively, where MC is the number of runs, Ωm
1 and

Ωm
0 are the index set of the identified first-order paths

and direct path in the m-th simulation respectively; | · |
denotes the cardinality of the input set; ϑ(m)

j , φ(m)
j are

the DOD and DOA the j-th first-order path in the m-th
run and θ(m)

j is the DOA of j-th direct path, while ϑ̂(m)
j ,

φ̂
(m)
j and θ̂(m)

j are the estimates, respectively.
5) The detection performance of the proposed GLRT de-

tector is compared with the performance bound derived
in Sec. III-B. Specifically, the upper bound of Pd is
calculated by (20) under perfect angle estimation.

6) Unless specifically stated, the probability of false alarm
is set to be 10−3, and the numbers of independent trials
used for simulating the probabilities of false alarm and
detection are 100/Pfa and 104, respectively.

B. Complexity Analysis

To evaluate the complexity of the proposed CSCD-based
estimator, we consider the aforementioned grid-based methods
comparison, i.e., the OMP-based, LASSO-based, and IAA-
based estimators. In these comparisons, the continuous spatial
space is discretized into G grid points in H0 scenario and
G2 grid points in H1 scenario. The overall computational
complexity of the algorithms depends on the number of itera-
tions and the computational complexity per iteration. For the
CSCD-H0, the computational complexity of the coarse and the
refined estimation are O(GMTMR) and O(K0(MTMR)

2I),
respectively. The number of iterations is proportional to the
number of direct paths K0. Therefore, the overall computa-
tional complexity is O(GMTMRK0 + K2

0 (MTMR)
2I). For

the CSCD-H1, the number of iterations is proportional to
U = K1 + K0, the overall computational complexity is
O(G2MTMRU + U2(MTMR)

2I). The OMP-based estima-
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tors are simplified versions of CSCD without fine estimation.
Therefore, the computational complexity is O(GMTMRK0)
underH0 and O(G2MTMRU) underH1, respectively. For the
IAA-based estimator,the overall computational complexity is
O((G2MTMR +MTM

3
R)J) under H0 and O((G4MTMR +

MTM
3
R)J) under H1, where J denotes the number of it-

erations. For the LASSO-based estimator, the complexity is
O(G2MTMR + G3) under H0 and O(G4MTMR + G6)
under H1. We summarize the computational complexity of
these methods in TABLE. I. It can be seen that the proposed
method, due to the addition of refined angle estimation, has
a slightly higher computational complexity than the OMP-
based estimator, but it is significantly lower than that of the
IAA-based and LASSO-based estimators. Moreover, we note
that the computational complexity of the refined estimation in
our proposed method is independent of grid density. We can
achieve accurate estimation in the continuous domain with a
coarser grid and a lower computational load through refined
estimation.

C. Estimation Performance

In this subsection, we verify the estimation performance
of the proposed CSCD-H0 and CSCD-H1 algorithms. In the
ULA array, we check the accuracy of direct path estimation in
H0 scenario and first-order path estimation in H1 scenario in
Fig. 6a and Fig. 6c. As expected, the RMSE of all estimators
decreases as SNR grows, indicating that larger SNR leads
to better accuracy in estimation. LASSO-based, IAA-based
and OMP-based estimators suffer from off-grid issues, so
their accuracy is consistently worse than that of the proposed
algorithm. We notice that when the sparsity decreases (K0 of
Fig. 6a, or K1 of Fig. 6c from 1 to 3), a decline in the accuracy
could be observed. This phenomenon can be explained by
many existing works in CS [43]: the CS-based estimators take
advantage of the sparsity inside signal for estimation and the
performance is getting worse as the sparsity decreases.

In the SLA array, we continue to observe that the proposed
CSCD-based method exhibits improved angle estimation per-
formance as the SNR increases. However, the RMSE of
the OMP-based, IAA-based, and LASSO-based estimators
remains largely unchanged in both H0 and H1 scenarios.
This phenomenon can be attributed, in part, to our method
of calculating RMSE. We assess accuracy based on (37) and
(38), considering only paths that have been correctly identified,
with estimation errors smaller than the array beamwidth. The
on-grid methods experience a decrease in the rate of correctly
identified paths compared to the ULA array, and they are
constrained by grid resolution, which makes it challenging for
RMSE to improve with increasing SNR.

However, unlike the ULA with half-lambda separation, the
basis of the SLA array could have a large correlation. In Fig.
7a, given a direct path θ = 10◦, we computed its correlation
⟨a(θ),a(ψ)⟩ with the basis ψ ∈ [−90◦, 90◦] and observe
that SLA has a narrower beamwidth but higher sidelobes.
Given a first-order path (ϑ, φ) = (10◦,−10◦), the correlation
⟨aT (ϑ) ◦aR(φ),a(ψ)⟩ are plotted in Fig. 7b, where a distinct
peak can be observed in SLA even if the signals are not

matched. It indicates that, in SLA, the algorithm could make
a mistake when doing basis selection and the performance of
GLRT could be affected as well.

D. Detection performance

In order to assess the detection performance of the proposed
system, we need first to determine a method to set the
detection threshold. In fact, unlike the ideal GLRT in (13),
the GLRT-CSCD detector using CSCD-H0 and GCSD-H1 for
estimation purposes no longer exhibits CFAR behavior, due
to the inevitable errors occurring in the estimation procedures
outlined in the previous section. It is thus necessary at first to
undertake a sensitivity analysis, in order to assess if outright
adoption of the detection threshold of the ideal GLRT, as
defined in (19), yields a false alarm probability which at least
preserves the order of magnitude of the designed value. To
this end, we set a nominal value Pfa = 10−3, select the
corresponding detection threshold through inversion of (19),
and then evaluate the false alarm probability achieved by the
GLRT-LASSO, GLRT-IAA, GLRT-OMP and proposed GLRT-
CSCD. The results are reported in Table II. Even though our
analysis is far from being exhaustive, the results clearly show
that the actual false alarm probability of GLRT-CSCD stays
below the nominal level for a ULA configuration under all the
inspected values of σ2

α/σ
2. The SLA configuration appears

a little less favorable, especially as K0 increases. This is
due to the higher sidelobes that such an array configuration
generates, with a consequent ”spillover” of the direct paths
into the first-order path subspace, but the order of magnitude
of the actual Pfa is again preserved. For the GLRT-OMP
and GLRT-LASSO algorithms, the false alarm probability for
both ULA and SLA is higher. And in the SLA, the order of
magnitude of the actual Pfa can no longer be preserved. Also,
we have observed a significant increase in the case of GLRT-
IAA method in SLA scenarios. The worst Pfa is found in
GLRT-IAA, at which point neither ULA nor SLA retains the
magnitude of Pfa.

In Fig. 8, the Pd of GLRT-LASSO, GLRT-IAA, GLRT-
OMP, and GLRT-CSCD are compared with the upper bound.
For the ULA results given by Fig. 8a, the detection perfor-
mance of GLRT-CSCD with K1 = 1 is close to the upper
bound. As K1 = 3 in Fig. 8b, the performance gap between
the proposed detectors and the upper bound becomes larger
due to the degradation in estimation performance. This is also
validated by our RMSE simulation given by Fig. 6c. In the
SLA, we can see from Fig. 8b, that the discrepancy between
the proposed detectors and the upper bound is larger than
that of ULA. The proposed GLRT-CSCD still benefits from a
larger K1 to achieve better detection performance. However,
the angle estimation performance of the LASSO, IAA and
OMP are much worse than that of the proposed algorithm,
so its detection performance is considerably below the upper
bound.

To compare detection performance across different array
sizes, we set up simulations with MT = 3, MR = 4
(MTMR = 12), MT = 4, MR = 6 (MTMR = 24) and
MT = 6, MR = 8 (MTMR = 48). For simplicity, we adopt
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Fig. 6: Plots of RMSE:(a) RMSE0 in ULA, (b) RMSE0 in SLA, (c) RMSE1 in ULA, (d)RMSE1 in SLA.

TABLE II: Simulation of Pfa with MTMR = 48

Array K0

GLRT-CSCD GLRT-OMP GLRT-LASSO GLRT-IAA
σ2
α

σ2 = 0 dB σ2
α

σ2 = 20 dB σ2
α

σ2 = 0 dB σ2
α

σ2 = 20 dB σ2
α

σ2 = 0 dB σ2
α

σ2 = 20 dB σ2
α

σ2 = 0 dB σ2
α

σ2 = 20 dB

ULA
1 1.74× 10−4 3.00× 10−5 9.80× 10−3 2.30× 10−3 2.10× 10−3 5.40× 10−3 1.36× 10−2 2.64× 10−3

3 3.00× 10−4 1.00× 10−5 5.80× 10−3 7.00× 10−4 1.12× 10−3 3.90× 10−3 1.44× 10−2 3.94× 10−3

SLA
1 4.50× 10−4 1.50× 10−4 2.12× 10−2 2.02× 10−2 1.05× 10−3 2.18× 10−1 1.08× 10−2 2.39× 10−1

3 8.50× 10−4 5.30× 10−4 1.68× 10−2 5.70× 10−3 4.00× 10−4 1.64× 10−1 1.00× 10−2 2.41× 10−1
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Fig. 7: Comparison of (a) ⟨a(θ),a(ψ)⟩ in H0 scenario, and
(b) ⟨aT (ϑ) ◦ aR(φ),a(ψ)⟩ in H1 scenario.

ULAs with half-wavelength element spacing and the detection
performances are evaluated when K0 = 1 and K1 = 1.
As reported in Fig. 9, the simulated performance is close to
the upper bound given by the theoretical analysis. Detection

performance improves with more degrees of freedom, even
though the gain rapidly decreases once MTMR is made
sufficiently large as compared to the values of K0 and K1.

E. Experimental results

Next, we evaluate the target detection performance of the
proposed detector by using the experimental data. The data
are obtained by a millimeter-wave f0 = 77 GHz MIMO
radar where MT = 8 transmitting antenna and MR = 16
receiving antenna, all evenly spaced. The spacing at the
transmitter side is 4.5λ, and the spacing at the receiver side
is 4λ. Fig.10a displays a typical automotive radar driving
environment, where the road is flanked by concrete walls. The
target is situated between these reflective surfaces, leading
to multipath propagation of its echoes. Considering that the
vehicle is in motion and all targets have a non-zero Doppler
shift, to distinguish between stationary and moving targets in
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Fig. 8: Pd versus σ2
β/σ

2 for ULA with (a) K1 = 1 and (b) K1 = 3, SLA with (c) K1 = 1 and (d) K1 = 3.
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2 for different MTMR.

the scene, automotive radar can utilize the vehicle’s speed by
an Inertial Measurement Unit (IMU). The IMU calculates the
vehicle’s velocity by measuring linear acceleration and angular
velocity. Then, based on the estimated angle of the detection
point, its relative radial velocity is projected along the direction
of the vehicle’s velocity. If the projected velocity matches
the vehicle’s own speed, the detection point is identified as
a stationary target; otherwise, it is from a moving target.

However, as illustrated in Fig.10b, ghosts caused by multipath
lead to mismatches, resulting in the appearance of moving
ghost targets, significantly impacting the vehicle’s perception
and decision-making process.

Moving targetMoving target
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Fig. 10: Experimental scenario, (a) Photograph of the experi-
mental scenario, (b) Points clouds with blue ellipse indicating
ghosts induced by first-order paths

In Fig. 11, we employ the aforementioned GLRT-OMP,
GLRT-LASSO, GLRT-IAA, and the proposed GLRT-CSCD
to detect and eliminate ghost targets. It can be observed that
the GLRT-OMP, GLRT-LASSO, and GLRT-IAA methods fail
to successfully remove all ghost targets in the scene, they
inadvertently remove some direct paths from stationary targets.
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Fig. 11: Detection and elimination of ghost targets using (a) GLRT-OMP, (b) GLRT-LASSO, (c) GLRT-IAA and (d) GLRT-
CSCD.

In contrast, the proposed GLRT-CSCD method effectively
eliminates all ghost targets while preserving the direct paths
of stationary targets.

VI. CONCLUSIONS

In this paper, we investigate the detection of ghost targets
for automotive radar in the presence of multipaths. The ex-
istence of indirect paths is modeled as a binary composite
hypothesis test and a GLRT detector is proposed to determine
whether indirect paths exist in a delay-Doppler cell. If a cell
contains indirect paths, the ghost targets could be removed
and the desired direct paths can be preserved. Based on the
theoretical analysis of the detection performance of GLRT
under perfect angle estimation, we have derived a convex
waveform optimization approach that can enhance detection
performance. Considering practical scenarios with unknown
angles of both direct and indirect paths, we propose a sparsity-
enforced CS approach to estimate the angular parameters in
the continuous domain. Simulation results indicate that the
proposed algorithm outperforms on-grid estimators, thereby
leading to better detection performance. The false alarm rate
of the proposed detector could be controlled and the detection
performance is close to the theoretical bound in the ULA case.
Finally, the experimental results demonstrate the effectiveness
of the proposed method.

APPENDIX

A. Derivation of g0 in (28) and H0 in (29)

For clarity, we drop the superscript (t, i) and input variable
of the functions in some of the following derivation, i.e. F =

F (Θ̂
(t,i)
0 ) and Ā0 = Ā(Θ̂

(t,i)
0 ).

Denote F = fHf with f = z̄ − ĀĀ†z̄, the gradient of F
with respect to Θ0 ∈ RK0×1 can be calculated by

g0 =

[
∂F

∂θ1
,
∂F

∂θ2
, . . . ,

∂F

∂θK0

]T
, (39)

where the q-th element [g0]q given as ∂F
∂θq

= 2Re(( ∂f
∂θq

)Hf).
Following the derivation in [49], we obtain

[g0]q = −2Re
{
Tr{Ā†

0z̄z̄
HP0Āq}

}
, (40)

where Āq = ∂Ā0

∂θq
= [0,0, . . . , ∂ā

∂θq
, . . . ,0] with ∂ā

∂θq
=

∂ā(θq)
∂θq

.

The Hessian H0 denotes approximate second order partial
derivative of F with respect to Θ0. In this matrix, the (q, p)-th

element is denoted as [H0]q,p = 2Re

{(
∂f
∂θq

)H
∂f
∂θp

}
and can

be calculated as follows

[H0]q,p =2Re
{
Tr{ĀpĀ

†
0z̄z̄

H(Ā†
0)

HĀH
q P0}

}
+ 2Re

{
Tr{ĀH

p P0z̄z̄
HP0ĀqĀ

†
0(Ā

†
0)

H}
}
.

(41)

Defining a partial matrix D0 =
[

∂ā
∂θ1

, ∂ā
∂θ2

, . . . , ∂ā
∂θK0

]
, then

the matrix form of g and H0 can be given by (28) and (29),
respectively.

B. Derivation of g’s in (34) and H’s in (35)

For clarity, we drop the superscript and input variable of
the functions in some of the following derivations, i.e. F̄ =
F̄ (Θ̄(t,i)) and Ā = Ā(Θ̄(t,i), Φ̄(t,i)). In the following, we
derive the matrix expression of gT and HTT, the derivation
for gR, g′

0, HTR, HRR, HRT, H0T, HT0, HR0, H0R, H00

follow similar arguments and are omitted for brevity. Similar
with (40), we know the q-th element of gT can be given as

[gT]q = −2Re{Tr{Ā†z̄z̄HP1Ā
′
q}},

= −2Re
{
Tr{ΓĀ′

q}
}
, (42)

where Γ = Ā†z̄z̄HP1 ∈ C(2K1+K0)×MTMR , Ā′
q =

∂Ā
∂ϑq

= [0,0, . . . , ∂a1

∂ϑq
, . . . ,0, . . . , ∂a2

∂ϑq
, . . . ,0] with ∂a1

∂ϑq
=

Σ
1/2
x

∂aT (ϑq)⊗aR(φq)
∂ϑq

and ∂a2

∂ϑq
= Σ

1/2
x

∂aT (φq)⊗aR(ϑq)
∂ϑq

. We
divide the matrix Γ into three submatrices, denoted as
Γ = [Γ1,Γ2,Γ0], where Γ1,Γ2 ∈ CK1×MTMR , Γ0 ∈
CK0×MTMR . Then (42) can be rewritten as

[gT]q = −2Re
{
ΓT
1 (q)(

∂a1
∂ϑq

)T + ΓT
2 (q)(

∂a2
∂ϑq

)T
}
, (43)

where ΓT
1 (q) and ΓT

2 (q) denote the q row of Γ1 and
Γ2, respectively. Define two partial matrices: DT1 =[
∂a1

∂ϑ1
, ∂a1

∂ϑ2
, . . . , ∂a1

∂ϑK1

]
, DT2 =

[
∂a2

∂ϑ2
, ∂a2

∂ϑ2
, . . . , ∂a2

∂ϑK1

]
. We can

then obtain the matrix form of gT given by

gT = −2Re{diag{Γ1DT1 + Γ2DT2}}. (44)
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Similarly, we define DR1 =
[
∂a1

∂φ1
, ∂a1

∂φ2
, . . . , ∂a1

∂φK1

]
, DR2 =[

∂a2

∂φ2
, ∂a2

∂φ2
, . . . , ∂a2

∂φK1

]
and D0 =

[
∂ā
∂θ1

, ∂ā
∂θ2

, . . . , ∂ā
∂θK0

]
, and

obtain

gR = −2Re{diag{Γ1DR1 + Γ2DR2}}, (45)
g′
0 = −2Re{diag{Γ0D0}}. (46)

The Hessian HTT denotes second order partial derivative
with respect to Θ1, in which the (q, p)-th element is

[HTT]q,p =2Re
{
Tr{Ā′

pĀ
†z̄z̄H(Ā†)H(Ā′

q)
HP1}

}
+ 2Re

{
Tr{(Ā′

p)
HP1z̄z̄

HP1Ā
′
qĀ

†(Ā†)H}
}
,

(47)

where the first item

Tr{Ā′
pĀ

†z̄z̄H(Ā†)H(Ā′
q)

HP1}

=Sp,q(
∂a1
∂ϑq

)HP1
∂a1
∂ϑp

+ [S]p,q+K1(
∂a2
∂ϑq

)HP1
∂a1
∂ϑp

+[S]p+K1,q(
∂a1
∂ϑq

)HP1
∂a2
∂ϑp

+ [S]p+K1,q+K1
(
∂a2
∂ϑq

)HP1
∂a2
∂ϑp

with S = Ā†z̄z̄H(Ā†)H , and the second item can be rewritten
as

Tr{(Ā′
p)

HP1z̄z̄
HP1Ā

′
qĀ

†(Ā†)H}

=[C]q,p(
∂a1
∂ϑp

)HX
∂a1
∂ϑq

+ [C]q+K1,p(
∂a1
∂ϑp

)HX
∂a2
∂ϑq

+[C]q,p+K1(
∂a2
∂ϑp

)HX
∂a1
∂ϑq

+ [C]q+K1,p+K1(
∂a2
∂ϑp

)HX
∂a2
∂ϑq

with X = P1z̄z̄
HP1 and C = Ā†(Ā†)H . To represent HTT

in matrix form, we divide matrices S and C into

S =

[
S1 S10

S01 S0

]
, (48)

C =

[
C1 C10

C01 C0

]
, (49)

where S1,C1 ∈ C2K1×2K1 ,S10,C10 ∈ C2K1×K0 , S01,C01 ∈
CK0×2K1 and S0,C0 ∈ CK0×K0 . Then, we obtain

HTT = 2Re
{
Eh(DT)

HP1DT ⊙ ST
1 E

T
h

}
+2Re

{
Eh((DT)

HXDT)
T ⊙C1E

T
h

}
, (50)

where Eh = [IK1 , IK1 ] ∈ RK1×2K1 , DT = [DT1,DT2].
Similarly, we define DR = [DR1,DR2] and obtain

HTR = 2Re
{
Eh(DT)

HP1DR ⊙ STET
h

}
+2Re

{
Eh((DR)

HXDT)
T ⊙CET

h

}
, (51)

HRT = 2Re
{
Eh(DR)

HP1DT ⊙ ST
1 E

T
h

}
+2Re

{
Eh((DT)

HXDR)
T ⊙C1E

T
h

}
, (52)

HRR = 2Re
{
Eh(DR)

HP1DR ⊙ ST
1 E

T
h

}
+2Re

{
Eh((DR)

HXDR)
T ⊙C1E

T
h

}
, (53)

HT0 = 2Re
{
Eh

(
(DT)

HP1D0 ⊙ ST
01

)}
+2Re

{
Eh

(
((D0)

HXDT )
T ⊙C10

)}
, (54)

HR0 = 2Re
{
Eh

(
(DR)

HP1D0 ⊙ ST
01

)}
+2Re

{
Eh

(
((D0)

HXDR)
T ⊙C10

)}
, (55)

H0T = 2Re
{(

(D0)
HP1DT ⊙ ST

10

)
ET

h

}
+2Re

{(
((DT)

HXD0)
T ⊙C01

)
ET

h

}
, (56)

H0R = 2Re
{(

(D0)
HP1DR ⊙ ST

10

)
ET

h

}
+2Re

{(
((DR)

HXD0)
T ⊙C01

)
ET

h

}
, (57)

H00 = 2Re
{
DH

0 P1D0 ⊙ ST
0

}
+2Re

{
(DH

0 XD0)
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}
. (58)
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