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Abstract—This paper presents a statistical signal processing-
based algorithmic approach to enhance the compute signal-to-
noise ratio (compute SNR) of 6T SRAM-based analog in-memory
computing (IMC) architectures which have recently emerged
as an attractive alternative to mainstream digital accelerators
for machine learning workloads due to their superior energy
efficiency and compute densities. However, today, the compute
SNR of analog IMCs is limited by device parameter variations
and noise. To overcome this limitation, we propose a maximum
likelihood (ML)-based statistical error compensation (MLEC)
technique to improve the accuracy of binary dot-products (DPs)
realized in 6T (six transistor) SRAM-based analog IMC archi-
tectures. The MLEC method involves exploiting the symmetric
nature of the 6T SRAM bitcell to extract multiple observations
efficiently and employ them for detection purposes. MLEC meth-
ods involving two (MLEC-2) and four (MLEC-4) observations
are proposed along with efficient architectures to realize them in
hardware, e.g., distribution-aware and energy-aware approxima-
tions of MLEC-4. Simulations in a commercial 28nm CMOS
process demonstrate that the proposed methods increase the com-
pute SNR for the commonly used 144-dimensional DP by 5dB-
to-12dB. This improvement in the bank-level compute SNR
leads to a network-level accuracy improvement of up to 11%
when a ResNet-20 (CIFAR-10 dataset) network is implemented
on the IMC. Employing energy models of the IMC, the energy
overhead of MLEC is estimated to lie between 3%-to-10%
resulting in up to 45.6% and 18% increase in energy efficiency
(1b-TOPS/W) for a target SNR of 20dB and ResNet-20 accuracy
of 90% on the CIFAR-10 dataset, respectively, compared to a
conventional (uncompensated) 6T SRAM-based IMC.

Index Terms—In-memory computing, statistical error compen-
sation, maximum likelihood detection.

I. INTRODUCTION

DEEP neural networks (DNNs), with their unmatched in-
ference capability, continue to transform diverse applica-

tion areas such as computer vision [1], [2], natural language
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processing [3], [4], autonomous driving [5], and many others.
However, these networks tend to be overparameterized with the
largest of these reaching into >100 trillion [6] parameters today.
Such large parameter counts lead to high computational com-
plexity, storage requirements, and energy consumption. The en-
ergy consumption and latency of DNN-based machine learning
workloads are dominated by the energy cost of data move-
ment [7], thereby preventing their deployment on resource-
constrained Edge platforms.

In-memory computing (IMC) emerged in 2014 [8], [9] as
an alternative to the mainstream digital accelerators and as a
means to alleviate memory access costs. IMCs realize their
energy efficiency and throughput benefits by embedding analog
computations within the bitcell array. Since 2014, numerous
IMC integrated circuits [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25] have appeared
using a variety of memory types and cell architectures to imple-
ment high-dimensional matrix-vector-multiplication (MVM) –
a kernel that dominates the computational complexity in DNNs.
Due to their ability to realize such high-dimensional MVMs,
IMCs have recently been suggested [26], [27] for implementing
the baseband processing of massive multi-input multi-output
(MIMO) wireless systems.

Of the diverse types of IMCs, SRAM-based ones are most
popular due to their clear energy efficiency (13×) and com-
pute density (7×) advantages over digital accelerators [28].
However, the intrinsic analog nature of SRAM-based IMCs
renders their computations susceptible to noise and process
variations [11], [12], [13] thereby limiting their computational
signal-to-noise-and-distortion ratio (compute SNR). Conse-
quently, many IMC prototype works report a considerable drop
of up to 7% in accuracy for an image classification task with a
simple dataset as CIFAR-10 [13], [14], [15], [16] over floating-
point digital implementations. These limits on the compute
SNR of IMCs hinders their deployment in both machine learn-
ing and massive MIMO wireless systems in spite of their enor-
mous advantages in energy efficiency and latency over digital
accelerators.

To address this loss in compute accuracy of IMCs, noise-
training algorithms have been proposed [29], [30], [31] such
that the resulting models exhibit resilience to hardware noise.
A disadvantage of these methods is that they are network and
dataset specific, hence may not generalize to other tasks, and are
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Fig. 1. The ISWP architecture: block diagram of the IMC array (left) and the circuit schematic of a single ADC column with VWL and VBL responses
(right).

computationally expensive. As an alternative, signal processing
methods [32], [33] have recently been proposed to enhance the
compute accuracy of IMC architectures agnostic to the appli-
cation. These methods obtain SNR-optimal design parameters
of existing blocks in the IMC architecture, e.g., determining
the optimal clipping levels for the column analog-to-digital
converters (ADCs).

In contrast, in this paper, we explore the use of statistical
signal processing methods to develop a class of algorithmic
approaches to enhance the compute SNR of 6T SRAM-based
IMCs. While [32], [33] focus on SNR-optimization by tuning
the design parameters of existing blocks, methods proposed in
this paper focus on compensating for noise and thereby intro-
duce additional processing. Furthermore, in contrast to noise-
aware training methods, our method operates at the level of an
MVM, which is a core computation in most AI applications,
and hence is general. Referred to as Maximum Likelihood-
based statistical Error Compensation (MLEC), these methods
leverage the circuit architecture of a 6T SRAM-based IMC to
extract multiple observations efficiently and employ them to re-
alize low-complexity maximum likelihood detection schemes.
In doing so, this paper goes beyond previous works [32] by
introducing an error compensation functionality into the IMC
architecture to enhance its accuracy. This paper expands on the
preliminary results presented in [34] by: 1) proposing a diversity
of MLEC methods with varying accuracy enhancement vs.
overhead trade-off, 2) demonstrating accuracy improvement at
both MVM- and network-level tasks, and 3) quantifying the
accuracy-energy trade-off.

Simulations in a commercial 28 nm CMOS process demon-
strate that the proposed methods increase the compute SNR
for the commonly used 144-dimensional DP by 5 dB-to-12 dB
leading to a network-level classification accuracy improvement
of up to 11% for a ResNet-20 (CIFAR-10 dataset) network
implemented on the IMC. Employing energy models of the
IMC, the energy overhead of MLEC is estimated to be between

3%-to-10% resulting in a significantly improved accuracy-
energy trade-off compared to a conventional (uncompensated)
6T SRAM-based IMC.

The rest of this paper is organized as follows. Section II
introduces the background, Section III describes our proposed
MLEC methods, and Section IV presents simulation results to
validate MLEC’s effectiveness in both MVM-level task and
network-level task and provide the estimated energy overhead
and analyze the accuracy-energy trade-off. The Appendix pro-
vides the derivations, circuit implementation details, network
accuracy details, and energy models. Finally, Section V con-
cludes the paper.

II. BACKGROUND

This section provides the necessary background related to
a commonly used IMC architecture referred to as the input-
serial weight-parallel (ISWP) architecture [35] for comput-
ing an MVM and the impact of process variations on the
IMC output.

A. The ISWP Architecture

Fig. 1 shows the ISWP architecture storing BW -bit
N -dimensional column vectors w = [w1, . . . ,wM ] of a
M ×N weight matrix w across BW consecutive columns and
N consecutive rows of the SRAM bitcell array (BCA). Each
bitcell stores the k-th bit wk

i,j of the j-th element of wi where
i ∈ [M ], j ∈ [N ], k ∈ [BW ]. Note: we employ the notation
[A] = {1, 2, . . . , A}.

The ISWP architecture computes the MVM function wTx
between a BW -bit M ×N weight matrix w and a BX -bit
N -dimensional activation vector x. It does so by slicing x into
BXN -dimensional bit vectors and streaming it into the BCA
over BX clock cycles on the horizontal wordlines (WLs). Thus,
MBXBW binary dot products (DPs) are computed across
MBW bitline pairs (BLs/BLB) of the BCA over BX clock
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cycles. Since, the DP computation is realized in the analog
domain, the BL/BLB voltages are digitized via MBW analog-
to-digital converters (ADCs) followed by a powers-of-two sum-
ming (POTS) that combine the binary DPs to generate a multi-
bit output.

From the above description, it is clear that a binary DP is a
fundamental computation in an IMC. Henceforth, in the rest of
this paper, we focus on the computation of a binary DP, given by

yo =wTx=

N∑

i=1

wixi, (1)

where yo ∈ {0, 1, 2, · · · , N} is the ideal DP of two
N -dimensional binary vectors w = [w1, · · · , wN ]T (wi ∈
{0, 1}) and x= [x1, · · · , xN ]T (xi ∈ {0, 1}).

B. Impact of Process Variations

IMCs are analog computing architectures and hence suffer
from spatial variations in the parameters of the CMOS fabrica-
tion process, specifically the transistor threshold Vt variations.
This section quantifies the impact of process variations on the
ISWP architecture’s output.

The ISWP architecture realizes a binary DP by mapping
the Boolean variables (wi, xi) in (1) to corresponding physical
circuit variables (Ii, Ti) as follows (see Fig. 1 right):

(yo →ΔVBL) =

N∑

i=1

(wi → Ii)(xi → Ti)

CBL
, (2)

where ΔVBL = Vdd − VBL is the BL voltage discharge, Ii is the
cell current in the i-th bitcell (BC), Ti is the pulse width on the
i-th WL, and CBL is the BL capacitance.

The cell current Ii in the i-th BC discharges the BL for a
time duration Ti whenever the WL voltage is high, i.e., xi = 1,
and the BC stores wi = 1 thereby accomplishing a 1-b multiply.
Since N BCs are activated simultaneously, the charge drawn
from the BL by each BC is accumulated leading to the compu-
tation of the N -dimensional binary DP in (2).

However, threshold voltage (Vt) variations in the BC transis-
tors result in a variation in the cell current given by [36]:

σI

μI
=

ασVt

VWL − Vt
=⇒ σΔVBL

μΔVBL

=
1

√
yo

σI

μI
, (3)

where μI and σI are the mean and standard deviation, respec-
tively of the cell current I , α is a fitting parameter, VWL is the
WL voltage, Vt is the threshold voltage of the access transistor,
σVt is the standard deviation of Vt, and μΔVBL

and σΔVBL
are

the mean and standard deviation, respectively of the BL voltage
discharge ΔVBL.

Equation (3) shows that the impact of Vt variations on VBL

increases as VWL reduces. Circuit simulations in a commercial
28 nm CMOS in Fig. 2 shows that transistor Vt variations leads
to variations in the IMC’s output voltage VBL with a normalized
standard deviation σΔVBL/μΔVBL of 2.1% to 7.8% for a DP value
yo of 4 to 32 when VWL = 0.5V. Furthermore, the absolute
value of VBL variations increase with the ideal DP value yo since
many more (up to N ) BCs get activated and their cell currents
contribute to the BL discharge.

Fig. 2. The impact of process variations on the BL response ΔVBL obtained
via circuit simulations in a commercial 28 nm CMOS process when the WL
voltage is VWL = 0.5V and N = 32.

C. Stochastic Signal Model

The impact of process variations on the BL voltage is stochas-
tic since it is a function of the specific set of BCs activated
by the input vector. This makes it challenging to compensate
for them using circuit-level methods. In this paper, we develop
statistical signal processing methods described in Section III,
to compensate for BL voltage variations. To do so, we employ
the following signal model of the IMC computation [25]:

y1 =wT
βx=

N∑

i=1

βiwixi, (4)

where y1 is the IMC output in the presence of spatial variations,
wβ = [β1w1, · · · , βNwN ]T is a noisy weight vector reflecting
the impact of spatial variations, βi ∼N (1, σ2

β)wi ∼ Be(pw)
and xi ∼ Be(px) are i.i.d Bernoulli random variables. We fur-
ther assume that βi, wi, and xi are independent of each other
∀i. The value of σβ ranges from 0.06 to 0.26 in 28 nm CMOS
technology for a wordline voltage range of 0.5 V to 0.9 V.

D. Compute SNR

We employ the compute SNR defined as

SNR =
σ2
yo

σ2
yIMC−yo

(5)

to quantify the accuracy of the IMC computation for a binary
DP, where yIMC =Q(y1) is the post-ADC, i.e. the digital output
of the IMC and Q(·) denotes the quantization function.

The numerator in (5) can be easily estimated by assuming
wi ∼ Be(pw), xi ∼ Be(px), and hence yo ∼ Bi(N, pxpw)
from (1), i.e., yo is a binomial random variable with a known
variance. The denominator in (5) can be estimated by sampling
the distributions of wi, xi, and βi to empirically compute yo

and y1 (hence yIMC =Q[y1]) from (1) and (4), respectively.

III. PROPOSED STATISTICAL ERROR

COMPENSATION METHODS

In this section, we propose maximum likelihood-based sta-
tistical error compensation (MLEC) methods to compensate
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for the impact of spatial variations on the IMC output. These
methods exploit the inherent symmetry in the structure of the
6T SRAM BC (see Fig. 1) to extract multiple observations,
and leverage the signal model in (4). In the rest of the pa-
per, we assume that xi ∼Be (0.5) and wi ∼Be (0.5) for i ∈
{0, 1, 2, · · · , N} are i.i.d. in order to make the derivation of ML
detection rules mathematically tractable. Derivation of all the
MLEC methods are provided in the Appendix.

A. Maximum Likelihood (ML) Detection

Given the signal model in (4), the classical ML detection rule
using a single BL output y1 is given by

ŷ = argmax
i

P (y1|yo = i) = argmin
i

|y1 − i|= �y1	, (6)

where i ∈ {0, 1, · · · , N} and �·	 denotes the rounding oper-
ation. The rounding operation in (6) is already realized by
column ADCs in today’s IMCs. Therefore, we explore ML
methods based on multiple observations next.

B. Obtaining Multiple Observations

We leverage the symmetric structure of the 6T SRAM BCA
to acquire four observations y1, y2, y3, and y4 with very low
complexity cost as follows:

y1 =wT
βx=

N∑

i=1

βiwixi, y2 =wT
βx=

N∑

i=1

βiwixi,

y3 =wT
βx=

N∑

i=1

βiwixi, y4 =wT
βx=

N∑

i=1

βiwixi, (7)

where the overline notation represents a binary complement.
Note that the four observations are statistically independent
conditioned on the input vector x and weight vector w since
each βi will only appear in one of the four observations depend-
ing on the value of x and w. Fig. 1 shows that y2 is computed
on the BL-bar (BLB) node simultaneously with y1 since the
i-th BC discharges BLB when xi = 1 and wi = 0. Therefore,
y2 is obtained for free by exploiting the symmetry of the
6T SRAM structure.

Observations y3 and y4 in (7) are the x-flipped versions of
y1 and y2, respectively. A brute force approach to obtain y3 and
y4 is to invoke the IMC with a x input vector. Doing so would
incur a doubling of the energy consumption. Instead, we first
generate observations y1 + y3 and y2 + y4 as follows:

y1 + y3 =wT
βx+wT

βx=

N∑

i=1

βiwi = nwβ
, (8)

y2 + y4 =wT
βx+wT

βx=
N∑

i=1

βiwi = nwβ
, (9)

where nwβ
is the sum of all elements of wβ (soft Hamming

weight), which the sampled value can be computed by sending
a 1s input vector into the IMC and storing the resulting output.
This calibration step incurs a one-time cost when new weights
are loaded into the array. This cost is minimal because of the
high arithmetic intensity for weights in a matrix-vector multiply

Fig. 3. MLEC-2: (a) architecture, and (b) circuit realization of the MLD
block.

operation realized by the IMC. Furthermore, this step can be
repeated in order to compensate for the impact of transistor
aging, changes in the ambient temperature, and supply voltage
noise. As nwβ

(nwβ
) and y1 (y2) provide sufficient information

regarding y3 (y4), all four observations can be obtained with
negligible computational and hence energy costs.

Note: each of the four observations y1, y2, y3 and y4 has a
different variance, e.g., from (4), the variance of observation
y1 is given by

σ2
y1

=
N∑

i=1

σ2
βi
(wixi)

2 = y(1)o σ2
β , (10)

where y(1)o = yo =wTx is the ideal value of y1 given by (1), i.e.,
when βi = 1∀i in (7). Similarly, y2, y3, and y4 have a variance
proportional to their corresponding ideal DP values y

(2)
o , y

(3)
o ,

and y
(4)
o , respectively. ML detection considers these differences

in the variance of the observations and optimally combines
them to generate a detected output ŷ that equals the ideal DP
yo (= y

(1)
o ) in (1) with high probability as shown next.

C. MLEC with Two Observations (MLEC-2)

There are six possible two observation 2-tuples that can be
formed from the four observations y1, y2, y3, and y4 defined in
(7). Of these, employing y1 and y3 requires the least complexity
since the closed-form expression of the detection rule has an
efficient hardware implementation as shown next.

Employing the two observations y1 and y3 and assuming the
distribution of inputs and weights xi, wi ∼ Be(0.5), we obtain
the following approximation to the ML rule (see Appendix A):

ŷ = argmax
j

P (y1, y3|y(1)o = j)≈
⌊
y1

nw

nwβ

⌉
. (11)

The overall architecture of MLEC-2 (see Fig. 3(a)) includes
an IMC bank and an ML detector (MLD). The product of y1 and
nw/nwβ

can be realized efficiently using a switched capacitor
DAC (CDAC) as shown in Fig. 3(b). The input nw/nwβ

is
computed once at initialization when the weight parameters are
loaded into the BCA. Finally, the rounding operation is realized
by the column ADC of the IMC.
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Fig. 4. A two-stage cascaded ML detector architecture based on a tourna-
ment tree.

D. MLEC With Four Observations (MLEC-4)

To enhance the detection performance beyond MLEC-2, we
present three types of MLEC-4 methods: 1) Exact MLEC-4
(E-MLEC-4); 2) Distribution-aware MLEC-4 (DA-MLEC-4);
and 3) Energy-aware MLEC-4 (EA-MLEC-4), all of which em-
ploy all four observations y1, y2, y3, and y4, in (7) to generate
an ML decision rule. The distribution- and energy-aware MLEC
methods trade off accuracy with computational complexity by
approximating E-MLEC-4.

1) Exact MLEC-4 (E-MLEC-4): This method obtains the
following ML rule (see Appendix B):

ŷ = argmax
j

P (y1, y2, y3, y4|y(1)o = j)

= argmin
j

{
ln [j(nx − j)(nw − j)(N − nw − nx + j)]

+
1

σ2
β

[
(y1 − j)2

j
+

(nwβ
− y1 − nw + j)2

nw − j

+
(y2 − nx + j)2

nx − j
+

(nwβ
− y2 − nw + nx − j)2

nw − nx + j

]}

(12)

where nx is the Hamming weight of activation vector x. Further
simplification of (12) is mathematically intractable making it
difficult to find an efficient hardware architecture. Therefore, we
propose a tournament tree approximation of (12) that utilizes a
two-stage cascaded ML detector as shown in Fig. 4.

In Section IV, we solve (12) via brute-force search in or-
der to establish the upper bound on the SNR boost pro-
vided by approximations (DA-MLEC-4 and EA-MLEC-4) of
E-MLEC-4 which are described next. We do not show the
performance of the tournament tree architecture of Fig. 4 since
DA-MLEC-4 was found to provide an SNR boost very close to
the exact solution E-MLEC-4.

2) Distribution-Aware MLEC-4 (DA-MLEC-4): This met-
hod exploits weight distribution to reduce the complexity
of the solution to (12). We show later in Section IV that
the SNR boost provided by DA-MLEC-4 is very close to
that of E-MLEC-4. Fig. 5 illustrates the block diagram of
the DA-MLEC-4 method. The first stage (MLD1) performs
soft ML detection employing two observation pairs (y1, y3)
and (y2, y4) to generate soft outputs ẑ1 and ẑ2, respectively,
as follows:

ẑ1 =
y1nw

nwβ

; ẑ2 =
y2nw

nwβ

(13)

Fig. 5. The proposed MLEC-4 method.

Fig. 6. The DA-MLEC-4 architecture.

where �ẑ1	 and �ẑ2	 are ML estimates of y(1)o and y
(2)
o , respec-

tively, as in the MLEC-2 rule (11). Equation (13) is obtained by
employing the relationships: y3 = nwβ

− y1 and y4 = nwβ
−

y2 (see (8) and (9)).
The second stage (MLD2) employs the MLD1 outputs ẑ1

and ẑ2 to generate the final decision ŷ as shown below (see
Appendix C):

ŷ = argmax
j

P (ẑ1, ẑ2|y(1)o = j) = �βnx + αẑ1 − βẑ2	 (14)

where α= 1− β = nw/N assuming that ẑ1 and ẑ2 are nor-
mally distributed with variances σ2

ẑ1
= nwσ2 and σ2

ẑ2
=

nwσ2, respectively, thereby reflecting the impact of weight
distribution. Since closed-form expressions of the distribu-
tions of ẑ1 and ẑ2 are difficult to obtain, we approximate
them, by employing sample statistics obtained from simula-
tion, to normal distributions with a variance ratio σ2

ẑ1
/σ2

ẑ2
=

nw/nw.
Fig. 6 shows the DA-MLEC-4 architecture. Multiplication

for MLD1 is followed by a multiplication (MLD2-Mul) and
addition (MLD2-Add) for MLD2 and realized in analog. The
output of MLD2-Add passes through an ADC to convert the
final detection output in digital. Detailed analog implementa-
tions of MLD1, MLD2-Mul, and MLD2-Add are provided with
Fig. 13 in Appendix D.
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Fig. 7. The EA-MLEC-4 method realized by implementing MLD1 in analog
and MLD2 in digital.

Fig. 8. Block diagram of the validation model comprising of circuit simu-
lation and Python model.

3) Energy-Aware MLEC-4 (EA-MLEC-4): This method is
obtained by approximating the MLD2 stage of DA-MLEC-4
as follows:

ŷ = argmax
j

P (ẑ1, ẑ2|yo = j)≈
⌊
nx + ẑ1 − ẑ2

2

⌉
, (15)

where we assume that ẑ1 and ẑ2 have equal variances, i.e., σ2
ẑ1

=
σ2
ẑ2

, and hence α= β = 0.5. This assumption is increasingly
accurate when pw = 0.5.

EA-MLEC-4 can be realized by dropping the MLD2-Mul
block in DA-MLEC-4 (Fig. 6). Another variant of EA-MLEC-4
studied in [34] computes the MLD2 stage in the digital domain
at the expense of a higher energy overhead (see Fig. 7). In this
paper, we focus on the former where the entire EA-MLEC-4 is
implemented in the analog domain.

IV. SIMULATION RESULTS

In this section, we present simulation results to quantify the
accuracy enhancement via the proposed MLEC methods, first at
the bank level and then at the network level. Then, the accuracy-
energy trade-off of each method is studied by combining the
energy overhead estimation with the accuracy results.

A. Validation Methodology

Bank-level: The SNR boost provided by the proposed MLEC
methods is validated through a circuit-aware behavioral model
(see Fig. 8) of a NR-row and 128-column BCA via circuit
simulations in a commercial 28 nm CMOS technology and a
behavioral model of the ADC as described below.

The Python model captures the impact of process variations
and transient noise seen on the BCA outputs VBL and VBLB via
Monte Carlo circuit simulations. The WL pulse width TWL is set
to 200 ps which is sufficient to drive 128 SRAM columns. We
ensure that the probability of read upsets [11] is minimized by
enforcing the condition Pr{VBL < VDD − Vt}< 10−12. This is
done by controlling either the DP dimension (N ) or the number
of BCA rows (NR) for a given value of VWL.

The ADC is modeled as a noisy quantizer with its input
noise standard deviation set to the thermal noise value σnth,ADC =
0.5mV observed in a nominal successive approximation (SAR)
ADC architecture [37]. Furthermore, we clip the ADC’s input
range per [32] to maximize the signal-to-quantization noise
ratio (SQNR).

The IMC DP accuracy is quantified via the compute SNR,
defined in (5), by comparing the IMC output with the output
of an ideal binary DP. The activation x vector is obtained by
i.i.d. sampling each element from a Bernoulli distribution with
px = 0.5. The compute SNR for each configuration is estimated
via Monte Carlo simulations with 200,000 trials.

Network-level: An 8-bit input and 4-bit weight quantized
ResNet-20 is obtained through quantization-aware training on
the CIFAR-10 dataset and is used as the baseline network. The
software baseline test accuracy of the network is 92.51%. The
MVM operations of all the residual blocks and the FC layer are
mapped to the circuit-aware Python model described above. In
order to accelerate the network simulations, this Python model
substitutes the circuit simulation-based outputs of the BCA used
to obtain the results for bank-level validation, with a voltage-
scaled signal model based on (4) that captures the effect of
spatial variations. The value of σβ is extracted from circuit sim-
ulations for various wordline voltages VWL. The bitline voltage
VBL is constrained to prevent read-upsets as in the bank-level
validation setting.

B. Accuracy Results

Bank-level: We study the effectiveness of MLEC in boosting
the compute SNR by sweeping the key design parameters: 1)
ADC precision BADC, 2) weight probability pw, and 3) the
wordline voltage VWL.

Fig. 9(a) shows that the compute SNR (for N = 144) of all
methods, including the uncompensated IMC, improves with
the ADC precision BADC until BADC equals the SNR-optimal
value of B∗

ADC = 6-b. This implies that the compute SNR is
dominated by ADC quantization noise at lower values of BADC

and eventually by cell current variations and ADC noise when
BADC ≥B∗

ADC.
MLEC-2 and E-MLEC-4 enhances the compute SNR by

3.3 dB and 7.3 dB, respectively, over the uncompensated IMC,
at the optimal ADC precision of B∗

ADC = 6. The SNR boosts
provided by DA-MLEC-4 and EA-MLEC-4 are 6.6 dB and
6.4 dB, respectively, which are less than that of E-MLEC-4.
This is to be expected since DA-MLEC-4 and EA-MLEC-4 are
approximations of E-MLEC-4 as discussed in Section III.

Results similar to Fig. 9(a) were obtained for different DP
dimensions N using the optimal ADC precision B∗

ADC and clip
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Fig. 9. Compute SNR enhancement via the proposed MLEC methods – MLEC-2, E-MLEC-4, DA-MLEC-4, and EA-MLEC-4 – showing: (a) SNR vs.
ADC precision BADC with N = 144 and NR = 1152, (b) SNR vs. weight probability pw with N = 144 and NR = 1152, (c) SNR vs. VWL and N∗ with
NR = 512, and (d) SNR vs. VWL and N∗

R with N = 144. Here pw = 0.5, and VWL = 0.6V are used as the base values if not mentioned. Optimal ADC
precision B∗

ADC for each DP dimension N and its corresponding clip range is summarized in Table I.

TABLE I
OPTIMAL ADC PRECISION B∗

ADC AND CORRESPONDING CLIP RANGE FOR

DIFFERENT DOT PRODUCT DIMENSIONS N AND NR = 512

Dot Product Dimension N

336 144 102 48 28 18 16

B∗
ADC 7 6 5 5 4 4 4

Clip Range [20, 148] [4, 68] [10, 42] [0, 32] [0, 16] [0, 16] [0, 16]

ranges listed in Table I. In the rest of the plots, we choose
BADC =B∗

ADC.
Fig. 9(b) quantifies the impact of weight probability on the

SNR boost. It shows that: 1) DA-MLEC-4’s SNR boost is
close to the optimum, i.e., SNR boost achieved by E-MLEC-4,
for all weight probability values, while 2) EA-MLEC-4 shows
a considerable gap-to-optimum in SNR for extreme probability
values of pw = 0.2 and pw = 0.8. The reason for this difference
is that DA-MLEC-4 accounts for the difference between the
variances of ẑ1 and ẑ2 via the use of weighing factors α

and β in (14) while EA-MLEC-4 does not (see (15)). Since
the variance ratio σ2

ẑ1
/σ2

ẑ2
= nw/nw is a function of weight

probability pw, SNR boost is improved if the detector accounts
for it. Not surprisingly, DA-MLEC-4 and EA-MLEC-4 achieve
the same SNR boost at pw = 0.5 where the variances of ẑ1
and ẑ2 are equal.

Fig. 9(c) shows the compute SNR versus WL voltage VWL

for a fixed number NR = 512 of BCA rows. The realizable DP
dimension N∗, i.e., the maximum value of N at which read-
upsets are avoided, increases as VWL reduces (see x-axis of
Fig. 9(c)). This trend occurs because a reduced WL voltage
reduces the cell current and thereby enabling higher DP values
to be computed while satisfying the condition Pr{VBL < VDD −
Vt}< 10−12.

Fig. 9(c) also shows that the compute SNR of MLEC methods
increases exponentially with VWL though at the expense of
reduced N∗. Specifically, MLEC-4 methods achieve close to
error-free decisions, i.e., Pr{ŷ �= yo}< 5× 10−6, when VWL >
0.6V. Similarly, MLEC-2 also shows error-free behavior for
VWL > 0.7V. These results indicate that the proposed MLEC
methods can emulate a fixed-point digital architecture in spite
of employing analog computations provided the VWL is suffi-
ciently high.
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Fig. 10. Effect of the wordline voltage VWL for a fixed DP dimension of
N = 144 on the inference accuracy IMCs executing the ResNet-20 network
on CIFAR-10 dataset. The baseline accuracy of a 8b-activation, 4b-weight
quantized fixed-point architecture is 92.49%.

Fig. 9(d) shows that the compute SNR improves with the
WL voltage VWL for all methods. For each VWL, the number
of BCA rows is set to the minimum value N∗

R that ensures
Pr{VBL < VDD − Vt}< 10−12 as shown in the x-axis. Specifi-
cally, MLEC-2 enhances the compute SNR by 2.9 dB-to-4.8 dB
over the uncompensated IMC, whereas DA-MLEC-4 and
EA-MLEC-4 provide an SNR boost of 5.2 dB-to-11 dB as VWL

is varied, for a fixed DP dimension N = 144. The main reason
for this trend is seen from (3) which indicates that the impact
of spatial Vt variations on the cell current reduces as VWL is
increased.

Network-level: Next, we study the impact of the bank-
level compute SNR boost provided by MLEC methods on the
classification accuracy of a DNN. The values of parameters
were set to B∗

ADC = 6, σnth, ADC = 0.5mV , and DP dimension of
N = 144. The number of physical rows NR in the BCA was
set to N∗

R per Fig. 9(d).
Fig. 10 plots the accuracy of ResNet-20 deployed on

uncompensated and error-compensated IMCs while sweep-
ing VWL (see Table II in Appendix for exact values). We
find that the classification accuracy of the uncompensated
IMC drops from its ideal fixed-point value of 92.51% to
< 90% for VWL ≤ 0.6V. Similarly, MLEC-2 achieves an
accuracy > 90% for VWL ≥ 0.6V. On the other hand, MLEC-
4 methods achieve an accuracy > 90% for VWL ≥ 0.5V. This
indicates that MLEC methods achieve iso- network-level accu-
racy at a reduced energy consumption.

Overall, we observe an exponential decrease in network accu-
racy with a drop in the bank-level compute SNR. Furthermore,
comparing Figs. 9(d) and 10, we find that a compute SNR
in the range 20 dB-to-23 dB will ensure that the drop in the
classification accuracy is < 1% w.r.t. that of an ideal fixed-
point digital implementation. This result provides a target SNR
specification on IMC bank designs.

C. Accuracy vs. Energy Trade-Off

In this subsection, we analyze the energy overhead of each
method based on the energy models in Appendix F. The

Fig. 11. Energy overhead vs. wordline voltage VWL for DA-MLEC-4 and
EA-MLEC-4 methods for a fixed DP dimension of N = 144.

MLEC-2 method does not incur any energy overhead as ex-
plained in Appendix F, hence we do not consider it any further.

Fig. 11 shows that the energy overhead of the two MLEC-4
methods, DA-MLEC-4 and EA-MLEC-4, ranges from 3.4%-
to-6.1% (for EA-MLEC-4), and from 5.5%-to-9.8% (for
DA-MLEC-4). Thus, DA-MLEC-4 incurs roughly 1.5× the
energy overhead compared to EA-MLEC-4 while providing a
slight improvement in network-level accuracy per Fig. 10.

Furthermore, note that the relative energy overhead decreases
with an increase in VWL for both methods. This trend is ex-
pected because the overall energy consumption of the IMC
bank increases while the overhead of MLEC remains constant.
Additionally, EA-MLEC-4 has a lower energy overhead com-
pared to the 10%-to-30% energy overhead of a fixed-point
digital implementation studied [34], hence it is the preferred
method for achieving both high accuracy and high energy
efficiency.

Fig. 12 studies the trade-off between accuracy and energy
by sweeping the WL voltage VWL for a fixed DP dimension
of N = 144, at the bank- (Fig. 12(a)) and the network-levels
(Fig. 12(b)).

Bank-level: At the bank-level, Fig. 12(a) shows that the
MLEC-2 method improves the SNR by 3 dB-to-5 dB for the
same energy efficiency while MLEC-4 methods improve the
SNR by 3 dB-to-7 dB. For a target SNR of 20 dB, MLEC-
2, DA-MLEC-4, and EA-MLEC-4 achieve a 34.1%, 40.7%,
and 45.6% increase in energy efficiency, respectively. It can be
seen that EA-MLEC-4 exhibits the best accuracy vs. energy-
efficiency trade-off compared to other methods.

Network-level: Fig. 12(b) shows the inference accuracy vs.
energy efficiency of a ResNet-20 network. For an energy effi-
ciency of 350TOPS/W, both MLEC-4 methods incur a 1.51%
accuracy drop w.r.t. baseline compared to 3.78% for the uncom-
pensated IMC. For an accuracy target of > 90%, EA-MLEC-4
achieves an 18% increased energy efficiency over the uncom-
pensated IMC.

The accuracy vs. energy-efficiency trade-off can be further
improved via more efficient implementations of the proposed
MLEC methods.
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Fig. 12. Accuracy vs. energy efficiency (in terms of 1-bit TOPS/W (teraops/Watt)) of uncompensated and MLEC-compensated IMCs: (a) SNR vs. energy-
efficiency for a fixed DP dimension of N = 144, and (b) inference accuracy vs. energy-efficiency of a ResNet-20 network (CIFAR-10 dataset) implemented
on uncompensated and MLEC-compensated IMCs.

V. CONCLUSION

In this paper, maximum likelihood (ML) detection-based
statistical error compensation (MLEC) methods are proposed
to enhance the accuracy of 6T SRAM-based IMC architec-
tures. Simulation results show that the proposed MLEC method
enables significant gains in the compute SNR with a mod-
est energy cost, leading to an enhanced accuracy vs. energy-
efficiency trade-off. Network-level accuracy gains are also
validated through ResNet-20 on the CIFAR-10 dataset. The pro-
posed MLEC methods clearly demonstrate improved accuracy-
energy trade-off over an uncompensated IMC design. The
diversity of IMC architectures is enormous spanning various
types of SRAM-based and non-volatile memory (NVM)-based
IMCs. Similar ML-based statistical error compensation meth-
ods can be developed to enhance the accuracy vs. energy-
efficiency trade-offs for these as well. Our work indicates the
potential of leveraging statistical signal processing approaches
to enhance the accuracy of an important class of machine learn-
ing architectures, viz. IMCs.

APPENDIX A
DERIVATION OF MLEC-2

Derivation of (11): Recall from (7) that all four observations
y1, y2, y3 and y4 are independent of each other when condi-
tioned on a specific value of the tuple (x,w). Therefore:

P (y1, y3|y(1)o = j) =
∑

(x,w)∈Aj

P (y1, y3|(x,w))P ((x,w)|y(1)o = j)

=
∑

(x,w)∈Aj

P (y1|(x,w))P (y3|(x,w))P ((x,w)|y(1)o = j)

= P (y1|y(1)o = j)P (y3|y(1)o = j), (16)

where Aj = {(x,w) :wTx= j}, and we exploit the fact that
P ((x,w)|y(1)o = j) = 1/|Aj |1{(x,w) ∈Aj} where |Aj | is the
cardinality of set Aj since xi and wi are assumed to be i.i.d..

Conditioned on the event {y(1)o = j}, y1 (y3) becomes a
sum of j (nw − j) i.i.d. Gaussian RVs βi ∼N (1, σ2

β), with
distribution functions given by

P (y1|y(1)o = j) =
1√

2πjσ2
β

exp

(
− (y1 − j)2

2jσ2
β

)
, (17)

and

P (y3|y(1)o = j) = P (y3|y(3)o = nw − j)

=
1√

2π(nw − j)σ2
β

exp

(
− (y3 − (nw − j))2

2(nw − j)σ2
β

)
(18)

since y
(1)
o + y

(3)
o = nw.

If ŷ = argmaxj P (y1, y3|y(1)o = j), then the following in-
equalities are satisfied:

log

(
P (y1, y3|y(1)o = ŷ + 1)

P (y1, y3|y(1)o = ŷ)

)
< 0,

log

(
P (y1, y3|y(1)o = ŷ)

P (y1, y3|y(1)o = ŷ − 1)

)
> 0, (19)

except when ŷ = 0 or ŷ = nw. In the latter case, either one of
the inequalities in (19) will be satisfied. Substituting (17), (18),
and y3 = nwβ

− y1, into (16), to expand the L.H.S of the first
inequality in (19) gives

log

(
P (y1, y3|y(1)o = ŷ + 1)

P (y1, y3|y(1)o = ŷ)

)

=
1

2σ2
β

[
y21

ŷ (ŷ + 1)
−

(
nwβ

− y1
)2

(nw − ŷ) (nw − ŷ − 1)

]

+
1

2
log

[
ŷ (nw − ŷ)

(ŷ + 1) (nw − ŷ − 1)

]
. (20)
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The second term in the R.H.S. of (20) is negligible since the
argument of the log function is close to unity. Therefore, the
first inequality in (19) now becomes

1

2σ2
β

[
y21

ŷ (ŷ + 1)
−

(
nwβ

− y1
)2

(nw − ŷ) (nw − ŷ − 1)

]
< 0

⇐⇒
(
nw − ŷ − 1

2

)2 − 1
4(

nwβ
− y1

)2 <

(
ŷ + 1

2

)2 − 1
4

y21
. (21)

Furthermore, we approximate the inequality to
(
nw − ŷ − 1

2

)2
(
nwβ

− y1
)2 <

(
ŷ + 1

2

)2

y21
(22)

since: 1) ŷ(ŷ + 1), (nw − ŷ) (nw − ŷ − 1)>> 1/4 in general
and 2) (nwβ

− y1)
2 ≈ y21 since y1 ≈ nwβ

/2 for px = 1/2. Solv-
ing (22) yields to

y1
nw

nwβ

− 1

2
< ŷ. (23)

The second inequality in (19) simplified in a similar manner,
and combined with (23) yields to:

y1
nw

nwβ

− 1

2
< ŷ < y1

nw

nwβ

+
1

2
, (24)

which can be re-written as

ŷ = rnd

(
y1

nw

nwβ

)
, (25)

resulting in (11). Note that (25) covers the exception ŷ = 0 and
ŷ = nw in (19).

APPENDIX B
DERIVATION OF MLEC-4

Derivation of (12): All the four observations in (7) given
y
(1)
o = j can be shown to be statistically independent similar to

(16). Thus, the joint conditional probability can be expressed
as follows:

P (y1, y2, y3, y4|y(1)o = j) =

4∏

k=1

P (yk|y(1)o = j) (26)

From (7), the following can be easily shown:

y(1)o = nx − y(2)o = nw − y(3)o = nx − nw + y(4)o (27)

Combining (26), (27) with {yk|y(1)o = j} ∼ N (y
(k)
o , y

(k)
o σ2

β)

logP (y1, y2, y3, y4|y(1)o = j)

=−1

2
ln [j(nx − j)(nw − j)(N − nw − nx + j)]

− 1

2σ2
β

[
(y1 − j)2

j
+

(y2 − nx + j)2

nx − j

+
(y3 − nw + j)2

nw − j
+

(y4 − nw + nx − j)2

nw − nx + j

]
+ C,

(28)

where C is a constant. Substituting y3 and y4 using the relation-
ship in (8) and (9), yield the argmin expression in (12) since the
argmin of the negative log of the original function is the argmax
of the original function.

APPENDIX C
DERIVATION OF DA-MLEC-4

Derivation of (14): It can be shown from (13) that the mean
of ẑ1 and ẑ2 are j and nx − j, respectively, given y

(1)
o = j. We

assume that ẑ1 and ẑ2 follow a normal distribution with vari-
ances of nwσ2 and nwσ2 given y

(1)
o = j, respectively, where σ

is a constant.
Then, the joint conditional probability can be expressed

as follows:

P (ẑ1, ẑ2|y(1)o = j) = P (ẑ1|y(1)o = j)P (ẑ2|y(1)o = j)

=
1

2πσ2
√
nwnw

exp

(
− (ẑ1 − j)2

2nwσ2
− (ẑ2 − (nx − j))2

2nwσ2

)
.

(29)

Similar to (19), if ŷ = argmaxj P (ẑ1, ẑ2|yo = j), the follow-
ing inequalities will be satisfied:

log

(
P (ẑ1, ẑ2|y(1)o = ŷ + 1)

P (ẑ1, ẑ2|y(1)o = ŷ)

)
< 0,

log

(
P (ẑ1, ẑ2|y(1)o = ŷ)

P (ẑ1, ẑ2|y(1)o = ŷ − 1)

)
> 0. (30)

The first inequality can expanded as follows:

2ẑ2 − 2(nx − ŷ) + 1

nw
<

2ẑ1 − 2ŷ − 1

nw
, (31)

which yields to

nwnx + nwẑ1 − nwẑ2
nw + nw

− 1

2
< ŷ. (32)

By solving the second inequality in (30) and combining the
result with (32), we obtain:

ŷ = rnd

(
nwnx + nwẑ1 − nwẑ2

nw + nw

)
. (33)

Since nw + nw =N , the above equation can be re-written
as (14).

APPENDIX D
ANALOG IMPLEMENTATION OF MLD1 AND MLD2

Fig. 13 shows the analog circuit implementation of the MLD1
and MLD2 blocks. MLD1 follows the same implementation
method using CDACs as that of MLEC-2. ẑ1 and ẑ2 are com-
puted in BL and BLB separately as shown in Fig. 13(a). Block
MLD2 is realized by sequential stages: MLD2-Mul and MLD2-
Add stages. Fig. 13(b) shows the implementation of MLD2-
Mul via a charge redistribution-based mixed-signal multiplier
(CRM) proposed in [38]. The B bit of the digital input α=
nw/N , where B = �log2 N	, controls the φ2,i switches and
generate the output Vαẑ1 = αVẑ1 .
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Fig. 13. Circuit schematic of the proposed DA-MLEC-4 in analog: (a) MLD1 block, (b) multiplication stage of the MLD2 block, and (c) addition stage of
the MLD2 block.

TABLE II
TEST ACCURACIES FOR RESNET-20 ON CIFAR-10

Baseline 8/4-bit (activation/weight) Quantized ResNet-20

6T-SRAM based IMC Architecture

VWL Uncomp. MLEC-2 DA-MLEC-4 EA-MLEC-4

0.9V 92.17% 92.21% 92.43% 92.49%

0.8V 92.02% 92.11% 92.33% 92.32%

0.7V 90.63% 91.23% 91.81% 91.84%

0.6V 89.12% 90.29% 91.60% 91.38%

0.5V 86.93% 88.93% 90.91% 90.41%

0.4V 76.83% 82.45% 87.97% 87.40%

Hamming weight nx of the activation x is calculated by a
dedicated digital circuit as shown in Fig. 5 and converted to Vnx

by DAC. Then, Vβnx and Vβẑ2 are also obtained through their
dedicated CRMs. Finally, the MLD2-Add stage is realized by
the charge redistribution circuit shown in Fig. 13(c) which takes
the structure of the cross bitline processor (CBLP) in [38]. The
addition βnx + αẑ1 − βẑ2 is computed and passed through an
amplifier with a gain of G to restore the reduced signal range
[9]. The final output is rounded and digitized by an ADC.

APPENDIX E
NETWORK-LEVEL ACCURACY

Table II summarizes the ResNet-20 accuracy on CIFAR-10
dataset.

APPENDIX F
ENERGY MODELS

The energy of a single column of the IMC bank and its ded-
icated MLEC processing unit is estimated in order to calculate
the energy overhead of MLEC. Parameters and values used in

TABLE III
PARAMETERS VALUES FOR ENERGY ESTIMATION

Parameter Value Parameter Value

VDD 0.9V CWL 0.3 fF

E[ΔVBL] 144mV CBL/NR 0.6 fF

E[ΔVC1
] 72mV C1 17 fF

E[ΔVC2
] 48mV C2 25 fF

Ibias 20 uA Ts 2 ns

the estimation are extracted from 28 nm CMOS technology,
which is summarized in Table III.

ADC Column: The energy consumption of an ADC column
has the following components: 1) wordline driver energy per
BC (EWLD), 2) bitcell array energy (EBCA), and 3) ADC energy
(EADC), which are modeled as follows:

EWLD = E[nx]CWLV
2

DD, (34)

EBCA = E[ΔVBL]V DDCBL + E[ΔVBLB]VDDCBLB, (35)

EADC = k1BADC + k24
BADC , (36)

where E[nx] is the average number of activated WL rows, CWL

is the effective wordline capacitance per bitcell, E[ΔVBL] and
E[ΔVBLB ] are the mean voltage discharge on BL and BLB,
respectively, and k1 = 100 fJ and k2 = 1aJ are the empirical
fitting parameters for modeling recent ADCs [39]. Optimal
ADC precision B∗

ADC summarized in Table I is used for the
ADC energy precision in (35) for each DP dimension. NR is
set to 4 times the DP dimension N to avoid signal clipping due
to the voltage headroom of BL.

IMC Bank: The energy consumption of an IMC bank with
NC ADC columns can be modeled as:

EIMC =NC(EWLD + EBCA + EADC). (37)
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MLEC: We divide the energy of the MLD2 block into MLD2
multiplication stage (MLD2-Mul) and MLD2 addition stage
(MLD2-Add), which the circuit implementation is shown in
Fig. 13 in Appendix. The energy model for each component
is as follows:

EMUL = 3 (�log2 N	+ 1)E[ΔVC1
]VDDC1, (38)

EADD = 3E[ΔVC2
]VDDC2 + IbiasVDDTs, (39)

where C1 and C2 are the capacitance values used in the multi-
plication and addition stage of MLD2, respectively, E[ΔVC1

]
and E[ΔVC2

] are the mean voltage discharge on capacitors
in the multiplication and addition stage, respectively, Ibias is
the bias current of the amplifier, Ts is the settling time of the
amplifier. C1 and C2 values in Table III are chosen to meet the
constraint of the thermal noise accumulated at the final output
to be less than 0.2Vres, where Vres = 4mV for N = 144. This
is to ensure less than 1 dB compute SNR drop for VWL = 0.6V
and N = 144 in Section IV-B. Ibias and Ts of the amplifier are
chosen to drive a 100 fF ADC sampling capacitor.

The energy of the Hamming weight block for MLEC de-
picted in Fig. 5 is negligible as it amortizes over multiple
columns. Also, MLD1 simply adds extra load capacitance to the
BL and BLB and the MLD1 computation is merged into the DP
computation. This does not increase the energy consumption
since the current drawn from each bitcell remains the same for
a fixed WL pulse width TWL and WL voltage VWL.
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