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Abstract—Multi-agent Decentralized Learning (MADL) is a
scalable approach that enables agents to learn based on their
local datasets. However, it presents significant challenges related
to the impact of dataset heterogeneity and the communication
graph structure on learning speed, as well as the lack of a
robust method for quantifying prediction uncertainty. To address
these challenges, we propose BayGO, a novel fully-decentralized
multi-agent local Bayesian learning with local averaging, usually
referred to as non-Bayesian social learning, together with graph
optimization framework. Within BayGO, agents locally learn a
posterior distribution over the model parameters, updating it
locally using their datasets and sharing this information with
their neighbors. We derive an aggregation rule for combin-
ing received posterior distributions to achieve optimality and
consensus. Moreover, we theoretically derive the convergence
rate of agents’ posterior distributions. This convergence rate
accounts for both network structure and information hetero-
geneity among agents. To expedite learning, agents employ the
derived convergence rate as an objective, optimizing it with
respect to the network structure alternately with their posterior
distributions. As a consequence, agents can successfully fine-tune
their network connections according to the information content
of their neighbors. This leads to a sparse graph configuration,
where each agent communicates exclusively with the neighbor
that offers the highest information gain, enhancing communi-
cation efficiency. Our simulations corroborate that the BayGO
framework accelerates learning compared to fully-connected and
star topologies owing to its capacity for selecting neighbors based
on information gain.

Index Terms—Bayesian learning, distributed learning, social
learning, graph optimization, information heterogeneity, KL
divergence, multi-agent systems.
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I. INTRODUCTION

NOWADAYS, many personal devices have powerful com-
putational resources with a sufficient amount of data for

locally training machine learning (ML) models. However, the
local data of each agent is statistically insufficient to achieve
satisfactory ML model performance. Moreover, sharing local
data among agents violates privacy concerns. To address this
issue, Federated Learning (FL) was proposed for training a
global model without sharing private data. Instead, training is
accomplished by sharing only the agents’ local model parame-
ters with the aid of a centralized server (i.e., centralized FL) [2],
[3] or in a peer-to-peer manner over a decentralized graph. The
latter is usually referred to as multi-agent decentralized learning
(MADL) [4], [5].

The emergence of many distributed ML applications together
with privacy and scalability concerns make MADL more ap-
pealing than centralized parameter-server based FL. MADL
mandates agents to communicate with a subset of their neigh-
bors, leveraging scalability, under communication constraints
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17].
In the context of Bayesian inference, agents adopt an approach
akin to Bayesian principles by introducing a posterior distribu-
tion over a parameter space representing the unknown global
model. This work specifically focuses on the Bayesian exten-
sion of MADL framework, where agents optimize their pos-
terior distributions over the model parameters alternately with
the communication graph, facilitating accelerated convergence,
particularly in heterogeneous data settings. Furthermore, our
modeling inherently accounts for uncertainty in model param-
eter predictions. In what follows, we discuss related works in
MADL through the lens of Bayesian inference.

A. Related Works

Applying true Bayesian learning within MADL settings is
intractable1. Instead, agents conduct local Bayesian updates,
which are followed by a learning rule commonly termed ag-
gregation [6], [10], [17], [18], [19]. During the aggregation
step, local models from each agent are merged with those of
its neighbors. This process is known as non-Bayesian social
learning [7], [8], [9], [11], [12].

1Therefore, it is crucial to emphasize that the terminology Bayesian MADL
pertains to the Bayesian update conducted locally at each agent, followed by
an aggregation step.
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In the literature, two variants of social learning have been
proposed: non-adaptive social learning [12], [13], [14], [20]
and adaptive social learning [21], [22], [23], [24]. The key
distinction lies in the inclusion of a step-size adaptation param-
eter in adaptive social learning, which regulates the weighting
assigned to recent observations relative to past observations.
In particular, it has been demonstrated that the adaptation pa-
rameter governs a fundamental trade-off between the steady-
state learning capability of an algorithm and its adaptability
[21]. As a result, in adaptive settings, the steady-state error
probability is non-zero [23], in contrast to non-adaptive social
learning, where the error probability converges to zero almost
surely [14]. In this paper, our settings align with non-adaptive
social learning.

The studies in non-adaptive social learning [8], [12], [20]
show that local Bayesian model updates performed by agents,
when subjected to repeated interactions, can result in successful
information aggregation. In particular, the updates yield an
asymptotic convergence of local models to the true parameter,
reaching optimal consensus. When aggregating information at
an agent, the contribution from each neighbor is determined
exclusively by weights associated with the corresponding edges
of the communication graph. However, these works [6], [7],
[8], [9], [10], [11], [12], [18], [19] have not examined the
advantages of graph optimization to enhance the performance
and convergence results.

In contrast, the authors in [13], [14], [15], [25] derive conver-
gence rates and give insights into the potentials of weights of
the communication graph for yielding a faster convergence. For
example, [13], [14], [15] provides theoretical guarantees on the
convergence of decentralized multi-agent Bayesian learning,
where they analytically characterize the convergence rate of
agents’ posterior distributions as a function of the communi-
cation graph and agents’ local heterogeneous dataset. More
specifically, the expressions of the convergence rates rely on
(i) the eigenvector centrality of the agents which is determined
by the structure of the weighted graph and (ii) the informa-
tion content of agents’ local datasets which is measured by
using the Kullback-Leibler (KL) divergence between the rel-
ative entropies of the marginal likelihood distributions among
agents. Even though the works [13], [14], [15], [25] highlight
the significance of the weighted graph for faster convergence,
they do not investigate weight adaptation and optimization for
potential improvements. In particular, the characterization of
convergence rates in [13], [14], [15], [25] does not allow means
of directly optimizing the convergence rate with respect to the
weights of the underlying graph.

However, employing a weight adaptation of the underlying
graph to expedite the convergence rate is of significant impor-
tance. This is investigated in the work by [22], demonstrating
that enabling multi-agent systems to dynamically adjust their
graph weights in real-time makes agents allocate either smaller
or larger weights to their neighbors based on respective contri-
butions to the inference task. In essence, the focus of [22] is
on weight adaptation within multi-agent systems. Specifically,
it focuses on scenarios where all agents receive streaming data

from a fixed global distribution and the data is corrupted with
additive noise. Moreover, the noise levels experienced by agents
are different and consequently, the received data of an agent
can be less or more noisier than that of another agent. To
mitigate this, they propose the Hasting rule [cf. Lemma 12.2 in
[22]], which enables each agent to adjust the weights assigned
to interactions with neighbors based on their respective noise
levels. This suggests that the agents’ heterogeneity arises from
the differences in the additive noise levels experienced by the
agents despite that they all receive streaming data from the same
global distribution. Whereas in prior works [13], [14], [15],
[25], agents experience the same noise power, yet their data
distributions might not be identical, or their signal structures
may differ in informativeness [14]. Alternatively, agents may
exhibit variation in the representation of the global dataset D
within their local datasets Di, due to differences in the sizes
of these local datasets. This results in a setting where the
agents’ heterogeneity emerges from variations in their local
observations prior to the addition of noise. Our work focuses
on optimizing the graph weights to accommodate the hetero-
geneity of datasets prior to the addition of noise, whereas the
work in [22] addresses the optimization of the graph weights to
accommodate the heterogeneity among agents in terms of their
noise power. Therefore, the application of the Hasting rule [cf.
Lemma 12.2 in [22]] for graph weights construction may not
be ideal in systems where agents’ heterogeneity originates from
inherent disparities in their datasets before the introduction
of noise. Specifically, under this notion of heterogeneity, the
Hasting rule would treat all agents as uniformly informative
due to their equal noise level, thus overlooking the inherited
discrepancies in their local datasets.

B. Contributions and Organizations

The main contribution of this paper lies in introducing an
alternating minimization framework, in which agents iteratively
optimize their posterior distributions and network connections.
Specifically, we derive a convergence rate of agents’ poste-
rior distributions which depends on both the communication
graph and the heterogeneity in information among agents.
What sets this approach apart from previous research is its
flexibility in optimizing the derived convergence rate by taking
into account the notion of heterogeneity in terms of agents’
local model updates. This reflects the informativeness of their
local datasets before the introduction of noise, as well as their
past interactions within the network. This flexibility enables
the alternating optimization of both the posterior distributions
and the communication graph, leading to an enhanced learning
speed. To provide a concise overview of our contributions, we
summarize them as follows:

• We introduce BayGO, a fully-decentralized multi-agent
Bayesian learning framework, which iteratively updates
the agents’ posterior distributions and the underlying com-
munication graph, resulting in accelerated consensus and
improved communication efficiency (Algorithm 1).
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• We analytically derive an aggregation rule for the posterior
distributions received from each agent, with the goal of
attaining optimality and consensus (Proposition 1).

• We theoretically derive the rate of convergence of the
agents’ posterior distributions. This rate of convergence
is influenced by the network’s structure, represented by
the weights of the connecting edges between agents, and
the KL-divergences between the adjacent agents’ posterior
distributions. These KL-divergences reflect the differences
in information content between neighboring agents; that
is, the information heterogeneity throughout the network
(Theorem 2).

• We optimize the derived rate of convergence with respect
to the communication graph, alternately with the poste-
rior distributions. This optimization results in a sparse
graph configuration where each agent is connected solely
to one neighbor at any particular instance. Consequently,
this approach leads to an expedited learning and enhanced
communication efficiency (Section III-D).

• We empirically substantiate that BayGO outperforms sev-
eral baselines, such as the fully-connected and star topolo-
gies in terms of learning speed. This is attributed to the
information-aware neighbor selection, which underscores
the communication efficiency of BayGO (Section IV).

We would like to note that a preliminary version of this work
was proposed in [1]. The main differences of this work over our
prior work [1] are: (i) this work involves detailed derivations of
the posterior distributions aggregation rule, (ii) we derive the
convergence rate of the posterior distributions and use it as our
graph optimization objective to boost the learning speed, (iii)
finally, this work includes several simulation results based on
neural networks.
Paper Organization: The rest of the paper is organized as
follows. In section II, we introduce the system model and
problem formulation. In section III, we describe our alternating
minimization based algorithm to solve the proposed problem.
In section III-C, we state our analytical results. In section IV,
we introduce and discuss our simulation results. We conclude
the paper in section V. Finally, in the appendix, we provide the
mathematical proofs for our main results.
Notation: We use boldface lowercase symbol for vectors s, and
boldface uppercase symbol for matrices S. In addition, for a
probability distribution p, [p]k notation is used to indicate a
discrete probability distribution; i.e., it denotes the probability
at point θk. Meanwhile, p(θ) notation denotes a continuous
probability distribution over θ. Super-index will generally indi-
cate the time index. We write as [St]ij the i-th row and the j-th
column entry of matrix S at time t. For a sequence of matri-
ces {St}, we let Stf :ti

Δ
= Stf · · ·Sti+1St for all tf ≥ ti ≥ 0.

Moreover, we refer to the Kullback-Leibler (KL) divergence
between two probability distributions as DKL(p(r)||p′(r)) such
that p(r),p′(r) ∈ΔR where ΔR denotes the set of all proba-
bility distributions on a set R. In addition, N0 denotes the set
of natural numbers {1, 2, 3, · · · }. Finally, N (m,C) denotes
a Gaussian distribution with mean vector m and covariance
matrix C.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a set M= {1, 2, . . . ,M} of M agents, each hold-
ing a local dataset Di whose elements are pairs of inputs and
corresponding labels. In particular, Di is a subset of Xi × Y ,
where Xi is the local input space of agent i and Y is the set
of all possible labels. Note that the union of all local input
spaces is contained in a global input space X , i.e., ∪M

i=1Xi ⊂X .
The global input samples of X are assumed to be indepen-
dent and identically distributed (i.i.d) according to a distri-
bution PX ∈ P (X ), where P (X ) is the set of all probability
distributions over X . Similarly, Agent i’s local input samples,
{x(1)

i ,x
(2)
i , . . . ,x

(Di)
i } of Xi are assumed to be i.i.d according

to a distribution Pi ∈ P (X ), and the corresponding labels are
{y(1), y(1), . . . , y(Di)}. Moreover, for all x ∈ X , the generating
function of the global labels is viewed as a probabilistic model
with a distribution f( · | x). In addition, for simplicity, and
without loss of generality, we discretize the parameter space
Θ⊆ R

d with K representative points and denote the set of these
points by ΘK

2.
For fixed x ∈ X , y ∈ Y , and for some parameter vector

θ ∈ΘK the global likelihood function is given by l(y|x,θ).
Similarly, the local likelihood function li(y|x,θ) of agent i is
defined as follows:

li(y|x,θ)�
{
l(y|x,θ), if (x, y) ∈ Di

β, if (x, y) /∈ Di,

where β ∈ (0, 1). This definition entails the likelihood function
of agent i to be identical to the global likelihood function only
when the data sample (x, y) is part of its local dataset Di.

The posterior distribution of agent i is denoted by μi ∈ΔΘ,
where ΔΘ is the probability simplex or the set of all probability
distributions over the set Θ. In an iterative setting, we use a
superscript t with μi to signify the time index. The goal of each
agent i, which we refer to as the per-agent objective, is to learn
a posterior distribution μ∗

i that minimizes the KL divergence
between the true labeling function f( · | x) and its predictive
distribution

∑K
k=1 li( · | x,θk)[μi]k. More specifically, μ∗

i is
the solution to the following optimization problem [13]:

minimize
μi∈ΔΘ

Ex∼PX

[
DKL

(
f( · | x)

∥∥∥∥∥
K∑

k=1

li( · | x,θk)[μi]k

)]
.

(1)

The minimization above ensures that each agent makes statis-
tically similar predictions as the true labeling function over the
global dataset. In applied domains, it is commonplace to tackle
the problem under the setting of global identifiability as defined
below:

Definition 1: A decentralized multi-agent learning model is
said to be globally identifiable if there exists θ∗ ∈ΘK such that
li(y|x,θ∗) = f(y|x) ∀i∈M and (x, y) ∈ Di [13], [20].

In other words, under the global identifiability setting, each
agent’s goal is to learn the true model parameter θ∗. Since we

2Similar assumptions have been previously made in [10], [15], [20].
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assume that the model is globally identifiable, the per-agent ob-
jective in (1) boils down to learning θ∗ by minimizing the diver-
gence between the true labeling function f(y|x) = li(y|x,θ∗)
[cf. Definition 1] and the likelihood at θ, li(y|x,θ) [13], [20].
More specifically, we have θ∗ = θk∗ , where

k∗ = argmin
k∈{1,...,K}

Ex∼PX

[
DKL

(
f( · | x)

∥∥∥li( · | x,θk)
) ]

.

(2)

It is worth pointing out that under the global identifiability
setting, [μ∗]k = 1 if k = k∗ and zero otherwise. Addressing the
aforementioned problem in isolation does not lead to an optimal
solution. This is primarily because of the significant challenges
inherent in a fully decentralized learning paradigm, which can
be summarized as follows.

• Statistical Insufficiency of Local Datasets: Agents’ locally
observed data are likely to be less rich than the global
training set. In other words, agents’ local datasets are sta-
tistically insufficient to learn the shared global model in
isolation. In problem (1), this limitation is evident as each
agent i only has access to its own distribution Pi, rather
than the overall distribution PX .

• Limited Communication Resources: For communication
efficiency and scalability reasons, agents are likely to limit
their interactions with a subgroup of their peers which
can be viewed as their one-hop neighbors on the physical
graph.

• Information heterogeneity: Information received from dif-
ferent peers should be viewed differently, requiring a het-
erogeneous updates aggregation mechanism.

Statistical insufficiency suggests agents to collaborate with
other agents to enrich the view of the global dataset. On
the other hand, the lack of communication resources suggests
sparse and effective communication among neighbors, possibly
with only the one-hop neighbors. Information heterogeneity
suggests designing means of who is communicating to whom
to realize a meaningful model aggregation. Thus, instead of the
restricted isolated formulation (2), we consider the following
optimization problem3:

minimize
k∈{1,...,K}

M∑
j=1

[W ]ij Ex∼Pj
DKL

(
f( · | x)

∥∥∥lj( · | x,θk)
)
.

(3)

Note that the weights [W ]ijs are introduced into the modified
formulation to capture the importance of each agent as seen by
the others. The weights account for information heterogeneity
and give means of differently weighting the information re-
ceived from neighbors.

III. DISTRIBUTED LEARNING WITH LEARNING

RATE OPTIMIZATION

In this section, we derive the Bayesian estimation learning
rule for problem (3). We also derive the rate of convergence of

3Since agents have access only to their own distributions, the proposed
formulations allow agents to sample from Pj instead of PX [13].

our model in terms of both communication graph and level of
informativeness among agents. Then, we optimize this rate with
respect to the communication graph alternately, together with
the model to increase the learning speed.

A. Modeling Agents’ Communication

To enable designing a suitable method for solving problem
(3) in our considered multi-agent setting, we model the agents’
interactions by using a graph. More specifically, the interac-
tions between agents at each time epoch t are modeled by the
communication graph, Gt

c = (M, Et
c), which is overlaid over a

strongly-connected physical graph4 Gp = (M, Ep). The set of
edges Ep contains pairs of physically connected agents on Gp.
That is the set of pairs {(i, j), (j, i)} ∈ Ep if and only if agent
i and agent j are permitted to communicate with each other
through a physical communication link. The set of edges Et

c

contains (j, i) ∈ Ep if and only if agent j is communicating to
agent i at time t.

Let us denote by Si the set of neighbors of agent i in Gp, i.e.,
Si = {j ∈M | (j, i) ∈ Ep}. Similarly, let Vt

i denotes the set of
neighbors of agent i in Gt

c, i.e., Vt
i = {j ∈M | (j, i) ∈ Et

c}. We
directly associate [W t]ij used in problem (3)5 to the weight
of the directed edge (i, j) from agent j to agent i, which in
turn models the real interaction between the two agents. It is
worth noting that, for all j ∈M, [W t]ij represents the level
of importance as seen by agent i when it blends the posterior
distributions of agent j at time t. In other words, [W t]ij can be
viewed as the influence of agent j on the learning process of the
posterior distribution of agent i at time t. Recall that, each agent
i influences its own learning via the self-loop weight [W t]ii,
which is referred to as self-reliance. In the literature, the weight
matrices sequence {W t} has been assumed to satisfy some
technical connectivity conditions that are used in convergence
analysis of distributed averaging algorithms [10]. To this end,
we have the following assumptions regarding the communica-
tion graph Gt

c.
Assumption 1: The graph sequence {Gt

c} and the weight
matrix W t are such that:

(a) W t is row-stochastic with [W t]ij > 0 if j ∈ Vt
i , other-

wise [W t]ij = 0.
(b) W t has strictly positive diagonal entries, [W t]ii > 0.
(c) If [W t]ij > 0 then [W t]ij > η for some positive constant

η.
(d) {Gt

c} is B-strongly connected, i.e., there is an integer B ≥
1 such that the graph

{
M,∪(t+1)B−1

z=tB Ez
c

}
is strongly

connected for all t≥ 0.

B. Bayesian Parameter Estimation

First, let us begin by highlighting the following key remark
when formulating the Bayesian estimation learning rule from
(3) for all i ∈M.

4A strongly connected graph is a directed graph in which paths exist in
both directions, connecting any two distinct vertices within the graph.

5In this equation, dependency of W on t is suppressed.
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Remark 1: Minimizing the KL divergence between the em-
pirical global labeling distribution f( · | x), defined by the
training set, and the likelihood distribution lj( · | x,θk) with
respect to θk is equivalent to maximizing the conditional mean
of the log-likelihood. More specifically,

argmin
k∈{1,...,K}

DKL

(
f(·|x)

∥∥∥lj(·|x,θk)
)

(4)

= argmax
k∈{1,...,K}

Ey∼f(·|x) log lj(y|x,θk), (5)

where (4) follows from the definition of DKL and (5) follows
from the fact that Ey∼f(·|x) log f(y|x) does not depend on θ.
By using Remark 1, problem (3) is simply given by

maximize
k∈{1,...,K}

M∑
j=1

[W ]ij Ex∼Pj
Ey∼f(·|x) log lj(y|x,θk). (6)

Mathematically, the Maximum Likelihood Estimation
(MLE) problem (6) can equivalently be cast as an optimization
problem over the posterior distribution vector μi [20]. In
particular, we have the following problem:

maximize
μi∈ΔΘ

K∑
k=1

[μi]k

M∑
j=1

[W ]ij Ex∼Pj
Ey∼f(·|x) log lj(y|x,θk).

(7)

The equivalence of between (6) and (7) follows from that ΔΘ is
a probability simplex. In particular, the solution μ�

i of problem
(7) conforms to [μ∗

i ]k = 1 at k = k̃∗ and zero otherwise for all
i, where k̃∗ is the solution of problem (6). Moreover, under
the global identifiability setting [cf. Definition 1], the solution
of problem (7) coincides with the solution of problem (1),
i.e., k̃� = k�.

It is commonplace to attack problem (7) by replacing
expectation Ex∼Pj

Ey∼f(y|x)(·) with corresponding empirical
averages. Specifically, in situations where we have a large
sample, it is typical to choose any D0j ≤Dj as batch size,
and to construct a stochastic gradient by taking a subsample
of indices m1, . . . ,mD0j

uniformly at random, either with or
without replacement, from {1, . . . , Dj} at time t≥ 0. Let us
denote by qt

j ∈ R
K the resulting empirical average vector at

time t. Consequently, the kth component of qt
j ∈ R

K is simply
given by

[qtj ]k =
1

D0j

D0j∑
m=1

log lj
(
y(m)|x(m),θk

)
.

Hence, the resulting stochastic gradient method, combined
with appropriate regularization ψwi,μt , gives rise to the follow-
ing proximal point algorithm for updating agent i’s posterior
distribution:

μt
i := argmin

νi∈ΔΘ

[
−〈νi, g

t
i〉+ (1/2α)ψwi,μt−1

(
νi

)]
,

where gt
i is a vector in R

K , whose kth component is given by
[gti ]k =

∑M
j=1[W ]ij [q

t
j ]k and

ψwi,μt−1(ν)�
M∑
j=1

[W ]ijDKL (ν‖μt−1
j ). (8)

Note that wi = [[W ]i1, . . . , [W ]iM ]T, μt = [μt
1, . . . ,μ

t
M ]T,

and t is used to denote the iteration index of the proximal
point algorithm. Note that the regularization term defined in (8)
encourages μt

i of agent i not to be far from the posteriors of
its neighbors j ∈Ni whose significance is ranked with [W ]ij .
Thus, μt

i is formally the solution of the following problem:

minimize
νi

− 〈νi, g
t
i〉+ (1/2α)ψwi,μt−1

(
νi

)
subject to νi � 0, νT

i 1 = 1. (9)

An iterative algorithm, in which each agent needs to commu-
nicate to its neighbors only, can be devised to yield the solution
of problem (9). The iterates are established in the following
proposition.

Proposition 1: The solution for problem (9) is given by:

[μt
i]k =

exp
(∑M

j=1[W ]ij log[ν̃
t
j ]k

)
∑K

q=1 exp
(∑M

j=1[W ]ij log[ν̃tj ]q

) , ∀i, j ∈M,

(10)

where

[ν̃tj ]k =
[qtj ]k[μ

t−1
j ]k∑K

l=1[q
t
j ]l[μ

t−1
j ]l

, ∀j ∈M. (11)

Proof: See Appendix A.
The sequence {[μt

i]k}t∈N0
admits a linear convergence as

established in [13], which we state in Theorem 1 for cohesion.
We start by outlining a couple of assumptions.

Assumption 2: For all agents i ∈M , let Ĩi :=
argmink∈{1,··· ,K} Ex∼Pi

[
DKL(f(·|x)

∥∥li(·|x,θk))
]

and
I∗ := ∩M

i=1Ĩi. There exists a parameter k∗ ∈ {1, · · · ,K} that
is globally identifiable; i.e. I∗ �=∅.

Assumption 3: For each agent i ∈M, assume (i) agent i’s
prior distribution at t= 0 is [μ0

i ]k > 0, ∀θk ∈Θ. (ii) There
exists an α > 0, L > 0 such that α < li(y|x,θk)< L, for all
y ∈ Y,θk ∈Θ and x ∈ X .

Assumption 2 guarantees that the collective observation of
agents throughout the network provides statistically sufficient
information to learn the global model. Assumption 3 safe-
guards against the occurrence of degenerate scenarios where a
Bayesian prior or a likelihood of zero can hinder the learning
process. Moreover, a bounded likelihood model is essential for
convergence [10], [13], [20].

Theorem 1: Let Assumptions 1, 2, and 3 hold. Using the
decentralized learning algorithm in equations (10) and (11),
for any given confidence parameter γ ∈ (0, 1) and any arbitrary
small ε > 0, we have

max
i∈M

max
k/∈I∗

[ν̃ti ]k ≤ exp−t (Π− ε) ,

where the number of samples satisfies t≥ 8c log(MK/γ)

ε2(1− λmax(W ))
.

The rate of convergence Π of the posterior distribution is
given by

Π= min
θ∗∈{θk|k∈I∗},θ/∈{θk|k∈I∗}

M∑
j=1

vjIj(θ
∗,θ),
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where Ij(θ
∗,θ) = Exj∼Xj

[DKL(lj(·|θ∗,xj)‖lj(·|θ,xj))], vj
is the eigenvector centrality associated with agent j ∈M, and
v = [v1, . . . , vM ]T is the unique stationary distribution6 of W
with strictly positive components. Furthermore λmax(W ) =
max1≤i≤M−1 λi(W ), where λi(W ) denotes the ith eigenvalue
of W counted with algebraic multiplicity and λ0(W ) = 1, and
c= | log(L/α)|7.

The rate of convergence Π depends on two factors. The first
is the structure of the weighted network, which is quantified
by the eigenvector centrality v of the agents. The second one
is the ability of agents to differentiate between parameters, a
feature captured by the KL-divergences [I1, . . . , IM ]. These
KL-divergences are calculated between the likelihood functions
conditioned on the input, thereby measuring the extent to which
parameter θ∗ ∈ {θk|k ∈ I∗} can be distinguished from param-
eter θ /∈ {θk|k ∈ I∗}. As a result, each agent may influence
the convergence rate in two distinct manners. First, the higher
the eigenvector centrality of an agent, the better the position
of the corresponding agent within the network to influence the
posterior distributions of other agents, consequently having a
greater impact on the rate of convergence. Secondly, agents with
high KL-divergence, signifying highly informative local ob-
servations capable of distinguishing between parameters, also
contribute to boosting the convergence rate [13], [14]. This
suggests that optimizing Π with respect to the eigenvector cen-
trality v of the agents would enhance the speed of learning.
However, finding the optimal eigenvector centrality for each
agent j is challenging due to its dependence on the unknown
true parameter θ∗ in Ij(θ

∗, θ). Our work overcomes this chal-
lenge by deriving a rate of convergence for the agents’ posterior
distributions νi for all i ∈M that is independent of the true
parameter θ∗, thereby rendering it suitable for optimization. In
the subsequent sections, we present our main assertion and the
proposed optimization framework.

It’s worth noting that the authors in [23], [24] demonstrates
that the upper bound of the error exponent for posterior dis-
tributions can be achieved by the uniform Perron eigenvector,
as illustrated in Corollary 2 of [23]. Since the uniform Perron
eigenvector corresponds to a doubly-stochastic weight matrix,
Corollary 2 of [23] concludes that any doubly-stochastic weight
matrix will be optimal. Remarkably, this finding establishes
the independence of the optimal Perron eigenvector from the
choice of the global truth, thereby addressing the aforemen-
tioned challenge. However, it is important to emphasize that
this observation does not directly translate to our context, as our
focus lies in non-adaptive social learning, whereas the study in
[23], [24] pertains to adaptive social learning. In more detail, in
the adaptive settings, the steady-state error probability is non-
zero and dependent on the eigenvector centrality. Therefore,
the goal of [23], [24] is not only to consider the transient

6The unique stationary distribution of an irreducible and aperiodic matrix
in the context of Markov chains is defined as a probability distribution over
states that remains unchanged despite transitions, indicating the chain’s long-
term equilibrium [26].

7The ratio between the upper and lower bounds of agent i’s likelihood
models impacts the minimum number of samples required for convergence.
The smaller the c, the smaller number of samples needed for convergence,
and vice versa.

behaviors (i.e., convergence rate) but also the steady-state er-
ror probability when finding the optimal eigenvector centrality.
Their conclusion is in contrast to the analogous result in non-
adaptive social learning [14], where a positive relation between
the informativeness of agents and the centrality of agents is
highlighted for improving the learning performance [24].

C. A Modified Learning Rate Analysis and Optimization

Let us start by deriving a linear convergence rate for the
error between the optimal posterior distribution and sequence
{[ν̃ti ]k}t∈N0

, which can be practically optimized. More specif-
ically, we show that, at each agent i, the error convergence to
zero is at least as fast as a geometric series with a rate dependent
on the weighted sum of discrimination information between
posterior distributions of agent i and its neighboring agents.
Hereby, we introduce our main theorem.

Theorem 2: Let Assumptions 1, 2, and 3 hold. Also, let ζ ∈
(0, 1) be a confidence level and ε > 0 be any arbitrary small
number. Then, the decentralized learning algorithm in equations
(10) and (11) has the following property: there exists an integer
N(ζ) such that, with probability 1− ζ, for all t≥N(ζ) there
holds that for any k /∈ I∗,

max
i∈M

[ν̃i]
t
k < e−t(Λ(W t)−ε),

where N(ζ)� 2Aε−2 log (M(K − 1)/ζ) and

Λ(W t) =

M∑
j=1
j �=i

[[W t]ij ]DKL(ν̃
t
i‖|ν̃t

j). (12)

Proof: See Appendix B.
The rate of convergence given in (12), depends on both the

KL-divergence between agents’ posterior distributions and the
structure of the weighted network defined by [W t]ij for all
agents i ∈M and j ∈M at time t. As a result, every agent
can influence the convergence rate by assigning higher edge
weights to neighbors that exhibit the most significant divergence
in their posterior distributions compared to the agent’s own
distribution. The divergence reflects the degree of disparity in
information content among agents. This information content
is sourced either from the agents’ local datasets or from their
prior interactions within the network. Intuitively, this can be
perceived as agents achieving more efficient learning when they
combine diverse information, rather than redundantly process-
ing data that does not contribute substantially to the overall
learning.

Hence, our derived rate (12) suggests a practical means to
estimate information diversity throughout the network. This is
achieved by measuring information heterogeneity through KL-
divergences among agents’posterior distributions, which agents
can access during training. With this insight, we now optimize
the network structure by using the derived convergence rate
(12) as an objective function. Thus, in addition to the standard
posterior distribution update (10), W ijs are also optimized,
which we refer to as graph optimization.
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D. Decentralized Graph Optimization

In this subsection, we describe our proposed problem formu-
lation and a decentralized algorithm for optimizing the graph
weights [W t]ij for all i, j ∈M, given the posterior distribu-
tions ν̃t

i for all agents i ∈M. In particular, the graph optimiza-
tion problem is given by

maximize
{[W t]ij}

M∑
i=1

M∑
j=1

[W t]ijD KL(ν̃
t
i‖|ν̃t

j) (13a)

subject to
M∑
j=1

[W t]ij = 1, [W t]ii ≥ δ, (13b)

[W t]ij ≥ 0 ∀j ∈ Si, j �= i, (13c)

[W t]ij = 0 ∀j /∈ Si, j �= i, (13d)

where δ ∈ (0, 1) is a strictly positive constant and recall that Si

the set of neighbors of agent i in the physical graph Gp. The
above constraints imply that W t is a row-stochastic matrix,
agents’ self-reliances [W t]ii are strictly positive, and [W t]ij
is set to zero for all j /∈ Si for all i ∈M. Problem (13) is a
standard linear programming (LP) problem, and the optimal
solution is given by

[W t]ij =

⎧⎪⎨
⎪⎩
δ, j = i,

1− δ, j = argmaxĵ∈Si
DKL(ν̃

t
i||ν̃t

ĵ
)

0, otherwise.

(14)

The solution admits a sparse solution giving rise to a sparse
graph where each agent selects exactly one neighbor that is the
most valuable to its learning at time t. The chosen neighbor
possesses the most distinct knowledge, potentially sourced from
its local datasets and past interactions, compared to the agent’s
own knowledge. The choice of each agent agrees with intuition,
in the following sense: agents learn more efficiently when they
combine diverse pieces of information, as opposed to having
redundant information that does not contribute to the holistic
view. Moreover, it is worth highlighting that the sparsity solu-
tion (14) enables a light communication protocol.

In MADL, preserving the connectivity of the communication
graph is a critical factor for the model to achieve consensus, as
indicated in [27]. Traditionally, graph connectivity can be en-
sured by constraining the second largest eigenvalue, also known
as the algebraic connectivity, of the optimized graph to be less
than one, as discussed in [27], [28]. Specifically tailored to the
proposed graph optimization and the consequent construction
of W t [cf. (14)], the following result can be established.

Lemma 1: Let W t be the weight matrix constructed from
(14) at time t and let [W ]ti denote the i-th row of W t. Also,
let ĵ = argmaxj∈Si

DKL(ν̃
t
i||ν̃t

j). For any δ ∈ (0, 1) and t≥ 0,
the weight matrix W t satisfies Assumption 1.

Proof: See Appendix C.
Lemma 1 claims that the proposed weight matrixW t guaran-

tees existence of a B-strongly connected graph. This together
with Lemma 3 [cf. page 13] ensures that B is always upper-
bounded. More specifically, we have

B ≤ 1

M

log ρ

log η
, (15)

Algorithm 1 BayGO Algorithm

Inputs: ν0
i ∈ΔΘ with [ν0i ]k > 0 ∀ k ∈ {1, · · · ,K} ∀i ∈

M, strongly-connected physical graph Gp, and 0< δ < 1.
1: for t= 1 to T do
2: for all i ∈M, in parallel do
3: Draw a batch of samples (Xt

i,y
t
i) ∈ Di.

4: Local Posterior Distribution Update: Form ν̃t
j

using the following rule. For each k ∈ {1, · · · ,K},

[ν̃tj ]k =
[qj ]k[μ

t−1
j ]k∑K

l=1[qj ]l[μ
t−1
j ]l

(16)

5: Communication Step: Send ν̃t
i to neighbor j for

which i ∈ Sj , and receive ν̃t
j from neighbor j ∈ Si.

6: Graph Optimization: Update agent i’s edge weights;
i.e., [W t]ij ∀j ∈ Si as follows:

(a) Calculate KL-divergence between ν̃i,t and ν̃j,t,
∀j ∈ Si.

(b) Select the neighbor with the highest KL-
divergence (denoted as agent s).

(c) Update [W t]is = 1− δ, and all [W t]ij = 0, ∀j ∈
M \ {i, s}.

7: Consensus Step: Update local posterior distribution
by averaging the log posterior distributions of agent i
and its neighbors as follows:

[μt
i]k =

exp
(∑M

j=1[W
t]ij log[ν̃

t
j ]k

)
∑K

q=1 exp
(∑M

j=1[W
t]ij log[ν̃tj ]q

) . (17)

8: end for
9: end for

where ρ= inft≥0 (min1≤i≤M [1′M [[W ]i]t:0]) and 0< η <
min(δ, 1− δ). The proof is straightforward.

We are now ready to outline our proposed BayGO algorithm,
cf. Algorithm 1. Fig. 1 provides an illustrative example that
outlines the workflow of our algorithm. This example visually
demonstrates several key aspects, including (i) the collaborative
interactions among agents and their neighbors, (ii) the impact
of local datasets and previous network interactions on the in-
formativeness of each agent, (iii) the propagation of updates
throughout the network, and (iv) the formation of a B-strongly
connected graph for the agents’ connections over time.

In particular, we examine a network consisting of 7 agents,
each exhibiting varying levels of informativeness in their
datasets, represented by different shades of color. The dashed
grey arrows delineate the underlying strongly-connected phys-
ical graph Gp. Initially, the agents possess no prior knowl-
edge regarding the distribution of data across the network.
Following the first update of their local posterior distribu-
tions, the agents calculate the KL-divergences between their
respective updates. Each agent then establishes a connection
with the agent displaying the highest divergence in terms of
posterior distribution.
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Fig. 1. An illustrative example describing the flow of BayGo.

From each agent’s viewpoint, the most divergent agent is the
one with a notably different shade. For instance, if we examine
agent 5, it initially identifies agent 3 as its most divergent
neighbor. Consequently, during iteration 1, agent 5 collaborates
with agent 3.

Note that collaboration among agents is symbolized by
blending their colors and adopting the resulting color as their
new shade. For the sake of simplicity, we assume that each
agent’s color contributes equally, accounting for 50% of the
resulting shade. Examining the entire network, it becomes ev-
ident that agent 1 stands out as the most divergent from all the
others. However, agent 5 cannot directly establish a connection
with agent 1. Nonetheless, agent 1’s knowledge is transmitted to
agent 5 through a relay of interactions involving agents 2 and
6. Put differently, in the initial iteration, agent 1 collaborates
with agent 2, and in the subsequent iteration, it engages in
collaboration with agent 6. This progression establishes agent 6
as the most diverged resource for agent 5’s learning at that point.
Consequently, in the third iteration, agent 5 collaborates with
agent 6. This sequence of interactions continues among agents
until they ultimately converge to a shared model, represented by
a unified color shade. At this stage, neighbor selection simplifies
to a random choice of one agent. Hence, one can observe that
the combination of graphs after B steps is strongly connected.

Note that the posterior distributions μis of the preceding dis-
cussions and in Algorithm 1 are discrete and finitely supported.
Nevertheless, the derivations can be linked with continuous
posterior distributions with infinite supports as pointed out in
the following remark.

Remark 2: Suppose that θ∗ ∈ Φ, where parameter set Φ is a
compact subset of R

d. Furthermore, assume that there exists
a set Θ⊂ Φ of cardinality K which is an r-covering of Φ,
denoted as Br(θ). These assumptions indicate that the model
that generates labels across the network can be parameterized
by a continuous parameter θ which belongs to a compact set

Φ⊂ R
d. Moreover, these assumptions imply that there exists

a quantization of Φ with quantization points in Θ such that Θ
is an r-covering of Φ. In [15], they have shown that with high
probability we have θ∗ ∈ Br(θ̂

t

i) where θ̂
t

i is the most probable
parameter at time t and at agent i for all i ∈M.

IV. NUMERICAL EVALUATION

In order to assess the effectiveness of the BayGO framework,
in what follows, we consider two distinct tasks, namely, linear
regression on a real body-fat dataset [29], and image classifi-
cation on the MNIST dataset [30].

A. Decentralized Bayesian Linear Regression

Simulation Setup: We consider a multi-agent setting with
M = 12 agents, who are to solve a linear regression prob-
lem with Θ= R

2, X ∈ R, and Y ∈ R. More specifically, X =
[70, 120] represents the set of abdomen features and Y rep-
resents the body fat percentage where y = θ∗Tx+ n for all
y ∈ Y and n denotes the additive Gaussian noise n∼N (0, ϑ2).
The first component of the parameter θ ∈Θ is the intercept
and the second component is the gradient of the model. A
Gaussian prior is assumed on θ for each agent i with a mean
vector m0

i = 0 and a diagonal covariance matrix C0
i having

all diagonal elements equal 0.5. In this respect, parameters are
continuous (cf. Remark 2) and the local posterior distribution ν̃t

i

of agent i at time t, which is characterized by mt
i and Ct

i, after a
local Bayesian update remain Gaussian. More specifically, (16)
at step 4 of Algorithm 1 is replaced by the following:

m̃t
i = C̃

t

i

(
(Ct−1

i )
−1

mt−1
i + (ϑ2)−1(X̂

t
)
T

yt
i

)
,

(C̃
t

i)
−1 = (Ct−1

i )−1 + (ϑ2)−1(X̂
t
)
T

(X̂
t
),
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where X̂
t

is the design matrix of size D0i × 2. Moreover, the
posterior distribution (17) of agent i at step 7 of Algorithm 1
is replaced by the following:

mt
i =Ct

i

M∑

j=1

[W t]ij
(
C̃

t
i

)−1

m̃t
j ,

(
Ct

i

)−1
=

M∑

j=1

[W t]ij
(
C̃

t
i

)−1

.

(18)

As a result, the beliefs acquired following the consensus
step maintain a Gaussian distribution (i.e., μt

i ∼N [mt
i,C

t
i)],

thereby indicating that the associated predictive distribution
also retains its Gaussian characteristic [13], [15]. We make the
observations not to be uniformly distributed among agents by
manually splitting body-fat dataset [29] to yield the local data
sets Dis of the users as follows. With D1, the local data set
of agent 1, we associate all the input samples of X whose
values are in [85, 120] and their corresponding labels in Y .
Similarly, with local data sets Di, i= 2, . . . ,M of the rest of
the agents, we associate subsets of input samples of X with
values in [70, 85) and the corresponding labels in Y so that they
are statistically similar. The mean-squared error (MSE) between
the observed data and the values predicted by the model is
computed as a performance metric to evaluate predictions over
a test dataset.
Baselines: The following baselines are considered (i) a Cen-
tralized setting (Cen), where a single agent has access to all
the training data, (ii) a setting with no collaboration (NoCol),
where agents learn individually without any collaboration, (iii)
a setting with a fully-connected topology (FulCon), where Gp

is a fully-connected graph with uniform eigenvector centrality
across all agents (iv) a setting with positive matching star topol-
ogy (PosM) with agent 1 serving as the head of the star and (v) a
setting with negative matching star topology (NegM) with agent
1 serving at the edge. In both PosM and NegM, Gp is a star graph
of order M . The PosM baseline represents an ideal case where
the agent 1 is the most influential agent in the network, whereas
the NegM baseline represents a scenario where other agents
hold the most influence within the network. Lastly, we would
like to highlight some technical details regarding the FulCon
baseline. Specifically, we employ a fully connected graph where
each agent is assigned an equal weight of 1/M , resulting in a
doubly stochastic matrix with uniform eigenvector centrality.
This selection of graph weights aligns with the conclusions
drawn in [23], [24], where it was identified that in adaptive
settings, any doubly-stochastic weight matrix would be optimal.
It is noteworthy that non-adaptive settings can be regarded as
a special case of the adaptive one. More specifically, the non-
adaptive setting is achieved by setting the positive parameter
δ of equation (10) of [23] to 0.58. Therefore, FulCon can be
viewed as an instantiation of the proposed solution in [23], [24].
Furthermore, if we aim to establish a baseline that emulates the
Hastings rule [cf. Lemma 12.2 in [22]] under the assumption
of all agents experiencing equal noise levels, then FulCon also
serves as a valid representation, particularly in the scenario
where all agents have an equal number of neighbors.

8The positive parameter δ of [23] must not be confused with δ used in (14)
of our paper.

Fig. 2. Comparing BayGO to benchmarks (Cen and NoCol) in accuracy
and convergence speed.

Fig. 3. Comparing inference accuracy and convergence speed between
FulCon and BayGO.

Effect of Collaboration Between Agents on Learning
Accuracy and Speed: Fig. 2 presents the MSE over training
iterations for both agent 1 and agent 29, using our framework
and two baselines Cen and NoCol. Despite information hetero-
geneity, both agents, 1 and 2, exhibit comparable performance
in terms of MSE and convergence speed when trained under
BayGO. The performance is very comparable to the Cen con-
vergence plot. These results suggest that BayGO can learn in a
decentralized manner, without each agent having access to all
the training data, even in the presence of data set heterogeneity.
On the other hand, in the case of NoCol, even though agent 1
performs well, agent 2 performs poorly. This is because agent 1
possesses a relatively more informative dataset whereas agent
2 suffers from local statistical insufficiency. Therefore, BayGO
is a reasonable trade-off between making light communication
only with neighbors, while keeping the convergence properties
comparable to Cen.
Effect of Communication Graph Topology on Learning
Speed: Fig. 3 displays the Mean Squared Error (MSE) over
training iterations for both agent 1 and agent 2 using BayGO and
FulCon. Recall that FulCon serves as a realization of optimal

9Note that agent 2 to 12 are statistically similar in terms of their local data
sets D2 −D12. To simplify the presentation, we display the performance of
agent 2 since other agents 3 to 12 exhibit similar performance.
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Fig. 4. Impact of learning using star topology with the informative agent
at the center or edge compared to BayGo.

weights proposed in [22], [23], [24] under certain conditions [cf.
Baselines on page IV-A]. It is evident that under the FulCon
setting, characterized by a fully-connected topology, the con-
vergence of MSE for each agent is notably slower compared
to that achieved by BayGO. Furthermore, the results indicate
a lack of consensus between agent 1 and agent 2 even after
100 iterations. These observations can be attributed primarily
to dataset heterogeneity. Specifically, the FulCon baseline treats
all agents as uniformly informative, thereby disregarding inher-
ent disparities in their local datasets. Conversely, BayGO yields
not only a faster convergence in terms of MSE, but also a faster
consensus10 between agents’ posterior estimates in a few tens
of iterations.

Fig. 4 depicts the MSE versus training iterations by using
PosM and NegM star topologies. Under PosM setting, results
show that both agents 1 and 2 achieve almost identical perfor-
mance in terms of MSE convergence. This is expected since
agent 1, the most informative agent, resides at the center of
the star topology giving one-hop access to the least informative
agents (i.e., 2 to 12). At the same time, all the less informative
agents are at a one-hop distance to agent 1. As a result, infor-
mation diffuses effectively among all the agents, yielding fast
convergence and consensus of their posteriors. Conversely, in
the NegM scenario, both agents 1 and 2 exhibit not only slow
convergence but also poor consensus. This is mainly due to that
the informative agent 1 is no longer at a one-hop distance to
the noninformative agent 2 to yield an effective diffusion of in-
formation. Results show that BayGO enables fast convergence
of MSE and better consensus compared to NegM. Notably,
the performance of BayGO is comparable to the PosM star
topology, despite the position of agent 1 in graph Gp. This is
a consequence of the optimization framework that dynamically
updates the graph Gt, see §III-D.

B. Decentralized Image Classification

Training Neural Network Model: Recall that each iteration
of Algorithm 1 comprises a local Bayesian update [i.e., (16)],

10The closer the MSE values agent 1 and 2, the better the consensus of
their posterior distributions, which is empirically validated.

followed by a consensus step [i.e., (17)]. In the context of most
real-world scenarios, calculating the normalizing constants pre-
cisely within these update rules is quite challenging from a
computational standpoint. In this section, we present an added
step along with an adjustment to Algorithm 1 to enhance its
applicability in the context of training Neural Network (NN)
models. More specifically, when performing the local Bayesian
update, we leverage variational inference (VI) techniques out-
lined in [[31], Section 3]. In this respect, (16) of Algorithm 1
is replaced by the following: for each θ ∈Θ,

π̃t
j(θ) =

qj(θ)μ
t−1
j (θ)∫

Θ
qj(ψ)μt−1

j (ψ)
(19)

ν̃t
j = argmin

π∈Q
DKL(π‖π̃t

j), (20)

where Q is a permitted family of distributions over Θ. It’s
important to highlight that the consensus step is executed by
applying equations (18).
Simulation Setup: A multi-agent setting with M = 6 agents
was considered, where they perform an image classification
task. We have Θ= R

H , where H is the number of weight
parameters in the neural network (NN), a fully connected stan-
dard feed-forward network with one hidden layer consisting of
1024 ReLU activation units. Moreover, X ∈ R

784 represents
the 28× 28 pixel image and Y = {0, 1, . . . , 9} represents the
labels of the digits in MNIST. That is, the input of the NN is a
flattened 28× 28 pixel image, while the output layer consists
of 10 neurons with each neuron corresponding to one digit.
We initialize the NN parameters at each agent by utilizing a
Gaussian prior distribution with a zero mean vector and an
identity covariance matrix. Variational inference [cf. (19) and
(20)] is performed on local posteriors to obtain distributions
that are constrained to the commonly used Gaussian mean-field
approximate distribution family Q with a probability density
function parameterized by m,σ, where m is the mean and σ
is the covariance matrix [32], [33].

We partitioned the dataset into 6 subsets D1 −D6. The local
dataset D1 contains 80% of the observations and the remaining
5 subsets contain the rest of the dataset, equally split. Thus,
agent 1 is relatively more informative than other agents who
are relatively non-informative. The classification accuracy be-
tween the observed data and the labels predicted by the model
is computed as a performance metric to evaluate predictions
over a test dataset. To this end, after the consensus step of
Algorithm 1, for each agent i ∈M, first we sample from their
aggregated posterior distributions n times to yield θi1, . . . ,θiN .
Then for any image xi ∈ Xi, the predicted label ŷi is given

by ŷi = argmaxy∈Y(1/N)
∑N

n=1

expfy
θin

(xi)∑
y′∈Y expfy′

θin
(xi)

where

fy′

θh
(.) denotes the value of node y′ of the output layer of

the NN. We also compute the confidence in the prediction ŷ,
denoted c(ŷ), which is given by

c(ŷ) =

N∑
n=1

expfy
θin

(xi)∑
y′∈Y expfy′

θin
(xi)

. (21)
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Fig. 5. Comparing BayGO and Cen in terms of accuracy and convergence
speed under a classification task.

When running the algorithm, each agent performs (19)-(20)
change at step 4 of Algorithm 1 for m= 5 times11.
BayGO Performance Compared to Ideal Benchmark
(Cen): Fig. 5 shows the classification accuracy over training
iterations for both agent 1 and agent 212 using BayGO and
Cen. Results show that both agent 1 and agent 2 under BayGO
yield almost identical levels of accuracy compared to Cen. This
is achieved within a few tens of iterations even though Cen
admits a slightly faster convergence speed. Thus, the results
suggest that BayGO is comparable to Cen despite the fact that
BayGO has distributed non-homogeneous datasets. Moreover,
the results show that both agent 1 and agent 2 perform similarly
under BayGO. This indicates that the posterior distributions of
both agent 1 and 2 are mixed effectively during the iterations.
These observations are consequences of the graph optimization
framework which dynamically changes the graph Gt.
Effect of Communication Graph Topology on Speed of
Learning: Fig. 6 shows the classification accuracy over train-
ing iterations for agent 1 and agent 2 by using BayGO and
FulCon. The performance of BayGO compared to FulCon is
similar to that observed in Fig. 3. In particular, the convergence
of the accuracy under FulCon is slower compared to that of
BayGO. Moreover, there are substantial mismatches between
the classification accuracies of agent 1 and 2 under FulCon
roughly until 60 iterations. This is expected because the FulCon
baseline assumes uniform informativeness across all agents,
thereby overlooking inherent differences in their local datasets.
FulCon, once more, embodies the optimal weight distribution
proposed in [22], [23], [24] under specific conditions [cf. Base-
lines on page IV-A]. Observing BayGO, both agents demon-
strate not only a faster convergence but also similar classifi-
cation accuracies throughout the communication rounds. For
example, BayGo just within 12 communication rounds, BayGO

11Repeating the Bayesian update for a few iterations is beneficial to reduce
the communication overhead. Naturally, m is a hyperparameter and its choice
can depend on the application [13].

12Similar to the previous simulation setting, agent 2 to 6 are statistically
similar in terms of their local data sets D2 −D6. Therefore, to simplify
the presentation, in addition to the informative agent 1, we display the
performance of only one non-informative agent, in particular, the agent 2
since other agents 3 to 6 exhibit similar performance.

Fig. 6. Comparing inference accuracy and convergence speed in a classi-
fication task between FulCon and BayGO.

Fig. 7. Impact of learning using star topology with the informative agent
at the center or edge compared to BayGO under a classification task.

achieved its maximum accuracy, while FulCon takes around
60 communication rounds to reach the same level of accuracy.
Another way to view the benifit is that when the number of
agents M = 6, the FulCon incurs 60×M × (M − 1) = 1800
message exchanges between agents while BayGO incurs only
12×M = 72 message exchanges to reach the same level of
accuracy. This further illustrates the ability of our proposed
graph optimization to handle heterogeneous datasets by dy-
namically blending the local posterior distributions within a set
of carefully chosen agents only without unnecessarily flooding
communication between all the agents.

Fig. 7 plots the test accuracy of agent 1 and 2 versus commu-
nication rounds for BayGO, PosM, and NegM. Under PosM,
in which agents 1 and 2 lie at the center and the edge of the
star graph, respectively, both agents have similar performance
and they converge in a very few communication rounds [e.g.,
12]. For example, the maximum accuracy level is achieved
just within 18 communication rounds. This is intuitively ex-
pected since the agent placement seems to be a very desirable
setting (in terms of the information spread) in the sense that
the relatively more informative agent [i.e., 1] is at the center
of the star and the less informative agents [i.e., 2-6] are at
the edge nodes. On the other hand, results show that even a
slight change in the agent placement can significantly aggravate



2112 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

TABLE I
PERFORMANCE COMPARISON BETWEEN FULCON, POSM, NEGM, AND

BAYGO IN TERMS OF CONFIDENCE IN PREDICTING IMAGES WITH

LABEL 2. C.R. DENOTES THE NUMBER OF COMMUNICATION ROUNDS,
A1 AND A2 DENOTE AGENT 1 AND AGENT 2, RESPECTIVELY

FulCon PosM NegM BayGO

C.R. A1 A2 A1 A2 A1 A2 A1 A2
1 0.13 0.09 0.34 0.31 0.25 0.08 0.35 0.09
10 0.34 0.23 0.64 0.63 0.44 0.38 0.66 0.6
20 0.4 0.36 0.66 0.65 0.52 0.41 0.74 0.73

the convergence properties, see the plot for NegM in which
the agents 1 and 2 both lie at the edge of the star graph. For
example, NegM requires 70− 80 communication rounds to
reach the maximum accuracy level. Nonetheless, the outcomes
indicate that BayGO’s performance is quite comparable to that
of PosM, even though BayGO does not require any predefined
agent placement. Thus the BayGO framework seems to be more
robust for dataset heterogeneity.
Effect of Communication Graph Topology on Confidence
over Predictions: In the sequel, we compare the confidence
of predictions, see (21), of BayGO with the benchmarks Ful-
Con, PosM, and NegM. Table I shows the confidence of both
agent 1 and 2 predicting digit ‘2’ (i.e., Label 2) of MNIST test
dataset after communication rounds 1, 10, and 2013. The results
demonstrate that BayGO outperforms the benchmark settings
in almost all cases, see boldface numbers for dominant fig-
ures. This highlights how the graph optimization within BayGO
excels in managing diverse datasets by dynamically merging
local posterior distributions. As already pointed out, PosM by
design is a setting where the agents are placed in a desired
manner to enhance the fast consensus of posterior distributions.
Even in this setting, BayGO outperforms the benchmark for
agent 1, the most informative agent, while showing comparable
performance for agent 2, the less informative agent.

V. CONCLUSION

In this article, we proposed BayGO, a novel fully-
decentralized multi-agent Bayesian learning with local
averaging and graph optimization framework. BayGO
addresses challenges stemming from data heterogeneity and
the need for uncertainty quantification, which are common
obstacles encountered in MADL systems. It was shown that,
BayGO ensures fast convergence over a heterogeneous and
sparse communication graph without any assumptions on the
prior knowledge of the data distribution across agents. This
is done through an iterative process that optimizes agents’
posterior distributions alternately with their connections on
the graph. Indeed, within BayGO, agents are able to optimize
their connections according to the information content of their
neighbors; thus, accounting for information heterogeneity
throughout the network. Our theoretical analysis demonstrates
that when agents optimize their graph connections based on
variations in their information, it leads to faster convergence
of agents’ posterior distributions. Furthermore, this strategy

13The choice of Digit 2 is arbitrary.

results in the formation of a sparse graph, wherein each agent
exclusively communicates with the neighbor offering the
greatest learning advantage. Finally, our simulations confirm
that the BayGO framework outperforms traditional topologies,
such as fully-connected and star configurations, demonstrating
the practical benefits of our approach for scalable multi-
agent learning.

APPENDIX

A. Proof of Proposition 1

Leaving the positivity constraint implicit in equation (9), the
equation can be rewritten as the maximization of the following
Lagrangian,

Li(ν, λ) =νT
i g

t
i −

M∑
j=1

[W ]ij

K∑
k=1

[νi]k log
[νi]k

[μt−1
j ]k

+ λ(νT
i 1 − 1), (22)

where 1 is vector of all ones. Differentiating (22) we get

∂

∂[νi]k
Li(ν, λ) = [gti ]k − log[νi]k

+

M∑
j=1

[W ]ij log[μ
t−1
j ]k + λ− 1 = 0,

∂

∂λ
Li(ν, λ) = νT

i 1 − 1 = 0.

Solving the above equations yields:

[νi]k = exp

(
[gti ]k +

M∑
j=1

[W ]ij log[μ
t−1
j ]k

)
exp(λ− 1),

(23)

νT
i 1 = 1, (24)

and replacing νi in (24) by (23) we have

exp(λ− 1) =

⎡
⎣ K∑
q=1

exp

(
[gti ]q +

M∑
j=1

[W ]ij [μ
t−1
j ]q

)⎤⎦
−1

.

(25)

Hence, from (23) and (25) we have

[μt
i]k =

exp

(
[gti ]k +

∑M
j=1[W ]ij log[μ

t−1
j ]k

)
∑K

q=1 exp

(
[gti ]q +

∑M
j=1[W ]ij log[μ

t−1
j ]q

) . (26)

Substitute [gti ]k =
∑M

j=1[W ]ij [q
t
j ]k in (26) we get

[μt
i]k=

exp
(∑M

j=1[W ]ij log
(
[qti ]k[μ

t−1
j ]k

))
∑K

q=1exp
(∑M

j=1[W ]ij log
(
[qti ]k[μ

t−1
j ]q

)) , ∀j ∈M.

(27)

To simplify the equation, we initially compute each agent’s
private posterior update by setting their self-reliances to one.
This results in the following private posterior update:

[ν̃ti ]k =
[qti ]k[μ

t−1
j ]k∑K

l=1[q
t
i ]l[μ

t−1
i ]l

, ∀i ∈M.
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To obtain the agent’s aggregated posterior update, we rewrite
(27) in terms of agents’ private posteriors [ν̃tj ]k∀j as follows:

[μt
i]k =

exp
(∑M

j=1[W ]ij log[ν̃
t
j ]k

)
∑K

q=1 exp
(∑M

j=1[W ]ij log[ν̃tj ]q

) ,
and this concludes the proof.

B. Proof of Theorem 2

For the ease of exposition, let [ν̃0i ]k = [ν̃0j ]k =
1

|Θ| for all i ∈
M, j ∈M,θk ∈Θ. Let θ∗ ∈Θ∗, for each agent i ∈M, and
for any θq /∈Θ∗. The proof of Theorem 1 makes use of the
following quantities: for all i= 1, · · · ,M and t≥ 0,

ϕt
i(θq)� log

[ν̃ti ]∗
[ν̃ti ]q

, ϕt
ij(θq)� log

[ν̃ti ]q
[ν̃tj ]q

,

[Lt
i]q = log

li(y
(t)|x(t),θ∗)

li(y(t)|x(t),θq)
,

with dependence on θ∗ is suppressed. Also, the proof makes
use of the following:

Assumption 4: We assume that
∣∣[Lt

ij ]k
∣∣=∣∣∣∣∣ log

(
li(y

(t)|x(t),θk)

lj(y(t)|x(t),θk)

)∣∣∣∣∣≤A for any (i, j) ∈M and

for any θk ∈Θ.
Lemma 2: ([10]) Under Assumption 1, for a graph sequence

{Gt
c} and each τ ≥ 0, there is a stochastic vector φτ (meaning

its entries are nonnegative and sum to one) such that for all i, j
and t≥ τ ,

|[[W ]ij ]t:τ − φt
j | ≤ 2λt−τ ∀t≥ τ ≥ 0,

where λ≤ (1− ηMB)
1
B and 0< η <min(δ, 1− δ).

Lemma 3: ([10]). Let the graph sequence {Gt
c} satisfy

Assumption 1. Define

ρ� inf
t≥0

(
min

1≤i≤M
[1′M [[W ]i]t:0]

)
,

where [W ]i is the vector [[W ]i1, · · · , [W ]iM ]. Then, ρ≥
ηMB . Furthermore, the sequence φt from Lemma 2 satisfies
φt
j ≥

ρ

M
for all t≥ 0, j = 1, · · · ,M .

Now we begin with the following recursion:

log
[ν̃ti ]∗
[ν̃ti ]q

=

t∑
τ=1

M∑
j=1

[[W ]ij ]t:τ [Lτ
j ]q +

M∑
j=1

[[W ]ij ]t−1:0ϕ
0
j (θq)

=

t∑
τ=1

M∑
j=1
j �=i

[[W ]ij ]t:τ [Lτ
j ]q +

t∑
τ=1

[[W ]ii]t:τ [Lτ
i ]q

+
M∑
j=1
j �=i

[[W ]ij ]t−1:0ϕ
0
j (θq) + [[W ]ii]t−1:0ϕ

0
i (θq).

(28)

Let
∑M

j=1[[W ]ij ]t:τ = Ci
t:τ for all τ ≥ 0, τ ≤ t, i ∈M. Then,

(28) can be written as:

log
[ν̃ti ]∗
[ν̃ti ]q

=
t∑

τ=1

M∑
j=1
j �=i

[[W ]ij ]t:τ

[
[Lτ

j ]q − [Lτ
i ]q

]
+

t∑
τ=1

Ci
t:τ [Lτ

i ]q

+

M∑
j=1
j �=i

[[W ]ij ]t−1:0

[
ϕ0
j (θq)− ϕ0

i (θq)
]

+ Ci
t−1:0ϕ

0
i (θq). (29)

Moreover, we have,

[Lτ
j ]q − [Lτ

i ]q = log

(
lj(y

(τ)|x(τ),θ∗)

li(y(τ)|x(τ),θ∗)

)

+ log

(
li(y

(τ)|x(τ),θq)

lj(y(τ)|x(τ),θq)

)
. (30)

We denote the first, second, third, and fourth terms on the right-
hand side of equation (29) as T1, T2, T3, and T4 respectively.
Using (30), we can rewrite T1 as follows:

T1 =

t∑
τ=1

M∑
j=1
j �=i

[[W ]ij ]t:τ log

(
lj(y

(τ)|x(τ),θ∗)

li(y(τ)|x(τ),θ∗)

)

+
t∑

τ=1

M∑
j=1
j �=i

[[W ]ij ]t:τ log

(
li(y

(τ)|x(τ),θq)

lj(y(τ)|x(τ),θq)

)
.

Adding and subtracting
∑t

τ=1

∑M
j=1
j �=i

φτ
j log

(
lj(y

(τ)|x(τ),θ∗)

li(y(τ)|x(τ),θ∗)

)
to and from T1 yields

T1 ≥
t∑

τ=1

M∑
j=1
j �=i

φτ
j log

(
lj(y

(τ)|x(τ),θ∗)

li(y(τ)|x(τ),θ∗)

)

−
t∑

τ=1

M∑
j=1
j �=i

∣∣∣[[W ]ij ]t:τ − φτ
j

∣∣∣
∣∣∣∣∣ log

(
lj(y

(τ)|x(τ),θ∗)

li(y(τ)|x(τ),θ∗)

)∣∣∣∣∣
+

t∑
τ=1

M∑
j=1
j �=i

[[W ]ij ]t:τ log

(
li(y

(τ)|x(τ),θq)

lj(y(τ)|x(τ),θq)

)

(a)
≥

t∑
τ=1

M∑
j=1
j �=i

[[W ]ij ]t:τ [Lτ
ij ]q −

Aρ(M − 1)t

M
+ 2Atλt−τ ,

(31)

where (a) follows from Lemma 2 and the boundedness assump-
tion of log-likelihood ratios. On the other hand, taking the term
T3 in equation (29) and simplifying it, we get

T3 =

M∑
j=1
j �=i

[[W ]ij ]t−1:0

[
ϕ0
ji(θ∗) + ϕ0

ij(θq)
]
. (32)
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Substituting (31) and (32) back into equation (29), and since
[ν̃ti ]∗ ≤ 1, equation (29) can be written as

− log[ν̃i]
t
q ≥

t∑
τ=1

M∑
j=1
j �=i

[[W ]ij ]t:τ [Lτ
ij ]q −

Aρ(M − 1)t

M

+ 2Atλt−τ +

t∑
τ=1

Ci
t:τ [Lτ

i ]q

+

M∑
j=1
j �=i

[[W ]ij ]t−1:0ϕ
0
ji(θ∗)

+

M∑
j=1
j �=i

[[W ]ij ]t−1:0ϕ
0
ij(θq) + Ci

t−1:0ϕ
0
i (θq).

The fifth and seventh terms in the above equation goes to
zero as all agents have equal uniform prior distributions. We
also have the following:

t∑
τ=1

M∑
j=1
j �=i

[[W ]ij ]t:τ [Lτ
ij ]q +

M∑
j=1
j �=i

[[W ]ij ]t−1:0ϕ
0
ij(θq)

=

M∑
j=1
j �=i

[[W ]ij ]tϕ
t
ij(θq) +

tρA

M
.

The last term of the right-hand side of the above equation was
obtained from normalization constants of [ν̃ti ]q and [ν̃tj ]q and
using Assumption 4, Lemma 2 and Lemma 3. Thus, we have:

− log[ν̃i]
t
q ≥

M∑
j=1
j �=i

[[W ]ij ]tϕ
t
ij(θq) +

tρA

M
− Aρ(M − 1)t

M

+ 2Atλt−τ +

t∑
τ=1

Ci
t:τ [Lτ

i ]q. (33)

Since λ ∈ (0, 1), the fourth term of the right-hand side in the
above equation converges to zero. Also, by Lemma (2) and
Lemma 3, limt→∞ Ci

t:τ = 1Mφt
j ≥ 1M

ρ

M
= ρ. with assump-

tion 4, the last term of the right hand side in (33) goes to −Aρt.
Thus, (33) becomes:

− 1

t
log[ν̃i]

t
q ≥

1

t

M∑
j=1
j �=i

[[W ]ij ]tϕ
t
ij(θq)−

(
2Aρt(M − 1)

M

)
.

Now let ε=
(4Aρt(M − 1)

M

)
. Then we have

−1

t
log[ν̃i]

t
q ≥

1

t

M∑
j=1
j �=i

[[W ]ij ]tϕ
t
ij(θq)−

ε

2
.

Furthermore, we have

P

(
− 1

t
log[ν̃i]

t
q ≤

M∑
j=1
j �=i

[[W ]ij ]t E[ϕ
t
ij(θq)]− ε

)

≤ P

(
1

t

M∑
j=1
j �=i

[[W ]ij ]tϕ
t
ij(θq)≤

M∑
j=1
j �=i

[[W ]ij ]t E[ϕ
t
ij(θq)]−

ε

2

)
.

By applying McDiarmid’s inequality ∀ε > 0 and ∀t≥ 1, we
have

P

((
M∑
j=1
j �=i

[[W ]ij ]tϕ
t
ij(θq)−t

M∑
j=1
j �=i

[[W ]ij ]t E[ϕ
t
ij(θq)]

)
≤−εt

2

)

≤ e
−tε2

2A .

Hence, we have

P

(
− 1

t
log[ν̃i]

t
q ≤

M∑
j=1
j �=i

[[W ]ij ]t E[ϕ
t
ij(θq)]− ε

)
≤ e

−tε2

2A ,

which implies

P

(
[ν̃i]

t
q ≥ e

−t
(∑M

j=1
j �=i

[[W ]ij ]t E[ϕ
t
ij(θq)]−ε

))
≤ e

−tε2

2A .

Using this we obtain a bound on the error for any θq across the
entire network as follows:

P

(
max
i∈M

[ν̃i]
t
q ≥ e−t

(
Λ(W t)−εo

))
≤M(K − 1)e

−tε2

2A ,

where

Λ(W t) =

M∑
j=1
j �=i

[[W t]ij ]DKL(ν̃
t
i‖|ν̃t

j).

Since Λ(W t) is positive, with probability 1−ζ

we have maxi∈M [ν̃i]
t
q < e−t(Λ(W t)−ε) when

t≥2Aε−2 log
(
M(K−1)ζ−1

)
, which concludes the proof.

C. Proof of Lemma 1

(a) From (14), we have [W ]tii = δ, [W ]t
iĵ
= 1− δ,

and [W ]tij = 0 for all j ∈M \ {i, ĵ}, where
ĵ = argmaxj∈Si

DKL(ν̃
t
i||ν̃t

j). Thus, if j ∈ Vt
i = {i, ĵ},

[W ]tij > 0, otherwise [W ]tij = 0. Moreover, W t is
row-stochastic, since for all i we have

M∑
j=1

[W ]tij = [W ]tii + [W ]t
iĵ
+

M∑
j=1

j 
=i,ĵ

[W ]tij

= δ + 1− δ + 0

= 1.

(b) W t has strictly positive diagonal entries since for all i,
[W ]tii = δ.

(c) Let 0< η <min(δ, 1− δ). For all i, j ∈M, if [W ]tij >
0, then [W ]tij > η.

(d) First recall that Gt
c is constructed from W t such that

the set of edges Et
c of Gt

c contains (j, i) ∈ Ep if and
only if agent j is communicating to agent i at time
t [cf. Section III-A]. We need to show that ∃B <∞
such that

{
M,∪(t+1)B−1

z=tB Ez
c

}
is strongly connected for

all t≥ 0. Suppose that ∀B <∞,
{
M,∪(t+1)B−1

z=tB Ez
c

}
is not strongly connected for some t≥ 0. Let B ≥ 1
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be arbitrary. The preceding statement means that there
exists at least one pair of agents (aBN , aBM ) engaged
in communication while disconnected from the rest of
the network for the period z ∈ [tBB, (tB + 1)B − 1] for
some tB

14. Given that the physical graph is strongly
connected, it follows that either aBN or aBM (or both)
must have additional neighboring agents. Since (aBN , aBM )
is disconnected from the rest of the agents for the pe-
riod [tBB, (tB + 1)B − 1], then it means that aBN =
argmaxj∈S

aB
M

DKL(ν̃
z
aB
M
||ν̃z

j ) for all z ∈ [tBB, (tB +

1)B − 1]. This suggests that aBM perceives the posterior
distribution of aBN as the most dissimilar compared to its
own among its neighboring nodes for all B − 1 iterations.
But note that B is arbitrary, and therefore one can choose
it to be sufficiently large to yield whatever the similarity
level between the posterior distributions of aBM and aBN ,
which is a contradiction.
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