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Accelerated and Deep Expectation Maximization
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Abstract—In this paper we study the expectation maximization
(EM) technique for one-bit MIMO-OFDM detection (OMOD).
Arising from the recent interest in massive MIMO with one-bit
analog-to-digital converters, OMOD is a massive-scale problem.
EM is an iterative method that can exploit the OFDM structure
to process the problem in a per-iteration efficient fashion. In
this study we analyze the convergence rate of EM for a class
of approximate maximum-likelihood OMOD formulations, or, in
a broader sense, a class of problems involving regression from
quantized data. We show how the SNR and channel conditions
can have an impact on the convergence rate. We do so by
making a connection between the EM and the proximal gradient
methods in the context of OMOD. This connection also gives
us insight to build new accelerated and/or inexact EM schemes.
The accelerated scheme has faster convergence in theory, and
the inexact scheme provides us with the flexibility to implement
EM more efficiently, with convergence guarantee. Furthermore
we develop a deep EM algorithm, wherein we take the structure
of our inexact EM algorithm and apply deep unfolding to train
an efficient structured deep net. Simulation results show that our
accelerated exact/inexact EM algorithms run much faster than
their standard EM counterparts, and that the deep EM algorithm
gives promising detection and runtime performances.

Index Terms—One-bit MIMO-OFDM detection, expectation
maximization, convergence analysis, deep unfolding.

I. INTRODUCTION

IN massive multiple-input multiple-output (MIMO), we have
recently seen enormous interest in techniques that are related

to low-resolution or coarsely quantized (CQ) signals from a fun-
damental signal processing viewpoint. This trend is driven by
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our interest in replacing high-resolution analog-to-digital con-
verters (ADCs) and digital-to-analog converters (DACs) with
lower resolution ones, so that we can reduce the hardware cost
and energy consumption of the radio-frequency (RF) front ends.
In the conventional scenario of high-resolution ADCs/DACs,
quantization errors are insignificant and are typically treated
as part of the background noise. In the low-resolution sce-
nario, recent research has suggested that we should exploit the
low-resolution or quantization structure to better harness the
problem. For example, for MIMO downlink precoding with
one-bit DACs, a popular direction is to directly design the one-
bit MIMO transmit signals by discrete optimization; see, e.g.,
[1], [2], [3], [4] and the references therein. In addition to ex-
ploiting the low-resolution structure, there have been endeavors
that apply Sigma-Delta modulation—a widely-used technique
in temporal DACs/ADCs—to spatially shape the quantization
errors such that users in a designated angular sector will expe-
rience much less quantization error effects [5], [6].

Another meaningful problem in massive MIMO with low-
resolution ADCs/DACs is MIMO detection. The problem typ-
ically appears in the uplink, and the goal is to detect signals
transmitted by different users over the same RF band. While
numerous MIMO detection methods were already developed
in the conventional high-resolution ADC scenario, they do not
assume the presence of quantization and may not be directly
applied to the low-resolution ADC scenario. We have indeed
seen research on applying linear receivers to the low-resolution
scenario [7], [8], [9], but recent research appears to favor ex-
ploiting the quantization structure. The key idea that underlies
the majority of low-resolution or CQ MIMO detection methods
is that we consider maximum likelihood (ML) or related infer-
ence approaches, and the likelihood function is derived from
quantized signals (quantization is treated as a function, and we
do not model quantization errors as noise). This rationale gave
rise to a variety of CQ MIMO detection methods; e.g., expecta-
tion maximization (EM) [10], convex and non-convex proximal
gradient (PG) methods [11], [12], [13], deep learning [13], [14],
[15], and posterior inference via approximate message passing
[16] and variational Bayes [17].

A. The Problem of Interest: CQ MIMO-OFDM Detection

In MIMO detection it is common to assume frequency-
flat channels. Yet, in the current mobile systems, we consider
frequency-selective channels. This is not a problem in the
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high-resolution scenario, because the current systems usually
use the orthogonal frequency division multiplexing (OFDM)
scheme, and OFDM breaks the frequency-selective channels
into many parallel frequency-flat channels. This means that the
MIMO detection methods for frequency-flat channels can be
directly applied. Unfortunately, the same does not hold for the
CQ case. The presence of quantization destroys the structure
required to turn the problem into parallel frequency-flat chan-
nels. Subsequently, when we consider MIMO-OFDM detection
with low-resolution ADCs, we have to engage with the full form
of the problem. The arising difficulty is that the problem is a
massive-scale problem; the problem size scales with the OFDM
size, which is of the order of hundreds. While in principle we
can directly apply the CQ MIMO detection methods in the
frequency-flat channel case to the MIMO-OFDM case, it is
computationally infeasible to do so due to the massive problem
size. It is necessary to exploit the OFDM structure to efficiently
realize MIMO detection methods.

There are far fewer studies for CQ MIMO-OFDM detection
[10], [17], [18], [19]. In [18], the PG method for the box ML
relaxation formulation was developed. The PG method is able
to exploit the OFDM structure to have per-iteration efficient
implementation. In [10], [19], the EM method for the Gaussian
maximum a posteriori formulation was built. The EM method
is iterative, and at each iteration we solve a problem—the so-
called M-step problem—that takes the same form as MIMO-
OFDM without quantization. Hence we can exploit the OFDM
structure to have per-iteration efficient implementation, and this
makes the EM method appealing in OMOD. The same benefit
was also seen in the application of the variational Bayes method
(which is related to EM) to CQ MIMO-OFDM detection [17].

B. This Work

In this paper we study the EM technique for CQ MIMO-
OFDM detection. In particular, we consider MIMO-OFDM
detection with one-bit ADCs, or simply one-bit MIMO-OFDM
detection (OMOD). We are interested in EM convergence rate
analysis for a class of approximate ML OMOD formulations.
This aspect has not been seriously studied in CQ MIMO detec-
tion. Our analysis draws insights from the analysis techniques
in PG methods [20], [21], [22], [23]. We will reveal a hid-
den connection between the PG and EM methods, and from
that connection we establish EM convergence results by taking
key ideas from the PG analysis techniques. We will show that
(a) EM converges at a rate of at least 1/k, where k denotes the
iteration number; that (b) EM should converge faster than PG,
in theory. Also, we show how the SNR and channel conditions
can have an impact on the convergence rate. In particular, our
analysis indicates that the convergence rate is slower as the
SNR is higher; this applies to both PG and EM. This high-
SNR slow convergence phenomenon was noticed by numerical
results in previous studies [13], [18], and, to the best of our
knowledge, this is the first time we see a theoretical result for
such phenomenon.

Our EM convergence study also leads to new OMOD al-
gorithms. In first-order optimization, it is well-known that the

PG method can be accelerated to a convergence rate of at
least 1/k2 if we employ extrapolation [20], [21]; we assume
convex problems. Using the connection between the PG and
EM methods, we apply the acceleration idea to EM. The result
is an accelerated EM scheme for OMOD, which has the 1/k2

convergence rate guarantee and runs faster than the standard
EM as will be shown in our numerical results. In addition
we consider an inexact EM scheme, where we want to solve
the M-step problems not too precisely to save complexity. By
taking insight from the study of inexact PG [22], we provide
theoretical conditions under which the inexact EM scheme
will have convergence guarantees. The inexact EM scheme can
be used together with acceleration, and our numerical results
will demonstrate that the accelerated inexact EM algorithm for
OMOD has significant merits in runtime savings.

Lately we have seen much interest in applying deep learning
to MIMO detection [13], [15], [24], [25], [26], [27]. The most
successful approach at present is deep unfolding [28]. The
principle is to see a model-based algorithm as a deep net, take
the structure, and use data-driven learning to try to learn a better
deep net. We apply deep unfolding to our inexact EM algorithm
for OMOD; that is, simply speaking, we take the structure of
how efficient EM can handle MIMO-OFDM, and we use that
to build an efficient highly-structured deep net. Our numerical
results will show that the deep inexact EM algorithm is com-
petitive in both detection and runtime performances, compared
to the previous OMOD algorithms.

It is worth noting that the convergence analysis and the ac-
celerated and inexact EM schemes in this study are, in a broad
sense, also applicable to a variety of formulations arising from
regression from CQ data, such as CQ MIMO channel estimation
[29], [30] and CQ compressive sensing [31].

C. Related Works

We should discuss related works. Our EM convergence anal-
ysis plays a large part in this study, and one may question if the
existing convergence analyses [32], [33], [34], [35] provide the
same or better results. The existing studies mostly consider a
general framework, covering a variety of optimization schemes
and a rich class of problems. Our study, on the other hand,
exploits the specific structure of our OMOD problem; e.g., the
previously mentioned result of high-SNR slow convergence is
unique to our problem. In terms of the analysis techniques
used, our analysis is considered closest to Mairal’s study [34],
which considers a general majorization minimization (MM)
framework and can cover EM. Mairal’s study takes insight from
the PG analysis techniques through some assumptions. We also
draw insight from the PG analysis techniques, but we do so by
best using our problem’s specific structure. As we will discuss
in details, our result arguably provides better characterization
of the convergence behaviors.

One key result in this study is accelerated EM for OMOD.
Indeed, Mairal’s study [34] has described the same kind of
acceleration for MM. To the best of our knowledge, no applica-
tion was provided in Mairal’s study and in subsequent studies.
Our application is probably the first, showing the efficiency
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of such accelerated EM or MM. We should also discuss the
application of deep unfolding. While deep unfolding has been
widely considered in MIMO detection, it has not been used in
CQ MIMO-OFDM detection.

The preliminary version of this study was presented in a
conference [36]. It studied inexact EM as a working idea. It
does not consider EM convergence analysis, accelerated EM
and deep EM, which are the main contributions in this paper.

D. Organization and Notations

This paper is organized as follows. Section II, III and IV
review the EM basics, the MIMO-OFDM detection problem
and the OMOD problem, respectively. In Section V, we perform
EM convergence analysis and establish the accelerated and in-
exact EM methods. Section VI develops an accelerated inexact
EM algorithms for OMOD. Section VII builds a deep inexact
EM algorithm via deep unfolding. Section VIII provides the
numerical results, and we conclude in Section IX.

Some basic notations are described as follows. The sets
of real, non-negative, non-positive and complex numbers are
denoted by R, R+, R− and C, respectively; we denote j=√
−1; boldface lowercase letters, e.g., x, represent column

vectors; the ith element of a vector x is denoted by xi; bold-
face capital letters, e.g., X , represent matrices; the super-
scripts �, H, −1, and † denote the transpose, Hermitian trans-
pose, inverse, and pseudoinverse, respectively; �(x) and �(x)
denote the real and imaginary parts of x, respectively; x=
(x1, . . . ,xm) means that x= [ x�

1 , . . . ,x
�
m ]�; ‖ · ‖ denotes

the Euclidean norm; 0 and I denote an all-zero vector and
an identity matrix, respectively; Diag(x) denotes a diagonal
matrix whose (i, i)th element is xi; x∼D means that x is a
random vector following a probability distribution D; N (μ,Σ)
denotes a multivariate Gaussian distribution with mean μ and
covariance Σ; N (x;μ,Σ) denotes the distribution function
corresponding to N (μ,Σ).

II. A REVIEW OF EM FOR QUANTIZED REGRESSION

Before we delve into the details of OMOD, we would like
to first review the classic concepts of expectation maximization
(EM) [37] in the context of quantized linear regression (QLR).
In particular, the arising notion of iterative linear regression is
worth appreciating, and we will need some of the details later.

We consider a basic QLR problem for which we have an
observation y ∈ {±1}m following a model

y = sgn(x), x=Aθ + v, (1)

where sgn : Rm →{±1}m is the sign function; A ∈ R
m×n is

known; θ ∈ R
n is a model parameter; v ∼N (0, σ2I) is noise;

σ2 is known. Note that x is unobserved. The problem is to
estimate θ from y. As we will see later, OMOD can be viewed
as an instance of QLR, with A and θ having certain structures.
We consider the maximum-likelihood (ML) estimation

θ̂ ∈ arg max
θ∈Rn

L(θ) := log p(y|θ), (2)

where p(y|θ) is the distribution of y given θ; the same nota-
tion will be used to denote the distributions of other random
variables. It can be shown that p(y|θ) =

∏m
i=1 p(yi|θ),

p(yi|θ) =
∫

X (yi)

p(xi|θ)dxi, p(xi|θ) =N (xi;a
�
i θ, σ

2),

where ai denotes the ith row of A; X (yi) = R+ if y = 1, and
X (yi) = R− if y =−1. This leads to

L(θ) =

m∑

i=1

log Φ

(
yia

�
i θ

σ

)

, (3)

where Φ(z) =
∫ z

−∞ e−t2/2dt/
√
2π is the standard cumulative

Gaussian distribution. It is known that L is concave [11], [38].
The ML estimation problem (2) has no closed-form solution

in general, and EM is a popular way to solve the ML problem.
Intuitively, the idea is to use the fact that estimating θ is easy
if x is observable. To describe the EM method, let

G(θ|θ′) = Ex[log(p(x|θ))|y,θ′]
︸ ︷︷ ︸

:=Q(θ|θ′)

−Ex[log(p(x|y,θ′))|y,θ′]
︸ ︷︷ ︸

:=H(θ′)

.

Here, Ex[f(x)|y,θ′] =
∫
X f(x)p(x|y,θ′)dx denotes a condi-

tional expectation of x; X denotes the support of p(x|y,θ′).
It is known that G(θ|θ′)≤ L(θ) for all θ,θ′, and G(θ′|θ′) =
L(θ′) for all θ′; i.e., G(θ|θ′) is a lower bound of L(θ). EM
considers a successive lower-bound approximation

θk+1 ∈ arg max
θ∈Rn

G(θ|θk), k = 0, 1, 2, . . . (4)

An important question is whether Q(θ|θ′) is tractable. By not-
ing p(x|θ) =N (x;Aθ, σ2I), one can verify that

Q(θ|θ′) =− 1
2σ2 ‖Ex[x|y,θ′]−Aθ‖2 + const., (5)

where “const.” does not depend on θ. It can be shown that

Exi
[xi|y,θ′] = a�

i θ
′ + yiσ

φ(yia
�
i θ

′/σ)

Φ(yia�
i θ

′/σ)
, (6)

where φ(t) = e−t2/2/
√
2π; see, e.g., [29], for details. To prove

(6), one needs to show that p(xi|yi,θ) is a truncated Gaus-
sian distribution, namely, p(xi|yi,θ) = p(xi|θ)/p(yi|θ), with
X (yi) being the support; that Exi

[xi|y,θ′] is the mean of
p(xi|yi,θ′); that a truncated Gaussian mean has an explicit
expression [29]. The EM method can hence be written as

θk+1 ∈ arg min
θ∈Rn

‖xk −Aθ‖2, k = 0, 1, 2, . . . , (7)

where xk = Ex[x|y,θk] is computed by (6). The result is an
iterative linear regression: we estimate x by the conditional
mean xk, inferred from y and the previous estimate θk; and
then we estimate θ by the linear regression in (7), which is easy
to solve. This iterative linear regression process looks appealing
and makes sense.

Some history should be noted. The EM method for QLR
dates back to as early as 1980 in statistics, with application to
blood lead data [39]. It also arose in signal processing, with
applications to MIMO channel estimation and detection from
coarsely quantized signals [10], [19], [29], [30].
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III. A REVIEW OF THE MIMO-OFDM BACKGROUND

In this section, we review some background of MIMO-
OFDM detection. Section III-A describes the MIMO-OFDM
signal model. Section III-B shows the subcarrier decoupling
concept, which, as will be seen later, plays a pivotal role in the
application of EM to OMOD.

A. MIMO-OFDM Model

Consider a wireless uplink scenario where a number of users
simultaneously send signals to a multi-antenna base station
(BS). The transmitted signals undergo frequency selective chan-
nel effects, upon reception at the BS; and the user side employs
the OFDM transmission scheme. The received signals at the BS
can be modeled as

rm =
N∑

n=1

Hm,nF
Hsn + νm, m= 1, . . . ,M, (8)

where rm ∈ C
W is a block of discrete-time signals received

by the BS’s mth antenna; W is the block length, or the
OFDM size; M is the number of antennas at the BS; F ∈
C

W×W is the unitary discrete Fourier transform (DFT) ma-
trix; sn ∈ C

W is a block of symbols sent by user n; N is
the number of users; Hm,n ∈ C

W×W is a circulant matrix,
constructed from a discrete-time impulse response hm,n =
(h0,m,n, . . . , hW ′−1,m,n, 0, . . . , 0) ∈ C

W of the channel from
user n to the BS’s mth antenna, with W ′ 
W ; νm is circular
complex Gaussian noise with mean 0 and covariance σ2

CI , and
with ν1, . . . ,νM being independent. The symbols sw,n’s are
drawn from a QAM constellation set

S = {s ∈ C| | �(s),�(s) ∈ {±1,±3, . . . ,±(2D − 1)}},

where D is a positive integer. The above model is standard, and
we refer the reader to the literature (e.g., [40]) for details. For
conciseness, we let r = (r1, . . . , rM ) and express (8) as

r =Hs+ ν, (9)

where s= (s1, . . . , sN ), ν = (ν1, . . . ,νM ),

H=

⎡

⎢
⎣

H1,1F
H . . . H1,NF H

...
...

HM,1F
H . . . HM,NF H

⎤

⎥
⎦ . (10)

B. Subcarrier Decoupling in Unquantized MIMO-OFDM

Consider the problem of ML detection of the symbol vector
s from the received signal r, given information of the channel
H. It is well known that the ML detection problem can be
formulated as

ŝ ∈ arg min
s∈SNW

‖r −Hs‖2. (11)

At first look, this is a massive-scale problem; the OFDM size
W is often of the order of hundreds. But it is widely known
that (11) can be decoupled into many smaller problems. Since
Hm,n is circulant, we have the eigendecomposition

Hm,n = F HDm,nF , Dm,n =Diag(h̃m,n), (12)

where h̃m,n = Fhm,n. Let r̃m = Frm. One can show that

‖r −Hs‖2 =
M∑

m=1

∥
∥
∥
∥
∥
r̃m −

N∑

n=1

Dm,nsn

∥
∥
∥
∥
∥

2

=

W∑

w=1

‖řw − Ȟwšw‖2,

where řw = (r̃1,w, . . . , r̃M,w) ∈ C
M , Ȟw = [h̃w,m,n]m,n ∈

C
M×N and šw = (sw,1, . . . , sw,N ) ∈ C

N are the received
signal, MIMO channel response and symbol vector at subcarrier
w, respectively. We can hence rewrite (11) as

min
šw∈SN

‖řw − Ȟwšw‖2, for w = 1, . . . ,W. (13)

We see that each problem in (13) has a much smaller size, and
can be dealt with independently.

The decomposition of (11) into (13) will be called subcar-
rier decoupling, in what follows. In MIMO-OFDM detection,
subcarrier decoupling is commonly used to break the problem
into many parallel smaller-size MIMO detection problems.

IV. OMOD PROBLEM STATEMENT AND PRIOR STUDY

In this section, we describe the background of OMOD. Sec-
tions IV-A and IV-B provide the problem formulation and state-
ment. Sections IV-C and IV-D review the existing methods by
proximal gradient and EM, respectively.

A. One-Bit MIMO-OFDM Detection (OMOD)

OMOD considers the same MIMO-OFDM scenario in Sec-
tion III-A, but with one-bit ADCs. In the MIMO-OFDM de-
tection in Section III, we assume that signal acquisitions at the
BS have negligible quantization errors; to put it another way,
the BS is equipped with high-resolution ADCs. For the one-bit
ADC case, the acquired signals are

qm = sgn(�(rm)) + j · sgn(�(rm)), m= 1, . . . ,M, (14)

where the rm’s are the unquantized MIMO-OFDM signals in
(8). As mentioned in the Introduction, the one-bit ADC case
is motivated by the massive MIMO scenario where we want
to use cheap ADCs to reduce the hardware cost and energy
consumption of the RF front ends.

The OMOD problem is formulated as follows. Applying the
signal model (9) to (14) gives

x :=

[
�(r)
�(r)

]

=

[
�(H) −�(H)
�(H) �(H)

]

︸ ︷︷ ︸
:=A

[
�(s)
�(s)

]

︸ ︷︷ ︸
:=θ

+

[
�(ν)
�(ν)

]

︸ ︷︷ ︸
:=v

, (15)

y :=

[
�(q)
�(q)

]

= sgn(x), (16)

where q = (q1, . . . , qM ), v ∼N (0, σ2I), σ2 = σ2
C/2. The

OMOD signal model in (15)–(16) is seen to take the form of the
basic QLR model in (1) in Section II, and hence we can apply
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the results in Section II to OMOD. Specifically, the ML detec-
tion of the symbol vector θ from the one-bit MIMO-OFDM
signal y, given information of H and σ2, can be formulated as

min
θ∈R2NW

f(θ) :=−
2MW∑

i=1

log Φ(b�i θ)

s.t. θi ∈ D := {±1,±3, . . . ,±(2D − 1)}, ∀ i, (17)

where bi = yiai/σ; ai is the ith row of A; or,

B := [ b1, . . . , b2MW ]� = 1
σDiag(y)A. (18)

There is an important aspect to note. The subcarrier decou-
pling in Section III-B, which allows us to decouple the massive-
scale unquantized MIMO-OFDM problem into many smaller
problems, does not work for OMOD. This is because f in (17)
does not possess the structure required to apply subcarrier de-
coupling. This means that we will have to confront the massive-
scale nature of MIMO-OFDM in the one-bit case.

B. Problem Statement

Our study will revolve around the following formulation

min
θ∈R2NW

f(θ) + h(θ), (19)

where h : Rn → R ∪ {+∞} is a penalty function that takes a
component-wise separable form

h(θ) =

2NW∑

i=1

h(θi). (20)

The above formulation is an approximation of the ML OMOD
in (17). Consider the following two examples.

1) Gaussian Maximum a Posteriori (GMAP) [10]:
Consider

h(θ) =
λ

2
‖θ‖2, (21)

where we choose λ−1 = E[|θ|2] = ((2D)2 − 1)/3, assuming
θ being uniformly distributed on D. The corresponding for-
mulation (19) is maximum a posteriori estimation under a
Gaussian prior; i.e., maxθ log(p(y|θ)p(θ)) with prior p(θ) =
N (θ;0, λ−1I). This means that we approximate the symbols
as Gaussian random variables.

2) Box [18]: Consider

h(θ) = I[−U,U ]2NW (θ), U = 2D − 1, (22)

where IX (x) = 0 if x ∈ X , and IX (x) =∞ if x /∈ X . This
corresponds to a relaxation of the ML OMOD detector (17) by
replacing the constellation set D with an interval [−U,U ].

We are interested in studying how problem (19), which has a
massive scale, can be handled in an efficient fashion. The next
two subsections describe two existing methods for (19).

C. Existing Method: Proximal Gradient

One way to handle problem (19) is to apply the proxi-
mal gradient (PG) method [23]. The PG method for (19) is
given by

θk+1 = proxηkh
(θk − ηk∇f(θk)), k = 0, 1, 2, . . . , (23)

where ηk > 0 is a step size; ∇f(θ) is the gradient of f at θ,
and it can be shown that

∇f(θ) =−
2MW∑

i=1

φ(b�i θ)

Φ(b�i θ)
bi =−B�ψ(Bθ), (24)

for which ψ(z) = (ψ(z1), . . . , ψ(zm)), ψ(z) = φ(z)/Φ(z);

proxh(x) ∈ arg min
z∈Rn

1
2‖x− z‖2 + h(z)

is the proximal operator associated with h. We typically con-
sider cases for which proxh(x) is easy to compute. For exam-
ple, for the box case h= I[−U,U ]n , we have

[proxh(x)]i =

⎧
⎨

⎩

U, xi ≥ U
xi, xi ∈ [−U,U ]
−U, xi ≤−U

(25)

We want to examine the complexity of the PG method. The
most expensive part lies in computing the gradients ∇f(θk). At
first sight, computing ∇f(θ) in (24) seems expensive since B
is very large. But one can use the OFDM structure to reduce the
complexity. It was shown in [18] that ∇f(θ) can be computed
with a complexity of

O(2MW (log(W ) +N + C)), (26)

where C denotes the complexity to numerically compute Φ,
given a precision1. For the reader’s convenience, in the supple-
mental material we describe the details with the computation
of ∇f(θ). Simply speaking, to compute ∇f(θ) efficiently, we
need to run fast Fourier transforms (FFTs) or inverse FFTs
(IFFTs) for a total of 2M times. To sum up, the per-iteration
complexity of the PG method is (26).

The PG method for OMOD was studied in [18], wherein the
efficient FFT/IFFT-based method for computing the gradients
was proposed, and the box relaxation was considered.

D. Existing Method: Expectation Maximization

Another way to handle problem (19) is to apply the EM
method. By following the EM method reviewed in Section II,
we can show the following. In accordance with the E-step (5)
of the EM method in Section II, the EM surrogate function
of the objective function f of the OMOD problem (19) is
given by

g(θ|θ′) = 1
2σ2 ‖x′ −Aθ‖2 + const.

= 1
2σ2 ‖r′ −Hs‖2 + const. := g(s|s′), (27)

where x′ = Ex[x|y,θ′] is a conditional mean of the unquan-
tized signal x in (15)–(16), and, similarly, r′ = Er[r|q, s′] is

1The function Φ has no closed form, and it is typically evaluated by an
off-the-shelf algorithm (e.g., erf on MATLAB).
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a conditional mean of the unquantized MIMO-OFDM signal r
in (9). The EM method is given by

sk+1 ∈ arg min
s∈CNW

g(s|sk) + h(s), (28)

where, for convenience, we denote h(s) = h(�(s)) + h(�(s)).
The merit of the EM method is that it allows us to apply the
subcarrier decoupling in Section III-B. To describe this, let

rkm = Erm
[rm|q, sk], r̃km = Frkm, řkw = (r̃k1,w, . . . , r̃

k
M,w).

(29)

By the subcarrier decoupling concept in Section III-B, we can
decompose (28) into

šk+1
w ∈ arg min

šw∈CN

1
2σ2 ‖řkw − Ȟwšw‖2 + h(šw), (30)

for w = 1, . . . ,W . The basic description of the EM method
is complete.

Intuitively, the EM method seems more promising than the
PG method in the previous subsection. The EM method has no
parameter, such as step size, to select; it inherits the merits of
subcarrier decoupling, which seems to suggest better efficiency;
it performs more optimization in one iteration, specifically, (30),
which seems to suggest faster convergence.

The story is actually more complex, as one tries to unravel.
We should not forget the fact that the conditional means rkm’s
need to be computed. Examining the equations closely (see (6),
(8), (9), and (15)), one will find that rkm is given by

rkm = zk
m + ζk

m, (31a)

zk
m =

N∑

n=1

Hm,nF
Hskn = F H(

N∑

n=1

Dm,ns
k
n), (31b)

�(ζk
m) = σ

(
�(qm)� ψ

(
1
σ�(qm)��(zk

m)
))

, (31c)

�(ζk
m) = σ

(
�(qm)� ψ

(
1
σ�(qm)��(zk

m)
))

, (31d)

for all m,n, where � denotes the element-wise product. It can
be verified that the complexity of (29) and (31) is

O(2MW (log(W ) +N/2 + C)); (32)

particularly, we need FFTs and IFFTs for a total of 2M times.
The complexity in (32) is the per-iteration complexity of EM,
without counting the complexity required to solve (30). We see
that (32) is not much better than the per-iteration complexity
(26) for the PG method. When the complexity of solving (30)
factors in, the per-iteration complexity of the EM method is
likely to be higher than that of PG. The next question then
goes to whether EM leads to faster convergence. We will try
to answer this question in the subsequent sections.

The EM method for OMOD was studied in [10], wherein the
efficient subcarrier-decoupling implementation was proposed,
and GMAP was considered. For GMAP, the problems in (30)
have closed-form solutions, and this advantage was exploited.

V. CONVERGENCE ANALYSIS AND NEW INSIGHTS

In the last section, we asked the question of whether the
EM method would converge faster than the PG method in the
application of OMOD. In this section we perform convergence

analysis with EM. We will show that, in theory, the EM method
should converge faster than the PG method. However, this is not
the most striking result. The insight gained from our analysis
will lead us to develop an accelerated variant of the EM method,
which converges even faster. It will also enable us to consider
inexact variants of the EM methods, which provides flexibility
with implementations. We will also expand our analysis to in-
clude the non-convex case; i.e., instances for which the penalty
function h is non-convex.

This section is organized as follows. Section V-A gives
the problem setup. Sections V-B and V-C describe the con-
vergence results for the PG and EM methods, respectively.
Section V-D reveals the insight behind our EM convergence
analysis. Section V-E describes a result that indicates that the
PG and EM methods can converge slowly for high SNRs.
Taking insight from the EM convergence analysis, Section V-F
and V-G develop the accelerated and inexact EM methods,
respectively. Section V-H considers the convergence analysis
for the non-convex case. It is worth noting that, while we
develop these results for OMOD, they can be applied to other
QLR problems.

A. Problem Setup and Preliminary Concepts

Let us write down our main problem, problem (19), again:

min
θ∈Rn

F (θ) := f(θ) + h(θ), (33)

where f(θ) =−
∑m

i=1 log Φ(b
�
i θ) is convex differentiable; h :

R
n → R ∪ {+∞} is proper, lower semi-continuous and con-

vex. We assume that problem (33) has an optimal solution,
and we will use the notation θ� to denote an optimal solution
to problem (33). In our study, we will see problem (33) as a
problem with a general B and h. Hence, we basically consider
a class of QLR problems, not just OMOD.

We also recall some basic formulas. The gradient ∇f(θ) can
be written as

∇f(θ) =−B�ψ(Bθ); (34)

where B = [ b1, . . . , bm ]�; ψ(z) = (ψ(z1), . . . , ψ(zm));

ψ(z) =
e−z2/2

∫ z

−∞ e−t2/2dt
. (35)

The EM surrogate function of f can be written as

g(θ|θ′) = 1
2‖z

′ −Bθ‖2 + const. (36)

z′ =Bθ′ + ψ(Bθ′); (37)

see (5)–(6). We have g(θ|θ′)≥ f(θ) for all θ,θ′, and
g(θ′|θ′) = f(θ′) for all θ′.

Some concepts and notations should be introduced. Let ϕ :
R

n → R ∪ {+∞}, and let X ⊆ R
n. The domain of ϕ is defined

as domϕ= {θ ∈ R
n|ϕ(θ)<+∞}. A differentiable ϕ is said

to have Lϕ-Lipschitz continuous gradient on X if

‖∇ϕ(θ)−∇ϕ(θ′)‖ ≤ Lϕ‖θ − θ′‖, for all θ,θ′ ∈ X .

Consider a minimization problem minθ∈Rn ϕ(θ). A point θ̂ ∈
R

n is said to be a critical point of the problem if 0 ∈ ∂ϕ(θ̂),
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where ∂ϕ(θ) is the limiting subdifferential of ϕ at θ; see
[41] and the references therein. A point θ̂ is said to be an
ε-critical point of the problem if dist(0, ∂ϕ(θ̂))≤ ε, where
dist(y,X ) = minx∈X ‖y − x‖ denotes the distance between y
and X . If ϕ is convex, then any critical point of the problem is
an optimal solution to the problem. The notations σmax(X) and
σmin(X) denote the largest and smallest singular values of X ,
respectively; 〈·, ·〉 denotes the inner product.

B. Proximal Gradient

Consider the PG method for problem (33):

θk+1 = proxηh(θ
k − η∇f(θk)), k = 0, 1, 2, . . . , (38)

where we assume a constant step size η > 0. The following
result is well known.
Fact 1 (see, e.g., [23]): Consider problem (33) and the
accompanied problem setup, and consider the PG method
(38). Suppose that f has Lf -Lipschitz continuous gradient on
domF . If the step size is chosen as η = 1/Lf , then we have

F (θk)− F (θ�)≤ Lf

k
‖θ0 − θ�‖2, k ≥ 1.

Our question is whether f possesses the desired Lipschitz
continuous gradient property. This appears to have not been
answered before, and we show that the answer is yes.

Proposition 1: The function f in (33) has Lf -Lipschitz con-
tinuous gradient on R

n, where Lf = σmax(B)2. Consequently,
the PG method (38) with step size η = 1/σmax(B)2 has the
following convergence result for problem (33):

F (θk)− F (θ�)≤ σmax(B)2

k
‖θ0 − θ�‖2, k ≥ 1. (39)

The proof of Proposition 1 is given in Appendix A. Proposi-
tion 1 gives several implications. First, it confirms that the PG
method guarantees convergence to the optimal solution with a
convergence rate of at least 1/k. Second, it indicates how the
convergence scales with the problem instance B; specifically,
it scales with σmax(B)2. This will be useful in our comparison
with the EM method later. Third, it suggests how we can select
the step size, specifically, by η = 1/σmax(B)2. In the OMOD
application, we can show from (18) that

σmax(B)2 =
σmax(H)2

σ2
= max

w=1,...,W

σmax(Ȟw)
2

σ2
, (40)

which gives us a simple way to select the step size. Note that
the prior OMOD work [18] selects the step size manually.

C. Expectation Maximization

Next, consider the EM method for problem (33):

θk+1 ∈ arg min
θ∈Rn

g(θ|θk) + h(θ), k = 0, 1, 2, . . . (41)

We have the following convergence result.

Proposition 2: Consider problem (33) and the accompanied
problem setup, and consider the EM method (41). We have

F (θk)− F (θ�)≤ 1

k
‖B(θ0 − θ�)‖2, k ≥ 1. (42)

The proof of Proposition 2 is given in Appendix B1, and we will
describe the insight behind Proposition 2 in the next subsection.
Eq. (42) shows that the EM method has a convergence rate
of at least 1/k—same as PG. It is interesting to compare the
convergence results of PG and EM. Since

‖B(θ0 − θ�)‖2 ≤ σmax(B)2‖θ0 − θ�‖2, (43)

the EM convergence result (42) is seen to be at least no worse
than the PG result in (39). In fact, (43) suggests that the EM
method should converge faster than the PG method, particularly
when the gap in (43) is large.

D. Insight Behind the Convergence Results, and Prior Work

It is interesting to see what is the insight behind the EM
convergence result in Proposition 2. To see it, we need to
understand how PG convergence results were established in the
literature. The idea is to see PG as a majorization-minimization
(MM) method. Specifically, consider the MM method

θk+1 ∈ arg min
θ∈Rn

u(θ|θk) + h(θ), k = 0, 1, 2, . . . (44)

where u(·|θ′) is a majorant of f at θ′; i.e., u(θ|θ′)≥ f(θ) for
all θ,θ′, u(θ′|θ′) = f(θ′) for all θ′. The PG method (38) with
step size η = 1/Lf is seen as an MM, with

u(θ|θ′) = f(θ′) + 〈∇f(θ′),θ − θ′〉+ Lf

2 ‖θ − θ′‖2. (45)

Many PG convergence proofs make strong use of the identity
(45). As an important discovery, we found that the EM surrogate
function g in (36) possesses the following structure

g(θ|θ′) = f(θ′) + 〈∇f(θ′),θ − θ′〉+ 1
2‖B(θ − θ′)‖2. (46)

We see that (46) resembles (45). This has tremendous insights.
It suggests that we may use the PG convergence proof con-
cepts in the literature to show the convergence for EM. In fact,
the proof of Proposition 2 is conceptually the same as that
of Fact 1.

In view of the importance of (46), we provide the derivations
of (46) here. From (36)–(37), we have

‖z′ −Bθ‖2 = ‖ψ(Bθ′)−B(θ − θ′)‖2

= ‖ψ(Bθ′)‖2 − 2〈ψ(Bθ′),B(θ − θ′)〉+ ‖B(θ − θ′)‖2

= ‖ψ(Bθ′)‖2 + 2〈∇f(θ′),θ − θ′〉+ ‖B(θ − θ′)‖2,

where the last equation is due to ∇f(θ′) =−B�ψ(Bθ′) in
(34). By setting θ = θ′ in the above equation, we get

‖z′ −Bθ′‖2 = ‖ψ(Bθ′)‖2.

Applying the above two equations to (36), and using g(θ′|θ′) =
f(θ′), we obtain (46). The proof is complete.

The prior works on EM convergence analyses should be
mentioned and compared. The question is whether the avail-
able convergence analysis results [32], [33], [34], [35] can
lead to the same or better claim than our result in (42). This
aspect is complex, and we provide a detailed account of it
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in the supplemental material. In summary, the best result we
can find is

F (θk)− F (θ�)≤ σmax(B)2

k + 1
(2R2), (47)

for some constant R> 0; it comes from Mairal’s analysis [34].
Our result in (42) appears to be better than (47); e.g., it is
unconvincing to use (47) to argue that EM should converge
faster than PG.

E. A Slow Convergence Phenomenon

The PG and EM theoretical bounds in (39) and (42) are
seen to be loose if B has a large magnitude. From (18), the
magnitude of B is seen to increase with the SNR; see also (40).
This gives an impression that, under high SNRs, the PG and EM
methods could converge slowly. Further analysis shows that this
is true for our interested choices of h.

Proposition 3: Consider problem (33) and the accompanied
problem setup. Consider either the PG method (38) with
η = 1/σmax(B)2, or the EM method (41). Suppose that θk is
ε-optimal in the sense that

‖θk − θ�‖ ≤ ε

for some optimal solution θ� to problem (33) and for ε > 0.
(a) Suppose that h(θ) = IX (θ) for some non-empty convex

closed set X . Then k must satisfy

k ≥ σmax(B)
‖θ� − θ0‖ − ε√

m

for the PG method; and

k ≥ σ+
min(B)

‖P (θ� − θ0)‖ − ε√
m

for the EM method, where σ+
min(B) denotes the smallest

positive singular value of B, and P =B�(B�B)†B is
an orthogonal projection matrix, which performs projec-
tion onto the subspace spanned by b1, . . . , bm.

(b) Suppose that h(θ) = λ‖θ‖2/2, λ > 0. Then k must satisfy

k ≥ σmax(B)2
‖θ� − θ0‖ − ε

λ‖θ0‖+ σmax(B)
√
m

(48)

for the PG method; and

k ≥ (σ+
min(B))2

‖P (θ� − θ0)‖ − ε

λ‖Pθ0‖+ σ+
min(B)

√
m

(49)

for the EM method.

The proof of Proposition 3 is given in Appendix C. Proposi-
tion 3 shows that the number of iterations required by the PG or
EM method must increase with the magnitude ofB, or the SNR,
assuming that the other variables are held fixed. Let us show the
insight behind Proposition 3. As an example, consider h(θ) = 0
and the PG method (38) with step size η = 1/σmax(B)2. From
(34) one can show that

‖∇f(θ)‖ ≤ σmax(B)‖ψ(Bθ)‖ ≤ σmax(B)
√
m, (50)

where the second inequality is due to 0< ψ(z)< 1 (see (35)).
Applying (50) to the PG method (38) gives

‖θk+1 − θk‖= η‖∇f(θk)‖ ≤ σmax(B)−1
√
m. (51)

We see that, if the magnitude of B is large, then every θk

changes little, and we have slow convergence. This is the idea
that underlies the results in Proposition 3.

F. Accelerated EM

The PG-EM relationship revealed in Section V-D opens new
possibilities. In first-order convex optimization, it is well known
that the convergence of the PG method can be accelerated by
applying extrapolation [20], [21]. We can accelerate the EM
method in the same manner. Consider the following modified
EM method

θk+1 ∈ arg min
θ∈Rn

g(θ|ϑk) + h(θ), (52)

ϑk+1 = θk+1 + αk+1(θ
k+1 − θk), (53)

for k ≥ 0, where ϑ0 = θ0; {αk}k≥1 is an extrapolation coeffi-
cient sequence. We employ the FISTA sequence

αk+1 =
tk − 1

tk+1
, (54)

where t0 = 1,

tk+1 =
1 +
√

1 + 4t2k
2

, k ≥ 0. (55)

The modified EM method in (52)–(55) will be called the ac-
celerated EM method, in what follows. The accelerated EM
method is the direct application of the extrapolation in accel-
erated PG to the standard EM method (41). Note that, if we
replace g(θ|ϑk) in (52) with u(θ|ϑk) in (45), we return to the
accelerated PG method. We have the following result.

Proposition 4: Consider problem (33) and the accompanied
problem setup, and consider the accelerated EM method (52)–
(55). We have

F (θk)− F (θ�)≤ 2

(k + 1)2
‖B(θ0 − θ�)‖2, k ≥ 1. (56)

The proof of Proposition 4 is given in Appendix B3. Proposi-
tion 4 indicates that accelerated EM has an accelerated conver-
gence rate of at least 1/k2, which is the same as that of the
accelerated PG method.

G. Inexact EM

The EM method (41) requires us to solve the problems in
(41) exactly. When the exact solutions are computationally non-
negligible to compute, we may want to accept economical, but
inexact, solutions. This motivates the study of inexact EM

θk+1 ≈ arg min
θ∈Rn

G(θ|θk) := g(θ|θk) + h(θ), (57)

for k ≥ 0, where θk+1 is an approximate solution, produced by
a solver that may not give high solution precision due to its
limited complexity. The question is how robust the EM method
is under solution errors.
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Intriguingly, the same kind of questions has been addressed
in the context of inexact PG [22]. We take insight from the
aforementioned context to answer the question at hand. We
characterize the inexactness of θk+1 by

dist(0, ∂G(θk+1|θk))≤ εk+1, (58)

for some εk+1 ≥ 0; εk+1 = 0 means that θk+1 is an optimal
solution to the problem in (57). Also, we assume the following
descent condition

G(θk+1|θk)≤G(θk|θk). (59)

Eq. (59) makes sense in the following way: If we do a warm
start with the inexact solver for problem (57) by using θk

as the initialization, the resulting approximate solution θk+1

should yield an objective value G(θk+1|θk) better than the
initial objective value G(θk|θk). We have the result below.

Proposition 5: Consider problem (33) and the accompanied
problem setup. Consider the inexact EM method (57), with
(58)–(59) being satisfied. Suppose that B has full column rank.
For k ≥ 1, we have

F (θk)− F (θ�)≤ 1

2k

(

‖B(θ0 − θ�)‖+ 2

∑k
i=1 εi

σmin(B)

)2

.

The proof of Proposition 5 is given in Appendix B2. Proposi-
tion 5 reveals two aspects. First, the inexact EM method can
lead to convergence, with a rate of at least 1/k, if the solution
accuracy εk improves with k in such a way that

∑∞
i=1 εi <∞;

i.e., εk decreases at a rate of k−p for p > 1, or faster. Second,
the inexact EM method may be more sensitive to solution errors
if the smallest singular value σmin(B) of B is smaller, i.e., B
is more ill-conditioned. In massive MIMO, we should expect
that B is reasonably well-conditioned.

We can also consider the accelerated version of inexact EM.

Proposition 6: Consider problem (33) and the accompanied
problem setup. Consider the accelerated version of the inexact
EM method (57), wherein θk is replaced by ϑk in (53)–(55).
Suppose that (58) holds, and that B has full column rank. For
k ≥ 1, we have

F (θk)− F (θ�)≤ 2

(k + 1)2

(

‖B(θ0 − θ�)‖+ 2

∑k
i=1 i εi

σmin(B)

)2

.

The proof of Proposition 6 is given in Appendix B4. Note that
the above result does not require the descent condition (59).
Proposition 6 looks similar to its non-accelerated counterpart
in Proposition 5. The notable difference is that, to achieve a
convergence rate of at least 1/k2 in Proposition 6, we need
the solution accuracies εk’s to satisfy

∑∞
i=1 i εi <∞; i.e., εk

decreases at a rate of k−p, p > 2, or faster. This means that
the accelerated inexact EM method may require higher solution
accuracies than the non-accelerated counterpart.

H. The Case of Non-Convex h

Our preceding analyses assume convex h. We also want to
handle non-convex h. Consider the same inexact EM scenario
in (57). The new difficulty is that the problems in (57) are non-
convex. We assume that the inexact solver for the problems

in (57) can only guarantee finding an ε-critical point, rather
than an optimal or ε-optimal solution. The ε-criticality of θk+1

is characterized by (58). Also, we assume that the descent
condition (59) holds; our justification is the same as before.
Furthermore, we modify G(θ|θk) in (57) as

G(θ|θk) = g(θ|θk) + τ
2‖B(θ − θk)‖2 + h(θ) (60)

for some τ > 0. We have the following result.

Proposition 7: Consider problem (33) and the accompanied
problem setup, except that h is non-convex. Consider the
inexact modified EM method (57) and (60), with (58)–(59)
being satisfied. Suppose that B has full column rank. We have

min
i=1,...,k

distR(0, ∂F (θi))≤ 1√
k
C, (61)

where distR(y,X ) = minx∈X ‖y − x‖R, ‖x‖R =
(x�Rx)1/2, R= (B�B)−1, and

C = 2

(
(2 + τ)2

τ
(F (θ0)− F (θ�)) +

∑k
i=1 ε

2
i

2σmin(B)2

)1/2

.

The proof of Proposition 7 is given in Appendix B5. Eq. (61)
employs an ellipsoidal extension of the ε-critical point defini-
tion to pin down the convergence. As an easier way to under-
stand, consider the following expression which can be shown
to be an implication of (61):

min
i=1,...,k

dist(0, ∂F (θi))≤ 1√
k
C σmax(B). (62)

Eq. (62) suggests that the EM method leads to a δ-critical point
in O(1/δ2) iterations, assuming that

∑∞
i=1 ε

2
i <∞.

VI. ACCELERATED EM ALGORITHMS FOR OMOD

In this section we use the new theoretical insights gained in
the previous section to build efficient algorithms for OMOD.
Our attention is paid to the implementation of the accelerated
inexact EM (AIEM) method.

A. An AIEM Algorithm for a General Convex h

Consider the OMOD problem (19) with a general convex h.
By modifying EM OMOD method in Section IV-D as the AIEM
method in Section V-G, we have the following AIEM OMOD
method: Let s0 be the initialization, and let s0ex = s0. We per-
form, for k = 0, 1, 2, . . .,
1. E-step: For all m, compute the conditional mean estimate

rkm = Erm [rm|q, skex] in the same way as (31).
2. M-step preparation: For all m, compute r̃km = Frkm via

FFT. Let řkw = (r̃k1,w, . . . , r̃
k
M,w) for all w.

3. M-step: For all w, compute the inexact solutions

šk+1
w ≈ arg min

s∈CN

1
σ2

1
2‖ř

k
w − Ȟws‖2

︸ ︷︷ ︸
:=ϕk

w(s)

+h(s). (63)

Here {šk+1
w }Ww=1 satisfies a solution quality condition

‖ek+1‖ ≤ εk+1, (64)
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Algorithm 1 AIEM for problem (19) with convex h

1: input: s0, {αk}k≥1 in (54)–(55), {εk}k≥1

2: set s0ex = s0, ηw = 1/σmax(Ȟw)
2 for all w

3: for k = 0, 1, 2, . . . do
4: compute zk

m = F H(
∑N

n=1 Dm,ns
k
ex,n) for all m

5: compute ζk
m for all m via

�(ζk
m) = σ

(
�(qm)�ψ

(
1
σ�(qm)��(zk

m)
))

�(ζk
m) = σ

(
�(qm)�ψ

(
1
σ�(qm)��(zk

m)
))

6: set rkm = zk
m + ζk

m for all m
7: compute r̃km = Frkm for all m
8: set řkw = (r̃k1,w, . . . , r̃

k
M,w) for all w

9: set s0w = škw, s0ex,w = s0w for all w, set j = 0
10: repeat
11: gj

w = Ȟ
H
wȞwsjex,w − Ȟ

H
wř

k
w for all w

12: sj+1
w = proxηwσ2h(s

j
ex,w − ηwgj

w) for all w
13: sj+1

ex,w = sj+1
w + αj+1(sj+1

w − sjw) for all w
14: j = j + 1

15: g̃j
w = σ−2(Ȟ

H
wȞwsjw − Ȟ

H
wř

k
w) for all w

16: ejw =minv∈∂h(sjw) ‖g̃
j
w + v‖ for all w

17: until
∑W

w=1(e
j
w)

2 ≤ ε2k+1

18: set sk+1 such that šk+1
w = sjw for all w

19: sk+1
ex = sk+1 + αk+1(s

k+1 − sk)
20: if a stopping rule is met, exit and output sk+1

21: end for

for some given εk+1 > 0, where ek+1 ∈ R
W is given by

ek+1
w = min

v∈∂h(šk+1
w )

‖σ−2∇ϕk
w(š

k+1
w ) + v‖, for all w.

(65)

4. Extrapolation for acceleration:

sk+1
ex = sk+1 + αk+1(s

k+1 − sk), (66)

where {αk}k≥1 is given by (54)–(55).
Note that if we solve the problems in (63) exactly, the above
method becomes the accelerated (exact) EM; that if we set
αk = 0 for all k, the above method becomes the regular non-
accelerated EM; and that (64) is identical to the solution quality
requirement in (58). Proposition 6 suggests that we can choose
εk = C k−p for some C > 0 and p > 2.

We have not specified the inexact solver for the M-step prob-
lems in (63). The AIEM method provides us with the freedom to
choose the solver, and in this study we employ the accelerated
PG (APG) method. Fixing k and w, the APG method for the
problem in (63) is given by

sj+1
w = proxηjσ2h(s

j
ex,w − ηw∇ϕk

w(s
j
ex,w)),

sj+1
ex,w = sj+1

w + αj+1(s
j+1
w − sjw),

for j ≥ 0, where ηw = 1/σmax(Ȟw)
2 is the step size, and

∇ϕk
w(s) = Ȟ

H
wȞws− Ȟ

H
wř

k
w. We stop the APG loop when

{sj+1
w }Ww=1 meets the solution quality requirement (64). As-

sembling the above components together, we obtain the AIEM
algorithm in Algorithm 1.

Algorithm 2 DIEM, inspired by AIEM in Algorithm 1

1: set s0 = 0, s0ex = s0

2: for k = 0, 1, 2, . . . ,K − 1 do
3: compute zk

m = F H(
∑N

n=1 Dm,ns
k
n) for all m

4: compute ζk
m for all m via

�(ζk
m) = (σ + βk)

(
�(qm)�ψ

(
1
σ�(qm)��(zk

m)
))

�(ζk
m) = (σ + βk)

(
�(qm)�ψ

(
1
σ�(qm)��(zk

m)
))

5: set rkm = zk
m + ζk

m for all m
6: compute r̃km = Frkm for all m
7: set řkw = (r̃k1,w, . . . , r̃

k
M,w) for all w

8: gk
w = Ȟ

H
wȞwskex,w − Ȟ

H
wř

k
w for all w

9: sk+1
w =Ωγk

(skex,w − ηkgj
w) for all w

10: sk+1
ex,w = sk+1

w + αk+1(sk+1
w − skw) for all w

11: set sk+1 such that šk+1
w = sk+1

w for all w
12: end for

B. Algorithms for Specific h and Some Implementation Details

The AIEM algorithm in the last subsection is developed
for a general convex h. Let us consider the box case h(θ) =
I[−U,U ]n(θ). The prox operation is given by the clipping func-
tion (25). Eq. (65), which measures the solution quality (see
also Line 16 of Algorithm 1), can be shown to be

ek+1
w = ‖χ(g̃k+1

w , s̆k+1
w )‖, (67)

where χ(g,θ) = (χ(g1, θ1), . . . , χ(gn, θn)); χ(g, θ) = |g| if
gθ ≥ 0 or |θ|< U , and χ(g, θ) = 0 otherwise; g̃k+1

w = (�(σ−2

∇ϕk
w(š

k+1
w )), �(σ−2∇ϕk

w(š
k+1
w ))); s̆k+1

w = (�(šk+1
w ),

�(šk+1
w )). We relegate the proof of (67) to the supplemental

material.
Let us also consider the GMAP case h(θ) = λ‖θ‖2/2. The

problems in (63) can actually be solved in closed form [10]:

šk+1
w = (Ȟ

H
wȞw + λσ2I)−1Ȟ

H
wř

k
w. (68)

Hence we can replace the APG solver (Line 10–17 of
Algorithm 1) with (68), and the result is an accelerated EM.

VII. A DEEP INEXACT EM ALGORITHM FOR OMOD

In this section we apply deep unfolding [24], [28] to the in-
exact EM algorithm to build a data-driven detector for OMOD.
The idea of deep unfolding is to alter an existing iterative algo-
rithm by data-driven learning, thereby hoping to learn a better
algorithm. Specifically, we see each iteration of the predecessor
algorithm as a network layer, untie some of the parameters or
alter some of the structures, and learn the untied parameters
or new structures from data. We tried various ways to deep-
unfold Algorithm 1. The successful one, by our empirical tests,
is shown in Algorithm 2; we will call the algorithm DIEM. The
untied parameters are marked red, and some notable changes
marked blue.

The most notable alternation of DIEM is Line 9 of
Algorithm 2. We replace the proximal operator proxηwσ2h

(Line 12 of AIEM) with a nonlinear activation function Ωγ .
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We use a multilevel sigmoid function; its real-valued scalar
version is

Ωγ(θ) =
∑

μ∈{0,±2,...,±2(D−1)}
�(γ(θ − μ)), (69)

where γ > 0, � : R→ [−1, 1] is a 0-centered sigmoid function:

�(θ) =
2

1 + e−θ
− 1;

we have Ωγ(s) = [�(Ωγ(si) + j�(Ωγ(si))]i for the complex-
valued vector case. The sigmoid functions were used in deep
MIMO detection [25] as the activation function. The intuitive
idea is that Ωγ approaches the decision function of the constel-
lation set as γ →∞, and we want to use it to encourage the
symbol estimates to lie closer to the constellation points.

The other alterations of DIEM are as follows: we abandon
acceleration in the EM loop; we consider one-step APG with
the inexact solver; we untie the step size ηk and extrapolation
coefficient αk of the APG in a layer-varying fashion; we add a
parameter βk to partially alter the noise standard deviation.

The training of DIEM is standard. Let p= {s,H, σ, q} be
a problem instance, let π = {α,β,γ,η} be the set of network
parameters, and let oπ(p) be the network output. We generate a
large number of problem instances p1, . . . ,pT according to the
signal model. Then we learn π from p1, . . . ,pT using a deep
learning software; the objective is

min
π

T∑

t=1

‖st − oπ(pt)‖2,

where st is the symbol vector of the problem instance pt.
We want to provide an interpretation for DIEM. Suppose we

choose a non-convex penalty h with the OMOD (19) to better
approximate the difficult constellation constraints. As a concur-
rent study, we recently showed that there exists a constellation-
promoting penalty function h such that its proximal operator
may be approximated by the sigmoid activation function (69);
see [42] for details. As studied in Section V-H, the correspond-
ing non-convex OMOD problem (19) can be handled by inexact
EM. Following Section VI, we can show that the non-convex
inexact EM can be implemented by nearly the same procedure
as the non-accelerated version of Algorithm 1. From this view,
DIEM can be regarded as the deep unfolding of the non-convex
inexact EM.

VIII. NUMERICAL RESULTS

In this section numerical results are provided to illus-
trate the detection and runtime performance of the new al-
gorithms. We also give additional numerical results in the
supplemental material.

A. Simulation Settings

We use Monte Carlo simulations to test the performance
of the algorithms. The signals are generated by the model in
Section III-A. The channel is generated by a multipath model;
see, e.g., [43] and the reference therein. To describe the model,

let h̄l,n = (hl,1,n, . . . , hl,M,n), l = 0, . . . ,W ′ − 1, be the lth
coefficient of the time-domain channel impulse response from
user k to all the BS antennas. Assuming that the BS antennas
are arranged as a uniform linear array, we model each h̄l,n as

h̄l,n =

J∑

j=1

αj,l,na(θj,l,n),

where a(θ) = (1, e−j 2πd
λ sin(θ), . . . , e−j(M−1) 2πd

λ sin(θ)) is the
response of the array to a signal coming from an angle θ ∈
(−π/2, π/2); d is the inter-antenna spacing; λ is the wave-
length; J is the number of paths; αj,l,n and θj,l,n are the
complex channel gain and angle of a path, respectively. In
our simulations, we set W ′ = 16, J = 4 and d= λ/2; each
αj,l,n is randomly generated, following a circular complex
Gaussian distribution with mean zero and variance 1/J ; each
θj,l,n is randomly generated, following a uniform distribution
on (−π/2, π/2). The number of trials of our simulations is 500.
In addition, the SNR is defined as SNR= E[‖s‖2]/E[‖vn‖2].

Our simulations consider the following algorithms.
1. GMAP-EM: the standard EM method for GMAP

OMOD, proposed previously in [10] and reviewed in
Section IV-D;

2. GMAP-AEM: the accelerated EM method for GMAP
OMOD, built in Section VI;

3. BOX-PG: the PG method for box OMOD, proposed pre-
viously in [18] and reviewed in Section IV-C;

4. BOX-AIEM: the accelerated inexact EM method for box
OMOD, built in Section VI;

5. BOX-EM: the standard EM method for box OMOD, im-
plemented by BOX-AIEM with a high solution accuracy;

6. DIEM: the deep algorithm in Section VII;
7. ZF: direct application of the zero-forcing detector in un-

quantized MIMO-OFDM to OMOD.
We tested all the algorithms by MATLAB 8.5 on the same

desktop with Intel i7-7700 processor and 16GB RAM memory.
The parameter settings with the PG and EM algorithms (the

non-deep ones) are as follows. The stopping condition is either
‖sk+1 − sk‖/‖sk‖ ≤ 5× 10−4 or k > 1000. For BOX-AIEM,
we set the M-step solution accuracies as εk = 2NWk−2.1. For
BOX-EM, we set εk = 2NW × 10−4. For BOX-PG, we choose
the step size η as the reciprocal of (40); see Proposition 1. We
set the noise power parameter σ2 as

σ = σactual + σ0, (70)

where σ2
actual is the actual noise power; σ0 > 0 is some given

constant. Doing so is to avoid slow convergence. As shown in
Proposition 3, the PG and EM methods can converge slowly for
small σ2. In our simulations, we set σ0 = 3.

The training of DIEM is implemented on Pytorch 1.2 plat-
form for Python 3.5.2 (the test of DIEM is on MATLAB).
The training optimizer is stochastic gradient descent, with
step size 10−3. The SNR range in our training is the SNR
range in our simulations, with an additional margin of 2 to
5dB. The number of layers is K = 20. The open source code
is available at https://github.com/shaomingjie/
DeepEM_MIMO_det.git.

https://github.com/shaomingjie/DeepEM_MIMO_det.git
https://github.com/shaomingjie/DeepEM_MIMO_det.git
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Fig. 1. BERs of the PG and EM algorithms. 16-QAM. Dashed: GMAP-
based algorithms; solid: box-based algorithms.

Fig. 2. Average number of iterations of the PG and EM algo-
rithms. 16-QAM. Solid lines: (M,N,W ) = (256, 12, 256), dashed lines:
(M,N,W ) = (128, 10, 256).

Fig. 3. Average runtimes of the PG and EM algorithms. 16-QAM.
Solid lines: (M,N,W ) = (256, 12, 256), dashed lines: (M,N,W ) =
(128, 10, 256).

B. Comparison of EM and Accelerated Exact/Inexact EM

In this subsection we focus on comparison of the standard
EM method and our modified EM methods. Fig. 1 shows
the bit error rate (BER) performance of the GMAP- and
box-based algorithms. GMAP-AEM is seen to yield nearly the
same performance as GMAP-EM. This is expected since both
solve the same problem, and the problem is convex. Similarly,
we see the same behaviors with the box-based algorithms. Fig. 2
shows the average numbers of EM or PG iterations used by the
algorithms. As can be seen, the accelerated EM methods use
much less iterations than the PG and standard EM methods.
This demonstrates the benefit of accelerated EM.

From Fig. 2, we also observe a phenomenon, namely, that
the numbers of iterations of the PG and EM algorithms rise
with the SNR. This agrees with the theoretical results in
Proposition 3.

Fig. 3 shows the average runtimes. It is more interesting to
examine the box case. While we see in Fig. 2(b) that BOX-
EM uses less numbers of iterations than BOX-PG, we see in
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Fig. 4. BER performance of DIEM; 16-QAM.

Fig. 3(b) that BOX-EM runs slower than BOX-PG. This is be-
cause the M-step in EM requires non-negligible computations.
Moreover, BOX-AIEM is seen to be faster than BOX-EM (and
also BOX-PG); the use of inexact M-step is a key factor for its
runtime advantage.

C. Performance Comparison for DIEM

In this subsection we demonstrate the performance of
DIEM. Figs. 4–5 show the BER performance of DIEM un-
der various system settings. We benchmark DIEM against ZF,
GMAP-AEM and BOX-AIEM. DIEM is seen to exhibit re-
markably better BER performance than the other algorithms.
Tables I–II show the runtimes of the various algorithms. As can
be seen, DIEM is much faster than the other algorithms. The
reason for the efficiency of DIEM is that it uses a fixed number
of layers, specifically, 20; and each layer has simple operations,
specifically, one-step APG-like operations.

Fig. 5. BER performance of DIEM; 64-QAM.

TABLE I
AVERAGE RUNTIMES OF DIFFERENT ALGORITHMS

(M,N,W ) = (128, 10, 256), 16-QAM

��������Alg.
SNR (dB)

-10 -5 0 5 10 15

GMAP-AEM 0.076 0.13 0.17 0.23 0.28 0.33
BOX-AIEM 0.13 0.20 0.37 0.60 0.87 1.22

DIEM 0.094

TABLE II
AVERAGE RUNTIMES OF DIFFERENT ALGORITHMS

(M,N,W ) = (128, 6, 256), 64-QAM

��������Alg.
SNR (dB)

0 5 10 15 20

GMAP-AEM 0.12 0.17 0.26 0.32 0.44
BOX-AIEM 0.59 0.92 0.95 1.60 2.06

DIEM 0.082
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IX. CONCLUSION

To conclude, the EM convergence rate was analyzed for a
class of approximate ML formulations for OMOD. The anal-
ysis revealed the possibility of slow convergence under high
SNRs. It also led to accelerated and inexact EM schemes. The
implementation of these schemes for OMOD was studied, and
the use of deep unfolding in EM for OMOD was also con-
sidered. The resulting EM algorithms were numerically shown
to have competitive performance in the OMOD application.
In deep learning-based methods, empirical study plays a key
role. As a future direction, it would be useful to use numeri-
cal experiments to thoroughly examine the reliability and ef-
ficiency of the proposed deep unfolding EM method under
different conditions.

APPENDIX

A. Proof of Proposition 1

We will need the following result.

Lemma 1: Consider the function ψ(z) in (35). The function
ψ(z) is 1-Lipschitz continuous on R, i.e., |ψ(z)− ψ(z′)| ≤ 1
for all z, z′ ∈ R.

Proof of Lemma 1: A differentiable function f : R→ R

is L-Lipschitz continuous on R if |df(x)/dx| ≤ L for all x.
Moreover, ψ(z) is closely related to Mill’s ratio, and it was
shown in the context therein that dψ(z)/dz ≤ 1 for all z [44].
The desired result follows. �

From the expression of ∇f(θ) in (34), we have

‖∇f(θ)−∇f(θ′)‖= ‖B�(ψ(Bθ)− ψ(Bθ′))‖
≤ σmax(B)‖ψ(Bθ)− ψ(Bθ′)‖
≤ σmax(B)‖Bθ −Bθ′‖
≤ σmax(B)2‖θ − θ′‖,

where we apply Lemma 1 to obtain the second inequality. The
proof is complete.

B. Proof of Propositions 2 and 4–7

The proofs of Propositions 2, 4, 5, 6 and 7 follow the same
principles as their PG counterparts [22], [23], although a careful
verification remains necessary. The following lemma, which
considers the structure of our problem, is important.

Lemma 2: Consider problem (33) and the accompanied prob-
lem setup. Let θk be given, and consider the following problem

θk+1 ≈ arg min
θ∈Rn

G(θ|θk) := g(θ|θk) + h(θ), (71)

where we consider the alternate form of g(θ|θ′) in (46); and
θk+1 denotes an approximate solution that satisfies

dist(0, ∂G(θk+1|θk))≤ εk+1. (72)

Let θ̃ be any point on R
n. It holds that

F (θk+1)− F (θ̃)≤ 1
2‖B(θk − θ̃)‖2 − 1

2‖B(θk+1 − θ̃)‖2

+ εk+1‖θk+1 − θ̃‖. (73)

Proof of Lemma 2: First we list some basic results. Since
f and h are convex, we have, respectively,

f(θ̃)≥ f(θk) + 〈∇f(θk), θ̃ − θk〉, (74)

h(θ̃)≥ h(θk+1) + 〈vk+1, θ̃ − θk+1〉, (75)

for any vk+1 ∈ ∂h(θk+1). From (72), we have

ek+1 ∈∇g(θk+1|θk) + ∂h(θk+1),

for some ‖ek+1‖ ≤ εk+1. From (46), it can be shown that

∇g(θ|θ′) =∇f(θ′) +B�B(θ − θ′). (76)

The above two equations imply that

ek+1 =∇f(θk) +B�B(θk+1 − θk) + vk+1, (77)

for some vk+1 ∈ ∂h(θk+1), ‖ek+1‖ ≤ εk+1.
Second, we put together the above results to show (73). We

have the derivations in (78) at the bottom of next page, where
(78a) is due to f(θ)≤ g(θ|θ′); (78b) is obtained by putting (46)
into (78a); (78c) is obtained by putting (74) into (78b); (78d)
is obtained by putting (75) and (77) into (78c); (78e) is due to
the Cauchy-Schwarz inequality and ‖ek+1‖ ≤ εk+1; and (78f)
is obtained by appropriate manipulation of the terms in (78e).
The proof is complete. �

1) Proof of Proposition 2: We start with the basic EM
method. Applying Lemma 2 to the EM method (41), with
θ̃ = θ� and εk = 0, we have

F (θk+1)−F (θ�)≤ 1
2 (‖B(θk − θ�)‖2− ‖B(θk+1− θ�)‖2),

for k ≥ 0. It follows that, for k ≥ 1,

k−1∑

i=0

(F (θi+1)− F (θ�))

≤ 1
2 (‖B(θ0− θ�)‖2−‖B(θk− θ�)‖2).

Also, by the basic EM property F (θk+1)≤ F (θk), we have

F (θk)− F (θ�)≤ 1

k

k−1∑

i=0

(F (θi+1)− F (θ�))

≤ 1
2k‖B(θ0 − θ�)‖2.

2) Proof of Proposition 5: Next, we consider the in-
exact EM scenario in (57)–(59). For convenience, let wk =∑k−1

i=0 (F (θi+1)− F (θ�)). Following the same proof in the
preceding subsection, but with εk �= 0 in general, one can show
that, for k ≥ 1,

wk+
1
2‖B(θk − θ�)‖2 ≤ 1

2‖B(θ0− θ�)‖2 +
k∑

i=1

εi‖θi− θ�‖,

(79)

F (θk)− F (θ�)≤ 1
kwk. (80)
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Note that (80) is due to the descent condition F (θk+1)≤
F (θk), enabled by the condition G(θk+1|θk)≤G(θk|θk) in
(59). The new challenge lies in the last term of (79). To deal
with it, assume that B has full column rank. We have

k∑

i=1

εi‖θi − θ�‖ ≤ 1

σmin(B)

k∑

i=1

εi‖B(θi − θ�)‖, (81)

where we have used the result ‖Bx‖ ≥ σmin(B)‖x‖. Since
wk ≥ 0, Eqs. (79) and (81) imply that

1
2‖B(θk−θ�)‖2 ≤ 1

2‖B(θ0−θ�)‖2+
k∑

i=1

εi
σmin

‖B(θi−θ�)‖,

(82)

where we denote σmin = σmin(B) for convenience. Consider
the following lemma.

Lemma 3 [22, Lemma 1]: Let {uk}k≥0 be a non-negative
sequence. Suppose that, for k ≥ 1,

u2
k ≤ u2

0 +
k∑

i=1

λiui,

where λi ≥ 0 for all i. Then, for k ≥ 1, we have

uk ≤ 1
2

k∑

i=1

λi +

⎛

⎝u2
0 +

(

1
2

k∑

i=1

λi

)2
⎞

⎠

1/2

.

Applying Lemma 3 to (82) gives

1√
2
‖B(θk − θ�)‖ ≤Ak + (u2

0 +A2
k)

1/2 ≤ u0 + 2Ak, (83)

for k ≥ 1, where

u0 =
1√
2
‖B(θ0 − θ�)‖, Ak = 1√

2σmin

k∑

i=1

εi. (84)

Now we use (81) and (83) to bound the last term of (79).
From (79), we have

wk ≤ 1
2‖B(θ0 − θ�)‖2 +

k∑

i=1

εi‖θi − θ�‖

≤ u2
0 +

k∑

i=1

√
2εi

σmin
(u0 + 2Ai)

≤ u2
0 +

k∑

i=1

√
2εi

σmin
(u0 + 2Ak) = u2

0 + 2Ak(u0 + 2Ak)

= (u0 + 2Ak)
2, (85)

where the second inequality is obtained by applying (81) and
(83); and the third inequality is due to Ak ≥Ai for i≤ k.
Applying (85) and (84) to (80) leads to the final result in
Proposition 5.

3) Proof of Proposition 4: To describe the proof for the
accelerated EM method, we first write down some basic results
[21]. The sequence {tk}k≥0 in (55) satisfies (a) t2k − tk = t2k+1;
(b) tk ≥ (k + 2)/2; and (c) tk ≤ k + 1. Also, the following
result is important.

Lemma 4: Let θ̃ = t−1
k θ� + (1− t−1

k )θk. It holds that

t2k(F (θk+1)− F (θ̃))≥ t2kvk+1 − t2k−1vk, (86)

where vk = F (θk)− F (θ�).

Note that Lemma 4 uses only the convexity of F and the
property t2k − tk = t2k+1. Applying Lemma 2 to the accelerated
EM method (52)–(55), with θ̃ given by the one in Lemma 4,
θk = ϑk and εk = 0, we have

F (θk+1)− F (θ�)≤ 1
2 (‖B(ϑk − θ̃)‖2 − ‖B(θk+1 − θ̃)‖2),

(87)

for k ≥ 0. Let uk+1 = tkθ
k+1 − ((tk − 1)θk + θ�) for k ≥ 0.

It can be verified that, for k ≥ 1,

θk+1 − θ̃ = t−1
k uk+1, ϑk − θ̃ = t−1

k uk. (88)

Combining (86)–(88) gives

t2kvk+1 +
1
2‖Buk+1‖2 ≤ t2k−1vk + 1

2‖Buk‖2, k ≥ 1.

The above inequality further implies that

t2kvk+1 +
1
2‖Buk+1‖2 ≤ t20v1 +

1
2‖Bu1‖2. (89)

Applying Lemma 2 to the accelerated EM method (52), with
k = 1, θ̃ = θ� and εk = 0, and noting ϑ0 = θ0, we have

v1 ≤ 1
2‖B(θ0 − θ�)‖2 − 1

2‖B(θ1 − θ�)‖2.

By noting that t0 = 1 and u1 = θ1 − θ�, we further obtain

t20v1 +
1
2‖Bu1‖2 ≤ 1

2‖B(θ0 − θ�)‖2.

F (θk+1)≤ g(θk+1|θk) + h(θk+1) (78a)

= f(θk) + 〈∇f(θk),θk+1 − θk〉+ 1
2‖B(θk+1 − θk)‖2 + h(θk+1) (78b)

≤ f(θ̃) + 〈∇f(θk),θk+1 − θ̃〉+ 1
2‖B(θk+1 − θk)‖2 + h(θk+1) (78c)

≤ F (θ̃) + 〈B�B(θk+1 − θk)− ek+1, θ̃ − θk+1〉+ 1
2‖B(θk+1 − θk)‖2 (78d)

≤ F (θ̃) + εk+1‖θ̃ − θk+1‖+ 〈B�B(θk+1 − θk), θ̃ − θk+1〉+ 1
2‖B(θk+1 − θk)‖2 (78e)

= F (θ̃) + εk+1‖θ̃ − θk+1‖+ 1
2‖B(θk − θ̃)‖2 − 1

2‖B(θk+1 − θ̃)‖2, (78f)
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Applying the above inequality to (89) gives

t2kvk+1 ≤ 1
2‖B(θ0 − θ�)‖2.

Finally, by applying tk ≥ (k + 2)/2 to the above inequality, we
obtain the final result in Proposition 4.

4) Proof of Proposition 6: The proof for the accelerated
inexact EM scenario is a combination of the proof methods
in the last two subsections. Following the same proof in the
previous subsection, with εk �= 0 in general, one can show that,
for k ≥ 1,

t2kvk+1 +
1
2‖Buk+1‖2 ≤ t2k−1vk + 1

2‖Buk‖2

+ tkεk+1

σmin
‖Buk+1‖,

and that

t20v1 +
1
2‖Bu1‖2 ≤ 1

2‖B(θ0 − θ�)‖2 + t0ε1
σmin

‖Bu1‖.

The above two inequalities imply that, for k ≥ 0,

t2kvk+1 +
1
2‖Buk+1‖2 ≤ u2

0 +

k+1∑

i=1

ti−1εi
σmin

‖Bui‖, (90)

where u0 = ‖B(θ0 − θ�)‖/
√
2. Following the same proof in

the last last subsection (specifically, by seeing (82) as (90)), one
can show that

t2kvk+1 ≤ (u0 + 2Ak+1)
2,

where Ak+1 = (
∑k+1

i=1 ti−1εi)/(
√
2σmin). Finally, by applying

tk ≥ (k + 2)/2 and tk ≤ k + 1 to the left-hand and right-hand
sides of the above equation, respectively, we obtain the final
result in Proposition 6.

5) Proof of Proposition 7: The proof for the inexact EM
scenario (57)–(60) in the case of non-convex h is as follows.
First, we show that

min
i=0,...,k−1

2
τ ‖B(θi+1 − θi)‖2 + δi+1 ≤

1

k

(

C1 +
k∑

i=1

δi

)

(91)

for k ≥ 1 and for any δ1, . . . , δk ≥ 0, where C1 = F (θ0)−
F (θ�). From the expression of G(θ|θ′) in (60), we have

F (θi+1) + τ
2‖B(θi+1 − θi)‖2 ≤G(θi+1|θi)≤G(θi|θi)

= F (θi),

where the first inequality is due to f(θ)≤ g(θ|θ′), and the
second inequality is due to the descent condition (59). Summing
the above equation over i= 0, . . . , k − 1 yields

τ
2

k−1∑

i=0

‖B(θi+1 − θi)‖2 ≤ C1,

and further,

k−1∑

i=0

( τ2‖B(θi+1 − θi)‖2 + δi+1)≤ C1 +

k−1∑

i=0

δi+1.

Applying
∑k−1

i=0 ui ≥ kmini=0,...,k−1 ui to the left-hand side
of the above equation leads to the result in (91).

Second, we show that

distR(0, ∂F (θk+1))≤ (2 + τ)‖B(θk+1 − θk)‖+ εk+1

σmin
,

(92)

where σmin = σmin(B). From the ε-criticality condition (58),
the structure of G(θ|θ′) in (60), and the expressions of g(θ|θ′)
in (76), it can be shown that

ek+1 =∇f(θk) + (1 + τ)B�B(θk+1 − θk) + vk+1,

for some vk+1 ∈ ∂h(θk+1) and ‖ek+1‖ ≤ εk+1. This, together
with R= (B�B)−1, give rise to

distR(0, ∂F (θk+1)) = distR(0,∇f(θk+1) + ∂h(θk+1))

≤ ‖∇f(θk+1)−∇f(θk)

− (1 + τ)R−1(θk+1 − θk) + ek+1‖R
≤ ‖∇f(θk+1)−∇f(θk)‖R
+ (1 + τ)‖R−1(θk+1 − θk)‖R + εk+1

σmin
,

where we have used the fact that ‖x‖R ≤ σmax(R)1/2‖x‖ and
σmax(R)1/2 = 1/σmin(B). It can be verified that

‖R−1(θk+1 − θk)‖R = ‖B(θk+1 − θk)‖.

Let u= ψ(Bθk)− ψ(Bθk+1) for convenience. We have

‖∇f(θk+1)−∇f(θk)‖R = u�B(B�B)−1B�u

≤ ‖u‖2=‖ψ(Bθk)−ψ(Bθk+1)‖2

≤ ‖Bθk −Bθk+1‖2,

where the first inequality is due to the fact that B(B�B)−1B�

is an orthogonal projection matrix, and the second inequality is
due to Lemma 1. Putting the above components together, we
have (92).

Third, we use (91) and (92) to show the desired result. From
(92), we have

distR(0, ∂F (θi+1))2 ≤ 2

(

(2+τ)2‖B(θi+1− θi)‖2+ ε2i+1

σ2
min

)

,

which is due to (x+ y)2 ≤ 2x2 + 2y2. By appropriately setting
the δi’s in (91), we have

min
i=0,...,k−1

τ
2‖B(θi+1 − θi)‖2+

τ
2 ε2k+1

(2+τ)2σ2
min

≤ 1

k

(

C1+
τ
2C2

(2+τ)2

)

,
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where C2 =
∑k

i=1 ε
2
i /σ

2
min. Combining the above two equa-

tions gives

min
i=0,...,k−1

distR(0, ∂F (θi+1))2 ≤ 4

kτ
((2 + τ)2C1 +

τ
2C2),

which leads to the final result of Proposition 7.

C. Proof of Proposition 3

1) The Case With PG, h(θ) = IX (θ): Suppose that ε≥
‖θ� − θk‖. By the triangle inequality,

ε≥ ‖θ� − θk‖ ≥ ‖θ� − θ0‖ − ‖θ0 − θk‖, (93a)

≥ ‖θ� − θ0‖ −
k−1∑

i=0

‖θi − θi+1‖. (93b)

We focus on ‖θi − θi+1‖. Consider the following result.

Lemma 5 [23, Theorem 6.42]: For any convex h : Rn → R ∪
{+∞}, we have ‖proxh(z1)− proxh(z2)‖ ≤ ‖z1 − z2‖ for
any z1, z2.

Also, for h(θ) = IX (θ), X being non-empty closed convex,
we have proxηh(z) = argminθ∈X ‖z − θ‖2. From the above
equation, it can be verified that the PG iterates in (38) satisfy

θi = proxηh(θ
i).

Applying the above results to the PG method (38), we have

‖θi − θi+1‖= ‖proxηh(θi)− proxηh(θ
i − η∇f(θi))‖

≤ ‖η∇f(θi)‖. (94)

Also, from the expression of ∇f(θ) in (34), we have

‖∇f(θ)‖= ‖B�ψ(Bθ))‖ ≤ σ1‖ψ(Bθ)‖ ≤ σ1

√
m, (95)

where we denote σ1 = σmax(B) for convenience, and the sec-
ond inequality is due to 0< ψ(z)< 1 for all z (see (35)).
By putting (95) into (94), and then (94) into (93b), and by
setting η = 1/σ2

1 , we obtain ε≥ ‖θ� − θ0‖ − σ−1
1

√
mk, and

consequently the desired result

k ≥ σ1(
√
m)−1(‖θ� − θ0‖ − ε).

2) The Case With PG, h(θ) = λ‖θ‖2/2: We begin with
‖θk − θ0‖. For h(θ) = λ‖θ‖2/2, λ > 0, it can be verified that
proxηh(z) = α−1z, where α= 1 + ηλ. Applying this result to
the PG method (38) leads to

θk = α−1θk−1 − α−1η∇f(θk−1)

= α−kθ0 − η
k−1∑

i=0

α−(k−i)∇f(θi),

and subsequently

‖θk − θ0‖ ≤ (1− α−k)‖θ0‖+ η

(
k−1∑

i=0

α−(k−i)

)

‖∇f(θi)‖

≤ (1− α−k)‖θ0‖+ ησ1

√
m

(
k−1∑

i=0

α−(k−i)

)

,

≤ (1− α−k)‖θ0‖+ ησ1

√
m
α−1 − α−k−1

1− α−1
,

= (1− α−k)(‖θ0‖+ σ1

√
mλ−1), (96)

where the second inequality is due to (95), and the last equation
is obtained by putting α= 1 + ηλ into the equation.

Next, we apply (96) to (93a) to obtain

1− α−k ≥ ‖θ� − θ0‖ − ε

‖θ0‖+ σ1
√
mλ−1

:= C. (97)

Assume C < 1. Then (97) can be rewritten as

log(1− C)≥ log(α−k) =−k · log(α). (98)

Applying log(z)≤ z − 1 for z > 0 to both sides of (98) gives

−C ≥−k(α− 1) =−kηλ (99)

By setting η = 1/σ2
1 and putting the expression of C in (97)

into (99), we obtain the desired result

k ≥ C

ηλ
= σ2

1

‖θ� − θ0‖ − ε

λ‖θ0‖+ σ1
√
m
.

What remains to show is that C < 1 is true for any λ > 0. Since
∇F (θ�) = 0, and ∇F (θ) =∇f(θ) + λθ, we have

‖θ�‖= λ−1‖∇f(θ�)‖ ≤ λ−1σ1

√
m;

the inequality is due to (95). Consequently,

‖θ� − θ0‖ ≤ ‖θ0‖+ σ1

√
mλ−1, (100)

and it is seen that the C in (97) satisfies C < 1 for any ε > 0.
The proof is complete.

3) The Case With EM, h(θ) = IX (θ): To facilitate the
proof, let

B =U1Σ̃V �
1 (101)

be the thin singular value decomposition of B, where U1 ∈
R

m×r and V 1 ∈ R
n×r are semi-orthogonal; r = rank(B);

Σ̃=Diag(σ1, . . . , σr); σ1 ≥ · · · ≥ σr > 0. First we show that
the EM method (41) can be expressed as

θk+1 ∈ Proxh,B(θk +W †B�ψ(Bθk)), (102)

where W =B�B, and

Proxh,B(z) = argmin
θ

1
2‖B(z − θ)‖2 + h(θ). (103)

To prove (102), we put ∇f(θ) in (34) into g(θ|θ′) in (46):

g(θ|θ′) = 1
2‖Bθ‖2 − 〈Wθ′ +B�ψ(Bθ′),θ〉+ const.

= 1
2‖Bθ‖2 − 〈Wθ′+WW †B�ψ(Bθ′),θ〉+const.

= 1
2‖B(θ − (θ′ +W †B�ψ(Bθ′)))‖2 + const.,
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where the second inequality is due to B� =WW †B�, which
can be verified to be true from (101). The proof of (102) is done.

Second, in a similar way as (93), we have

ε≥ ‖θ� − θk‖ ≥ ‖V �
1 (θ

� − θk)‖
≥ ‖V �

1 (θ
� − θ0)‖ − ‖V �

1 (θ
0 − θk)‖ (104a)

≥ ‖V �
1 (θ

� − θ0)‖ −
k−1∑

i=0

‖V �
1 (θ

i − θi+1)‖, (104b)

where we have used the fact that ‖x‖ ≥ ‖V �
1 x‖

for any semi-orthogonal V 1. For h(θ) = IX (θ), X
being non-empty closed convex, it can be verified that
Proxh,B(z) = argminθ∈X ‖B(z − θ)‖2, and then, that
θi ∈ Proxh,B(θi). Consider an extension of Lemma 5.

Lemma 6: Let h : Rn → R ∪ {+∞} be convex, let z1, z2 ∈
R

n, and let θ1 ∈ Proxh,B(z1),θ2 ∈ Proxh,B(z2). We have
‖B(θ1 − θ2)‖ ≤ ‖B(z1 − z2)‖.

Proof of Lemma 6: The proof is similar to that of
Lemma 5; see, e.g., [23]. By the optimality condition of the
problem in (103), θ1 and θ2 must satisfy

B�B(z1 − θ1) ∈ ∂h(θ1), B
�B(z2 − θ2) ∈ ∂h(θ2). (105)

Since h is convex, we have the following property

〈g1 − g2,θ1 − θ2〉 ≥ 0, for any g1 ∈ ∂h(θ1), g2 ∈ ∂h(θ2);

see, e.g., [38]. Applying (105) to the above equation, we obtain

〈B�B(z1 − θ1)−B�B(z2 − θ2),θ1 − θ2〉 ≥ 0

⇐⇒ 〈B�B(z1 − z2),θ1 − θ2〉 ≥ ‖B(θ1 − θ2)‖2

=⇒ ‖B(z1 − z2)‖‖B(θ1 − θ2)‖ ≥ ‖B(θ1 − θ2)‖2

⇐⇒ ‖B(z1 − z2)‖ ≥ ‖B(θ1 − θ2)‖,

where the Cauchy-Schwarz inequality is used to obtain the third
equation. The proof is complete. �

Applying the above results to the equivalent form of EM in
(102), we obtain

‖B(θi − θi+1)‖ ≤ ‖B(W †B�ψ(Bθi))‖ ≤
√
m, (106)

where we have also used σmax(BW †B�) = 1, which can be
verified from (101), and ‖ψ(Bθ)‖ ≤ √

m (see (95)). Applying
(106) to (104b), and using ‖Bx‖ ≥ σr‖V �

1 x‖, we obtain ε≥
‖V �

1 (θ
� − θ0)‖ − kσ−1

r

√
m, and consequently

k ≥ σr(
√
m)−1‖V �

1 (θ
� − θ0)‖. (107)

Finally, it should be noted that σr is the smallest positive
singular value of B; and that ‖V �

1 x‖= ‖B�(BB�)†Bx‖,
which can be verified from (101). Applying the above results
to (107) leads to the desired result.

4) The Case With EM, h(θ) = λ‖θ‖2/2: Our analysis starts
with ‖V �

1 (θ
0 − θk)‖. For h(θ) = λ‖θ‖2/2, λ > 0, it can be

shown from (102)–(103) that

θk =Φ(θk−1 +W †B�ψ(Bθk−1))

=Φkθ0 +

k−1∑

i=0

Φk−i(W †B�ψ(Bθi)),

where Φ= (W + λI)−1W . From (101), one can show that

Φ= V 1D̃V �
1 ,

where D̃ =Diag(α−1
1 , . . . , α−1

r ), αi = 1 + λσ−2
i ; and then

V �
1 Φ

i = V �
1 (V 1D̃

i
V �

1 ) = D̃
i
V �

1

The above results lead to

V �
1 (θ

k − θ0) = (D̃
k − I)V �

1 θ
0

+

k−1∑

i=0

D̃
k−i

V �
1 W

†B�ψ(Bθi).

Subsequently we have

‖V �
1 (θ

k − θ0)‖
≤ (1− α−k

r )‖V �
1 θ

0‖

+

k−1∑

i=0

α
−(k−i)
1 ‖V �

1 W
†B�ψ(Bθi)‖

≤ (1− α−k
r )‖V �

1 θ
0‖+

k−1∑

i=0

α
−(k−i)
1 σ−1

r

√
m

= (1− α−k
r ) ‖V �

1 θ
0‖

︸ ︷︷ ︸
:=a1

+(1− α−k
1 )σ2

1λ
−1σ−1

r

√
m

︸ ︷︷ ︸
:=a2

, (108)

where the second inequality is due to V �
1 W

†B� = Σ̃
−1

U�
1 ,

which can be verified from (101), and ‖ψ(Bθ)‖ ≤ √
m.

Next, by applying (108) to (104a), we obtain

(1− α−k
r )a1 + (1− α−k

1 )a2
a1 + a2

≥ ‖V �
1 (θ

� − θ0)‖ − ε

a1 + a2
:= C.

(109)

Assume C < 1. Then, from (109),

log(1− C)≥ log

(
α−k
r a1 + α−k

1 a2
a1 + a2

)

≥ a1 log(α
−k
r ) + a2 log(α

−k
1 )

a1 + a2
, (110)

where we use Jensen’s inequality to obtain the second inequal-
ity. Applying log(z)≤ z − 1 to both sides of (110) gives

− C ≥−k
a1(αr−1)+a2(α1−1)

a1+a2
=−k

a1λσ
−2
r +a2λσ

−2
1

a1+a2
=⇒−(‖V �

1 (θ
�− θ0)‖− ε)≥−k(λσ−2

r ‖V �
1 θ

0‖+σ−1
r

√
m)

=⇒ k ≥ σ2
r

‖V �
1 (θ

� − θ0)‖ − ε

λ‖V �
1 θ

0‖+ σr
√
m

,
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which is the desired result. We also need to show C < 1. As a
variant of (100), we have

‖V �
1 (θ

� − θ0)‖ ≤ ‖V �
1 θ

0‖+ ‖θ�‖ ≤ ‖V �
1 θ

0‖+ σ1

√
mλ−1

≤ ‖V �
1 θ

0‖+ σ1(σ1/σr)
√
mλ−1 = a1 + a2.

It follows that the C in (109) satisfies C < 1 for ε > 0. The
proof is complete.
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