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Abstract—Recent results in one-bit sampling provide a
framework for a relatively low-cost, low-power sampling, at
a high rate by employing time-varying sampling threshold
sequences. Another recent development in sampling theory is
unlimited sampling, which is a high-resolution technique that
relies on modulo ADCs to yield an unlimited dynamic range.
In this paper, we leverage the appealing attributes of the two
aforementioned techniques to propose a novel unlimited one-bit
(UNO) sampling approach. In this framework, the information on
the distance between the input signal value and the threshold is
stored and utilized to accurately reconstruct the one-bit sampled
signal. We then utilize this information to accurately reconstruct
the signal from its one-bit samples via the randomized Kaczmarz
algorithm (RKA). In the presence of noise, we employ the recent
plug-and-play (PnP) priors technique with alternating direction
method of multipliers (ADMM) to exploit integration of state-
of-the-art regularizers in the reconstruction process. Numerical
experiments with RKA and PnP-ADMM-based reconstruction
illustrate the effectiveness of our proposed UNO, including its
superior performance compared to the one-bit ΣΔ sampling.

Index Terms—Kaczmarz algorithm, one-bit quantization,
PnP-ADMM, modulo ADCs, unlimited sampling.

I. INTRODUCTION

SAMPLING theory lies at the heart of all modern digital pro-
cessing systems. A seminal result in this context, referred

to as Whittaker-Kotelńikov-Shannon (or, simply Shannon’s)
theorem, states that it is possible to fully recover a bandlimited
function from values measured on a regular sampling grid as
long as the function’s support is an interval with length not ex-
ceeding the density of the sampling grid. Restating this in signal
processing terms, a lowpass bandlimited signal can be perfectly
reconstructed from its discrete samples taken uniformly at a
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sampling frequency that is at least the Nyquist rate, i.e., twice
the signal bandwidth [1].

Shannon’s theorem assumes the existence of samples that are
of infinite precision and infinite dynamic range (DR). But, in
practice, it is realized by the quantization of the signals through
analog-to-digital converters (ADCs) that clip or saturate when-
ever the signal amplitude exceeds the maximum recordable
ADC voltage, leading to a permanent information loss. There
is a long legacy of literature on clipping [2], [3], [4], especially
for audio [5] and communications [2] signals. In particular, [2]
investigated the effects of noise when it is passed through both
linear and nonlinear devices, such as a clipper. Substantial work
has been done and is still ongoing to overcome this problem, and
the literature is too large to summarize here; see, e.g., [6] and the
references therein, for comparisons of various techniques. Over-
all, these approaches require declipping [7], multiple ADCs [8],
and scaling techniques [9], which are expensive and cumber-
some. Recently, some studies [6], [10], [11], [12] have proposed
the unlimited sampling or modulo sampling architecture to fully
overcome this limitation by employing modular arithmetic. The
term ”unlimited sampling” stems from the sampling theorem
outlined in [6], [10], wherein the sampling rate of the proposed
scheme is independent of the ratio between the input signal
DR and the ADC threshold. To perfectly reconstruct the signal
of interest from modulo samples (up to an unknown constant),
the unlimited sampling theory suggests the sampling rate to be
slightly higher than the Nyquist rate and the upper bound of the
infinity norm of the bandlimited signal be known.

Conventional multi-bit ADCs require a very large number of
quantization levels to represent the original continuous signal
in high resolution settings. Sampling at high data rates with
high resolution ADCs, however, would dramatically increase
the overall power consumption and the manufacturing cost of
such ADCs [13]. This problem is exacerbated in systems that
require multiple ADCs such as large array receivers [14]. An
immediate solution to such challenges is to use fewer bits for
sampling. Therefore, in the recent years, the design of receivers
with low-complexity one-bit ADC has been emphasized to
meet the requirements of both wide signal bandwidth and low
cost/power. One-bit quantization is an extreme quantization
scenario, in which the ADCs are merely comparing the sig-
nals with given threshold levels, producing sign (±1) outputs.
This enables the signal processing equipment to sample at a
very high rate yet with considerably lower cost and energy

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0479-9502
https://orcid.org/0000-0002-5386-609X
https://orcid.org/0000-0003-0742-7667
https://orcid.org/0000-0003-3714-4449
https://doi.org/10.1109/SampTA59647.2023.10301408
mailto:aeamaz2@uic.edu
mailto:fyegan2@uic.edu
mailto:fyegan2@uic.edu
mailto:msol@uic.edu
mailto:kvm@ieee.org
https://creativecommons.org/licenses/by/4.0/


998 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

consumption than the conventional ADCs [15], [16], [17],
[18]. Several applications abound of one-bit ADCs, such as
multiple-input multiple-output wireless communications [16],
[19], channel estimation [20], and array signal processing [21].
These were preceded by one-bit ΣΔ techniques [22], [23]. In
this paper, we focus on the memoryless scalar quantization
which unlike the ΣΔ quantization, does not need any feedback
or update process.

In the classical problem of one-bit quantization, the signal
is reconstructed by comparing the signal with a fixed, usually
zero, threshold. This leads to difficulties in estimating signal
parameters. In particular, when zero threshold is used, the power
information of the input signal x is lost in one-bit data because
the signs of x and ηx are identical for η > 0. This problem
has been addressed in a few recent works [17], [24], [25], [26],
[27], [28], [29], [30], which show that time-varying sampling
thresholds enable better estimation of the signal characteristics.
The time-varying thresholds are realized through a randomly
(usually, Gaussian and Uniform) dithered generator within the
ADC [31]. The source of this Gaussian dither is a low-cost
thermal noise diode, which may require additional circuitry
and amplifiers to enhance the noise levels; see, for instance,
[32] for the implementation of multiple dithering in 12-bit, 18
gigasamples per second (GS/s) ADC.

In particular, time-varying thresholds (random dithering)
were considered for the covariance recovery from one-bit mea-
surements in [17]. This was extended in [28] for a significantly
improved estimation of signal autocorrelation via the modi-
fied arcsine law. In non-stationary scenarios, [27] applied the
modified arcsine law to utilize time-varying sampling thresh-
olds. Applications of one-bit quantization with time-varying
thresholds (dithered one-bit quantization) to diverse problems
such as sparse parameter estimation [33], compressed sensing
[34], [35], and phase retrieval [26] have also appeared in the
contemporary literature.

Evidently, one-bit and unlimited sampling frameworks ad-
dress complementary requirements. A one-bit ADC only com-
pares an input signal with a given threshold. Therefore,
essentially, one-bit sensing is indifferent to DR because, apart
from the comparison bit, other information such as the distance
between the signal value and the threshold is not stored. On the
other hand, the modulo ADC in unlimited sampling provides
a natural approach to producing judicious time-varying thresh-
olds for one-bit ADCs. In this paper, to harness advantages of
both methods, we propose unlimited one-bit (UNO) sampling to
design sampling thresholds which are highly informative about
the signal of interest.

A. Prior Art

Modulo sampling has also been studied in the context of
rate-distortion in [36], wherein quantized modulo samples are
reconstructed by linear prediction (LP) and side-information.
It was demonstrated in [36], [37] that bandlimited functions can
be uniquely characterized by modulo samples, provided that the
sampling rate exceeds the Nyquist rate. The reconstruction in
[36] assumes that a subset of unfolded samples is known and

prior knowledge of the spectrum is required. This limitation is
addressed in the blind reconstruction technique of [38].

Unlimited sampling of finite rate of innovation (FRI) sig-
nals was discussed in [39]. Extensions to graph signals [40],
multi-channel arrays [41], massive MIMO [42] and sparse
outliers (noise) [12] have also been proposed. Reconstruction
algorithms have included Itoh’s method [10], Fourier Prony’s
method [12], wavelet-based [11], generalized approximate mes-
sage passing [43], and local average [44] techniques. Very re-
cently, non-idealities in hardware prototyping were considered
in [45], [46]; a computational sampling strategy in the form
of unlimited sampling with hysteresis [47], [48] was found
to be more flexible for circuit design specifications. Unlimited
sampling has also been used with event-driven sampling (EDS)
[49], [50], wherein the modulo-hysteresis model addresses
the DR limitations of an asynchronous sigma-delta modulator
(ASDM) that transmits trigger times that capture changes in
the input integral from the output of a time encoding ma-
chine. Event-driven sampling exclusively records transitions,
sampling amplitudes, in contrast to one-bit sensing where both
amplitudes and time bins are sampled.

To reconstruct the full-precision signal from the one-bit sam-
pled data, conventional approaches [51], [52] include maxi-
mum likelihood estimation (MLE) and weighted least squares.
However, these methods have a high computational cost, es-
pecially for high-dimensional input signals. To this end, we
propose using the randomized Kaczmarz algorithm (RKA) [53],
[54], which is an iterative algorithm to solve a system of lin-
ear inequalities that arise naturally in the one-bit quantization
framework. The RKA is simple to implement and performs
comparably with the state-of-the-art optimization methods.

Among prior studies involving both one-bit and unlimited
frameworks, state-of-the-art results in [55] proposed one-bit
ΣΔ quantization via unlimited sampling, whose objective is
to shrink the DR between the input signal and its one-bit
samples (i.e., 1). However, when the ratio of the input signal
amplitude to the ADC threshold is large, then the imperfect
noise shaping in sigma-delta conversion degrades this recon-
struction. Here, to a certain extent, oversampling may help with
reducing the reconstruction error. Contrary to this work, our
proposed UNO technique focuses on a different problem, i.e.,
shrinking the DR between the input signal and the time-
varying sampling thresholds. The one-bit sampling is typically
performed at significantly high rates. As a result, the resulting
observation inequalities form an overdetermined system. When
the difference between the DR of the input signal and that of the
thresholds increases, the reconstruction degrades significantly.
We show that jointly exploiting both unlimited and one-bit
sampling techniques provides a more efficient solution by a
considerable reduction of the aforementioned gap.

B. Our Motivations and Contributions

In practice, errors arising from quantization noise degrade the
reconstruction quality in unlimited sampling framework. In this
context, [6] derived the reconstruction guarantees by including
this error as bounded additive noise to the modulo samples.
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Contrary to this approach, we consider the more realistic case
of additive noise to the input signal.

In this work, we leverage the benefits offered by both un-
limited sampling and one-bit quantization. This result is a low-
complexity coarse quantization that also effectively addresses
the DR limitations typically associated with conventional one-
bit ADCs. This entails designing time-varying sampling thresh-
olds for one-bit quantization that closely align with the DR
of the modulo samples. In conventional dithered one-bit quan-
tization, the design of thresholds lacks information about the
input signal, especially its DR. In contrast, our proposed scheme
leverages the modulo operator with a known ADC thresh-
old, allowing us to determine the DR of the modulo samples.
This knowledge facilitates the design of thresholds that closely
match the DR of the modulo samples, enabling the production
of informative one-bit data. This approach holds great poten-
tial for applications where the input signal is characterized by
very high DRs such as high dynamic range (HDR) imaging
[56], [57], [58], sensor array processing [41] and radar remote
sensing [59].

Our main contributions in this paper are:
1) Combined unlimited and one-bit sampling frame-

work. In the proposed UNO framework, we leverage upon the
benefits of both one-bit and unlimited sampling techniques. The
result is a sampling approach that yields unlimited DR and a
low-cost, low-power receiver while retaining a high sampling
rate. We design time-varying sampling thresholds for one-bit
quantization, whose DR is closer to that of the modulo sam-
ples. This aids in accurately storing the information of distance
between the signal values and thresholds to utilize in the sig-
nal reconstruction task. We show that compared to the one-
bit reconstruction with random thresholds, our proposed UNO
sampling based on time-varying thresholds performs better,
especially for high DR signals. Both Gaussian and uniform
dithering schemes are widely used in practical quantization
systems [30], [60], [61], [62]. To align with existing literature
and comprehensively assess the performance of both dithering
schemes, we will propose a threshold design method for each
of them.

2) RKA-based reconstruction. The signal reconstruction
from one-bit measurements requires solving an overdetermined
linear feasibility problem that we recast as a one-bit polyhe-
dron and efficiently solve it via the RKA. By generating an
abundant number of one-bit samples, we show that the singular
values of one-bit data matrix that creates the one-bit polyhedron
are equal to the number of dithering sequences employed in
one-bit sensing. Further, we numerically investigate the effects
of ADC threshold and signal amplitude in the RKA-based
UNO reconstruction.

3) Performance guarantees. We showcase the convergence
and complexity of our algorithm and leverage the concentration
inequality of average distances between signals and dithers to
derive an upper bound for the recovery performance in one-bit
sensing within the modulo domain.

4) Reconstruction in the presence of additive noise. When
the input signal is contaminated with additive noise, we apply

the recently introduced new plug-and-play (PnP) priors [63] to
the alternating direction method of multipliers (ADMM) as an
additional reconstruction algorithm step. In image denoising
problems, the PnP-ADMM is used to replace the shrinkage
step of the standard ADMM algorithm with any off-the-shelf
algorithm to ensure the noise variance is sufficiently suppressed.
Although PnP-ADMM appears ad hoc, it yields a better perfor-
mance than state-of-the-art methods in several different inverse
problems [63], [64]. For the noisy UNO, we deploy this algo-
rithm to reconstruct the original signal from overdetermined
and underdetermined noisy systems. Moreover, we show that
the additive noise to the input signal contaminates the modulo
samples with noise that is expressed in terms of the input noise.

C. Organization and Notations

In the next section, we provide an introduction to one-bit
quantization with time-varying sampling thresholds. Particu-
larly, the one-bit sampled signal reconstruction problem is for-
mulated as an overdetermined system of linear inequalities.
We describe one-bit signal reconstruction and introduce RKA
in Section III. Then, Section IV recalls the concept of unlim-
ited sampling [6], [10] and proposes UNO to design judicious
thresholds and guarantee the one-bit signal reconstruction in the
high-DR. In Section V, we provide several numerical experi-
ments to illustrate UNO-based sampling and analyze the recon-
struction error. We consider the noisy measurement scenario in
Section VI and conclude in Section VII.

Throughout this paper, we use boldface lowercase, boldface
uppercase, and calligraphic letters for vectors, matrices, and
sets, respectively. The notations C, R, and Z represent the set of
complex, real, and integer numbers, respectively. We represent
a vector x in terms of its elements {xi} or (x)i as x= [xi].
We use (·)� and (·)H to denote the vector/matrix transpose
and the Hermitian transpose, respectively. We define x� y as
a component-wise inequality between vectors x and y, i.e.,
xi ≥ yi for every index i [65, p. 32]. The identity matrix of size
N is IN ∈ R

N×N . The Frobenius norm of a matrix B ∈ C
M×N

is defined as ‖B‖F =
√∑M

r=1

∑N
s=1 |brs|

2, where brs is the
(r, s)-th entry of B. The function diag(·) outputs a diagonal ma-
trix with the input vector along its main diagonal. The �p-norm
of a vector b is ‖b‖p = (

∑
i b

p
i )

1/p. The infinity or max-norm
of a function x is ‖x‖∞ = inf {c0 ≥ 0 : |x(t)| ≤ c0}, where
inf(·) denotes the infimum of its argument; for vectors, we have
‖x‖∞ =maxk |xk|. For a vector x, Δx= xk+1 − xk denotes
the finite difference and recursively applying the same yields
N -th order difference, ΔNx. We denote the Ω-bandlimited
Paley-Wiener subspace of the square-integrable function space
L2 by PWΩ such that PWΩ = {f : f, f̂ ∈ L2, supp(f̂)⊂
[−Ω,Ω]}, where f̂ is the Fourier transform of f . The Hadamard
(element-wise) product of two matrices B1 and B2 is B1 �B2.
The column-wise vectorized form of a matrix B is vec(B).
Given a scalar x, we define the operator (x)+ as max {x, 0}.
For an event E , 1(E) is the indicator function for that event
meaning that 1(E) is 1 if E occurs; otherwise, it is zero. The
function sgn(·) yields the sign of its argument. In the context of
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numerical computations, 	
 and �� denote the floor and ceiling
functions, respectively. The function log(·) denotes the nat-
ural logarithm, unless its base is otherwise stated. The no-
tation x∼ U(a, b) means a random variable drawn from the
uniform distribution over the interval [a, b] and x∼N (μ, σ2)
represents the normal distribution with mean μ and variance
σ2. The operator mod(a, b) between two values a and b, re-
turns the remainder of the division operation a/b. A ball with
radius r centered at a point y ∈ R

n is defined as Br (y) =
{y1 ∈ R

n| ‖y − y1‖2 ≤ r}.

II. ONE-BIT QUANTIZATION: OVERDETERMINED LINEAR

SYSTEM FORMULATION

Several approaches have been proposed in the literature to
reconstruct the signal of interest from one-bit samples with
the most of them formulating this task as an optimization
problem. For example, the covariance matrix formulation of
[30] employs the cyclic optimization method to recover the
parameters. A convex program based on the Gauss-Legendre
integration to recover the input covariance matrix from one-bit
sampled data was suggested in [13], [27], [28]. Other recent
works exploit sparsity of the signal and apply techniques such
as �1-norm minimization [66], [67], �1-regularized MLE formu-
lation [51], [52], and log-relaxation [68] to lay the ground for
signal reconstruction. In the following, we explain our one-bit
polyhedron formulation, wherein a strong efficient and easily
implementable solver of linear feasibility problems is applied
to the aforementioned application-specific methods.

A. One-Bit Quantization Using Time-Varying Thresholds

Consider a bandlimited continuous-time signal x ∈ PWΩ that
we represent via Shannon’s sampling theorem as [69]

0< T � π

Ω
, x(t) =

k=+∞∑
k=−∞

x(kT ) sinc

(
t

T
− k

)
, (1)

where 1/T is the sampling rate, Ω is the signal bandwidth, and
sinc(t) = sin(πt)

πt is an ideal low-pass filter. Denote the uniform
samples of x(t) with the sampling rate 1/T by xk = x(kT ).

In practice, the discrete-time samples occupy pre-determined
quantized values. We denote the quantization operation on
x[k] by the function Q(·). This yields the quantized signal
as rk =Q(xk). In one-bit quantization, compared to zero or
constant thresholds, time-varying sampling thresholds yield a
better reconstruction performance [13], [27]. These thresholds
may be chosen from any distribution. In this work, we consider
a Gaussian non-zero time-varying threshold vector τN = [τk]
that follows the distribution τN ∼N (d= 1d,Σ). Following
a bell-shaped distribution, a Gaussian threshold is likely to be
concentrated in the center and may not cover the entire signal
range accurately. Therefore, alternatively, we also employ uni-
formly distributed thresholds in the sequel as τU ∼ U[a,b] with
upper b and lower b bounds. For one-bit quantization with such
time-varying sampling thresholds, rk = sgn (xk − τk). For no-
tational simplicity, hereafter, we denote the time-varying sam-
pling thresholds by dropping the subscripts, i.e. τ= [τk].

B. One-Bit Polyhedron

The information gathered through the one-bit sampling with
time-varying thresholds may be formulated in terms of an
overdetermined linear system of inequalities. We have rk =+1
when xk > τk and rk =−1 when xk < τk. Collecting all the
elements in the vectors as x= [xk] ∈ R

n and r= [rk] ∈ R
n,

therefore, one can formulate the geometric location of the
signal as rk (xk − τk)≥ 0, whose vectorized representation is
r� (x− τ)≥ 0 or equivalently

Ωx� r� τ, (2)

where Ω� diag (r). Suppose x,τ ∈ R
n, and that τ(�) denotes

the time-varying sampling threshold in �-th signal sequence,
where � ∈ [m].

For the �-th signal sequence, (2) becomes

Ω(�)x� r(�) � τ(�), � ∈ [m], (3)

where Ω(�) = diag
(
r(�)

)
. Denote the concatenation of all m

sign matrices as

Ω̃=
[
Ω(1) · · · Ω(m)

]�
, ∈ R

mn×n. (4)

Rewrite the m linear system of inequalities in (3) as

Ω̃x� vec (R)� vec (Γ), (5)

where R and Γ are matrices, whose columns are the sequences{
r(�)

}m

�=1
and

{
τ(�)

}m

�=1
, respectively.

The linear system of inequalities in (5) associated with the
one-bit sampling scheme is overdetermined. We recast (5) into
a one-bit polyhedron as

P =
{
x | Ω̃x� vec (R)� vec (Γ)

}
. (6)

Leveraging upon the benefits of one-bit quantization, with an
increase in the number of samples, the space constrained by
the one-bit polyhedron Px progressively shrinks and remains
contained within the feasible set. This shrunken space always
encompasses the global minima, with a volume that decreases
with an increase in the sample size. Instead of complex high-
dimensional optimization with techniques such as MLE, our
objective is to employ the polyhedron (6) that encapsulates the
desired signal x and leads to solving linear inequalities with
linear convergence in expectation.

III. ONE-BIT SIGNAL RECONSTRUCTION

To reconstruct x from the sign data
{
r(�)

}m

�=1
, we solve the

polyhedron search problem through RKA because of its optimal
projection and linear convergence in expectation [26], [54].

A. RKA

The RKA is a subconjugate gradient method to solve overde-
termined linear systems, i.e, Cx≤ b where C is a m′ × n′

matrix with m′ > n′ [53], [54]. The conjugate-gradient meth-
ods turn this inequality to an equality of the following form
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(Cx− b)
+
= 0, and then solve it as any other system of equa-

tions. Given a sample index set [m′], without loss of generality,
rewrite linear feasibility as the polyhedron

{
cjx≤ bj (j ∈ I≤),
cjx= bj (j ∈ I=),

(7)

where {cj} are the rows of C and the disjoint index sets I≤ and
I= partition [m′]. The projection coefficient βi of the RKA is
[53], [54]:

βi =

{
(cjxi − bj)

+
(j ∈ I≤),

cjxi − bj (j ∈ I=).
(8)

The unknown column vector x is iteratively updated as

xi+1 = xi −
βi

‖cj‖22
cHj , (9)

where, at each iteration i, the index j is drawn from the set
[m′] independently at random following the distribution Pr{j =
k}= ‖ck‖2

2

‖C‖2
F

. Note that, (6) has only the inequality partition I≤.
Herein, m′ =m× n and n′ = n. The row vector cj and the
scalar bj in the RKA (7)-(9) are j-th row of −Ω̃ and j-th ele-
ment of − (vec (R)� vec (Γ)), respectively. It may be readily
verified that the distribution of choosing a specific sample index
j for the inequalities in (6) is uniform, i.e., Pr{j = k}= 1

mn .
In one-bit reconstruction, cj =−ωj , wherein ωj is the

j-th row of Ω̃; a j′-th coordinate vector with ±1 as its j′-th
element and

j′ =

{
mod(j, n), j �= kn,

n, j = kn,
(10)

with 1≤ k ≤m. This property makes the update process (9)
similar to that of the randomized Gauss-Seidal method using
the coordinate vector in each iteration [54], [70]. This approach
is commonly used for solving high-dimensional linear feasibil-
ity problems by updating only one dimension at any iteration.
The structure of matrix Ω̃ leads to a similar efficient RKA
implementation by updating only the generic element j′ at each
iteration, i.e., (xi+1)j′ = (xi)j′ − βirj′ , where rj′ is the one-
bit data at index j′.

B. Convergence Analysis of RKA

At the i-th iteration, the error between the RKA estimate xi

and a solution inside the feasible set x̂ has been shown to follow
the convergence bound [53], [54], [71]

E

{
‖xi − x̂‖22

}
≤ qi ‖x0 − x̂‖22 , (11)

where q = 1− 1

κ(Ω̃)
∈ (0, 1) and κ

(
Ω̃
)
= ‖Ω̃‖2F‖Ω̃

†‖22 is

scaled condition number [72] of Ω̃, which is a block matrix
of m diagonal matrices per (4). We have

‖Ω̃‖2F =

mn∑
j=1

r2j =

mn∑
j=1

1 =mn. (12)

Moreover, ‖Ω̃†‖22 = 1
σ2

min
, where σmin =min {σi} is the min-

imum singular value of Ω̃ [73] (maximum singular value is
σmax similarly defined). Following Lemma 1 evaluates singular
values of Ω̃.

Lemma 1: Consider the concatenation of all m sign data
matrices in (4), i.e., Ω̃ ∈ R

mn×n, where n is the size of the
input signal and m is the number of time-varying sampling
thresholds. The matrix Ω̃ is full-rank and its singular values
are σ1 = σ2 = · · ·= σn =

√
m.

Proof: Compute the square matrix

P= Ω̃
�
Ω̃=

[
Ω(1) · · · Ω(m)

] [
Ω(1) · · · Ω(m)

]�

=Ω(1)
(
Ω(1)

)�
+Ω(2)

(
Ω(2)

)�
+ · · ·+Ω(m)

(
Ω(m)

)�
,

=mI. (13)

Hence, the eigenvalues of P are equal to m. In other words, the
singular values of Ω̃ are {σi}ni=1 =

√
m. �

It follows from (12) and Lemma 1 that κ
(
Ω̃
)
= mn

σ2
min

= n.

leads to q = n−1
n . Set the algorithm termination criterion to

the condition

E

{
‖xi − x̂‖22

}
≤ ε1 ‖x0 − x̂‖22 , (14)

where ε1 is a positive constant. Based on this criterion and (11),
the following Proposition 1 states the order of the number of
required RKA iterations.

Proposition 1: The number of RKA iterations i required to
achieve a solution inside the one-bit polyhedron x̂ of length n
from its one-bit samples within the error specified by (14) is
i=O

(
n log

(
1
ε1

))
, where ε1 is a positive constant.

Proof: Define qi ‖x0 − x̂‖22 ≤ ε1ω0, or equivalently,

qi ≤ ε1. (15)

Note that ω0 is a constant scalar that depends on only the initial
and optimal solutions and since the error decreases during the
iterations in the RKA, we have ε1 ≤ ω0. Using (15) and taking
logarithm on both sides yields

i≥ log (ε1)

log
(
1− 1

n

) . (16)

The right-hand side of (16) can be approximated by [53]:

log(ε1)

log
(
1− 1

n

) ≈ n log

(
1

ε1

)
, (17)

which completes the proof. �

C. Numerical Example

Figure 1(a) illustrates the RKA reconstruction of a sawtooth
signal from one-bit polyhedron in (6) for 10 sweeps (periods)
with a fundamental frequency of 50 Hz. We discretized the gen-
erated signal x(t) at the sampling rate (interval) of 1 kHz (T =
0.001 s). The time-varying sampling thresholds were drawn
from the distribution τ(�) ∼N (0, I), for all � ∈ [m]. Define the

normalized squared error, NSE� ‖x−x̄‖2
2

‖x‖2
2

, where x and x̄ de-
note the true (discretized) signal and its reconstructed version,
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Figure 1. (a) The input sawtooth wave signal x is reconstructed from one-bit measurements using the RKA to yield x̄. Here, DRx = 1 and DRτ = 1. The
inset shows the same plot on a larger scale. (b) As in (a) but for the bandlimited input signal from [6] with DRx = 5. (c) As in (b) but for DRx = 8.

respectively. Since RKA selects each hyperplane randomly in
each iteration, we repeat the reconstruction in Figure 1(a) for
1000 times. The averaged NSE (normalized mean squared er-
ror denoted by NMSE) over all experiments is only ∼ 0.0012
or −29.2082 dB.

D. Limitations of Conventional One-Bit Reconstruction

Denote the DRs of the desired signal x and the time-varying
threshold τ by DRx and DRτ, respectively, where we define
the DR of a vector as its �∞-norm. If DRx ≤DRτ, then the
reconstructed signal x� may be found inside the polyhedron
(6) with a high probability for an adequate number of samples.
Otherwise, if DRx >DRτ, there is no guarantee to obtain
x� since the desired solution cannot be inside the finite-
volume space imposed by the set of inequalities in (6) indi-
cating an irretrievable information loss. We demonstrate this
as follows. Without loss of generality, consider xk =DRx for
xk > 0. Assume τ�k =max� τ

(�)
k . SinceDRτ = ‖τ‖∞, we have

τ�k ≤DRτ. If DRx >DRτ, then we have τ�k <DRx = xk.
Therefore, to reconstruct the k-th entry of the input signal xk,
we always have a gap δ = xk − τ�k > 0 that is not covered by
any sample to capture the amplitude information of x. Hence,
the desired signal is not found inside the finite-volume space
imposed by the inequalities in (6).

In Figure 1(a), DRτ = 3 is larger than DRx = 1 thereby
leading to a low reconstruction NMSE. We now consider x
to be a bandlimited function with piece-wise constant Fourier
transform values are drawn uniformly at random, i.e., x̂(ω)∼
unif(0, 1). This signal is the same as the one used in [6].
The time-varying sampling thresholds were generated follow-
ing the procedure explained in this section. Figure 1(b) shows
the RKA-based reconstruction of the bandlimited signal from
the polyhedron (6). Around t= 0 (corresponding sample in-
dex is 364 in the plot), the reconstruction severely degrades
because DRx = 5 is set to be larger than DRτ = 3. Indeed,
when the difference between DRx and DRτ increases further,
we observe a significant loss of information in the reconstructed
signal (Figure 1(c)).

IV. UNO SAMPLING

Modulo sampling suggests that instead of point-wise samples
of the bandlimited function x(t), the signal is digitized using a
modulo ADC with a predefined threshold λ > 0 such that any
signal value outside the range [−λ, λ] is folded to the same
range [6], [10]. For practical implementations and theoretical
analysis of the modulo ADCs, we refer the interested reader
to [12], [45]. The folding corresponds to introducing a non-
linearity in the sensing process [6], [10]. We denote the fold-
ing by the modulo operator Mλ that represents the follow-
ing mapping:

Mλ(xk) : x̃k = xk − 2λ

⌊
xk

2λ
+

1

2

⌋
, (18)

where x̃k are the modulo samples of x(t).

A. Unlimited Sensing

The unlimited sampling theorem [6] (reproduced below)
states that, if the estimate of the norm of the bandlimited signal
is known, then its perfect reconstruction (up to additive multi-
ples of 2λ) from its modulo samples is possible with at least
sampling period T ≤ (2πe)−1, where e is the Euler’s number
and the signal bandwidth has been normalized to π.

Theorem 1 (Unlimited sampling theorem [6]): Assume x(t)
to be a finite energy, bandlimited signal with maximum fre-
quency Ωmax and let x̃k, k ∈ Z in (18) be the modulo samples
of x(t) with sampling rate 1/T . Then a sufficient condition for
the reconstruction of x(t) from {x̃k} is that T ≤ 1

2Ωmaxe
(up to

additive multiples of 2λ).
Theorem 1 implies that the sampling rate depends on only the

bandwidth and is independent of the ratio of ADC threshold λ to
the signal amplitude. In other words, the DR of the input signal
is unlimited. Recently, stable unlimited sampling reconstruction
in the presence of noise has also been obtained [6].

The reconstruction of the bandlimited function x(t) from its
modulo samples {x̃k} is achieved as follows. Assume that x(t)
admits a decomposition [6], [10],

x(t) = x̃(t) + εx(t), (19)
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Algorithm 1 Input signal reconstruction from modulo folded
samples.

Input: x̃k =Mλ (xk), ADC threshold λ, and 2λZ � βx ≥
‖x‖∞.
Output: The reconstruction of the input signal x̄.

1: N ←
⌈
log λ− log βx

log (TΩe)

⌉
using (22).

2: ΔNεx ←Mλ

(
ΔN x̃

)
−ΔN x̃.

3: s0 ←ΔNεx.
4: for p= 0 :N − 2 do
5: sp+1 ←∇sp  ∇ is the inverse-difference operator de-

fined in (21).

6: sp+1 ← 2λ

⌈
	sp+1/λ


2

⌉
 rounding to 2λZ.

7: κp ←
⌊(

∇2Δpεx
)
1
−
(
∇2Δpεx

)
J+1

12βx
+

1

2

⌋
 J =

6βx

λ
.

8: sp+1 ← sp+1 + 2λκp.

9: return x̄←∇sN−1 + x̃+ 2aλ, a ∈ Z.

where x̃(t) =Mλ (x(t)) and the error εx between the input
signal and its modulo samples is

εx(t) = 2λ
∑
u∈Z

eu1Du
(t), eu ∈ Z, (20)

where
⋃

u∈Z
Du = R is a partition of the real line into intervals

Du. As indicated by (19), if εx is known, then x can be recon-
structed from x̃. It follows from (20) that εx takes only those val-
ues that are integer multiples of 2λ thereby leading to a robust
reconstruction algorithm [6]. To obtain εx (up to an unknown
additive constant) and subsequently the desired signal x(t),
the reconstruction procedure in [6], [10] requires the higher-
order differences of x̃= [x̃k] to obtain ΔNεx =Mλ

(
ΔN x̃

)
−

ΔN x̃, where εx = [εx]. Define the inverse-difference operator
as a sum of real sequence {sb}, i.e.,

∇ : {sk}k∈Z+ →
k∑

b=1

sb. (21)

Then, applying ∇
(
ΔNεx

)
and rounding the result to the near-

est multiple of 2λZ yields εx. For a guaranteed and stable
reconstruction performance, a suitable choice for difference
order N is [6],

N ≥
⌈
log λ− log βx

log (TΩe)

⌉
, (22)

where βx is chosen such that βx ∈ 2λZ and ‖x‖∞ ≤ βx.
Algorithm 1 summarizes the unlimited sampling reconstruction
procedure.

B. Towards a Reconstruction Guarantee for One-Bit Sensing

Since linear feasibility problem solvers do not guarantee a
good signal reconstruction from one-bit measurements in (6)
when the DR of the signal exceeds that of the time-varying

Figure 2. The UNO sampling architecture. The proper choice of the
sampling interval T in the middle block is specified by Theorem 3.

sampling threshold, it is pertinent to design the time-varying
sampling threshold such that DRx ≤DRτ. This is not always
possible because the desired signal is unknown. We address this
limitation via UNO, which is our proposed new one-bit sensing
method based on the concept of modulo sampling. Modulo sam-
pling offers a natural approach to designing dithers in a manner
that fully covers the dynamic range of input measurements in
the memoryless scalar quantization system.

As discussed in Section IV-A, unlimited sampling yields
signal amplitudes folded within the range [−λ, λ]. This suggests
an alternative time-varying threshold with the same DR as
the modulo samples x̃= [x̃k]; i.e. DRτ = λ. In other words,
the thresholds are modified to be closer to the clipping value
and the modulo ADC is integrated with one-bit sampling. We
summarize this UNO sampling framework as follows:

1) Apply the modulo operator defined in (18) to the input
signal x and obtain modulo samples x̃=Mλ (x).

2) Design sequences of the time-varying sampling threshold{
τ(�)

}m
�=1

such that |DRτ(�) − λ| ≤ ε0 for all � ∈ [m] and
a small number ε0.

3) Apply the one-bit quantization to modulo samples as
r(�) = sgn

(
x̃− τ(�)

)
.

Figure 2 illustrates various steps of our UNO sampling tech-
nique. In order to derive a guarantee for the UNO threshold, we
introduce a useful lemma as follows.

Lemma 2: Assume τ(�) ∼N
(
0, σ2

τI
)
. Then, with probabil-

ity at least 1− η, we have

∥∥∥τ(�)
∥∥∥
∞

≤ στ

√
2 log

(
2n

η

)
. (23)

Proof: According to the Hoeffding inequality and union
bound for the Gaussian random variables τ(�) ∼N

(
0, σ2

τI
)
,

we have [74]

Pr
(∥∥∥τ(�)

∥∥∥
∞

≥ t
)
≤ 2n e

− t2

2σ2
τ . (24)

Therefore, with 2n e
− t2

2σ2
τ ≤ η proving the lemma. �

The following Proposition 2 states the UNO threshold design.
Proposition 2 (Judicious threshold design: Gaussian dither-

ing): Under the UNO sampling framework, the following
DR guarantee holds: Assume each one-bit sampling threshold
τ(�) ∈ R

n is distributed as τ(�) ∼N
(
0, σ2

τI
)
. Then, consider-

ing the ADC threshold λ, στ will be equal to λ√
2 log( 2n

η )
with

a probability of at least 1− η.
Proof: With a probability of at least 1− η, the maximum

amplitude of each threshold sequence is obtained via Lemma 2.
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When στ = λ√
2 log( 2n

η )
, then time-varying sampling threshold

also has a DR of λ with a probability of at least 1− η. �
In Proposition 2, we design time-varying sampling threshold

sequences so that their DR is close to that of the modulo
samples. This enables storing the information on the distance
between the modulo signal and the thresholds without any loss
of information via one-bit sampling. The DR of the threshold
should fall within the range of the ADC threshold with high
probability. Further, the threshold should cover the entire DR
of modulo samples between −λ and λ. The condition stated
in Proposition 2 guarantees that the DR of the threshold aligns
with the ADC threshold range. However, in practical scenarios,
it is conceivable that this condition may not encompass the
entire DR of modulo samples because the Gaussian distribution
(with a bell-shaped curve) concentrates the majority of data
towards its boundaries, which can be narrower than the bound
derived from the proposition.

In practice, it might be necessary to choose a threshold
variance that exceeds the value indicated by Proposition 1 to
ensure adequate coverage of the entire DR of modulo samples.
We, therefore, introduce a threshold design method specifi-
cally tailored for uniformly distributed thresholds in the follow-
ing Proposition 3.

Proposition 3 (Judicious threshold design: Uniform dither-
ing): Under the UNO sampling framework, the following dy-
namic range guarantees hold when τ(�) ∼ U[−a,a], then λ= a
with a probability of 1.

Proof: The proof for the uniform threshold follows Propo-
sition 2 except that, for each �, we have DR

τ
(�)
U

≤ a with a
probability of 1 leading to a= λ. �

Proposition 3 encompasses both the necessary and sufficient
conditions for designing thresholds in the uniform dithering
scenario. It ensures that the DR of the threshold aligns with
the ADC threshold range, while also covering the DR of the
modulo samples.

Figure 3 shows a comparison of conventional one-bit sensing
and UNO for the high DR scenario; the transfer function of
the former is plotted in Figure 3(a). We consider the same
bandlimited signal as in Section III-D and a random thresh-
old τ∼N (0, I). In case of one-bit sensing, the signal values
and dithers differ considerably at some points (Figure 3(b))
and, consequently, the information on the distance between the
signal value and the threshold samples is completely lost. For
UNO, the threshold is chosen closer to the folded signal with
λ= 0.5 (Figure 3(c)). This preserves the information of the
input signal in the modulo samples (Figure 3(d)).

For reconstruction of the signal of interest x from UNO sam-
ples, we reformulate the polyhedron (6) for modulo samples as

P̃ =
{
x̃ | Ω̃x̃� vec (R)� vec (Γ)

}
. (25)

This overdetermined system of linear inequalities in (25) is
then solved via RKA and, from the resulting reconstructed
modulo samples, we obtain x via Algorithm 1. Algorithm 2
summarizes these steps of the UNO algorithm.

Figure 4 shows that increasing the number m of time-varying
sampling threshold sequences guarantees the RKA-based

Figure 3. (a) Transfer function of conventional one-bit ADC where the i-th
element of the input signal x= (x)i is compared with a randomly selected
threshold τ. (b) High DR input signal x and its thresholds samples τ. (c) As
in (a), but for UNO with the judicious time-varying threshold τ∼ U[−λ,λ].
(d) The modulo samples x̃ compared with the designed random dithers.

Algorithm 2 Signal reconstruction in UNO.

Input: Sequences of one-bit measurements
{
r(�) =

sgn
(
Mλ (x)− τ(�)

) }m
�=1

, τ
(�)
N ∼N

(
0, σ2

τI
)

(for

Gaussian dithering), τ
(�)
U ∼ U[−a,a] (for Uniform

dithering), minimum probability η, ADC threshold
λ, total number of iterations imax.
Output: The reconstruction of the input signal x̄ ∈ R

n.

1: στ ← λ√
2 ln

(
2n

η

)  For Gaussian dithering.

2: a← λ  For Uniform dithering.

3: Find the modulo signal in P̃ via RKA.
4: for i= 1 : imax do
5: x̃i+1 ← x̃i +

(
−ωj x̃i +ωjτ

(�)
)+

ω�
j

6: ¯̃x← x̃imax

7: Reconstruct the input signal via Algorithm 1 from ¯̃x.
8: return x̄

reconstruction as it leads the space formed by the intersection
of half-spaces (inequality constraints in (25)) to completely
shrink to the true value modulo signal x̃ inside the volume
space imposed by unlimited sampling. This volume space is a
cube because the constraint applied to the modulo samples is
supk |x̃k|= λ. Here, the blue planes/lines representing the lin-
ear inequalities form a finite-volume space around the optimal
point (displayed by the yellow circle inside the cube) by increas-
ing the number of one-bit sampling thresholds. In the top panel,
we show the specific case of a trihedron (i.e., modulo sam-
ples are x̃ ∈ R

3) to represent the effect of increasing the num-
ber of threshold sequences on the reconstruction performance.
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Figure 4. Top: trihedron space (polyhedron (25) in 3 dimensions) (blue), unlimited sampling cube (red), and true value of the modulo signal x̃ ∈ R3 (yellow)
for (a) m= 2 (b) m= 6 and (c) m= 20. Bottom: as in the top panel, but only a cross-section (unshaded with same color boundary) at Z = 0 plane is
shown for (d) m= 2 (e) m= 6 and (f) m= 20. Each inequality constraint is shown by a half-space whose feasible region is marked by black arrows.

The bottom panel shows the same effect for 2-D cross-section of
the trihedron. The constraints are not enough to create a finite-
volume space in Figure 4(a) and 4(d). On the other hand, in
Figure 4(b) and 4(e), such constraints create the desired finite-
volume polyhedron space but are unable to capture the optimal
point. Finally, in Figure 4(c) and 4(f), the optimal point is
successfully captured by the resulting finite-volume space.

V. UNO RECONSTRUCTION: NUMERICAL ILLUSTRATIONS

AND ERROR ANALYSES

We assessed the performance of the UNO reconstruction
through extensive numerical experiments. In our study, we
demonstrate that the size of the cube defined by modulo ADCs
(indicated by red contours and shaded regions in Figure 4)
and, consequently, the reconstruction error are influenced by
the ADC threshold λ. We then investigate the effect of input
signal amplitude ‖x‖∞ on the reconstruction performance. In
all experiments, we considered the same high DR input signal
as in Section III-D.

A. Varying ADC Threshold

The number of time-varying sampling threshold sequences
was set to m= 400. In each experiment, the generated sig-
nals have the same DRx = 8 but the ADC threshold λ
changes. For a given λ, the sequences of time-varying sam-
pling threshold are drawn randomly following the distributions{
τ
(�)
N ∼N

(
0, λ2

9 I
)}m

�=1
, and

{
τ
(�)
U ∼ U[−λ,λ]

}m

�=1
, respec-

tively. Figure 5 illustrates accurate UNO reconstruction with
Gaussian dither for different values of λ ∈ {0.2, 0.5, 1}. Note
that the results of Gaussian and uniform dithering are visually
indiscernible and, hence, it suffices to show only one of them
(Gaussian) here. Table I compares the reconstruction NMSE
(on a log10 scale) of UNO with various dithers, obtained by
averaging NSE over 1000 experiments for different values of λ.
The uniform dither covers the DR of the modulo samples more
effectively than the Gaussian dither. Consequently, the former

provides greater diversity in the bits, resulting in an improved
reconstruction. We also observe that increasing in λ leads to
higher NMSE because the volume of the unlimited sampling
cube grows further, and consequently, more hyperplanes may be
required to contain a specific volume around the optimal point
in the feasible region.

B. Varying Input Signal Amplitude

Here, we generated the input signals with varying DRs.
In each experiment, the ADC threshold λ was fixed to
λ= 0.5, for which we generated sequences of time-varying

sampling threshold as
{
τ
(�)
N ∼N

(
0, 1

36I
)}m

�=1
, and

{
τ
(�)
U ∼

U[−0.5,0.5]

}m

�=1
, respectively. Figure 6 shows accurate UNO re-

construction with Gaussian dither for different values of ‖x‖∞.
Table II compares the corresponding NMSE of 1000 experi-
ments between UNO with Gaussian and Uniform dithers.

Next, we study the reconstruction for a signal with an ex-
tremely high DR, with ‖x(t)‖∞ = 1000. In theory, the un-
limited sampling theorem guarantees reconstruction with T ≤

1
2Ωmaxe

. However, in practice, signal reconstruction from unlim-
ited samples has its own limitations due to error propagation
by the finite-difference operator. Specifically, for a large DR
of input signal compared to that of the ADC threshold λ, the
order of difference operator N should also be large. But a large
N would also amplify the quantization/round-off noise, leading
to an unstable reconstruction. In this scenario, more samples
(given by the oversampling factor) are required to decrease N .
Note that, unlike conventional ADCs, an abundant number of
samples does not lead to an increase in power consumption,
manufacturing cost, and per-bit chip area in one-bit ADCs.
Figure 6(d) shows an accurate UNO reconstruction for λ= 1
and a 10.99 times higher sampling rate 1/T than the previ-
ous experiments.

Although UNO and one-bit ΣΔ method [55] are differ-
ent in their respective theoretical foundations and applica-
tions, here we compare their reconstruction performance for
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Figure 5. Reconstruction of the input signal from one-bit measurements using UNO when the ADC threshold is (a) λ= 1, (b) λ= 0.5, and (c) λ= 0.2.
(d)-(f) As in, respectively, (a)-(c) but the true unlimited samples are compared with their reconstructed samples.

TABLE I
UNO RECONSTRUCTION NMSE FOR FIXED x

λ 0.2 0.5 1
Gaussian dithered UNO −72.628 −67.780 −60.987
Uniform dithered UNO −73.629 −68.470 −61.592

the same signal. The ADC threshold was set to λ= 1 and
sequences of the time-varying sampling threshold were drawn

as
{
τ
(�)
N ∼N

(
0, 1

9I
)}m

�=1
and

{
τ
(�)
U ∼ U[−1,1]

}m

�=1
, respec-

tively. For the specific case of ‖x‖∞ = 40, Figure 7 compares
the UNO-reconstructed signal x̄ (with Gaussian dither) with
the one-bit unlimited ΣΔ-reconstructed signal x̄ΣΔ when the
ratio between the input signal amplitude and the ADC threshold
η =

‖x‖∞
λ is large. The one-bit unlimited ΣΔ degenerates in

some parts of the input samples, while the UNO accurately
reconstruct the signal. Table III further compares the recon-
struction NMSE of 1000 experiments, of UNO with Gaussian
and Uniform dithers with one-bit unlimited ΣΔfor different
amplitudes ‖x‖∞ ∈ {20, 50}. Here, the degradation in one-bit
ΣΔ reconstruction for large η is because of the round-off noise
in software and, primarily, imperfect noise shaping in sigma-
delta conversion that results in sample corruption.

Note that the signal dimension is fixed in both UNO
and one-bit sigma-delta methods. However, UNO has
the flexibility of increasing the total number of one-bit
samples by increasing the number oftime-varying threshold

Figure 6. Reconstruction of the input signal from one-bit measurements
using UNO Algorithm 2 when the ADC threshold is set to λ= 0.5 and
the input signal amplitude ‖x‖∞ is (a) 10, (b) 15, and (c) 20. (d) As in
(a) but for λ= 1 and ‖x‖∞ = 1000. The inset shows the same plot on a
larger scale.

sequences. This is not possible with the one-bit ΣΔ
quantization, which uses a recursive algorithm to update
thresholds, without increasing the signal dimension or
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TABLE II
UNO RECONSTRUCTION NMSE FOR λ= 0.5

‖x‖∞ 10 15 20

Gaussian dithered UNO −63.815 −65.728 −63.969
Uniform dithered UNO −64.125 −65.810 −64.591

TABLE III
RECONSTRUCTION 10 log10 NMSE FOR λ= 1

‖x‖∞ One-Bit Unlimited ΣΔ
UNO Dither

Gaussian Uniform

20 0.402 −63.261 −64.601
50 3.777 −62.501 −63.159

Figure 7. A comparison of reconstruction via UNO and one-bit unlimited
ΣΔ when λ= 1 and ‖x‖∞ = 40.

oversampling factor. The computational complexity of the
proposed reconstruction, which comprises RKA and
Algorithm 1, is easily obtained as O

(
n ln

(
1
ε1

)
+2(N − 1)n+

(N−1)
3

(
2N2 −N − 3

))
. It follows that the UNO reconstruction

is linearly complex with respect to the signal dimension n.

C. Analysis of Reconstruction Error

To ensure a bounded reconstruction error, the feasible re-
gion in (25) cannot have an infinite volume in an asymptotic
sense when amplitude constraints are imposed by unlimited
sampling. As mentioned before, by introducing more samples,
it is possible to obtain a polyhedron with a bounded volume
that contains the desired point. Further, as we illustrated in
Figure 4, adding more inequality constraints to (25) leads to
shrinkage of this polyhedron. We now prove this result, i.e.,
in a probabilistic sense, that increasing the number of samples
leads to the reconstruction error approaching zero, and that the
resulting overdetermined linear system of inequalities guaran-
tees the convergence of any consistent reconstruction algorithm
which is defined as follows:

Definition 1: Define the modulo signal as x̃= [x̃j ] ∈ R
n

and the �-th threshold vector by τ(�) = [τ
(�)
j ] ∈ R

n for � ∈ [m].
Denote ¯̃x= [¯̃xj ] ∈ R

n as a solution obtained by an arbitrary re-
construction algorithm addressing the feasibility problem (25).
Then, such a reconstruction algorithm is said to be consis-
tent when

sgn
(
x̃j − τ

(�)
j

)
= sgn

(
¯̃xj − τ

(�)
j

)
, j ∈ [n], � ∈ [m]. (26)

The concept of consistent reconstruction, as defined in
Definition 1, has played a pivotal role in obtaining theoretical
guarantees in the field of one-bit compressed sensing [34], [35],
[75], [76] and one-bit low-rank matrix sensing [76], [77] as
discussed in prior literature. It is important to note that our
guarantee is obtained with the uniform assumption of the dither-
ing sequence.

To prove our main theorem, we need to define the follow-
ing operator:

Definition 2: Define the distance between the modulo signal
x̃ and the j-th hyperplane of (25) as

d
(�)
j =

∣∣∣x̃j − τ
(�)
j

∣∣∣ , j ∈ [n], � ∈ [m], (27)

where r
(�)
j = sgn

(
x̃j − τ

(�)
j

)
. Then, we denote the average of

such distances by

Tave(x̃) =
1

mn

m∑
�=1

n∑
j=1

d
(�)
j . (28)

Intuitively, it is easy to observe that by reducing the distances
between x̃ and the constraint-associated hyperplanes gener-
ally increases the possibility of capturing the desired point.
For a specific sample size m′ =mn, when the volume of the
finite space around the desired point is reduced, the mean{
d
(�)
j

}m′

j,�=1
, i.e., Tave(x̃) converges to its mean. In the following

lemma, we present the Hoeffding’s inequality:
Lemma 3: [74, Theroem 2.2.5] Let {Xi}ni=1 be independent,

bounded random variables satisfying Xi ∈ [ai, bi], then for any
t > 0 it holds that

Pr

(∣∣∣∣∣
1

n

n∑
i=1

(Xi − E {Xi})
∣∣∣∣∣≥ t

)
≤ 2e

− 2n2t2∑n
i=1(bi−ai)

2
. (29)

We utilize Lemma 3 to provide a concentration inequality
in a probability for the finite volume, created by hyperplanes,
being contained within the ball around the optimal solution. The
following proposition states that the abundant number of sam-
ples in conventional one-bit quantization significantly affects
the reconstruction performance of any consistent reconstruction
algorithm such as RKA addressing a linear feasibility problem
in (25):

Proposition 4: Define the set H= {x | ‖x‖2 ≤ λ
√
n}. As-

sume the random threshold follows τ ∼ U[−λ,λ]. Under the
same notations of Definition 2, we have

Pr

(
sup
x̃∈H

∣∣∣∣T ave(x̃)−
λ

2
− ‖x̃‖22

2λn

∣∣∣∣≥ ε

)
≤ 2e

−
(
m′ ε2

2λ2 − 2n
√

nλ
ρ

)
,

(30)

where ρ is a positive value.
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Proof: For simplicity of notation, denote d
(�)
j in (27) by

d= |x̃− τ |. Then, we can write

Eτ {d}=
1

2λ

∫ λ

−λ

|x̃− τ | dτ

=
1

2λ

[∫ x̃

−λ

x̃− τ dτ +

∫ λ

x̃

τ − x̃ dτ

]
=

λ

2
+

x̃2

2λ
.

(31)

Therefore, we have

Eτ {Tave(x̃)}=
1

mn

m∑
�=1

n∑
j=1

λ

2
+

x̃2
j

2λ
=

λ

2
+

‖x̃‖22
2λn

. (32)

Note that for each random variable d
(�)
j we have

d
(�)
j =

∣∣∣x̃j − τ
(�)
j

∣∣∣≤ |x̃j |+
∣∣∣τ (�)j

∣∣∣≤ 2λ. (33)

Then, based on the Hoeffding’s inequality for bounded random
variables presented in Lemma 3, we can write

Pr

(∣∣∣∣Tave(x̃)−
λ

2
− ‖x̃‖22

2λn

∣∣∣∣≥ ε

)
≤ 2e−m′ ε2

2λ2 . (34)

As we consider the supremum over all x̃ ∈H, it is necessary to
multiply the resulting probability by the covering number of the
defined set. It can be easily verified that the covering number
of ρ-balls required to cover the set H is upper bounded by

N (H, ‖·‖2 , ρ)≤
(
1 +

2λ
√
n

ρ

)n

, (35)

which can be further upper bounded by

N (H, ‖·‖2 , ρ)≤ e
n log

(
1+ 2λ

√
n

ρ

)
≤ e

2λn
√

n
ρ , (36)

which proves the proposition. �
Based on this result, the following theorem expresses the

universal convergence rate of any consistent reconstruction al-
gorithm in the UNO sampling scheme:

Theorem 2: Under the same assumptions and notations
of Definition 2 and Proposition 4, for all x̃, ¯̃x ∈H satisfying
the consistent reconstruction property defined in Definition 1,
we have

‖x̃− ¯̃x‖2 ≤ 4
√
λεn, (37)

with a probability exceeding 1− 2e
−
(
m′ ε2

2λ2 −n
2

√
λ
ε

)
.

Proof: Define z̃= 1
2 (x̃+ ¯̃x). We can write z̃j − τ

(�)
j =

1
2

(
x̃j − τ

(�)
j + ¯̃xj − τ

(�)
j

)
. According to the consistent recon-

struction property defined in Definition 1, we can write
∣∣∣z̃j − τ

(�)
j

∣∣∣= 1

2

(∣∣∣x̃j − τ
(�)
j

∣∣∣+
∣∣∣¯̃xj − τ

(�)
j

∣∣∣
)
. (38)

Based on (38), for all j ∈ [n] and � ∈ [m], we can write

Tave(z̃) =
1

2

[
Tave(x̃) + Tave(¯̃x)

]
. (39)

Following Proposition 4, with a failure probability at most

2e
−
(
m′ ε2

2λ2 − 2n
√

nλ
ρ

)
, we have

‖z̃‖22
2λn

≥ Tave(z̃)−
λ

2
− ε. (40)

Combining the results of (39) and (40) leads to

‖z̃‖22
2λn

≥ 1

2

[
Tave(x̃) + Tave(¯̃x)

]
− λ

2
− ε

≥ 1

2

[
λ

2
− ε+

‖x̃‖22
2λn

+
λ

2
− ε+

‖¯̃x‖22
2λn

]
− λ

2
− ε

=
1

4λn

(
‖x̃‖22 + ‖¯̃x‖22

)
− 2ε. (41)

Based on the definition of z̃, we can rewrite (41) in terms of x̃
and ¯̃x as follows

‖x̃+ ¯̃x‖22 ≥ 2
(
‖x̃‖22 + ‖¯̃x‖22

)
− 16ελn. (42)

By the parallelogram law, we conclude that

‖x̃− ¯̃x‖22 = 2
(
‖x̃‖22 + ‖¯̃x‖22

)
− ‖x̃+ ¯̃x‖22, (43)

which together with (42) results in

‖x̃− ¯̃x‖2 ≤ 4
√
λεn. (44)

Denote ρ= 4
√
λεn. Then, according to Proposition 4, with a

failure probability at most 2e
−
(
m′ ε2

2λ2 −n
2

√
λ
ε

)
, we have ‖x̃−

¯̃x‖2 ≤ ρ which completes the proof. �
Corollary 1: The decay rate for UNO reconstruction perfor-

mance concerning m is characterized by O
(
m− 2

5

)
.

Proof: To have a decreasing function in

2e
−
(
m′ ε2

2λ2 −n
2

√
λ
ε

)
, the number of dithering sequences

must meet the following bound: m≥ λ2

ε2

√
λ
ε . The lower bound

of m depends on ε−
5
2 , and consequently, the reduction rate of

ε with respect to m is given by O
(
m− 2

5

)
. �

Claim 1 shows the significance of UNO sampling.
Claim 1: Increasing the number of time-varying sampling

threshold sequences m is not an effective approach to guarantee
the desired signal reconstruction with any consistent reconstruc-
tion algorithm such as RKA without using modulo sampling.

Proof: To prove this claim, consider βx ≥DRx >
DRτ = λ. For simplicity of proof, consider an index k ∈ [n]
such that xk =DRx. Also, assume that for an index set
I = [n] \ {k}, we have supj∈I |xj | ≤ λ. Define the distance
between the signal x and the j-th hyperplane of (6) as

d
(�)
j =

∣∣∣xj − τ
(�)
j

∣∣∣ , j ∈ [n], � ∈ [m], (45)

where r
(�)
j = sgn

(
xj − τ

(�)
j

)
. We denote the average of such

distances by Tave(x) =
1

mn

∑m
�=1

∑n
j=1 d

(�)
j . Consider the fol-

lowing lemma:
Lemma 4: Define xr as

xr = [x1, · · · , xk−1, xk+1, · · · , xn]
�. (46)

Assume the random threshold follows τ ∼ U[−λ,λ]. Define the
set G = {x | ‖xr‖2 ≤ λ

√
n, xk =DRx} where βx ≥DRx > λ.

Then, we have

Pr

(
sup
x∈G

∣∣∣∣Tave(x)−
(n− 1)λ

2n
− ‖xr‖22

2λn
− xk

n

∣∣∣∣≥ ε

)

≤ 2e
−
(

2m′ε2
(βx+λ)2

− 2n
√

nβx
ρ

)
, (47)

where ρ is a positive value.
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Proof: Rewrite Tave(x) as

Tave(x) =
1

mn

m∑
�=1

∑
j∈I

∣∣∣xj − τ
(�)
j

∣∣∣+ 1

mn

m∑
�=1

∣∣∣xk − τ
(�)
k

∣∣∣.

(48)

Based on Proposition 4, the expected value of the first term in
the right-hand side of (48) can be written as

Eτ

⎧
⎨
⎩

1

mn

m∑
�=1

∑
j∈I

∣∣∣xj − τ
(�)
j

∣∣∣
⎫
⎬
⎭=

(n− 1)λ

2n
+

‖xr‖22
2λn

. (49)

It can be easily verified that the expected value of the second
term in the right-hand side of (48) is

Eτ

{
1

mn

m∑
�=1

∣∣∣xk − τ
(�)
k

∣∣∣
}

=
xk

n
. (50)

Note that we have

sup
j∈[n],�∈[m]

d
(�)
j = βx + λ. (51)

Define the set D = {x | ‖x‖2 ≤ βx
√
n}. Since we have G ⊆ D,

we can write

N (G, ‖·‖2 , ρ)≤N (D, ‖·‖2 , ρ)≤ e
2βxn

√
n

ρ . (52)

Combining (49)-(52) with Lemma 3 completes the proof
of Lemma 4. �

Define z= 1
2 (x+ x̄). We can write zj − τ

(�)
j = 1

2

(
xj −

τ
(�)
j + x̄j − τ

(�)
j

)
. According to the consistent reconstruction

property defined in Definition 1, we can write
∣∣∣zj − τ

(�)
j

∣∣∣= 1

2

(∣∣∣xj − τ
(�)
j

∣∣∣+
∣∣∣x̄j − τ

(�)
j

∣∣∣
)
. (53)

Based on (53), for all j ∈ [n] and � ∈ [m], we can write

Tave(z) =
1

2
[Tave(x) + Tave(x̄)]. (54)

Based on Lemma 4, with a failure probability at most

2e
−
(

2m′ε2
(βx+λ)2

− 2n
√

nβx
ρ

)
, we have

‖xr‖22
2λn

+
zk
n

≥ Tave(z)−
(n− 1)λ

2n
− ε. (55)

Following the proof of Theorem 2, we will obtain

‖xr + x̄r‖22 ≥ 2
(
‖xr‖22 + ‖x̄r‖22

)
− 16λεn. (56)

By the parallelogram law, we conclude that

‖x− x̄‖22 ≤ 16λεn+ x2
k + x̄2

k ≤ 16λεn+ β2
x + λ2. (57)

Note that for Lemma 4 we set ρ=
√
16λεn+ β2

x + λ2. Similar
to the discussion in Corollary 1, in this case, ε decays with
the rate O

(
m− 2

5

)
. Therefore, increasing the number of time-

varying threshold sequences m leads to decrease in the value
of 16λεn in (57). However, the term β2

x + λ2 in (57) does not
change with respect to m which implies that the upper recovery
bound in (57) cannot be effectively small even by increasing the
number of time-varying sampling threshold sequences. �

Figure 8. NMSE for RKA-based UNO reconstruction with respect to the
number of time-varying threshold sequences m for λ= 0.5 and ‖x‖∞ = 20.

In Figure 8, we show that UNO reconstruction NMSE of
1000 experiments, significantly improves with the increase in
the number of time-varying threshold sequences m. The ADC
threshold was set to λ= 0.5 and the signal DR was ‖x‖∞ = 20.
The following theorem summarizes the UNO guarantees:

Theorem 3 (UNO sampling theorem): Assume x(t) to be a fi-
nite energy, bandlimited signal with maximum frequency Ωmax

with sampling rate 1/T . Under the assumptions of Theorem 2

and ε= λ
256

(
2βx

λ

)− 2
h

with h ∈ N, the sufficient condition for

the reconstruction of bandlimited signal x(t) from UNO sam-
ples, up to additive multiples of 2λ is

T ≤ 1

2hΩmaxe
, (58)

with a probability higher than 1− 2e
−
(
m′ ε2

2λ2 −n
2

√
λ
ε

)
.

Proof: While reconstructing the modulo samples from
one-bit data, the real modulo samples are represented by the
linear model

¯̃x= x̃+ e. (59)

The reconstruction error may be viewed as noise for modulo
samples. According to [45, Theorem 3], the sampling rate
for the contaminated modulo samples in (59) to reconstruct
the bandlimited signal x(t)) to satisfy x̄k = xk + ek is T ≤

1
2hΩmaxe

, where h ∈ N. It is important to note that the validity
of the noisy unlimited sampling theorem [6, Theorem 3] relies
on the assumption that the noise added to the modulo samples
is almost surely bounded, and

‖e‖2 ≤
√
n
λ

4

(
2βx

λ

)− 1
h

. (60)

where βx is chosen such that βx ∈ 2λZ and ‖x‖∞ ≤ βx. As
stated in Proposition 4, we have derived the probability of
the solution of one-bit signal reconstruction falling within a
ball around the optimal solution, as expressed in Theorem 2.
When the solution resides within this ball, the norm-2
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reconstruction error becomes
∥∥x̃− ¯̃x

∥∥
2
≤ 4

√
λεn=

√
nλ

4(
2βx

λ

)− 1
h

in a probability, which implies ε= λ
256

(
2βx

λ

)− 2
h

.
�

Theorem 3 states that the upper bound on T for UNO sam-
pling is lower than or equal to that of the unlimited sampling
(the equality holds when h= 1) which associates with a higher
sampling rate in UNO. As mentioned earlier, oversampling is a
common scenario in one-bit quantization techniques and is not
a major concern in UNO implementation. Moreover, the corre-
sponding reconstructed modulo samples in UNO obey |¯̃xk|< λ.
This ensures that N in (22) guarantees ΔN x̄≡Mλ

(
ΔN x̄

)
or

equivalently ΔN x̄≡Mλ

(
ΔN ¯̃x

)
; we refer the reader to [6] for

more details on this aspect. As a result, UNO reconstructs the
input samples xk in the sense that x̄k = xk + ek (up to additive
multiples of 2λ) with the same N considered in the noiseless
unlimited sampling reconstruction of [45, Section IV.B].

VI. RECONSTRUCTION IN THE PRESENCE OF NOISE

Previously, for modulo sampling, [6] has shown recovery of
noisy bandlimited samples from their modulo samples up to
an unknown additive constant, where the noise is entry-wise
additive to the modulo samples, i.e., ỹ = x̃+ ε, and ε is the
noise vector. Contrary to this, we propose an approach to re-
construct UNO sampled signal when the noise is additive to the
input signal, which itself has a linear relationship with a desired
parameter. This linear model for the noisy measurement y is

y = x+ ε, x=Aθ, A ∈ R
r×s, (61)

where θ is the desired parameter vector and the noise
follows the distribution ε∼N

(
0, σ2

εIm
)
. Here, we may have

y /∈ [−λ, λ]. Our goal is to estimate θ from the UNO samples
of noisy measurement y obtained as

r(�) = sgn(Mλ (y)− τ(�)), � ∈ [m]. (62)

Our recovery approach comprises using RKA and Algorithm 1
(with N specified by (55)) to reconstruct noisy measurements
from one-bit data, and then exploiting the PnP-ADMM method
to estimate the desired parameters from linear overdetermined
or undetermined systems.

A. PnP-ADMM-Based UNO Reconstruction

From the UNO samples (62), we reconstruct y via
Algorithm 2. The reconstructed signal ȳ also follows the linear
model (61). Therefore, we use ȳ to estimate θ through the
regularization

θ̂= argmin
θ

‖ȳ −Aθ‖22 + ηρ(θ), (63)

where ρ(θ) is the penalty term and η > 0 is the real-valued
regularization parameter. There is a rich body of literature to
select the penalty function ρ(·) including the �1-norm [78],
smoothly clipped absolute deviation (SCAD) [79], adaptive
least absolute shrinkage and selection operator (LASSO) [80]

Algorithm 3 Noisy UNO algorithm.

Input: Sequences of one-bit measurements
{
r(�) =

sgn
(
Mλ (y)− τ(�)

)}m

�=1
, where y follows (61),

τ
(�)
N ∼N

(
0, σ2

τI
)

(for Gaussian dithering), τ(�)
U ∼ U[−a,a]

(for Uniform dithering), ADC threshold λ, design
parameters η and β, total number of iterations kmax.
Output: The reconstruction of the parameter of interest θ̂.

1: στ ← λ√
2 ln( 2n

η )
 For Gaussian dithering.

2: a← λ  For Uniform dithering.

3: Reconstruct modulo samples from RKA.

4: Reconstruct ȳ from ¯̃y with Algorithm 1.

5: for k = 1 : kmax do
6: θk ←minθ

{
‖ȳ −Aθ‖22 + β

2 ‖θ− νk−1 + uk−1‖2
}

.

7: νk ←D (θk + uk−1) .
8: uk ← uk−1 + θk − νk.

9: return θ̂← θkmax .

and the minimax-concave (MC) penalty which has a relation-
ship with Huber functions [81].

One of the standard approaches to solve regularized problems
such as in (63) is ADMM that relies on splitting variables [82].
We consider

θ̂= argmin
θ

‖ȳ −Aθ‖22 + ηρ(ν) subject to θ= ν. (64)

Using the augmented Lagrangian, we reformulate prob-
lem (64) as

minimize
θ,ν

max
p

×
{
‖ȳ −Aθ‖22 + ηρ(ν) + p�(θ− ν) +

β

2
‖θ− ν‖2

}
,

(65)

where p is the dual variable and β is a real-valued design
parameter. Denote u= p

β . Then,

minimize
θ,ν

max
u

×
{
‖ȳ −Aθ‖22 + ηρ(ν) +

β

2
‖θ− ν+ u‖2 − β

2
‖u‖2

}
.

(66)

The ADMM tackles (66) by alternating the minimization of
θ and ν. The update of ν is essentially denoising of θk + uk−1

by the regularization ηρ(ν). This is the key idea behind PnP-
ADMM, where the proximal projection

νk = argmin
ν

{
ηρ(ν) +

β

2
‖ν− θk − uk−1‖2

}
(67)

is replaced with an appropriate denoiser D(.). For further de-
tails on various denoisers used in PnP techniques, we refer the
interested reader to [63]. Algorithm 3 summarizes the noisy
UNO reconstruction procedure. It is worth noting that when the
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sampling matrix A is set to the identity matrix, the initial step of
the signal reconstruction algorithm in the ADMM component
is eliminated, resulting in a straightforward denoising process
using the PnP framework.

B. ADC Threshold Selection in Noisy UNO

Theorem 4 certifies that the additive noise to the input signal
results in an additive noise in modulo domain.

Theorem 4: Assume the noise vector in the measurement
model y = x+ z to be z= [zk]∼N

(
0, σ2

zIm
)
. Denote x̃=

Mλ (x) and z̃= [z̃k], z̃k =mod (zk, 2λ)− 2(1− qk)λ, qk ∈
{0, 1}. Then, ỹ = x̃+ z̃, where ỹ =Mλ (y).

Proof: Applying the modulo operator Mλ in (18) to the
noisy measurements y produces

ỹ =Mλ (y) =Mλ (x+ z) = x+ z− 2λ

⌊
x

2λ
+

1

2
+

z

2λ

⌋
,

(68)

where z∼N
(
0, σ2

zIm
)
. Since we have 	a+ b
 ≥ 	a
+

	b
 for two arbitrary real numbers a and b, it follows
from (68) that

Mλ (x+ z) = x+ z− 2λ

⌊
x

2λ
+

1

2
+

z

2λ

⌋

≤ x− 2λ

⌊
x

2λ
+

1

2

⌋
+ z− 2λ

⌊ z

2λ

⌋

= x̃+ z− 2λ
⌊ z

2λ

⌋
= x̃+mod (z, 2λ) . (69)

Using the identity 	a+ b
 ≤ 	a
+ 	b
+ 1, we obtain

Mλ (x+ z)≥ x̃+mod (z, 2λ)− 2λ. (70)

A binary combination of the right-hand sides of (69) and (70)
is equivalent to Mλ (xk + zk), i.e.,

ỹk =Mλ (xk + zk)

= qk (x̃k +mod (zk, 2λ))

+ (1− qk) (x̃k +mod (zk, 2λ)− 2λ) ,

= x̃k +mod (zk, 2λ)− 2(1− qk)λ, (71)

where qk ∈ {0, 1}. Rewrite (71) as ỹk = x̃k + z̃k, where z̃k =
mod (zk, 2λ)− 2(1− qk)λ, which completes the proof. �

It follows from Theorem 4 that the noise corruption in the
input signal carries over to the modulo samples. The follow-
ing theorem unveils the UNO reconstruction guarantee in the
presence of noise.

Theorem 5: (UNO sampling with noise) Under the as-

sumptions of Theorems 2 and 4, consider ε=
(√

λ
16

(
2βx

λ

)− 1
h −

|2qkλ−1|
4
√
λ

)2

with h ∈ N. Then, the sufficient condition to recon-

struct bandlimited signal x(t) from corrupted UNO samples ỹ,
up to additive multiples of 2λ is

T ≤ 1

2hΩmaxe
, (72)

with a probability exceeding 1− 2e
−
(
m′ ε2

2λ2 −n
2

√
λ
ε

)
.

Proof: The proof follows from repeating the proof of
Theorem 3 by replacing the recovery error e with z̃+ e.
As previously mentioned, the validity of the noisy unlimited
sampling theorem [6] relies on the assumption that the noise
added to the modulo samples remains bounded. In our case,
the additive noise to the modulo samples is given by z̃+ e,
where z̃k =mod (zk, 2λ)− 2(1− qk)λ. The error of one-bit
signal recovery is bounded by 4

√
λεn with a probability of

at least defined in Proposition 4. Additionally, the noise z̃ is
bounded by |z̃k| ≤ |2qkλ− 1| (which follows from the fact that
mod (zk, 2λ)≤ 2λ− 1). Furthermore, we derive the inequality
‖z̃+ e‖2 ≤ ‖z̃‖2 + ‖e‖2 ≤√

n |2qkλ− 1| +4
√
λεn=

√
nλ

4(
2βx

λ

)− 1
h

, which completes the proof. �
The aforementioned theorem states that as the noise level

increases, more one-bit samples are required to have a good
reconstruction. This is similar to other conventional noisy sam-
plers. For example, Cadzow denoising [83], used to suppress
the effect of noise in sparse samplers similarly requires such
an oversampling [84].

C. Numerical Examples

We investigated PnP-ADMM-based noisy UNO reconstruc-
tion with A= [aij ] to be aij ∼N (0, 1) and y = yt + ε, where
yt was generated as in Section III-D and ε∼N

(
0, σ2

εIm
)
.

Figure 9(a) and 9(b) show accurate noisy UNO reconstruction
of the parameter vector with fixed σ2

ε = 0.1 in case of, respec-
tively, overdetermined (r = 728, s= 100) and underdetermined
(r = 728, s= 1000) systems in (61). Figure 9(c) demonstrates
the efficacy of Noisy UNO in estimating the desired parameter
θ from (61) when only UNO samples of noisy measurement y
are available.

Table IV and V report the reconstruction NMSE of θ, i.e.,

averaged version of NSEθ � ‖θ−θ̂‖2

2

‖θ‖2
2

, over 1000 experiments

for different noise variances σ2
ε ∈ {0.01, 0.05, 0.1} using the

PnP-ADMM-based UNO with Gaussian and Uniform dithers,
respectively. Here, following Theorem 5, the ADC threshold
was set to λ= 1.5.

Next, to be consistent with the results in [30], [68], we
consider sampling a sinusoidal: xn(t) =A cos(2πf0t) + n(t),
where A= 16, f0 = 2, T = 0.0005, and n(t) is Gaussian noise
with standard deviation σn = 0.5. Note that we set the ADC
threshold λ= 2. Figure 10 shows successful reconstruction
with UNO under this noisy setting. We estimate the parameter
vector θ= [A, f0]

� of the input signal by setting the sampling
matrix A in PnP-ADMM to be the DFT matrix. Table VI shows
that the NMSEs in the estimate θ̄= [Ā, f̄0]

� obtained by PnP-
UNO reconstruction of 1000 experiments are negligible.

VII. DISCUSSION

The design of alternative sampling schemes to enable
practical implementations of Shannon’s theorem – from theory
to praxis – has been an active research topic for decades.
In this context, our proposed UNO presents a framework of
merging one-bit quantization and unlimited sampling.
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Figure 9. Reconstruction of the desired parameter vector θ following the linear model (61) using PnP-ADMM-based UNO for an (a) overdetermined system
with A ∈ R728×100 and (b) underdetermined system with A ∈ R728×1000. Here, to facilitate a better visual presentation, the number of threshold sequences
start from m= 500. (c) Reconstruction of the noisy input signal from one-bit measurements using PnP-ADMM-based UNO.

TABLE IV
RECONSTRUCTION 10 log10 NMSEθ WITH PNP-ADMM NOISY

UNO (WITH GAUSSIAN DITHERING)

σ2
ε Overdetermined System Underdetermined System

0.1 −48.294 −38.128
0.05 −52.676 −42.347
0.01 −56.815 −45.259

TABLE V
RECONSTRUCTION 10 log10 NMSEθ WITH PNP-ADMM NOISY

UNO (WITH UNIFORM DITHERING)

σ2
ε Overdetermined System Underdetermined System

0.1 −48.304 −39.024
0.05 −53.506 −44.148
0.01 −56.919 −46.191

Figure 10. The original discrete noisy sinusoidal vector xn and its UNO
reconstruction x̄n. In this comparison the ADC threshold was set to λ= 2.

This sampling framework naturally facilitates a judicious
design of time-varying sampling thresholds by properly
utilizing the information on the distance between the signal
values and the thresholds in a high DR regime. The noiseless

TABLE VI
SINUSOID PARAMETER ESTIMATION

10 log10 NMSE

σn
|f̄0−f0|2

|f0|2
|Ā−A|2
|A|2

0.5 −35.152 −36.437

UNO reconstruction relies on exploiting RKA algorithm while
the noisy reconstruction is based on the PnP-ADMM heuristic.
These low-complexity approaches are preferable over existing
costly reconstruction optimization approaches [63], [64].

The UNO framework achieves multiple objectives of high
sampling rate, unlimited DR, less complex and potentially low-
power implementations. Our numerical and theoretical anal-
yses demonstrate accurate reconstruction for several different
scenarios. Some theoretical questions remain open, e.g. on the
relationship between the number of threshold sequences m and
reconstruction error in a closed form. This may help in finding
the required number of threshold sequences for perfect recon-
struction. The single-stage or direct reconstruction from one-bit
samples, without unfolding or additional processing, remains
an interesting open problem. Further, a hardware verification of
UNO on the lines of unlimited sampling in [45] is also desirable.
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