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Information Flow Rate for Cross-Correlated
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Abstract—Causal inference seeks to identify cause-and-effect
interactions in coupled systems. A recently proposed method
by Liang detects causal relations by quantifying the direction
and magnitude of information flow between time series. The
theoretical formulation of information flow for stochastic dy-
namical systems provides a general expression and a data-
driven statistic for the rate of entropy transfer between different
system units. To advance understanding of information flow
rate in terms of intuitive concepts and physically meaningful
parameters, we investigate statistical properties of the data-driven
information flow rate between coupled stochastic processes. We
derive relations between the expectation of the information flow
rate statistic and properties of the auto- and cross-correlation
functions. Thus, we elucidate the dependence of the information
flow rate on the analytical properties and characteristic times of
the correlation functions. Our analysis provides insight into the
influence of the sampling step, the strength of cross-correlations,
and the temporal delay of correlations on information flow rate.
We support the theoretical results with numerical simulations of
correlated Gaussian processes.

Index Terms—Information flow, causality analysis, Gaussian
process, entropy, covariance kernel.

I. INTRODUCTION

THERE is great interest in the inference of causal relations
between variables based on time series data. Applications

of causal inference extend across scientific disciplines such as
neuroscience [1], [2], [3], bioinformatics [4], machine learning
[5], [6], [7], climate and Earth system sciences [8], [9], [10].
Classical measures of statistical association, such as the linear
Pearson and the rank order (Spearman) correlation coefficients
fail to provide information about the directionality of interac-
tions. Hence, they can not reveal cause-effect relations. In fact,
it is well known that non-zero statistical correlations can be
observed even in the absence of causal relations. The latter are
characterized by two key properties: (i) temporal precedence,
i.e., the cause precedes the effect, and (ii) physical influence,
i.e., variations of the cause have an impact on the effect [11].
Causal analysis investigates methods that can determine cause-
effect relationships [12], [13], [14], [15], [16], [17].
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Various methods of causal inference are in use. They include
Wiener-Granger causality (WGC) [18], [19], [20], [21] which
is a standard tool for analyzing brain connectivity [22], [23],
[24], [25], kernel WGC [25], [26] which generalizes WGC to
nonlinear interactions, entropy-based methods [14], [27] such
as transfer entropy (TE) and mutual information [28], [29], [30],
[31], convergent cross mapping (CCM) which is based on the
theory of dynamical systems [32], and PCMCI (Peter and Clark
algorithm followed by momentary conditional independence
test) which is based on Pearl’s graphical model framework and
is applicable to nonlinear time series [33], [34].

The Liang information flow rate (IFR), is a non-parametric
causality measure between two potentially interacting time se-
ries [35], [36], [37], [38]. The IFR formulation is based on
Shannon entropy and the theory of dynamical systems. It leads
to general expressions for information flow between different
variables which involve time-dependent expectations over joint
probability density functions [35], [36], [37], [39]. The IFR
has been formulated—at least for two dimensional systems—
using both absolute and relative entropy [36], [37]. The relative
entropy (Kullback–Leibler divergence) quantifies the amount
of information added to a system with respect to the initial
probability distribution. IFR was recently extended to describe
information flow in quantum mechanical systems [40].

In order to derive an estimate of IFR based on observations,
Liang used a linear stochastic dynamical system that satisfies
the following first-order stochastic differential equation (also
known as Langevin equation)

dX(t) = f dt+AX(t) dt+B dW(t) , (1)

where dX(t) is the differential of the two-dimensional stochas-
tic process X(t), f is a 2× 1 constant advection vector, A is a
2× 2 matrix of (inverse) time constants, B is a 2× 2 diffusion
matrix, and dW(t) is the differential of a 2× 1 vector Wiener
process (Brownian motion). Assuming that the observations
represent a discretely sampled realization of X(t), he derived
an estimate of IFR by maximizing the likelihood [37]. This
data-driven IFR involves only the observed time series and
their finite differences. Hence, in contrast with transfer entropy
which requires estimating bivariate probability distributions,
and WGC which requires estimating potentially large and com-
putationally expensive autoregressive systems—the complexity
scales as O(N3D3p3), where N is the sample size, D is the
number of components, and p is the autoregressive order [41]—
IFR has lower computational complexity.
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The data-driven IFR has been proven to recover causal rela-
tions in benchmark nonlinear systems [42]. It has also been used
to infer brain connectivity from EEG recordings [43] and fMRI
data [44], to determine causal relations between global temper-
ature and CO2 concentration [45], to investigate interactions
between climate modes (El Niño and the Indian Ocean Dipole)
[37], to reconstruct sea surface height using satellite altimetry
[46], and to discover causal relations between the stocks of
companies traded in the stock market [38]. Nonetheless, there
are still gaps in our understanding of the data-driven IFR.

Machine learning methods such as Gaussian process re-
gression, employ non-parametric models that do not assume
knowledge of dynamical equations. For applications in which
directional connectivity matters, it is important to select mod-
els that reflect the causal relations of the system. This ne-
cessity further motivates studying connections between IFR
and stochastic processes. In particular, the connection between
different covariance kernel models and IFR properties has not
been investigated. Knowledge of such relations can guide the
selection of suitable cross-covariance kernels for data-driven
models based on Gaussian processes. The dependence of IFR
estimates and their uncertainty on statistical properties of the
observed time series and different sampling steps are also im-
portant for practical applications. In addition, the dependence
of IFR on covariance kernel parameters can provide intuitive
understanding of physical factors that influence IFR.

We seek to understand how mathematical properties (of the
covariance kernels) affect IFR. Kernel properties can be learned
from time series data using statistical estimation methods and
optimal model selection approaches [47]. Our analysis links
the parameters and properties of the auto- and cross-covariance
kernels with IFR. The results are based on ensemble expecta-
tions that provide accurate IFR estimates in the ergodic limit.
We obtain an IFR expression in terms of spectral moments,
and we investigate how the continuity and differentiability of
the stochastic processes impact IFR. We also explore the de-
pendence of IFR on the characteristic correlation times of the
kernels and the sampling step which enables a deeper under-
standing of information flow rate measurements. Numerical
simulations of cross-correlated Gaussian processes are also con-
ducted to validate the theoretical results.

The manuscript is organized as follows: Section II presents
notation and definitions. Section III focuses on permissibility
conditions for the kernels of cross-correlated processes; these
are necessary for constructing and simulating mathematically
admissible models with specified properties. In Section IV we
discuss Liang’s data-driven IFR and its main mathematical
properties. Section V derives explicit equations for the IFR of
cross-correlated, second-order ergodic processes (which satisfy
the conditions laid out in Section III). In Section VI we focus on
mean-square differentiable stochastic processes: we obtain the
continuous-sampling limit (which is applicable for very small
sampling step) and leading-order corrections for finite time
step. Section VI investigates IFR properties for mean-square-
continuous (but non-differentiable) processes. These are suit-
able models for first-order stochastic systems driven by Gaus-
sian white noise. Section VIII presents numerical simulations

which validate the main results of the theoretical analysis in
the preceding sections. Discussion related to IFR interpretation
and limitations of the analysis is given in Section IX. Finally,
Section X presents the main conclusions.

A. Summary of Main Results

The results obtained in this study for IFR between coupled
(cross-correlated) stochastic processes are summarized below.

1) We define an expression for the equilibrium IFR which
is valid under ergodic conditions (Theorem V.1). The
equilibrium IFR allows connecting information flow with
statistical properties of the processes involved that can be
inferred from the data. We then calculate the equilibrium
IFR in terms of spectral moments (Theorem V.2). The
spectral formulation provides existence conditions for the
equilibrium IFR that involve the spectral density tail.

2) For small sampling steps (compared to the character-
istic correlation times), we obtain limit expressions of
the equilibrium IFR (Theorems VI.1, VI.2, VII.1). These
expressions depend on the regularity of the stochastic
processes but are independent of the sampling step.

3) We establish that the equilibrium IFR vanishes for
the popular class of separable cross-correlation models
(Proposition V.1). Hence, such models are not suitable
for causal analysis studies.

4) Our analysis proposes an interpretation of the IFR sign in
the framework of stochastic processes. The interpretation
is related to the regularity of the processes (Theorems
VI.2, VII.1, VII.2).

5) For processes with time-delayed correlations, we show
that the IFR is a non-monotonic function of the time
delay over the characteristic correlation time: it peaks for
a value of the ratio less than one and tends to zero as the
ratio increases (Figs. 3 and 5).

II. PRELIMINARIES

We use lowercase boldface symbols for vectors and upper-
case boldfaced letters for matrices and vector stochastic pro-
cesses (indexed by time). The transpose of matrix A is denoted
by A�, its inverse by A−1, and the determinant by detA. The
sets of real and non-negative real numbers are denoted by R

and R≥0 respectively. The set of natural numbers is denoted by
N and that of all integers by Z.

Definition 1 (Vector stochastic process): A vector stochastic
process with D ∈N components will be denoted by X(t) �
[X1(t), . . . , XD(t)]

�, where the symbol � is used to define
a mathematical entity. The stochastic process is defined on a
probability space (Ω,F , P ) and indexed by the time t ∈ T ⊂ R,
where T is an ordered set. The index i= 1, . . . , D in Xi(t)
selects a specific scalar stochastic process.

The expectation of Xi(t) over the ensemble space Ω
is denoted by mi(t) � E[Xi(t)]. The fluctuation is denoted
by X ′

i(t) � Xi(t)− E[Xi(t)]. Specific vector states (realiza-
tions) are denoted by x(t) and their components by xi(t),
for i= 1, . . . , D.
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Definition 2 (Auto- and cross-covariance functions): The co-
variance functions, Ci,j(t, t+ τ) � COV {Xi(t), Xj(t+ τ)},
of two scalar processes Xi(t) and Xj(t) are defined by the
expectation (for i, j = 1, . . . , D)

Ci,j(t, t+ τ) = E[X ′
i(t)X

′
j(t+ τ)], (2)

where τ is the temporal lag, for all t ∈ T . For i= j the auto-
covariance is obtained, while for i �= j (2) defines the cross-
covariance. σ2

i = Ci,i(0), also denoted as Var[Xi(t)], is the
variance of the i-th component. The auto-correlation functions
(ACFs) are then defined by ρi,i(τ) = Ci,i(τ)/σ

2
i (i= 1, . . . D),

while the cross-correlation functions (CCFs) are given by
ρi,j(τ) = Ci,j(τ)/σiσj , for i �= j = 1, . . . , D.

Definition 3 (Time series): A stochastic vector process sam-
pled at a discrete set of times will be denoted by {Xtn}Nn=1.
Sampled values at tn will be denoted by xn or xi;n, where n ∈
N is the time index. For a uniform time step δt, the sampling
times are tn = nδt. The set {xi,n}Nn=1, where xi,n � xi(tn)
denotes a sample (time series) of the i-th stochastic process
over {tn}Nn=1.

Definition 4 (Stationarity): A vector stochastic process X(t)
is weakly or second-order stationary (henceforward, stationary)
iff the following conditions hold: (i) E[X(t)] =m ∈ R

D and
(ii) E[X ′

i(t− τ)X ′
j(t)] = Ci,j(τ) for all i, j = 1, . . . , D. The

minus sign preceding the time lag in Xi(t− τ) defines the CCF
consistently with its use in the IFR formulation, see (6) below.

Definition 5 (Sample covariance functions): We use the
“hat” symbol for sample-based estimates of statistical quan-
tities. The sampling covariance function of the time series
Xi(t), Xj(t) (where i, j = 1, . . . , D) is given by

Ĉi,j(kδt) � 1

N − k

N∑

n=k+1

xi,n−k xj,n − xi xj , k ∈ Z , (3)

where the “overline” denotes the sample average, i.e., x1 =
1
N

∑N
n=1 x1,n. Equation (3) gives the sample auto-covariance

for i= j and the cross-covariance for i �= j. The sampling cor-
relation functions are defined as follows

ρ̂i,j(kδt) � Ĉi,j(kδt)√
Ĉi,i(0) Ĉj,j(0)

. (4)

Definition 6 (Nonnegative definiteness): A real, symmetric,
D ×D matrix A is nonnegative definite if for any real-valued
vector z ∈ R

D it holds that z�Az≥ 0. A function C(t, t′) :
R× R→ R is nonnegative definite iff

∑n
i=1

∑n
j=1

ziC(ti, tj)zj ≥ 0 for all n ∈N, all time vectors (t1, . . . , tN ) ∈
R

n and all vectors (z1, . . . zn) ∈ R
n.

Definition 7 (Fourier transforms): The Fourier transform
(FT) of a function C(τ) : R→ R that is absolutely integrable
over the interval (−∞,∞) is given by

C̃(ω) =

∫ ∞

−∞
dτ C(τ) e−ı ωτ ,

where ı=
√
−1 is the imaginary unit. In addition, if the function

C(·) is of bounded variation in an interval which contains
τ , i.e., if C(·) has at most a finite number of extrema and

discontinuities within this interval, C(τ) is given by the inverse
Fourier transform (IFT) [48]

C(τ) =
1

2π

∫ ∞

−∞
dω C̃(ω) eıωτ .

A continuous function C(τ) is a permissible covariance ker-
nel for some stationary scalar stochastic process if and only if it
is nonnegative definite. Bochner’s theorem [49] provides easily
testable permissibility conditions.

Theorem II.1 (Bochner’s permissibility theorem): Let C :
R→ R be a continuous, absolutely integrable function. The
function C(·) is non-negative definite if and only if its Fourier
transform C̃ � FT[C] is nonnegative and integrable over R.

The ergodic property allows replacing sample (temporal)
with ensemble averages (i.e., expectations). It is useful in prac-
tical studies, because often only a single realization (sample) is
available. We use ergodicity to investigate IFR. Slutsky’s the-
orem provides necessary and sufficient conditions for second-
order ergodic processes.

Theorem II.2 (Slutsky’s theorem): A second-order station-
ary, Gaussian vector stochastic process X(t) is second-order
ergodic if and only if Ci,j(τ)→ 0 as τ →∞ for all i, j =
1, . . . , D [50, pp. 526-533].

Remark 1: For non-Gaussian processes, second-order er-
godicity requires conditions on higher-order moments than
the covariance.

Notation (Information flow): We denote information flow
from the driver process X1(t) to a receiver process X2(t) by
means of X1→X2. X1→X2 implies that the equation which
determines the dynamic evolution of X2 depends on X1. In
the context of (1), such dependence is expressed by means of
A2,1 �= 0 and/or B2,1 �= 0. Information flow X1→X2 does not
imply information flow in the reverse direction X2→X1.

III. PERMISSIBILITY OF COVARIANCE KERNELS FOR

MULTIVARIATE PROCESSES

Bochner’s theorem [49] applies to scalar, second-order sta-
tionary processes. For vector stochastic processes, permis-
sibility requires the stricter conditions of Cramér’s theorem
[51]. This will be used below to construct valid separable
and non-separable (time-delayed) covariance kernels for cross-
correlated processes.

Theorem III.1 (Cramer’s Theorem): The continuous matrix
function C : R→ R

D×D is a valid matrix covariance kernel
for a continuous, stationary, stochastic vector process, if the
following conditions hold for the matrix components Ci,j(τ),
for i, j ∈ {1, . . . , D}:

(C1) The functions Ci,j : R→ R are absolutely integrable
(i.e., the FTs C̃i,j exist) for all i, j = 1, . . . , D.

(C2) The functions Ci,i : R→ R satisfy Bochner’s theorem
for all i= 1, . . . , D.

(C3) The cross-spectral densities have bounded variation,
i.e., the integrals

∫
R
dω

∣∣∣C̃i,j(ω)
∣∣∣ are finite for all i �=

j = 1, . . . , D.
(C4) The spectral density matrix C̃(ω), where [C̃(ω)]i,j =

C̃i,j(ω), is nonnegative definite for all ω ∈ R.
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The condition (C2) establishes that C̃i,i(ω) are permissible
auto-spectral densities for scalar stochastic processes. Estab-
lishing the permissibility of C̃i,j(ω) for i �= j is not trivial due
to condition (C4) which requires that all eigenvalues or all the
principal minors of C̃(ω) are nonnegative for all ω ∈ R. To
our knowledge, general methods for establishing the validity
of (C4) are not available. The more restrictive concept of diag-
onal dominance is often used to derive sufficient conditions for
matrix covariances [52].

To circumvent the permissibility problem, the so-called sep-
arable (or intrinsic) model [53], [54] is often used. It features
a simple cross-correlation structure the permissibility of which
is easily testable.

Definition 8 (Separable cross-correlation model): Let c
be a D ×D positive-definite matrix with entries in R and
ρ(τ) : R→ R a non-negative definite function. Then, the matrix
function C(τ) = c ρ(τ) : R→ R

D×D provides a permissible,
separable (intrinsic) cross-correlation model [55].

While the separable model is demonstrably permissible, it is
not very useful for studying information flow (see Proposition
V.1 below.) Hence, we introduce a more flexible model which
involves time-delayed cross correlations.

Lemma III.1 (Time-delayed cross-correlations): (i) Let the
continuous functions Ci,i : R→ R, i= 1, 2, be non-negative
definite. (ii) Let C0 : R→ R be a continuous, even function, i.e.,
C0(τ) = C0(−τ), of bounded spectral variation (cf. Condition
C3 in Theorem III.1) which has a global maximum at τ = 0.
(iii) Define C1,2(τ) � C0(τ − τ∗), and C2,1(τ) � C0(τ + τ∗),
where τ∗ > 0 is the time delay. (iv) If the inequality D(ω) �
C̃1,1(ω)C̃2,2(ω)− C̃2

0 (ω)> 0 holds for all ω ∈ R, the matrix
function C(τ) with elements Ci,j(τ), i, j ∈ {1, 2}, is a valid
matrix covariance function for the vector stochastic process
X(t) = (X1(t), X2(t))

� which comprises a leading (driver)
series X1 and a lagging (receiver) series X2.

Proof: The conditions (C1)–(C3) of Cramer’s theorem
are satisfied by construction. The definitions for C1,2(τ), and
C2,1(τ) imply that the symmetry C1,2(−τ) = C2,1(τ) of the
cross-covariance is satisfied since C0(−τ − τ∗) = C0(τ + τ∗)
due to the mirror symmetry of C0(·). The absolute integrability
of C0(τ) ensures the existence of the Fourier transform C̃0(ω).
Furthermore, based on the time shift property of the Fourier
transform it holds that

C̃1,2(ω) = e−ıωτ∗C̃0(ω), (5a)

C̃2,1(ω) = C̃†
1,2(ω) = eıωτ∗C̃0(ω). (5b)

Therefore, |C̃1,2(ω)|= |C̃2,1(ω)|= |C̃0(ω)| and thus Con-
dition (C3) is satisfied. Finally, it holds that C̃1,1(ω)≥ 0,
C̃2,2(ω)≥ 0, and C̃1,1(ω)C̃2,2(ω)> C̃2

0 (ω) since D(ω)> 0 for
all ω ∈ R, according to (iv) above. In light of (5a), it also
holds that C̃2

0 (ω) = C̃1,2(ω) C̃2,1(ω). Thus condition (C4) is
satisfied for all ω ∈ R. Furthermore, since C1,2(τ) � E[X1(t−
τ)X2(t)] attains its maximum value at τ = τ∗, the series X1

leads and X2 follows.

IV. DATA-DRIVEN INFORMATION FLOW RATE

Information flow has been rigorously defined by means of
an ab initio approach [56]. The latter involves calculating ex-
pectations over joint probability density functions that evolve
dynamically. However, in many cases (e.g., earth systems
science, neuroscience, mathematical finance) the only informa-
tion comes from available data because the underlying stochas-
tic dynamical system is not known a priori. Liang developed
a data-driven IFR estimate by maximizing the likelihood of a
linear stochastic dynamical system with additive noise [37].
In the following, we investigate this IFR statistic for systems
of bivariate stochastic processes. For systems involving D > 2
processes, one can consider all the pairwise combinations CD

2 .
For a pair of time series that represent realizations of two

stationary stochastic processes X1(t) and X2(t), the Liang IFR
from X2 to X1, denoted by 2→ 1, is given by [37]

T̂2→1(δt) =
r̂

1− r̂2
[ r̂2,d1(δt)− r̂ r̂1,d1(δt) ] , (6a)

where r̂ � r̂1,2 is the linear (Pearson) correlation coefficient
of {x1,n}Nn=1 and {x2,n}Nn=1. Note that r̂ = ρ̂1,2(τ = 0) where
ρ̂1,2(τ) is the CCF defined in (4). The coefficients r̂2,d1(δt)
and r̂1,d1(δt) represent correlations between the time series and
their first-order finite differences, defined by means of

r̂i,dj(δt) � Ĉi,dj(δt)√
Ĉi,i(0) Ĉj,j(0)

, i, j = 1, 2, (6b)

where Ĉi,dj(δt) � E[X ′
i(t) Ẋ

′
j(t)] is the sample covariance of

the time series {xi,n} and the first-order difference of {xj,n},
defined as ẋj,n � (xj,n+1 − xj,n)/δt, for n= 1, . . . , N − 1.
Note that r̂i,dj(δt) is not the standard correlation function be-
tween X ′

i(t) and Ẋ ′
j(t). The correlation r̂i,dj(δt) is equivalently

expressed as

r̂i,dj(δt) =
Ĉi,j(δt)− Ĉi,j(0)

δt
√

Ĉi,i(0) Ĉj,j(0)
=

ρ̂i,j(δt)− ρ̂i,j(0)

δt
, (6c)

where Ĉi,j(δt) and ρ̂i,j(δt) are respectively the sampling co-
variance and correlation functions (auto- for i= j and cross-
for i �= j) at lag δt defined by means of (3) and (4).

The general form of pair-wise IFR for a D-dimensional vec-
tor series Xt is given by (for i, j = 1, . . . , D, i �= j)

T̂i→j(δt) =
r̂i,j

1− r̂2i,j
[ r̂i,dj(δt)− r̂i,j r̂j,dj(δt) ] . (7)

Taking into account the cross-correlation expression (6c) and
the identity ρ̂j,j(0) = 1, which is implied by (4), we obtain the
following equation for the IFR (for i, j = 1, . . . , D, i �= j)

T̂i→j(δt) =
r̂i,j

1− r̂2i,j

ρ̂i,j(δt)− r̂i,j ρ̂j,j(δt)

δt
. (8)

In (8), the r̂i,dj terms are replaced by expressions that involve
only the sampling correlations ρ̂i,j(·).
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Remark 2 (General properties of T̂i→j): The data-driven
IFR satisfies the following general (independent of the covari-
ance kernels) properties (for i, j = 1, . . . , D, i �= j):

• For stationary processes, T̂i→j(δt) is independent of the
time index t.

• Since r̂i,j and r̂i,dj(δt) are sample-based statistics, so are
the T̂i→j(δt).

• The definition (7) implies that T̂i→j(δt) satisfies the fol-
lowing: (i) if r̂i,j = 0 then T̂i→j = T̂j→i = 0, and (ii) if
T̂i→j �= 0, then T̂i→j(δt)∝ 1/δt.

• The units of T̂i→j(δt) are natural units of information
(nats) per unit time.

• T̂i→j = 0 does not imply that necessarily T̂j→i = 0.

V. INFORMATION FLOW RATE FOR SECOND-ORDER

ERGODIC PROCESSES

For stationary processes, the data-driven IFR (7) is a random
variable that fluctuates between different system realizations.
We investigate the properties of T̂i→j(δt) for cross-covariance-
ergodic processes which satisfy Theorem II.2.

Practical use of Slutsky’s theorem requires a sufficiently large
sample to allow self-averaging. Hence, the length, N δt, of the
observation window should be a large multiple of the longest
correlation time among the functions {Ci,j}di,j=1. This condi-
tion can be expressed as Nδt
 τd, where

τd = max
i,j=1,...,d

{τc;i,j}di,j=1, τc;i,j =

∫ ∞

−∞
Ci,j(τ) dτ ,

is the largest of the ACF, τc;i,i and CCF, τc;i,j(i �= j) corre-
lation times (measured in units of δt). This condition implies
measuring the time series length using an effective sample size
(ESS) Neff <N , which accounts for correlation effects [57],
[58]. Different definitions of Neff [59], [60], [61] agree on
reducing N by a factor that reflects the correlation times. A
typical estimate of the effective size is thus Neff =N δt/τd.

Theorem V.1 (Equilibrium IFR for ergodic processes): Let
X(t) represent a second-order ergodic, D-vector, stochastic
process with standard deviations σi, i= 1, . . . , D, auto- and
cross-covariance functions Ci,j(τ), for i, j = 1, . . . , D, and re-
spective correlation functions ρi,j(τ) = Ci,j(τ)/σiσj .

The equilibrium IFR between the process Xi and the process
Xj , for j �= i, is given by the N →∞ limit

Ti→j(δt) � lim
N→∞

T̂i→j(δt) =
ρi,j(0)

1− ρ2i,j(0)

× [ri,dj(δt)− ρi,j(0) rj,dj(δt)] , (9)

where ri,dj(δt) is the slope of the correlation function ρi,j(·)
near zero lag, expressed as

ri,dj(δt) =
1

δt
[ ρi,j(δt)− ρi,j(0) ] . (10)

Proof: Second-order ergodicity implies that the sample
mean as well as the auto-covariance and cross-covariance func-
tions converge in the mean square sense to their ensemble
counterparts as N →∞. If the ergodic conditions hold, the

sample averages r̂i,j in (7) can be replaced with their ensemble
counterparts ρi,j(0). For the r̂i,dj(δt) terms, it holds that

lim
N→∞

r̂i,dj(δt) =
1

σi σj
E

[
X ′

i(t)

(
X ′

j(t+ δt)−X ′
j(t)

δt

)]

=
[Ci,j(δt)− Ci,j(0) ]

δt σiσj
=

ρi,j(δt)− ρi,j(0)

δt
.

The last step uses Definition 2 for the correlation functions. The
above leads to (10) and concludes the proof for (9).

Theorem V.1 allows replacing the data-driven IFR in the
ergodic limit with Ti→j(δt). The latter involves only ensem-
ble moments (correlation functions) and can thus be used
for theoretical investigations of information flow between
stochastic processes.

Corollary V.1 (Equivalent expression for equilibrium IFR):
If the conditions and definitions of Theorem V.1 hold, the
equilibrium IFR between two second-order ergodic processes
Xi(t) and Xj(t) is given by

Ti→j(δt) =
ρi,j(0)

1− ρ2i,j(0)

ρi,j(δt)− ρi,j(0)ρj,j(δt)

δt
. (11)

The above is expressed in terms of ACFs and CCFs of the
two processes thus avoiding cross-correlations between the pro-
cesses and their derivatives.

Proof: The equation (11) is obtained from (9) in view of
the correlation slope (10) and the fact that ρj,j(0) = 1.

Next, we show that for processes described by a separable
cross-correlation model the equilibrium IFR vanishes.

Proposition V.1 (IFR for separable cross-correlation mod-
els): Consider D cross-correlated processes which satisfy the
covariance separability condition of Definition 8. The equilib-
rium IFR Ti→j(δt) vanishes between any two non-fully cor-
related processes, i.e., Ti→j(δt) = 0 for i �= j ∈ {1, . . . , D} if
ρi,j(0) �=±1.

Proof: Based on Definition 8, the correlation functions of
separable models are given by

ρi,j(τ) = ρ(τ), for i= j, (12a)

ρi,j(τ) =
ci,j√
ci,icj,j

ρ(τ), for i �= j . (12b)

The IFR satisfies Ti→j(δt) =AB(δt)/δt, where A �
ρi,j(0)/(1− ρ2i,j(0)) and B(δt) � ρi,j(δt)− ρi,j(0)ρj,j(δt)
according to Corollary V.1. If ρi,j(0) �=±1, then A ∈ R.
If we define ai,j � ci,j√

ci,icj,j
, it follows that ρi,j(0) = ai,j ,

ρi,j(δt) = ai,jρ(δt), and ρj,j(δt) = ρ(δt), according to (12);
from the above B(δt) = 0 is obtained.

Hence, there is no equilibrium information flow between
stochastic processes with separable cross-correlation models. If
the processes are fully correlated, i.e., ρi,j(0) =±1, the IFR
is not well-defined due to the zero term 1− ρ2i,j(0) in the
denominator of (11). In this case, however, the two processes
differ by a sign at most; therefore, they are essentially the
same process.

Below we present a theorem which links the equilibrium IFR
with the spectral moments of the CCFs. As a consequence, the
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equilibrium IFR is shown to vanish for δt→ 0 if the CCF ρi,j
is an even function of τ .

Theorem V.2 (Spectral IFR expression for ergodic pro-
cesses): Let {Xi(t)}Di=1 represent a set of stochastic processes
with the properties specified in Theorem V.1. Assume that
ρ̃i,j(ω) are the auto- and cross-spectral densities, defined as the
FTs of the correlation functions ρi,j(τ). Furthermore, assume
that the auto- (i= j) and cross- (i �= j) spectral moments of
order one, Λ(1)

i,j , defined by means of the improper integrals

Λ
(1)
i,j � ı

2π

∫ ∞

−∞
dω ω ρ̃i,j(ω), (13)

exist. Then, the equilibrium IFR is given by

Ti→j(δt) =
ρi,j(0)

1− ρ2i,j(0)
Λ
(1)
i,j +O(δt), for i �= j . (14)

Proof: Equation (14) follows from (9) by showing that

ri,dj(δt)∝ Λ
(1)
i,j +O(δt) for all i, j. We use (10) for ri,dj(δt),

express ρi,j(·) in terms of its IFT, and replace exp(ıωt) with
its Taylor expansion around δt= 0, to obtain

ri,dj(δt) =
1

2πδt

∫ ∞

−∞
ρ̃i,j(ω)

(
eıωδt − 1

)
dω

=
ı

2π

∫ ∞

−∞
ω ρ̃i,j(ω) dω +O(δt) . (15)

In general, ρ̃i,j(ω) = ρ̃ re
i,j(ω) + ı ρ̃ im

i,j (ω). Since ρi,j(δt) is a
real-valued function, its Fourier transform respects ρ̃ re

i,j(ω) =
ρ̃ re
i,j(−ω) and ρ̃ im

i,j (−ω) =−ρ̃ im
i,j (ω). The integral involving

ωρ̃ re
i,j(ω) over the symmetric interval (−∞,∞) vanishes be-

cause ρ̃ re
i,j(ω) is even, and thus the integrand ωρ̃ re

i,j(ω) is an odd
function of ω. Hence, only the integral over the imaginary part
survives in (15), leading to

ri,dj(δt) =− 1

π

∫ ∞

0

dω ω ρ̃ im
i,j (ω) = Λ

(1)
i,j . (16)

The calculation of rj,dj(δt) involves the density ρ̃ im
j,j (ω). The

ACF ρj,j(τ) are real-valued, even functions. Hence, the respec-
tive FTs are also real-valued and even. Thus, ρ̃ im

j,j (ω) = 0 for all

ω ∈ R, and the diagonal spectral moments Λ(1)
j,j vanish. There-

fore, only the ri,dj(δt) terms with i �= j give non-vanishing
spectral integrals. Finally, the result (14) is obtained from (9)
using the spectral integral (16).

Remark 3 (Existence of spectral moments): The exis-
tence of Λ(1)

i,j requires that the spectral densities ρ̃i,j(ω) satisfy
ρ̃ im
i,j (ω)∼ ω−2−ε, where ε > 0 for ω →∞. The Whittle-Matérn

spectral density is C̃0(ω)∝ (1 + ω2λ2)−(ν+1/2), where ν > 0
is the smoothness index and λ > 0 is a time constant [54],
[62]. If ν = 1/2 the spectral integral (16) has a logarithmic
divergence and Λ

(1)
i,j is not well-defined. However, for ν > 1/2

the integral defining Λ
(1)
i,j is finite.

Remark 4 (Vanishing of leading IFR term): As it follows
from (14) (Theorem V.2), the leading IFR term vanishes if one
the following conditions hold:

1) If ρi,j(0) = 0, i.e., if the processes are not cross-
correlated at zero lag; then Ti→j(δt) = Tj→i(δt) = 0.

2) If ρ̃ im
i,j (ω) = 0 for all ω > 0, i.e., if the FT of the CCF is

real-valued. This leads to Λ
(1)
i,j = 0 according to (16). A

sufficient (but not necessary condition) is that ρi,j(τ) be
an even function of τ ; then ρ̃ im

i,j (ω) = 0 for all ω ∈ R.
In general, ρ̃ im

i,j (ω) = 0 for ω > 0 does not imply ρ̃ im
j,i (ω) = 0

for ω > 0 since ρ̃ im
j,i (ω) = ρ̃ im

i,j (−ω). So, if the leading-order
term of Ti→j(δt) vanishes, this does not imply that the leading-
order term of Tj→i(δt) also vanishes.

VI. IFR FOR MEAN-SQUARE DIFFERENTIABLE PROCESSES

In the following we assume that the stochastic processes
{Xi(t)}Di=1 are second-order ergodic, and mean-square differ-
entiable. For example, the displacement of a damped, linear
harmonic oscillator driven by white noise is a mean-square
differentiable process [63]. We will need the following lemma
[50], [64], [65].

Lemma VI.1 (Mean-square continuity and differentiabil-
ity): A second-order stationary process Xi(t) is continuous
in the mean-square sense if its ACF ρi,i(τ) is continuous at
τ = 0. Xi(t) is first-order differentiable (in the mean-square
sense) if ρi,i(τ) admits a finite second-order derivative with
respect to τ at zero lag, i.e., if ρ

(2)
i,i (0) exists. This condition

implies that the first derivative of ρi,i(τ) vanishes at τ = 0
(extremum condition).

We will consider the continuous-sampling limit δt→ 0
where the sampling step is considerably smaller than the short-
est correlation time and the delay τ∗ (provided there is a finite
delay τ∗ between processes). At this limit the leading term of
Ti→j(δt) is dominant; this term is independent of δt according
to (14) in Theorem V.2. Hence, at this limit the IFR has a value
which is independent of δt.

Theorem VI.1 (IFR continuous sampling limit): Let
{Xi(t)}Di=1 be a set of second-order ergodic, and mean-square
differentiable stochastic processes. In addition, assume that the
CCFs ρi,j(τ) : R→ R are at least twice differentiable (for i �=
j). Let the continuous-sampling limit of the IFR be defined
as follows:

Ti→j � lim
δt→0

Ti→j(δt). (17)

1) Ti→j is a finite real number given by

Ti→j =
ρi,j(0) ρ

(1)
i,j (0)

1− ρ2i,j(0)
, (18)

where ρ
(1)
i,j (0) is the first-order derivative of the CCF

evaluated at zero lag. Furthermore, the sign of Ti→j is
the sign of the first-order derivative of ρ2i,j(τ) at τ = 0.

2) Ti→j has odd symmetry with respect to interchange of
the information flow indices, i.e., Ti→j =−Tj→i.

Proof: The proof is given in Appendix A.
Remark 5 (Connection with spectral formulation): The

continuous-sampling IFR (18) is equivalent to the leading term
in the spectral expression (14) since Λ

(1)
i,j = ρ

(1)
i,j (0) based on

(14) and FT[ρ
(1)
i,j ] = ıω FT[ρi,j ].

Corollary VI.1 (Finite-time-step corrections): If δt is small
but not negligible, the equilibrium IFR is given by Ti→j(δt) =
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Ti→j + δTi→j +O(δt2) for i �= j. The first-order correction,
δTi→j , to the continuous sampling IFR Ti→j is an O(δt) term
given by

δTi→j

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ti→j

[
ρ
(2)
i,j (0)− ρi,j(0) ρ

(2)
j,j (0)

2ρ
(1)
i,j (0)

]
δt, if ρ(1)i,j (0) �= 0,

ρi,j(0)
[
ρ
(2)
i,j (0)− ρi,j(0)ρ

(2)
j,j (0)

]
δt

2
[
1− ρ2i,j(0)

] , if ρ(1)i,j (0) = 0.

(19)

Proof: The proof is given in Appendix B.
Above we provide general IFR expressions for mean-square

differentiable processes. Next, we focus on models with time-
delayed correlations.

A. Cross-Correlation Functions With Time Delay

Below we show that time-delayed cross-correlation models
described in Lemma III.1 can sustain non-zero information flow
Ti→j , in contrast with separable models (cf. Proposition V.1).

Theorem VI.2 (Continuous-sampling-limit IFR for time-
delayed cross correlations): Let C(τ) : R→ R

2 × R
2 repre-

sent a matrix covariance function which satisfies the conditions
of Lemma III.1. Assume that at least the second-order deriva-
tives of ρi,i(τ), i= 1, 2, and C0(τ) with respect to τ exist at
τ = 0. Then, the following statements are true:

1) The continuous-sampling IFR is given by

Ti→j =
C0(−εi,jτ∗)C

(1)
0 (u)

∣∣
u=−εi,jτ∗

σ2
i σ

2
j − C2

0 (−εi,jτ∗)
, (20)

where σ2
i = Ci,i(0)> 0, C

(1)
0 (u)|u=−εi,jτ∗ is the first

derivative of C0(u) at u=−εi,jτ∗ and εi,j is the Levi-
Civita symbol: εi,j = 1 if (i, j) is an even and εi,j =
−1 if (i, j) is an odd permutation (e.g., ε1,2 = 1; ε2,1 =
−1; εi,i = 0).

2) Ti→j is antisymmetric, i.e., Ti→j =−Tj→i.
Proof: The Levi-Civita symbol determines the sign of

the time delay, i.e., Ci,j(τ) = C0(τ − εi,jτ∗). We use (18)
from Theorem VI.1 for Ti→j . The value of ρi,j(0) follows
from ρi,j(0) = C0(−εi,jτ∗)/σiσj . Using the change of vari-
able τ �→ u � τ − εi,jτ∗, it holds that ρ(1)i,j (0) = αdC0(τ)

dτ |τ=0 =

αdC0(u)
du |u=−εi,jτ∗ , where α= 1/ (σiσj). Then, we obtain

ρ
(1)
i,j (0) =

1

σiσj

dC0(u)

du

∣∣∣∣
u=−εi,jτ∗

, (21)

which concludes the proof of (20). The antisymmetry of Ti→j

follows directly from (2) in Theorem VI.1.

B. Square Exponential Covariance With Time Delays

We consider a bivariate stochastic process with square expo-
nential auto-covariance functions Ci,i(τ) = σ2

i exp(−τ2/τ2i )
and time-delayed cross-covariances generated from the
square exponential C0(τ) = σ2

0 exp(−τ2/τ20 ) as described in

Lemma III.1. The respective spectral densities are given
by C̃i(ω) =

√
π τi σ

2
i exp(−ω2 τ2i /4), for i= 0, 1, 2. The

permissibility condition (C4) of Theorem III.1 requires that
D(ω)≥ 0 for all ω ≥ 0, where

D(ω) � C̃1,1(ω) C̃2,2(ω)− C̃2
0 (ω)

= π
[
σ2
1 σ

2
2τ1 τ2 e

−ω2(τ2
1+τ2

2 )/4 −σ4
0 τ

2
0 e−ω2τ2

0 /2
]
. (22)

The inequality D(ω)≥ 0 is true for all ω ∈ R provided that
(i) σ2

1σ
2
2τ1τ2 ≥ σ4

0τ
2
0 and (ii) τ21 + τ22 ≤ 2τ20 . These conditions

ensure that D(ω = 0)> 0 and that C̃1,1(ω) C̃2,2(ω) decays
more slowly than C̃2

0 (ω). The CCFs (i �= j) are expressed as
ρi,j(τ) = C0(τ − εi,jτ∗)/σ1σ2. Then, ρi,j(0) and ρ

(1)
i,j (0) are

given according to (21) by

ρ1,2(0) = ρ2,1(0) =
σ2
0

σ1σ2
e−τ2

∗/τ
2
0 , (23)

ρ
(1)
i,j (0) = εi,j

σ2
0

σ1σ2

2τ∗
τ20

e−τ2
∗/τ

2
0 , (i, j) = (1, 2), (2, 1). (24)

Based on the above and (18) we obtain the continuous-sampling
IFR limit for (i, j) ∈ {(1, 2), (2, 1)}:

Ti→j =
ρi,j(0) ρ

(1)
i,j (0)

1− ρ2i,j(0)
=

2τ∗εi,j
τ20

σ4
0

σ2
i σ

2
j e

2τ2
∗/τ

2
0 −σ4

0

. (25)

Remark 6 (IFR properties of mean-square-differentiable
processes): (1) The expression (25) for Ti→j does not de-
pend on the characteristic ACF times τ1 and τ2 because the
continuous-time equilibrium IFR (18) does not include diagonal
terms. (2) The expression (25) implies, in light of σ1σ2 > σ2

0

(i) positive information flow rate from the leading (driver) time
series, X1 to the lagging (receiver) time series, X2, and (ii) an
equal-magnitude but opposite sign IFR in the reverse direction
X2 →X1. Furthermore, if we define the dimensionless vari-
ables u � 2τ2∗ /τ

2
0 and w � σ2

1σ
2
2/σ

4
0 , it follows that Ti→j =

εi,ju/τ∗ (w eu − 1). Hence, Ti→j (and Tj→i respectively) de-
pends just on three parameters, the dimensionless ratios u,w
and the delay time τ∗.

C. Linear Regression Model With Delay

As a special case of the bivariate stochastic process in Sec-
tion VI-B, we consider the regression model X2(t) = aX1(t−
τ∗) + Y (t), where 0< a < 1 is a coupling factor, and τ∗ is
the time delay between the receiver process X2(t) and the
driver process X1(t). The latter is assumed to be a zero-
mean stationary process with square exponential covariance and
characteristic time τ1; Y (t) is a zero-mean, stationary, mean-
square differentiable process with variance σ2

y = b2σ2
1 , where

COV {X1(t), Y (t′)}= 0 for all t, t′ ∈ R and b is the relative
(compared to X1) amplitude of the uncorrelated component Y
in the receiver. Based on the above definitions, the variance of
X2 is σ2

2 = a2σ2
1 + σ2

y , while σ2
0 = aσ2

1 is the cross-covariance
at zero lag. In addition, the CCF is given by

ρ1,2(τ) � E[X1(t− τ)X2(t)]

σ1σ2
=

a ρ1,1(τ − τ∗)√
a2 + b2

. (26)
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The permissibility condition (C4) of Cramer’s Theorem III.1,
as specified in inequality (22), is satisfied because (i) σ1σ2 =
σ2
1

√
a2 + b2 > σ2

0 = aσ2
1 and (ii) τ21 = τ22 = τ20 . Then, the ex-

pression (25) for the continuous-sampling, equilibrium IFR
yields the following for (i, j) ∈ {(1, 2), (2, 1)}:

Ti→j =
2τ∗εi,j
τ20

1

(1 + b2/a2) e2τ
2
∗/τ

2
0 −1

. (27)

According to (27), the magnitude of IFR is reduced as b/a
increases. This reflects the decline of the cross-correlation be-
tween X1 and X2 with increasing b/a, as it follows from (26).
The equilibrium IFR (27) is independent of the ACF of the
“contaminating” signal Y (t). The dependence of (27) is further
studied in the numerical simulations of Section VIII-C.

VII. IFR FOR MEAN-SQUARE CONTINUOUS BUT

NON-DIFFERENTIABLE PROCESSES

First-order dynamical systems driven by Gaussian white
noise generate stochastic processes which are mean-square con-
tinuous but not differentiable [66, p. 39]. If X(t) is such a
stochastic process, its ACF is continuous but non-differentiable
at zero lag. A well-known example is the exponential (Ornstein-
Uhlenbeck) model with ρ(τ) = exp(−|τ |/τ0); the lack of the
first derivative at τ = 0 is due to the change in the slope of
|τ | from positive to negative. The ergodic expression (11) for
the equilibrium IFR is still valid in this case; however, the
Taylor expansions of ρi,j(δt) (for i= j and i �= j) used in
Theorem VI.1 are not. In this section we calculate IFR for cor-
relation functions that are continuous but non-differentiable at
the origin.

A. Cross-Correlation Model With Time Delay

We assume a time-delayed cross-correlation model as de-
fined in Lemma III.1, with the additional constraint that the
covariance functions are continuous but non-differentiable at
the origin.

Theorem VII.1 (Mean-square continuous processes with
time-delayed cross correlations): Let C(τ) : R→ R

2 × R
2

represent a matrix covariance function as defined in
Lemma III.1. Assume that the ACFs ρi,i(τ), i= 1, 2,
and the CCF generating function C0(τ) are continuous and
everywhere differentiable except at τ = 0. In addition, assume
that C0(·) is an even function of bounded spectral variation as
specified in condition (ii) of Lemma III.1. Then, the following
statements are true for i �= j:

1) The continuous-sampling (δt→ 0) IFR limit is given by

Ti→j =
r

1− r2

[
ρ
(1)
i,j (0+)− r ρ

(1)
j,j (0+)

]
, (28)

where r � ρi,j(0), ρ
(1)
i,j (0+) � C

(1)
0 (−εi,jτ∗)/σiσj , and

the Levi-Civita tensor εi,j is defined in Theorem VI.2.
2) In the continuous-sampling limit we obtain

Ti→j + Tj→i =
−r2

[
ρ
(1)
i,i (0+) + ρ

(1)
j,j (0+)

]

1− r2
≥ 0 .

(29)

Hence, the IFR antisymmetry Ti→j =−Tj→i of mean-
square differentiable processes (see Theorem VI.1)
is broken.

3) For driver→receiver IFR (T1→2), if δt < τ∗ the expres-
sion (28) is the leading-order approximation in δt. For
receiver → driver IFR (T2→1), (28) is valid for small δt
regardless of τ∗.

4) If δt > τ∗ (slow sampling regime), the leading-order ap-
proximation of the driver → receiver IFR (T1→2) is
given by

T1→2(δt) =
r
[
ρ
(1)
1,2(0+)

(
1− 2τ∗

δt

)
− r ρ

(1)
2,2(0+)

]

1− r2
.

(30)

Proof: The proof is given in Appendix C.
Remark 7 (Zero IFR condition): It follows directly from

(28) that Ti→j vanishes (i) if r = 0, i.e., if ρi,j(0+) = 0, or
(ii) if ρ(1)i,j (0+) = r ρ

(1)
j,j (0+). The slope ρ

(1)
j,j (0+) of the ACF at

τ = 0+ is negative. Hence, if r > 0, condition (ii) is realized
only if ρ

(1)
i,j (0+), or equivalently the first-order derivative of

C0(·), evaluated at −εi,jτ∗, is negative (provided that τ∗ > 0).
Since C0(u) is a monotonically declining (increasing) function
for u > 0 (u < 0), validity of condition (ii) requires εi,j < 0.
Therefore, IFR can vanish for 2→ 1 (lagging→leading) in-
formation flow but not in the opposite, 1→ 2, direction. The
situation is reversed if r < 0; negative values for r can only be
obtained if C0(τ∗)< 0.

A necessary (but not sufficient) condition for the separa-
ble correlation model is τ∗ = 0. The IFR Ti→j in the limit
τ∗ → 0 is obtained from (28) for flow in both directions. Fur-
thermore, in the separable case ρi,j(τ) = ai,jρ(τ) (for i �= j)
while ρj,j(τ) = ρ(τ) (cf. Proposition V.1). Hence, condition (ii)
above is satisfied, and thus Ti→j = Tj→i = 0 follows from (28),
in agreement with the more general result of Proposition V.1.

B. Ornstein-Uhlenbeck (O-U) Covariance Model

In this section we study a concrete example of a bivariate pro-
cess with exponential auto-covariance and time-delayed expo-
nential cross-covariance. The exponential covariance describes
processes that obey the Ornstein-Uhlenbeck stochastic ordinary
differential equation [67].

Corollary VII.1 (Permissibility of O-U cross-covariance
model): Consider the exponential auto-covariance functions
Ci(τ) = σ2

i exp(−|τ/τi|), where τi > 0 for all i ∈ {1, 2}, and
the time-delayed cross-covariances generated from C0(τ) =
σ2
0 exp(−|τ/τ0|) as specified in Lemma III.1. Then, sufficient

permissibility conditions are as follows:

(C1). σ1σ2
√
τ1τ2 > τ0σ

2
0 , (31a)

(C2).
τ21 + τ22
2τ1τ2

≥ σ2
1σ

2
2

σ4
0

≥ τ1τ2
τ20

. (31b)

Proof: The respective spectral densities for the O-U model
are given by C̃i(ω) = 2τiσ

2
i /(1 + ω2 τ2i ), for i= 0, 1, 2. The

permissibility conditions (C4) of Theorem III.1 require that
C̃1,1(ω)≥ 0, C̃2,2(ω)≥ 0, and D(ω)> 0, for all ω ∈ R. The
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first two inequalities are valid for σi, τi > 0. The third inequality
is expressed as

τ1τ2σ
2
1σ

2
2

(1 + ω2 τ21 )(1 + ω2 τ22 )
>

τ20σ
4
0

(1 + ω2 τ20 )
2
≡ 1

D1(ω)
>

1

D2(ω)
,

for all ω ∈ R, where Di(ω) = αi + βiω
2 + γiω

4 are quartic
polynomials with coefficients

α1 =
1

τ1τ2σ2
1σ

2
2

, β1 =
τ21 + τ22
τ1τ2σ2

1σ
2
2

, γ1 =
τ1τ2
σ2
1σ

2
2

,

α2 =
1

τ20σ
4
0

, β2 =
2

σ4
0

, γ2 =
τ20
σ4
0

Since Di(ω)≥ 0 for all ω ∈ R, the third inequality is equivalent
to D2(ω)>D1(ω) for all ω ∈ R. This condition is satisfied if
α2 > α1, β2 ≥ β1, and γ2 ≥ γ1, which lead to the conditions
(31a) by simple algebraic calculations.

Theorem VII.2 (IFR for O-U covariance model with time
delay): Assume that the O-U covariance model satisfies the
permissibility criteria of Corollary VII.1. Then, the continuous-
sampling IFR for the O-U model is given by

Ti→j =
1(

σ2
1σ

2
2

σ4
0

)
e2εi,jτ∗/τ0 −1

(
1

τj
+

εi,j
τ0

)
. (32)

Proof: According to (21), ρi,j(0) = C0(−εi,jτ∗)/σiσj and
the derivatives ρ

(1)
i,j (0), for i, j = 1, 2, are given by

ρ1,2(0) =
σ2
0

σ1σ2
e−τ∗/τ0 , ρ2,1(0) =

σ2
0

σ1σ2
eτ∗/τ0 (33a)

ρ
(1)
i,j (0+) =

−εi,j
τ0

(
σ2
0

σ1σ2

)
e−τ∗/τ0 , i �= j, (33b)

ρ
(1)
j,j (0+) =− 1

τj
. (33c)

The first derivative ρ
(1)
i,j (0+) (for i �= j) is proportional to εi,j .

The Levi-Civita symbol controls the slope which is negative for
(i, j) = (1, 2) and positive for (i, j) = (2, 1). If the permissibil-
ity criteria are satisfied, (32) is obtained by plugging the expres-
sions (33) in the IFR (28), taking into account that r = ρi,j(0).
The expression (32) is tested with numerical simulations
in Section VIII-D.

Remark 8 (Asymmetric Ti→j for O-U model): If τ0 = τ1,
then T2→1 = 0 while T1→2 �= 0. This asymmetric behavior of
IFR is in contrast with the square exponential model in which
both IFRs have the same magnitude and only differ in sign.

Finally, according to (30), for δt > τ∗ (slow sampling) the
leading-order with respect to δt leading→lagging IFR approx-
imation is

T1→2(δt) =
2τ∗
τ0 δt

1(
σ2
1σ

2
2

σ4
0

)
e2τ∗/τ0 −1

. (34)

VIII. NUMERICAL EXPERIMENTS

In this section we test the theoretical analysis of the equi-
librium IFR presented in Sections VI-VII with synthetic time
series generated by simulating zero-mean, Gaussian stochastic
processes with specified correlation properties.

A. Simulation Method

We use the multivariate normal (MVN) method to simulate
bivariate time series [68, p. 50]. For time series comprising
N sampling times tk ∈ [0, T ] for k = 1, . . . , N , the temporal
dependence is determined by the full covariance matrix C:

C=

[
C1,1 C1,2

C2,1 C2,2

]
. (35)

C is a 2N × 2N symmetric block matrix. The block
submatrices Ci,j , i, j = 1, 2, include the N ×N symmetric
auto-covariance matrices C1,1,C2,2, and the N ×N cross-
covariance matrices C1,2,C2,1. The matrix elements
[Ci,j ]k,l =Ki,j(tk − tl) for i, j = 1, 2 and k, l = 1, . . . , N
are obtained from a 2× 2 matrix function K(τ) [e.g., see
(36) below]. If C=AAT is a factorization of C, and z is a
2N × 1 vector of independent random numbers drawn from
the standard normal distribution N (0; 1), then the 2N × 1
vector x=Az is a realization of the bivariate time series with
said covariance structure. We use the principal square root
factorization of C for numerical stability [69].

B. Square Exponential Covariance With Time Delay

We simulate two Gaussian processes governed by the delayed
square exponential covariance model (see Section VI-B). We
consider a sampling window of length T = 10 and step δt=
0.002, leading to N = 5× 103 sampling points. The covariance
matrix function K is given by

K(τ) =

[
σ2
1 e−τ2/τ2

1 σ2
0 e−(τ−τ∗)

2/τ2
0

σ2
0 e−(τ+τ∗)

2/τ2
0 σ2

2 e−τ2/τ2
2

]
, (36)

where τ0 = T/200, τ1 = τ2 = τ0, τ∗ = 0.008, σ2
1 = σ2

2 = 1.1
and σ2

0 = 1. For these parameters, the CCF at zero lag is
ρ1,2(0)≈ 0.89 according to (23). The small ratio τ0/T is se-
lected in order to ensure that Neff � N δt/τ0 = T/τ0 
 1 in
compliance with ergodic conditions (see Remark 1).

An ensemble of Nsim = 100 realizations is generated using
MVN simulation (outlined in Section VIII-A). The ACFs and
CCFs along with a typical realization are shown in Fig. 1. The
equilibrium IFR is obtained from (25). The data-driven IFR
is calculated from each realization using (7). The histograms
of T1→2 and T2→1 calculated from the ensemble are shown in
Fig. 2. The two histograms are nearly identical mirror images as
expected from Theorem VI.2. The theoretical values (marked
by continuous vertical lines in Fig. 2) lie in the middle of the
respective histograms. According to (25), T1→2 ≈ 23.4 whereas
the simulation-average yields T 1→2 ≈ 23.75. In addition, the
sample estimates of T1→2 (T2→1) obtained from the simulated
states are consistently positive (negative).

1) IFR Dispersion: The IFR values exhibit broad distribu-
tions with a coefficient of variation ≈ 0.15 (in absolute
value). This behavior is due to between-samples fluctu-
ations of r̂, and the 1− r̂2 dependence of the IFR [cf.
(7)]. The IFR variance thus tends to increase as r̂→±1.
In spite of the fluctuations, the IFR probability distribu-
tions preserve the signs of T1→2 and T2→1 (see Fig. 2),
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Fig. 1. Auto- and cross-covariance functions (top) and simulated samples
(bottom) of two Gaussian processes representing a driver time series X1(t)
(continuous line, blue online) and a receiver time series X2(t) (broken line,
red online). The plots are based on the bivariate Gaussian process with the
delayed square exponential covariance model (36). In the top frame, the
auto-covariance is marked by the continuous line (cyan online), the cross-
covariance C1,2(τ) by the broken line (red online), and the cross-covariance
C2,1(τ) by the dash-dot line (blue online).

implying that the data-driven IFR correctly captures the
direction of information flow from the leading to the
lagging series.

2) Finite-Sampling-Step Corrections: To obtain accurate
IFR estimates based on the continuous sampling expres-
sion (25), it is necessary that the O(δt) correction, δTi→j ,
be negligible. Based on (19) the magnitude of the relative
correction is∣∣∣∣

δTi→j

Ti→j

∣∣∣∣=
∣∣∣∣∣
ρ
(2)
i,j (0)− ρi,j(0) ρ

(2)
j,j (0)

2ρ
(1)
i,j (0)

∣∣∣∣∣ δt .

Since ρj,j(τ) = exp(−τ2/τ2j ) and for i �= j it holds that
ρi,j(τ) = (σ2

0/σ1σ2) exp
[
−(τ − εi,jτ∗)

2
]
, using straightfor-

ward algebraic operations, it follows that
∣∣∣∣
δTi→j

Ti→j

∣∣∣∣=
δt

2τ∗

(
τ20
τ2j

− 1

)
+

δt τ∗
τ20

. (37)

The first term on the right-hand side of (37) vanishes since τ0 =
τ1 = τ2. Using the specified values of τ0, τ∗ and δt, we obtain
|δTi→j/Ti→j | ≈ 6.4× 10−3 which is indeed negligible.

Fig. 2. Histograms of continuous sampling IFR T1→2 (top) and T2→1

(bottom) generated from an ensemble of 100 realizations of a bivariate cross-
correlated Gaussian stochastic process with square exponential covariance
model (36). The continuous line in the middle (red online) of both plots marks
the theoretical estimate of the equilibrium IFR (25). The model parameters for
the stochastic processes (cf. Section VIII-B), are: T = 10 (length of sampling
window) δt= 0.002 (sampling step), N = 5× 103 (number of sampling
points), τ1 = τ2 = τ0 = 0.05 (correlation time), τ∗ = 0.008 (time delay),
σ2
1 = σ2

2 = 1.1 and σ2
0 = 1.

C. Linear Regression Model With Time Delay

We test the validity of the theoretical IFR (27) for the linear
regression model of mean-square differentiable processes pre-
sented in Section VI-C. The study design is described below.

1) The processes X1(t) and X2(t) are coupled by means
of the delayed square exponential covariance (36). The
model parameters are τ0 = T/200, τ1 = τ2 = τ0 = 1,
σ2
1 = 1.1 and σ2

0 = 1. Note that a= σ2
0/σ

2
1 = (1.1)−1,

while σ2
2 = a2σ2

1

(
1 + b2/a2

)
varies with b/a.

2) The equilibrium IFR is calculated for 100 values of the
ratio τ∗/τ0 ∈ [0, 1] and for b/a ∈ {0.1, 0.2, 0.4, 0.6, 0.8}.

3) An ensemble of Nsim = 100 simulations is generated
by means of the MVN method for each combination
(τ∗/τ0, b/a) (see Section VIII-A).

4) Each pair of time series in the ensemble comprises N =
1000 time instants t ∈ [0, 100].

5) For each realization, we calculate T1→2 and T2→1 based
on the data-driven IFR (7).

6) We generate parametric plots of the equilibrium IFRs
versus τ∗/τ0 for the different b/a values.

Fig. 3 compares the ensemble averages of the IFR T1→2

with the equilibrium IFR (27). The error bars are based on
2σIFR, where σIFR is the IFR standard deviation estimated from
the simulation ensemble. Near-perfect agreement is observed
between the theoretical and the simulation-based estimates.
The IFR peaks at a τ∗/τ0 value which depends on b/a. The
IFR (both theoretical and ensemble estimates) tend to zero as
τ∗/τ0 → 0 in agreement with Proposition V.1. The dispersion
of simulation-based IFR values declines with increasing τ∗/τ0
(for fixed b/a) and with increasing b/a (for fixed τ∗/τ0). This
behavior agrees with (26) which shows that ρ1,2(0) declines
with increasing b/a (under fixed τ∗) and with increasing τ∗ (un-
der fixed b/a). Values of ρ1,2(0) (and thus of r̂) that approach
±1 inflate the T1→2 variance. Finally, according to (37) the



HRISTOPULOS: INFORMATION FLOW RATE FOR CROSS-CORRELATED STOCHASTIC PROCESSES 849

Fig. 3. Parametric plots of T1→2 for the regression model X2(t) =
aX1(t− τ∗) + Y (t) (see Section VI-C) versus τ∗/τ0 for different b/a
ratios. X1(t), X2(t) and Y (t) are Gaussian processes with square expo-
nential auto- and cross-covariances. It is assumed that σ2

0 = 1, σ2
1 = 1.1,

a= σ2
0/σ

2
1 and σ2

2 = a2 σ2
1(1 + b2/a2). The time constants are T = 100,

τ1 = τ2 = τ0 = 1, while the time delay τ∗ is determined from the ratio
τ∗/τ0. The continuous curves are based on the theoretical equilibrium IFR
expression (27). For every realization (pair of length N = 1000 time series)
from an ensemble of Nsim = 100 simulations, the IFR is estimated based
on the data-driven estimator (7). Lower values of b/a imply higher cross
correlation between X1 and X2. The star markers denote ensemble averages
of IFR estimates, while the associated error bars have a width of two standard
deviations (as estimated from the ensemble).

relative magnitude of second-order corrections to the theoretical
estimate is ∼ δt τ∗/τ

2
0 . Given the values of δt, τ0 and the range

of τ∗/τ0, such corrections are negligible. The results for T2→1

are not shown since they are practically mirror images (with
reversed sign) of those for T1→2.

D. Ornstein-Uhlenbeck Covariance With Time Delay

We study two coupled, mean-square continuous Gaussian
processes governed by an exponential (O-U) covariance model
with time delay. The process parameters N, τl and σ2

l , where
l = 0, 1, 2, the time step δt, the observation window T and
the number Nsim of simulated states take the values used in
Section VII-B. The auto-covariance functions are given
by Ci,i(τ) = σ2

i exp(−|τ |/τi), for i= 1, 2, and the cross-
covariance functions are given by the exponentials Ci,j(τ) =
σ2
0 exp(−|τ − εi,jτ∗|/τ0), for (i, j) = (1, 2), (2, 1).
The IFR histograms obtained from 100 realizations are

shown in Fig. 4. Both plots agree with the theoretical result
(32). In addition, both T1→2 and T2→1 exhibit significant dis-
persion (due to the fluctuations of 1/(1− r̂2) as discussed in
Section VIII-B). However, T1→2 is persistently non-negative,
demonstrating information flow from the leading to the lagging
time series, while T2→1 fluctuates around zero as expected
based on (32) and the fact that τ1 = τ2 = τ0.

Next, we use the study design of Section VIII-C to calculate
the IFR for different combinations of τ∗/τ0 and b/a in the
context of the linear regression model. The only difference is
that herein the exponential model is used instead of the square

Fig. 4. Histograms of continuous sampling IFR T1→2 (top) and T2→1

(bottom) generated from an ensemble of 100 realizations comprising two
Gaussian stochastic processes governed by the time-delayed, exponential
(Ornstein-Uhlenbeck) model which is defined in Section VII-B. The vertical
lines in the middle of the histograms (red online) near 60 and 0 respectively,
mark the theoretical, equilibrium IFR estimate (32). The model parameters for
the stochastic processes are: T = 10 (length of sampling window) δt= 0.002
(sampling step), N = 5× 103 (number of sampling points), τ1 = τ2 = τ0 =
0.05 (correlation time), τ∗ = 0.008 (time delay), σ2

1 = σ2
2 = 1.1 and σ2

0 = 1.

exponential covariance in Section VIII-C. The results are shown
in Fig. 5. The top panel shows T1→2 and the bottom panel shows
T2→1. The T1→2 curves are calculated from (32) for δt < τ∗
(i.e., for τ∗/τ0 > 0.1) and from (34) for δt≥ τ∗ (τ∗/τ0 ≤ 0.1).
The T2→1 curves are calculated from (32) for all τ∗. The T1→2

curves show the same tendencies, albeit different shapes, with
respect to τ∗/τ0 and b/a as the respective curves in Fig. 3. The
ensemble-based estimates are marked by stars with ± 2σIFR er-
ror bars. A small, yet systematic difference is observed between
the theoretical and ensemble-based IFR values in the δt≥ τ∗
(slow sampling) regime. This is caused by O

(
(δt− 2τ∗)

2
)

terms in the expansion (44) for ρ1,2(τ), which are not included
in the leading-order theoretical estimate. The difference is more
pronounced for smaller b/a due to the amplification caused by
the (1− r2)−1 factor for r ≈±1. The T2→1 are consistently
close to the theoretical estimate (i.e., zero), while the dispersion
is reduced for higher τ∗/τ0 and b/a.

IX. DISCUSSION

A. IFR Interpretation

In real-world problems, the absolute magnitude of the data-
driven IFR (or its normalized counterpart [38]) are used to
determine causal relations, e.g. [37], [43], [44], [45]. Values of
|T̂i→j | �= 0 indicate information flow in the direction Xi →Xj .
The statistical significance of non-zero T̂i→j estimates should
be tested. A parametric test based on confidence intervals [37]
is derived from estimates of the coefficients of system (1). A
non-parametric test of T̂i→j uses random permutations X

(p)
i

of the series Xi (i.e., the signal being investigated as potential
driver) to obtain a baseline for non-significant deviations of
T̂i→j from zero [43]. The sign of Ti→j however, does not
have a clear meaning. Our analysis provides a possible physical
interpretation of the IFR sign.
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Fig. 5. Parametric plots (continuous curves) of T1→2 (top) and T2→1

(bottom) versus τ∗/τ0 for different b/a ratios. Two Gaussian processes,
X1 and X2, with time-delayed, Ornstein-Uhlenbeck model—defined in
(33), are simulated. It is assumed that σ2

0 = 1, σ2
1 = 1.1, a= σ2

0/σ
2
1 and

σ2
2 = a2 σ2

1(1 + b2/a2). Lower b/a values imply higher cross correlation
between X1 and X2. The time constants are T = 100, τ1 = τ2 = τ0 = 1,
while τ∗ is determined from the ratio τ∗/τ0. The continuous curves are
based on the theoretical equilibrium estimates, i.e., (32) for δt < τ∗ (top and
bottom panels), and (34) for T1→2 if δt≥ τ∗ (top). For every realization
(pair of length N = 1000 time series) from an ensemble of Nsim = 100
simulations, the IFR is obtained using the data-driven estimator (7). Ensemble-
based averages are marked by stars, while the associated error bars have a
width of two standard deviations (based on the ensemble estimates).

More generally, we have shown that the interpretation
of T̂i→j for coupled stochastic processes depends on the
smoothness (regularity) of the processes. For mean-square-
differentiable processes with lead-lag correlations, the IFR is
positive for leading→lagging information flow and negative in
the opposite direction. If the processes are mean-square contin-
uous but non-differentiable, the information flow does not share
the same magnitude in both directions: the leading→lagging
IFR is positive, while the lagging→leading IFR can take zero
or negative values. For linear dynamical systems that satisfy
(1) with diagonal diffusion matrix B, the Ti→j is exactly zero
for any pair of indices (i, j) such that Aj,i = 0 [37]. Inspection
of (1) shows that the differential of the stochastic Wiener pro-
cess forces discontinuous first-order derivatives for X(t). Such
systems should be modeled with mean-square continuous (non-
differentiable) stochastic processes to avoid erroneous informa-
tion flow estimates. For mean-square differentiable processes

(such as the displacement from equilibrium of coupled, linear,
stochastic harmonic oscillators), the information flow is non-
zero in both directions due to the odd symmetry of the IFR
(see Theorem VI.1). In these cases, analysis of the derivatives
(i.e., displacement rates), which represent mean-square contin-
uous but non-differentiable processes, may be more revealing
regarding the direction of information flow.

To apply the results of our analysis to real-world data, one
needs information about the process regularity. According to
Lemma VI.1, mean-square continuity and differentiability of a
stochastic process is determined by the regularity of its ACF
at the origin. An optimal correlation model can be selected
from the data using likelihood-based [70] or Bayesian model
selection, or the cross validation approach [71].

Our analysis also suggests that in order to accurately identify
the direction of information flow, the sampling step should be
smaller than the temporal delay and the latter be a fraction
(optimally ≈ 0.1) of the correlation time. In addition, if the
time delay τ∗ of interaction between processes is much smaller
or much larger than the correlation time τ0, the observed IFR
tends to zero. Nonetheless, the IFR is able to detect informa-
tion flow over a wide range of τ∗/τ0 (cf. Figs. 3 and 5). In
contrast, WGC analysis requires specifying an autoregressive
order which should be equal or higher than the interaction time
lag between the processes in order to capture causal dependence
[24], [72]. Estimates of τ0 and τ∗ can be obtained by means of
model fitting and model selection approaches mentioned in the
preceding paragraph.

B. Limitations of the Analysis

Herein we focus on second-order ergodic (therefore, also sta-
tionary) processes. In practice, conditions of ergodicity require
that time series be sufficiently long compared to the correla-
tion times of the processes involved. The regularity conditions
(Lemma VI.1) do not require distributional assumptions for the
stochastic processes. However, for the numerical simulations
we used Gaussian processes because (1) ergodicity conditions
can be established by means of Slutsky’s theorem based ex-
clusively on second-order moments and (2) the simulation of
Gaussian time series is straightforward.

In many problems of interest (e.g., EEG recordings of brain
activity at rest or during task execution), the observed time
series are non-stationary. Since the calculation of data-driven
IFR estimates is straightforward, in non-stationary systems one
can estimate time-dependent IFR measures within contiguous
time windows that are locally stationary. In such cases, one
can derive the information flow using non-overlapping or over-
lapping time windows, e.g., as in bootstrap subsampling [73]
and windowed Fourier transforms [74]. One of the goals of
neuroscience is to identify effective brain connectivity within
and across different spectral activity bands [27]. IFR has so
far been used to investigate brain connectivity without spectral
segmentation [43], [44]. This question could be pursued by ex-
tending the results of Theorem V.2, using suitably modified IFR
spectral expressions that involve band-limited spectral moments
over different frequency bands of interest.
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Liang has recently generalized the expression for the bivari-
ate, data-driven IFR to multivariate systems containing N ≥ 2
units (time series) [75]. For N = 2, this formulation yields
the same IFR between a pair of time series xi(t) and xj(t)
with i �= j as the bivariate expression (7). The multivariate
expression also quantifies the self-interaction of each time series
which is missing in (7). Extension of the present analysis to
the multivariate formulation is not straightforward, because the
latter involves the cofactors of N ×N covariance matrices.
In addition, verifying the admissibility of an N -variate cross-
covariance model (where N 
 2) requires controlling a large
set of parameters.

Based on (7), IFR vanishes if r̂i,j = 0, i.e., if there are no
cross correlations. This makes sense, because in the linear limit
causation implies correlation (but not vice versa); hence, if two
processes are causally linked, their cross-correlation is expected
to be non-zero. A pathological case involves two deterministic
cosine processes, one of which leads the other by π/2. Note that
causality in this system is not detectable by the WGC method
which is applicable to stochastic systems. In spite of the clear
causal link, r̂i,j vanishes if it is estimated by integrating over
a multiple of the signals’ period; therefore, IFR also vanishes.
However, it was recently shown that if the cosine functions are
modeled as a stochastic bi-harmonic system with additive noise,
the normalized IFR tends to unity as the noise variance tends
to zero, thus recovering the causal relation [76].

One may ask if IFR is related to other data-driven methods
of causal inference such as WGC and transfer entropy [28].
The latter two were shown to be entirely equivalent under the
Gaussian assumption [77]. To our knowledge, there are no sys-
tematic comparisons of IFR and WGC in the literature; a recent
study focuses on differences in brain connectivity derived from
the analysis of fMRI data [44]. The two methods have quite
different origins. WGC is based on a statistical test of the null
hypothesis that the “driver” does not impact the “response” in a
statistically significant manner. WGC assumes that the system
under study is described by means of a linear, stationary, vector
autoregressive model (although there are extensions that relax
these assumptions [24], [25]).

Liang’s IFR is obtained by calculating the flow of infor-
mation (expressed in terms of entropy) between subspaces of
a stochastic, nonlinear dynamical system. This leads to IFR
equations that involve multidimensional integrals of joint prob-
ability density functions which are not in general amenable
to explicit solution. The data-driven IFR (7), studied herein,
was derived by applying maximum likelihood estimation to
time series data, assuming a linear stochastic system that satis-
fies (1) [37]. Nonetheless, the data-driven IFR has been suc-
cessfully applied to benchmark dynamical systems such as
the Baker, Hénon and Kaplan–Yorke maps, and Rössler os-
cillators [42], [56], [75]. A deeper physical understanding of
IFR’s magnitude and sign is needed for nonlinear systems.
In the linear case, it remains to be investigated if there is a
deeper connection between IFR and WGC. IFR has a practi-
cal advantage over WGC, because IFR’s computational com-
plexity is controlled by the calculation of correlations for two
time lags (zero and δt)—therefore it scales linearly with the

size of the time series—in contrast with the cubic scaling of
WGC (cf. Section I).

X. CONCLUSION

We investigated the data-driven Liang information flow rate
between coupled, second-order ergodic stochastic processes.
We defined the equilibrium IFR (Theorem V.1), and we devel-
oped a spectral formulation for the equilibrium IFR in terms
of spectral moments of the coupled processes (Theorem V.2).
We showed that the continuous sampling limit (δt→ 0) of
the equilibrium IFR can be defined for both mean-square
differentiable (Theorem VI.1) and mean-square continuous
(Theorem VII.1) processes. We also derived leading-order
finite-step corrections in the case of mean-square differentiable
processes (Corollary VI.1). Furthermore, we established that
the equilibrium IFR vanishes for separable cross-correlation
models C(τ) = cρ(τ), where c is a D ×D covariance matrix
and ρ(τ) an admissible scalar correlation function. This result
holds for second-order ergodic processes independently of reg-
ularity properties (Proposition V.1).

For mean-square differentiable processes with non-separable
covariance kernels, we found that the IFR has the same mag-
nitude in both directions but is positive in one direction and
negative in the other (Theorem VI.1). We also investigated the
equilibrium IFR for cross-correlation models featuring time
delays. In the case of differentiable covariance kernels, the IFR
exhibits an odd symmetry: it is positive in the direction from
the leading to the lagging series and negative in the opposite
direction (Theorem VI.2). These general results were explored
by means of a simple regression model (Section VI-C). The IFR
antisymmetry is broken for mean-square continuous (but non-
differentiable) processes (Theorem VII.1). For the Ornstein-
Uhlenbeck correlation model, we have shown that the IFR from
the leading to the lagging series is positive, while the IFR
from lagging to the leading series vanishes provided that the
characteristic time constants of the ACFs and CCFs match (Re-
mark 8). Finally, we showed that for mean-square differentiable
processes, as well as mean-square continuous processes with
sampling step smaller than the time delay (δt < τ∗), the leading-
order equilibrium IFR is independent of δt. In the case of
mean-square continuous processes with τ∗ ≤ δt (slow sampling
regime), the leading-order term is O(1/δt).

APPENDIX A
PROOF OF THEOREM VI.1: IFR CONTINUOUS SAMPLING LIMIT

Proof: (1) According to (9), Ti→j(δt) involves the
product of ρi,j(0)/[1− ρ2i,j(0)], which is independent of
δt, with ri,dj(δt)− ρi,j(0) rj,dj(δt). Hence, to determine
limδt→0 Ti→j(δt), the limit ri,dj(δt) as δt→ 0 needs to be
evaluated, where ri,dj(δt) is defined in (10). Assuming mean-
square differentiability, the limit δt→ 0 becomes

lim
δt→0

ri,dj(δt) = lim
δt→0

1

δt
[ρi,j(δt)− ρi,j(0)] . (38)

We consider the terms ri,dj (i �= j) and rj,dj separately.
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Term 1 (ri,dj for i �= j): The CCF ρi,j(τ) does not necessarily
peak at τ = 0; in fact, the peak appears at τ �= 0 if the influence
ofXi(t) onXj(t) occurs after a finite time delay. Then, the first-
order derivative of ρi,j(τ) at zero does not vanish. The Taylor
expansion of ρi,j(δt) around δt= 0 leads to

ρi,j(δt) = ρi,j(0) + ρ
(1)
i,j (0) δt+

ρ
(2)
i,j (0)

2
δt2 +O(δt3). (39)

It follows from (38) and (39) that limδt→0 ri,dj(δt) = ρ
(1)
i,j (0)

for i �= j.
Term 2 (ri,dj for i= j): According to Lemma VI.1 it holds

that ρ(1)j,j (0) = 0. Since ρj,j(0) = 1, ρj,j(δt) admits the follow-
ing Taylor expansion around δt= 0:

ρj,j(δt) = 1 +
1

2
ρ
(2)
j,j (0) δt

2 +O(δt4). (40)

Based on the above expansion, the limit (38) is given by

lim
δt→0

rj,dj(δt) = lim
δt→0

[
δt

2
ρ
(2)
j,j (0) +O(δt3)

]
= 0.

Therefore, the term ∝ rj,dj(δt) in (9) vanishes at the limit
δt→ 0. This result signifies that differentiable processes X(t)
are uncorrelated with Ẋ(t). Hence, only limδt→0 ri,dj(δt) =

ρ
(1)
i,j (0) for i �= j enters in Ti→j leading to (18).
According to (18), the sign of IFR is determined by the

sign of the product ρi,j(0)ρ
(1)
i,j (0). The latter is the first-order

derivative of ρ2i,j(τ) with respect to τ evaluated at τ = 0.
(2) The antisymmetry of Ti→j follows from (18). Since

ρi,j(0) = ρj,i(0), the sign of Tj→i is determined from ρ
(1)
j,i (0).

CCFs respect the reflection symmetry ρi,j(δt) = ρj,i(−δt) [50].
Using the Taylor series expansion of both terms around δt= 0
and equating terms of the same order in δt, it follows that the
n-order derivative satisfies ρ

(n)
j,i (0) = (−1)n ρ

(n)
i,j (0) and thus

ρ
(1)
j,i (0) =− ρ

(1)
i,j (0). Hence, Tj→i =−Ti→j .

APPENDIX B
PROOF OF COROLLARY VI.1: FINITE-TIME-STEP CORRECTIONS

Proof: We use the equilibrium IFR (11) and define
gi,j(δt) � 1

δt [ρi,j(δt)− ρi,j(0)ρj,j(δt)]. Then (11) is
expressed as

Ti→j(δt) =
ρi,j(0)

1− ρ2i,j(0)
gi,j(δt) . (41)

Using (39)-(40) and the above definition of gi,j(δt), the follow-
ing Taylor series expansion is obtained for gi,j(δt)

gi,j(δt) = ρ
(1)
i,j (0) +

δt

2

[
ρ
(2)
i,j (0)− ρi,j(0)ρ

(2)
j,j (0)

]
+O(δt2) .

(42)

Case 1: ρ(1)i,j (0) = 0. If this condition holds, according to (18)
the continuous sampling IFR vanishes, i.e. Ti→j = 0. By setting
ρ
(1)
i,j (0) = 0 in (42) we obtain from (41) the second branch

of (19).
Case 2: ρ

(1)
i,j (0) �= 0. In this case (42) leads to gi,j(δt) =

ρ
(1)
i,j (0) +O(δt)/2. In addition, Ti→j �= 0 according to (18).

The leading correction is thus given by δTi→j = Ti→j(δt)−
Ti→j −O(δt2). Based on (41) and (42) we obtain

δTi→j =
ρi,j(0)

1− ρ2i,j(0)

δt
[
ρ
(2)
i,j (0)− ρi,j(0)ρ

(2)
j,j (0)

]

2
.

Finally, if we multiply and divide the right-hand side of the
above with ρ

(1)
i,j (0) �= 0 and recall (18) for Ti→j , the first branch

of (19) is recovered.

APPENDIX C
PROOF OF THEOREM VII.1: MEAN-SQUARE CONTINUOUS

PROCESSES WITH TIME-DELAYED CORRELATIONS

Proof: For i �= j, ρi,j(0) = C0(−εi,jτ∗)/σiσj ; given the
symmetry of C0(·) it holds that C0(−εi,jτ∗) = C0(τ∗) and thus
ρi,j(0) = r. We use a unified notation for i= j and i �= j, by
introducing functions φi,j(u) : R≥0 → R such that ρi,j(τ) =
φi,j(|τ − τ̃ |); for i= j, φi,i(u) = ρi,i(τ), where u= |τ − τ̃ |,
while φi,j(u) = C0(τ)/σiσj for i �= j. The temporal offset τ̃ ∈
R is given by τ̃ = εi,jτ∗ so that it produces the correct sign for
the leading/lagging series and vanishes for i= j.

Based on the conditions specified above for C0(·), the func-
tions φi,j(u) are differentiable for all u ∈ R and have a global
maximum at u= 0. For the Ornstein-Uhlenbeck model all of
these functions are of the form ϕ(u) = exp(−u/τ0); a Taylor
expansion of ϕ(·) around τ = 0+ (thus u= |τ̃ |) yields

ϕ(|τ − τ̃ |) = ϕ(|τ̃ |) + ϕ(1)(|τ̃ |) (| τ − τ̃ | − |τ̃ | )
+O ( | τ − τ̃ | − |τ̃ | )2, (43)

where ϕ(1)(|τ̃ |) � ϕ(1)(u)
∣∣
u=|τ̃ |; thus, if τ̃ → 0 the derivative

ϕ(1)(0+) is evaluated. For example, the following first-order
Taylor approximation is easily confirmed for |τ − τ̃ | � τ0:

e−|τ−τ̃ |/τ0 ≈ e−τ̃/τ0

(
1− |τ − τ̃ |

τ0
− |τ̃ |

τ0

)
.

In light of (43) and recalling that τ̃ = εi,jτ∗, the Taylor ex-
pansion for the forward finite difference ρi,j(δt) around δt= 0
is as follows:

ρi,j(δt) = ρi,j(0) + ρ
(1)
i,j (0+) (|δt− εi,jτ∗| − |εi,jτ∗|)

+
1

2
ρ
(2)
i,j (0+) (|δt− εi,jτ∗| − |εi,jτ∗|)2 +O(δt3),

(44)

where ρ(n)i,j (0+) = φ
(n)
i,j (|τ̃ |) is the limit of the nth-order deriva-

tive of φi,j(u) with respect to u as δt→ 0+.
Based on the equilibrium IFR expression (11) and the Taylor

expansion (44), and taking into account that |εi,jτ∗|= τ∗, the
leading-order in δt IFR approximation for i �= j is given by

Ti→j(δt) =
r

1− r2
1

δt

[
ρ
(1)
i,j (0+) ( |δt− εi,jτ∗| − τ∗)

− ρi,j(0) ρ
(1)
j,j (0+)δt

]
. (45)

Based on (45) and ε2,1 =−1, the leading-order T2→1(δt) ap-
proximation for information flow in the receiver→driver (2→
1) direction becomes

T2→1(δt) =
r

1− r2

[
ρ
(1)
2,1(0+)− r ρ

(1)
1,1(0+)

]
.
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Hence, T2→1(δt) is independent of δt and the continuous-
sampling limit T2→1 is well defined. This proves the expression
(28) for receiver→driver IFR as well as statement (3).

The expression (45) for T1→2(δt) involves ε1,2 = 1. For in-
formation flow in the driver→receiver (1→ 2) direction, we
need to consider two cases: (1) for δt > τ∗ we obtain

T1→2(δt) =
r

1− r2

[
ρ
(1)
1,2(0+)

(
1− 2τ∗

δt

)
− r ρ

(1)
2,2(0+)

]
,

(46a)

and (2) for δt≤ τ∗

T1→2(δt) =
r

1− r2

[
−ρ

(1)
1,2(0+)− r ρ

(1)
2,2(0+)

]
. (46b)

The second branch of (46) proves the continuous sampling
limit T1→2 (28) for IFR in the driver→receiver direction (state-
ment 1). It also proves statement (4) in Theorem VII.1 which
applies if the sampling step exceeds the delay.

To prove (29), i.e., statement (2) in Theorem VII.1, we
evaluate the sum Ti→j + Tj→i using (45). We employ the
symmetry C0(τ∗) = C0(−τ∗), and the fact that C(1)(u) is an
odd function of u, i.e., C(1)(u) =−C(1)(−u). The latter im-
plies that ρ(1)i,j (0+) + ρ

(1)
j,i (0+) vanishes in Ti→j + Tj→i (due

to the odd symmetry of the first derivative of the CCF, cf.
Appendix A). Thus, the expression (29) follows by adding the
second terms on the right-hand side of (45). Finally, the non-
negativity of Ti→j + Tj→i is due to the fact that ρ(1)j,j (0+)< 0
and 0≤ r2 ≤ 1.
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